TWI471463B - Measurement and compensation system for ingot growth and method thereof - Google Patents

Measurement and compensation system for ingot growth and method thereof Download PDF

Info

Publication number
TWI471463B
TWI471463B TW101103504A TW101103504A TWI471463B TW I471463 B TWI471463 B TW I471463B TW 101103504 A TW101103504 A TW 101103504A TW 101103504 A TW101103504 A TW 101103504A TW I471463 B TWI471463 B TW I471463B
Authority
TW
Taiwan
Prior art keywords
crystal growth
quartz rod
module
control unit
data
Prior art date
Application number
TW101103504A
Other languages
Chinese (zh)
Other versions
TW201333280A (en
Inventor
Yu Tsung Chiang
Chung Sheng Chang
Wen Huai Yu
Bruce Hsu
Wen Ching Hsu
Original Assignee
Sino American Silicon Prod Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sino American Silicon Prod Inc filed Critical Sino American Silicon Prod Inc
Priority to TW101103504A priority Critical patent/TWI471463B/en
Priority to CN2012100497157A priority patent/CN103243384A/en
Publication of TW201333280A publication Critical patent/TW201333280A/en
Application granted granted Critical
Publication of TWI471463B publication Critical patent/TWI471463B/en

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

晶體成長量測補償系統及其方法Crystal growth measurement compensation system and method thereof

一種補償系統及其方法,尤指一種針對晶體成長之量測補償系統。A compensation system and method thereof, especially a measurement and compensation system for crystal growth.

多晶矽材料因為生產速度快與價格低廉,目前廣泛應用在消費性電子產品上,例如太陽能電池產業等,而多晶矽材料的製作方式係利用鑄造的方式,於一大坩堝中將矽原料全部熔融,在透過緩慢冷卻,以形成包含不同晶格方向晶粒的晶碇。Polycrystalline germanium materials are widely used in consumer electronics products, such as the solar cell industry, because of their high production speed and low cost. Polycrystalline germanium materials are produced by means of casting, and all of the germanium raw materials are melted in a large scale. By slow cooling, crystals containing crystal grains of different lattice directions are formed.

傳統多晶矽成長爐大致可分為三種:第一種是熔融液與結晶過程在不同坩堝中進行的鑄造方式;第二種熔融與結晶過程在同一坩堝中進行;以及第三種無使用坩堝的電磁鑄造法。Conventional polycrystalline germanium growth furnaces can be roughly divided into three types: the first is a casting method in which the melt and the crystallization process are carried out in different crucibles; the second melting and crystallization process is carried out in the same crucible; and the third electromagnetism without using antimony Casting method.

定向凝固法(DSS)為目前市場生產多晶矽晶碇的主流,而對於使用坩堝之多晶長晶爐而言,其製程受限於坩堝本質上的物性差異、矽原料種類差異、鑄造爐熱場老化程度、鑄造爐溫控熱電偶老化程度與鑄造爐本身其它變異的問題,使得晶體成長條件出現很大變異,因此導致每次產出之晶碇品質不穩定。一般來說晶體長速會影響到矽碇的雜質等不純物析出程度,且也會影響到晶體生長結構,由於傳統的定向凝固法之多晶矽鑄造爐並無即時監控晶體長速變化的功能,因此增加了製程穩定性的變異。Directional solidification (DSS) is the mainstream of polycrystalline germanium in the market. For polycrystalline crystal growth furnaces using tantalum, the process is limited by the physical properties of tantalum, the difference of raw materials, the thermal field of casting furnace. The degree of aging, the degree of aging of the temperature-controlled thermocouple of the foundry furnace, and other variations of the casting furnace itself cause a large variation in crystal growth conditions, resulting in unstable quality of the crystals produced each time. Generally speaking, the long crystal velocity affects the degree of impurity precipitation such as impurities, and also affects the crystal growth structure. Since the conventional directional solidification method of the polycrystalline crucible casting furnace does not have the function of monitoring the long-speed change of the crystal in real time, it is increased. Variations in process stability.

本發明之目的之一,在於提供一種晶體成長量測補償系統,其可即時監控晶碇生長的長速或晶體變化狀況,並即時地加以補償,使晶碇生長的條件均處在最佳化的參數下,藉以確保晶碇品質的均一性。One of the objects of the present invention is to provide a crystal growth measurement compensation system capable of real-time monitoring of the growth rate or crystal change of the crystal growth, and timely compensation, so that the conditions for crystal growth are optimized. Under the parameters, to ensure the uniformity of the quality of the crystal.

本發明實施例提供一種晶體成長量測補償系統,包含:一控制單元,其儲存有一預定晶體成長資料;一耦接於該控制單元之晶體成長速度量測單元,其至少具有一石英棒;以及一耦接於該控制單元之鑄造單元,其至少具有一坩堝及一對應該坩堝的溫控模組;其中,其中該晶體成長速度量測單元係裝設於該坩堝上方,該石英棒係相對於該坩堝進行移動,藉此該晶體成長速度量測單元係測得該坩堝中之晶體成長資料,該控制單元可依據該預定晶體成長資料補償該鑄造單元中的晶體成長。The embodiment of the present invention provides a crystal growth measurement and compensation system, comprising: a control unit storing a predetermined crystal growth data; a crystal growth rate measuring unit coupled to the control unit, having at least one quartz rod; a casting unit coupled to the control unit, the motor unit having at least one turn and a pair of temperature control modules; wherein the crystal growth rate measuring unit is mounted on the top of the crucible, the quartz rod is relatively The raft is moved, whereby the crystal growth rate measuring unit measures the crystal growth data in the crucible, and the control unit can compensate the crystal growth in the casting unit according to the predetermined crystal growth data.

本發明實施例提供一種晶體成長量測補償方法,包含以下步驟:Embodiments of the present invention provide a crystal growth measurement compensation method, including the following steps:

1、提供一儲存有一預定晶體成長資料之控制單元、一耦接於該控制單元之晶體成長速度量測單元及一耦接於該控制單元之鑄造單元;1. A control unit for storing a predetermined crystal growth data, a crystal growth rate measuring unit coupled to the control unit, and a casting unit coupled to the control unit;

2、進行一長晶步驟:利用該鑄造單元之一坩堝將一晶種及多個長晶原料融熔;2. performing a crystal growth step: melting one seed crystal and a plurality of crystal growth materials by using one of the casting units;

3、進行一量測步驟:利用該晶體成長速度量測單元之一石英棒相對於該坩堝進行移動,藉此該晶體成長速度量測單元係測得該長晶步驟之晶體成長資料;3. Performing a measuring step: using a quartz rod of the crystal growth rate measuring unit to move relative to the crucible, wherein the crystal growth rate measuring unit measures the crystal growth data of the crystal growth step;

4、進行一比對步驟:利用該控制單元將該長晶步驟之晶體成長資料與該預定晶體成長資料進行比對;以及4. Performing an alignment step: using the control unit to compare the crystal growth data of the crystal growth step with the predetermined crystal growth data;

5、進行一補償步驟:利用該控制單元控制該鑄造單元,以補償調整該長晶步驟之晶體成長資料。5. Performing a compensation step: controlling the casting unit with the control unit to compensate for crystal growth data for adjusting the crystal growth step.

在具體實施例中,晶體成長速度量測單元可為一種電控或是人力操作的單元。In a specific embodiment, the crystal growth rate measuring unit can be an electronically controlled or manually operated unit.

本發明具有以下有益的效果:本發明主要利用晶體成長速度量測單元即時地針對晶體生長、矽料融化之速度進行監控,並利用電腦比對的方式找出實際生長條件與最佳化生長條件的差異,進而將實際生長條件調整、補償為最佳化生長條件,藉以避免各種生產條件上的變異所導致晶碇品質不穩定的問題。The invention has the following beneficial effects: the invention mainly uses the crystal growth rate measuring unit to monitor the speed of crystal growth and the melting of the material in real time, and uses the computer to compare the actual growth conditions and the optimized growth conditions. The difference, and then the actual growth conditions are adjusted and compensated to optimize the growth conditions, in order to avoid the problem of unstable crystal quality caused by variations in various production conditions.

為使能更進一步瞭解本發明之特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。For a better understanding of the features and technical aspects of the present invention, reference should be made to the accompanying drawings.

本發明主要提供一種晶體成長量測補償系統,其可利用晶體成長速度量測單元檢測鑄造單元中的晶體成長資料,並將所測得之晶體成長資料與控制電腦中所預先輸入的預定晶體成長資料加以比對,以確保長晶條件的控制,藉以提昇製程的穩定性。值得說明的是,上述之預定晶體成長資料與所測得之晶體成長資料均可包括相當多元而廣泛之資料,舉凡晶體長速、長晶原料之融速等等,而本發明亦不限制晶體種類(如單晶、多晶)、長晶製程(如mono-like(類單晶)製程、multicrystalline silicon solar cells等)或是各式長晶爐的應用範疇,而以下係以多晶矽之定向凝固製程(DSS)加以說明本發明。The invention mainly provides a crystal growth measurement compensation system, which can detect crystal growth data in a casting unit by using a crystal growth rate measuring unit, and grow the measured crystal growth data and a predetermined crystal growth input in a control computer. The data is compared to ensure the control of the growth conditions to improve the stability of the process. It should be noted that the predetermined crystal growth data and the measured crystal growth data may include a relatively diverse and extensive data, such as the long crystal speed, the melting speed of the crystal growth material, and the like, and the present invention does not limit the crystal. Types (such as single crystal, polycrystalline), long crystal processes (such as mono-like (multi-crystalline silicon solar cells), multi-crystalline silicon solar cells, etc.) or the application of various types of crystal growth furnaces, and the following are directional solidification of polycrystalline germanium The process (DSS) illustrates the invention.

請參考圖1與圖3,其顯示本發明之晶體成長量測補償系統1的功能方塊圖與示意圖,其包括控制單元11、晶體成長速度量測單元12及鑄造單元13;其中控制單元11儲存有一預定晶體成長資料,具體而言,控制單元11可為電腦,其大致具有處理器、儲存模組111、顯示模組等,儲存模組111用於儲存所述之預定晶體成長資料,而控制單元11可用於運算比對、輸出訊號以達到控制的效果。Please refer to FIG. 1 and FIG. 3 , which are functional block diagrams and schematic diagrams of the crystal growth measurement compensation system 1 of the present invention, which include a control unit 11, a crystal growth rate measuring unit 12 and a casting unit 13; wherein the control unit 11 stores The control unit 11 can be a computer having a processor, a storage module 111, a display module, and the like. The storage module 111 is configured to store the predetermined crystal growth data and control the data. Unit 11 can be used to calculate the alignment and output signals to achieve control effects.

晶體成長速度量測單元12與鑄造單元13係分別電性耦接於控制單元11,換言之,控制單元11可輸出訊號控制晶體成長速度量測單元12與鑄造單元13的做動,亦可接收晶體成長速度量測單元12所測得之鑄造單元13中的晶體成長資料。The crystal growth rate measuring unit 12 and the casting unit 13 are electrically coupled to the control unit 11, respectively. In other words, the control unit 11 can output signals to control the operation of the crystal growth rate measuring unit 12 and the casting unit 13, and can also receive the crystal. The crystal growth data in the casting unit 13 measured by the growth rate measuring unit 12.

如圖1、圖3、圖3A所示,在本發明之第一實施例中,晶體成長速度量測單元12係為一種自動偵測長晶過程中晶體成長資料的單元,晶體成長速度量測單元12具有耦接於控制單元11之驅動模組121、耦接於驅動模組121之石英棒夾持模組122及固定於石英棒夾持模組122之石英棒123;如圖3所示,晶體成長速度量測單元12較佳地裝設於鑄造單元13,使石英棒123可移動至鑄造單元13中,以利用高度差量測鑄造單元13中之晶體成長資料,而晶體成長速度量測單元12可將所量測之晶體成長資料回傳至控制單元11,以進行資料比對的作業;驅動模組121則可為線性導螺桿、汽缸、線性馬達等等。As shown in FIG. 1 , FIG. 3 and FIG. 3A , in the first embodiment of the present invention, the crystal growth rate measuring unit 12 is a unit for automatically detecting crystal growth data during the crystal growth process, and the crystal growth rate is measured. The unit 12 has a driving module 121 coupled to the control unit 11, a quartz rod clamping module 122 coupled to the driving module 121, and a quartz rod 123 fixed to the quartz rod clamping module 122; The crystal growth rate measuring unit 12 is preferably installed in the casting unit 13, so that the quartz rod 123 can be moved into the casting unit 13 to measure the crystal growth data in the casting unit 13 by the height difference, and the crystal growth rate is The measuring unit 12 can return the measured crystal growth data to the control unit 11 for data comparison operation; the driving module 121 can be a linear lead screw, a cylinder, a linear motor or the like.

再者,鑄造單元13至少具有一坩堝133及一對應坩堝133的溫控模組,例如加熱模組131、冷卻模組132及爐壁冷卻模組134,加熱模組131、冷卻模組132與爐壁冷卻模組134的位置均對應於坩堝133;坩堝133係為一種可容納晶種及多個長晶原料(例如:藍寶石(Al2 O3 )、矽(Si)、氟化鈣(CaF2 )、碘化鈉(NaI)或其他鹵化物基團鹽晶體等)之容器,其形狀可例如D形、圓形等等。如圖3所示,坩堝133位於冷卻模組132之上,冷卻模組132可為一種支撐件,其材質可為石墨(C)、鎢(W)、鉬(Mo)、鈮(Nb)、鑭(La)、鉭(Ta)、錸(Re)或其合金之高熔點金屬製成或是其他耐高溫陶瓷材料,其外型亦可具有散熱鰭片等構造;而在一變化實施例中,冷卻模組132之內部可具有空心部分以安裝冷卻流道1321,以利用冷卻流道1321中的冷卻流體,例如氦(He)、氖(Ne)、氫(H)或冷卻液體的流動經由所述之空心部分來冷卻坩堝133;同樣地,爐壁冷卻模組134中同樣具有冷卻流體以提供冷卻功用。另外,鑄造單元13,如多晶矽鑄造爐之頂部具有孔道,如Pyrometer-Dipping孔道、TC-1孔道、OT等其它孔道,前述之石英棒123即可藉由所述之孔道而將石英棒123插入,並使其端面接觸到晶碇、矽料表面或坩堝133。Furthermore, the casting unit 13 has at least one 坩埚133 and a temperature control module corresponding to the 坩埚133, such as the heating module 131, the cooling module 132 and the furnace wall cooling module 134, the heating module 131, the cooling module 132 and The position of the furnace wall cooling module 134 corresponds to the 坩埚133; the 坩埚133 is a kind of accommodating seed crystal and a plurality of crystal growth materials (for example: sapphire (Al 2 O 3 ), bismuth (Si), calcium fluoride (CaF) 2 ) A container of sodium iodide (NaI) or other halide group salt crystals, etc., which may have a shape such as a D shape, a circular shape or the like. As shown in FIG. 3, the crucible 133 is located above the cooling module 132. The cooling module 132 can be a support member, and the material thereof can be graphite (C), tungsten (W), molybdenum (Mo), niobium (Nb), Made of high melting point metal of lanthanum (La), tantalum (Ta), yttrium (Re) or alloys thereof or other high temperature resistant ceramic materials, the outer shape thereof may also have a structure such as heat radiating fins; and in a variant embodiment The interior of the cooling module 132 may have a hollow portion to mount the cooling flow passage 1321 to utilize the flow of cooling fluid in the cooling flow passage 1321, such as helium (He), neon (Ne), hydrogen (H) or cooling liquid, via The hollow portion cools the crucible 133; likewise, the furnace wall cooling module 134 also has a cooling fluid to provide a cooling function. In addition, the casting unit 13, such as a polycrystalline crucible casting furnace, has a hole at the top thereof, such as a Pyrometer-Dipping tunnel, a TC-1 tunnel, an OT or the like, and the quartz rod 123 can insert the quartz rod 123 through the tunnel. And have its end face contact with the wafer, the surface of the material or the crucible 133.

加熱模組131可如熱電偶等加熱器,其位置大致位於坩堝133上,以將坩堝133中之長晶原料連同晶種加熱至大致高於長晶原料之熔化溫度。舉例而言,將長晶原料加熱至大約1100℃至2400℃之範圍內。而在加熱的同時,藉由利用上述流體流過冷卻流道1321冷卻坩堝133之底部,以使得成核層保持完好無損且不完全熔化,當熔融材料均勻化之後,即可起始晶種之成長。The heating module 131 can be a heater such as a thermocouple positioned substantially at the crucible 133 to heat the crystal growth material in the crucible 133 together with the seed crystal to a temperature substantially higher than the melting temperature of the crystal growth material. For example, the crystal growth feedstock is heated to a temperature in the range of from about 1100 °C to 2400 °C. While heating, the bottom of the crucible 133 is cooled by flowing the fluid through the cooling flow path 1321 so that the nucleation layer remains intact and incompletely melted, and when the molten material is homogenized, the seed crystal can be started. growing up.

因此,當晶種之生長啟動之後,本發明之晶體成長量測補償系統1就可以進行下述步驟,以即時地監控並調整晶體之成長參數,例如晶體長速、長晶原料之融速,藉以將晶體的實際成長參數補償至操作者所設定的預定晶體成長資料:Therefore, after the growth of the seed crystal is started, the crystal growth measurement compensation system 1 of the present invention can perform the following steps to instantly monitor and adjust the growth parameters of the crystal, such as the long crystal speed, the melting speed of the crystal growth material, In order to compensate the actual growth parameters of the crystal to the predetermined crystal growth data set by the operator:

步驟一:進行一量測步驟,此步驟在於利用晶體成長速度量測單元12之石英棒123相對於坩堝133進行移動,藉以測得上述長晶步驟之晶體成長資料。在本具體實施例中,晶體成長速度量測單元12係裝設於坩堝133上方,控制單元11可輸出訊號至晶體成長速度量測單元12之驅動模組121,驅動模組121即可控制石英棒夾持模組122帶動石英棒123相對於坩堝133進行垂直移動;當石英棒123之底部接觸到融化之長晶原料、坩堝133或晶碇表面時,石英棒夾持模組122即可依據其所移動的距離(即石英棒123移動的高度差),換算出晶體長速、長晶原料之融速等資料。Step 1: Perform a measurement step in which the quartz rod 123 of the crystal growth rate measuring unit 12 is moved relative to the crucible 133 to measure the crystal growth data of the crystal growth step. In the embodiment, the crystal growth rate measuring unit 12 is installed above the crucible 133, and the control unit 11 can output a signal to the driving module 121 of the crystal growth rate measuring unit 12, and the driving module 121 can control the quartz. The rod clamping module 122 drives the quartz rod 123 to move vertically with respect to the crucible 133; when the bottom of the quartz rod 123 contacts the melted crystal material, the crucible 133 or the wafer surface, the quartz rod clamping module 122 can be The distance moved by the distance (i.e., the height difference in which the quartz rod 123 moves) is converted into data such as the long crystal velocity and the melting speed of the crystal growth material.

另一方面,控制單元11之儲存模組11更儲存有一量測頻率資料,驅動模組121可依據量測頻率資料以程式化地驅動石英棒夾持模組122及石英棒123進行上述之量測步驟,舉例來說,操作者可預先依據不同的長晶階段將量測頻率資料輸入、儲存於控制單元11之儲存模組111,例如,在長晶過程中之較關鍵階段可設定較高頻率的量測動作,如在長晶時間約25至40小時之間,設定每十五分鐘量測一次;而其他較穩定的長晶過程,則為每一小時量測一次。On the other hand, the storage module 11 of the control unit 11 further stores a measured frequency data, and the driving module 121 can programmatically drive the quartz rod clamping module 122 and the quartz rod 123 according to the measured frequency data. For example, the operator can input and store the measurement frequency data in the storage module 111 of the control unit 11 according to different crystal growth stages in advance, for example, can be set higher in a key stage of the crystal growth process. The frequency measurement action, such as setting the measurement every 15 minutes between the crystal growth time of about 25 to 40 hours, and the other stable growth process for each hour.

步驟二:進行一比對步驟,控制單元11將長晶步驟之晶體成長資料與預定晶體成長資料進行比對。具體而言,在此步驟中,操作者可預先將實際晶體成長資料與預定晶體成長資料之間的最大允許偏差值輸入、儲存於控制單元11之儲存模組111,控制單元11可將實際晶體成長資料與預定晶體成長資料之變化曲線進行比對,以檢視實際晶體成長資料與預定晶體成長資料之間的偏差值是否大於該最大允許偏差值,如前文所述,在此步驟中,控制單元11可將實際之晶體長速、長晶原料之融速等資料與儲存模組111所預先輸入之晶體長速、長晶原料之融速等資料進行比對。Step 2: Performing an alignment step, the control unit 11 compares the crystal growth data of the crystal growth step with the predetermined crystal growth data. Specifically, in this step, the operator may input and store the maximum allowable deviation value between the actual crystal growth data and the predetermined crystal growth data in advance in the storage module 111 of the control unit 11, and the control unit 11 may actually The growth data is compared with a curve of the predetermined crystal growth data to check whether the deviation value between the actual crystal growth data and the predetermined crystal growth data is greater than the maximum allowable deviation value, as described above, in this step, the control unit 11 The actual crystal long-speed, the melting rate of the crystal growth material and the like can be compared with the data of the long-speed crystal of the storage module 111 and the melting speed of the crystal growth material.

步驟三:進行一補償步驟:利用控制單元11控制該鑄造單元13,以補償地調整該長晶步驟之晶體成長資料。在具體實施例中,晶體成長速度量測單元12可為一種電控或是人力操作的單元;而在一較佳實施例中,當步驟二之長晶步驟之晶體成長資料與預定晶體成長資料之間的偏差值大於操作者所輸入之最大允許偏差值時,控制單元11可控制鑄造單元13之溫控模組,如加熱模組131、冷卻模組132、爐壁冷卻模組134或絕緣籠開度等等,將長晶步驟之晶體成長資料補償至兩者之差值小於最大允許偏差值。具體而言,當長晶原料之融速過慢時,控制單元11可控制鑄造單元13之加熱模組131提高其加熱功率,或是同時降低冷卻模組132、爐壁冷卻模組134的的冷卻速度(如降低冷卻流體的流量或溫度等),以提高坩堝133之溫度曲線;又如晶體長速過慢時,控制單元11可控制鑄造單元13之加熱模組131降低其加熱功率,或是同時提高冷卻模組132的冷卻速度(如提高冷卻流體的流量或溫度等),更或是開啟絕緣籠的開度;藉此,製程中晶體長速或是長晶原料之融速均可依照預定晶體成長資料而受到控制。Step 3: Perform a compensation step: control the casting unit 13 by the control unit 11 to compensate for the crystal growth data of the crystal growth step. In a specific embodiment, the crystal growth rate measuring unit 12 can be an electronically controlled or manually operated unit; and in a preferred embodiment, the crystal growth data and the predetermined crystal growth data of the crystal growth step of the second step When the deviation value is greater than the maximum allowable deviation value input by the operator, the control unit 11 can control the temperature control module of the casting unit 13, such as the heating module 131, the cooling module 132, the furnace wall cooling module 134 or the insulation. The cage opening degree, etc., compensates the crystal growth data of the crystal growth step until the difference between the two is less than the maximum allowable deviation value. Specifically, when the melting speed of the crystal growth material is too slow, the control unit 11 can control the heating module 131 of the casting unit 13 to increase the heating power thereof, or simultaneously reduce the cooling module 132 and the furnace wall cooling module 134. Cooling speed (such as reducing the flow rate or temperature of the cooling fluid, etc.) to increase the temperature profile of the crucible 133; and if the crystal long speed is too slow, the control unit 11 can control the heating module 131 of the casting unit 13 to reduce its heating power, or At the same time, the cooling rate of the cooling module 132 is increased (such as increasing the flow rate or temperature of the cooling fluid), or the opening of the insulating cage is opened; thereby, the long speed of the crystal or the melting speed of the long crystal material can be Controlled according to predetermined crystal growth data.

在一具體實施例中,加熱模組131的溫度可被控制在±10度,冷卻液體流量可被控制在±20LPM,而冷卻氣體流量可被控制在±50LPM。In one embodiment, the temperature of the heating module 131 can be controlled to ±10 degrees, the cooling liquid flow rate can be controlled to ±20 LPM, and the cooling gas flow rate can be controlled to ±50 LPM.

請參考圖2,其顯示本發明之第二實施例,其中與第一實施例的差異在於:本實施例之晶體成長速度量測單元12’係為一種人工方式驅動石英棒123的方式來達到量測長晶步驟之晶體成長資料。換言之,在本實施例中,操作者直接以人工方式帶動石英棒123,以量測目標物的高度,石英棒123移動時可透過光學、磁性或電氣訊號做移動行程之量測,例如當石英棒123接觸到矽料或晶錠,石英棒123因接觸產生一反作用力時,即可立即送出訊號,警示已經到達量測面並同時進行位置量測,以避免石英棒123接觸矽湯太久而與晶錠產生沾粘之現象,而操作者再將高度數據輸入控制單元11,控制單元11即可依據其所輸入的數據(即石英棒123移動的高度差)換算出晶體長速、長晶原料之融速等資料。同樣地,控制單元11可針對實際晶體成長資料與預定晶體成長資料進行比對,並據以控制鑄造單元13進行補償步驟。Referring to FIG. 2, a second embodiment of the present invention is shown, wherein the difference from the first embodiment is that the crystal growth rate measuring unit 12' of the embodiment is a method for manually driving the quartz rod 123. The crystal growth data of the crystal growth step were measured. In other words, in the present embodiment, the operator directly drives the quartz rod 123 to measure the height of the target object. When the quartz rod 123 moves, the optical travel can be measured by optical, magnetic or electrical signals, for example, when quartz is used. When the rod 123 is in contact with the dip or the ingot, the quartz rod 123 can immediately send a signal due to the contact, and the signal is detected, and the position measurement is performed at the same time to prevent the quartz rod 123 from contacting the soup for too long. The ingot generates a sticking phenomenon, and the operator inputs the height data into the control unit 11, and the control unit 11 can convert the crystal long-speed and long-crystal raw materials according to the data input thereto (that is, the height difference of the movement of the quartz rod 123). Information such as the speed of the melt. Similarly, the control unit 11 can compare the actual crystal growth data with the predetermined crystal growth data, and accordingly control the casting unit 13 to perform the compensation step.

綜上所述,本發明至少可達到以下目的:In summary, the present invention achieves at least the following objectives:

1、當本發明應用於多晶矽長晶製程時,可即時監控多晶矽碇之每次晶碇生長的長速或晶體變化狀況。1. When the present invention is applied to a polycrystalline germanium long crystal process, the long-speed or crystal change of the growth of each crystal germanium can be monitored in real time.

2、本發明可利用程式化設計、編輯與定義驅動模組驅動石英棒進行量測之時間、位置,以作為不同單位時間的晶體長速、矽料融化之量測。2. The present invention can utilize the stylized design, editing and definition of the driving module to drive the quartz rod to measure the time and position, as the measurement of the long crystal speed and the melting of the material in different unit time.

3、本發明可預先將最佳化的晶體生長、矽料融化速度輸入控制單元,當晶體成長速度量測單元所測得之實際速度變化與輸入值有偏差時,可即時調整多晶爐中可影響晶體速度變化的裝置(如上述之溫控裝置)進行補償,以控制晶體生長、矽料融化之速度,進而獲致生長晶體之品質的均一。3. The invention can input the optimized crystal growth and the melting speed of the feed into the control unit in advance, and can adjust the polycrystalline furnace immediately when the actual speed change measured by the crystal growth rate measuring unit deviates from the input value. A device that affects the change in crystal velocity (such as the temperature control device described above) is compensated to control the crystal growth and the rate at which the material is melted, thereby achieving uniformity in the quality of the grown crystal.

4、本發明之晶體成長速度量測單元可應用自動、半自動或手動的方式控制石英棒的移動,故具有非常廣泛的應用範圍。4. The crystal growth rate measuring unit of the present invention can control the movement of the quartz rod in an automatic, semi-automatic or manual manner, and thus has a very wide range of applications.

以上所述僅為本發明之較佳可行實施例,非因此侷限本發明之專利範圍,故舉凡運用本發明說明書及圖示內容所為之等效技術變化,均包含於本發明之範圍內。The above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, and the equivalents of the present invention are intended to be included within the scope of the present invention.

1...晶體成長量測補償系統1. . . Crystal growth measurement compensation system

11...控制單元11. . . control unit

111...儲存模組111. . . Storage module

12...晶體成長速度量測單元12. . . Crystal growth rate measuring unit

12’...晶體成長速度量測單元12’. . . Crystal growth rate measuring unit

121...驅動模組121. . . Drive module

122...石英棒夾持模組122. . . Quartz rod clamping module

123...石英棒123. . . Quartz rod

13...鑄造單元13. . . Casting unit

131...加熱模組131. . . Heating module

132...冷卻模組132. . . Cooling module

1321...冷卻流道1321. . . Cooling runner

133...坩堝133. . . crucible

134...爐壁冷卻模組134. . . Furnace wall cooling module

圖1係為本發明第一實施例之晶體成長量測補償系統的功能方塊圖。1 is a functional block diagram of a crystal growth measurement compensation system according to a first embodiment of the present invention.

圖2係為本發明第二實施例之晶體成長量測補償系統的功能方塊圖。2 is a functional block diagram of a crystal growth measurement compensation system according to a second embodiment of the present invention.

圖3係為本發明第一實施例之晶體成長量測補償系統的示意圖。3 is a schematic view of a crystal growth measurement compensation system according to a first embodiment of the present invention.

圖3A顯示圖3中之A部分放大圖。Fig. 3A shows an enlarged view of a portion A in Fig. 3.

1...晶體成長量測補償系統1. . . Crystal growth measurement compensation system

12...晶體成長速度量測單元12. . . Crystal growth rate measuring unit

121...驅動模組121. . . Drive module

122...石英棒夾持模組122. . . Quartz rod clamping module

123...石英棒123. . . Quartz rod

13...鑄造單元13. . . Casting unit

131...加熱模組131. . . Heating module

132...冷卻模組132. . . Cooling module

1321...冷卻流道1321. . . Cooling runner

133...坩堝133. . . crucible

134...爐壁冷卻模組134. . . Furnace wall cooling module

Claims (11)

一種晶體成長量測補償系統,包含:一控制單元,其儲存有一預定晶體成長資料;一耦接於該控制單元之晶體成長速度量測單元,其具有一驅動模組、一石英棒夾持模組及至少一石英棒,該驅動模組耦接於該控制單元,該石英棒夾持模組耦接於該驅動模組,該石英棒夾固於該石英棒夾持模組;以及一耦接於該控制單元之鑄造單元,其至少具有一坩堝及一對應應該坩堝的溫控模組,該坩堝用以容納一長晶原料;其中該晶體成長速度量測單元係裝設於該坩堝上方,該驅動模組用以驅動該石英棒夾持模組帶動該石英棒,使該石英棒能相對於該坩堝進行移動,當該石英棒底部接觸到晶碇、該長晶原料或該坩堝,該石英棒夾持模組依據該石英棒移動的距離而測得該坩堝中之晶體成長資料,該控制單元可依據該預定晶體成長資料補償該鑄造單元中的晶體成長。 A crystal growth measurement compensation system includes: a control unit storing a predetermined crystal growth data; a crystal growth rate measuring unit coupled to the control unit, having a driving module and a quartz rod clamping mold And the at least one quartz rod, the driving module is coupled to the control unit, the quartz rod clamping module is coupled to the driving module, the quartz rod is clamped to the quartz rod clamping module; and a coupling The casting unit connected to the control unit has at least one cymbal and a corresponding temperature control module for accommodating a crystal growth material; wherein the crystal growth rate measuring unit is mounted on the raft The driving module is configured to drive the quartz rod clamping module to drive the quartz rod to move the quartz rod relative to the crucible, and when the bottom of the quartz rod contacts the crystal crucible, the crystal growth material or the crucible, The quartz rod clamping module measures the crystal growth data in the crucible according to the distance moved by the quartz rod, and the control unit can compensate the crystal growth in the casting unit according to the predetermined crystal growth data. 如申請專利範圍第1項所述之晶體成長量測補償系統,其中該控制單元更儲存有一量測頻率資料,該驅動模組依據該量測頻率資料以程式化地驅動該石英棒夾持模組及該石英棒。 The crystal growth measurement compensation system of claim 1, wherein the control unit further stores a measurement frequency data, and the driving module sequentially drives the quartz rod clamping mode according to the measurement frequency data. Group and the quartz rod. 如申請專利範圍第2項所述之晶體成長量測補償系統,其中該控制單元至少具有一儲存模組,該預定晶體成長資料與該量測頻率資料均儲存於該儲存模組。 The crystal growth measurement compensation system of claim 2, wherein the control unit has at least one storage module, and the predetermined crystal growth data and the measurement frequency data are stored in the storage module. 如申請專利範圍第1項所述之晶體成長量測補償系統,其中該溫控模組至少包括一對應該坩堝的加熱模組及對應應該坩堝的冷卻模組及爐壁冷卻模組。 The crystal growth measurement compensation system according to claim 1, wherein the temperature control module comprises at least a pair of heating modules corresponding to the crucible and a corresponding cooling module and a furnace wall cooling module. 如申請專利範圍第1項所述之晶體成長量測補償系統,其中該晶體成長量測補償系統係應用於類單晶製程。 The crystal growth measurement compensation system according to claim 1, wherein the crystal growth measurement compensation system is applied to a single crystal process. 一種晶體成長量測補償方法,包含以下步驟:提供一儲存有一預定晶體成長資料之控制單元、一耦接於該控制單元之晶體成長速度量測單元及一耦接於該控制單元之鑄造單元,其中,該晶體成長速度量測單元具有一驅動模組、一石英棒夾持模組及至少一石英棒,該驅動模組耦合於該控制單元,該石英棒夾持模組耦合於該驅動模組,該石英棒夾固於該石英棒夾持模組;進行一長晶步驟:利用該鑄造單元之一坩堝將一晶種及多個長晶原料融熔;進行一量測步驟:利用該晶體成長速度量測單元之驅動模組驅動該石英棒夾持器來帶動該石英棒,使該石英棒相對於該坩堝進行移動,當該石英棒底部接觸到晶碇、該長晶原料或該坩堝,該石英棒夾持模組依據該石英棒移動的距離而測得該長晶步驟之晶體成長資料;進行一比對步驟:利用該控制單元將該長晶步驟之晶體成長資料與該預定晶體成長資料進行比對;以及進行一補償步驟:利用該控制單元控制該鑄造單元, 以補償地調整該長晶步驟之晶體成長資料。 A crystal growth measurement compensation method includes the following steps: providing a control unit for storing a predetermined crystal growth data, a crystal growth rate measuring unit coupled to the control unit, and a casting unit coupled to the control unit, The crystal growth rate measuring unit has a driving module, a quartz rod clamping module and at least one quartz rod. The driving module is coupled to the control unit, and the quartz rod clamping module is coupled to the driving module. a quartz rod is clamped to the quartz rod clamping module; performing a crystal growth step: melting one seed crystal and a plurality of crystal growth materials by using one of the casting units; performing a measuring step: using the a driving module of the crystal growth rate measuring unit drives the quartz rod holder to drive the quartz rod to move the quartz rod relative to the crucible, and when the bottom of the quartz rod contacts the crystal crucible, the crystal growth material or the坩埚, the quartz rod clamping module measures the crystal growth data of the crystal growth step according to the distance moved by the quartz rod; and performs an alignment step: using the control unit to grow the crystal growth step Crystal growth data with the predetermined data than crystal growth; and performing a compensation step of: using the control unit controls the casting unit, The crystal growth data of the crystal growth step is adjusted to compensate. 如申請專利範圍第6項所述之晶體成長量測補償方法,其中在該量測步驟中,該驅動模組係驅動該石英棒夾持模組相對於該坩堝進行垂直移動,以測得該長晶步驟之晶體成長資料。 The crystal growth measurement compensation method according to claim 6, wherein in the measuring step, the driving module drives the quartz rod clamping module to vertically move relative to the crucible to measure the Crystal growth data for the long crystal step. 如申請專利範圍第7項所述之晶體成長量測補償方法,其中該控制單元更儲存有一量測頻率資料,在該量測步驟中,該控制單元係依據該量測頻率資料控制該驅動模組,以程式化地驅動該石英棒夾持模組及該石英棒。 The crystal growth measurement compensation method according to claim 7, wherein the control unit further stores a measurement frequency data, wherein the control unit controls the driving mode according to the measurement frequency data. a group to programmatically drive the quartz rod clamping module and the quartz rod. 如申請專利範圍第6項所述之晶體成長量測補償方法,其中該控制單元更儲存有一最大允許偏差值,在該比對步驟中,該長晶步驟之晶體成長資料與該預定晶體成長資料之間的偏差值大於該最大允許偏差值時,則進行該補償步驟。 The crystal growth measurement compensation method according to claim 6, wherein the control unit further stores a maximum allowable deviation value, and in the comparing step, the crystal growth data of the crystal growth step and the predetermined crystal growth data The compensation step is performed when the deviation value between the deviations is greater than the maximum allowable deviation value. 如申請專利範圍第9項所述之晶體成長量測補償方法,其中在該補償步驟中,係利用該控制單元控制該鑄造單元之一加熱模組、一冷卻模組及一爐壁冷卻模組的至少其中之一,以補償地調整該長晶步驟之晶體成長資料。 The crystal growth measurement compensation method according to claim 9, wherein in the compensating step, the heating unit, a cooling module and a furnace wall cooling module of the casting unit are controlled by the control unit. At least one of them is used to compensate for the crystal growth data of the crystal growth step. 如申請專利範圍第6項所述之晶體成長量測補償方法,其中在該量測步驟中,係以自動、半自動或手動的方式控制該石英棒的移動。 The crystal growth measurement compensation method according to claim 6, wherein in the measuring step, the movement of the quartz rod is controlled in an automatic, semi-automatic or manual manner.
TW101103504A 2012-02-03 2012-02-03 Measurement and compensation system for ingot growth and method thereof TWI471463B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101103504A TWI471463B (en) 2012-02-03 2012-02-03 Measurement and compensation system for ingot growth and method thereof
CN2012100497157A CN103243384A (en) 2012-02-03 2012-03-01 Crystal growth measurement compensation system and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101103504A TWI471463B (en) 2012-02-03 2012-02-03 Measurement and compensation system for ingot growth and method thereof

Publications (2)

Publication Number Publication Date
TW201333280A TW201333280A (en) 2013-08-16
TWI471463B true TWI471463B (en) 2015-02-01

Family

ID=48923253

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101103504A TWI471463B (en) 2012-02-03 2012-02-03 Measurement and compensation system for ingot growth and method thereof

Country Status (2)

Country Link
CN (1) CN103243384A (en)
TW (1) TWI471463B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409797A (en) * 2013-08-27 2013-11-27 天威新能源控股有限公司 Device for measuring long crystal bar of ingot furnace
CN104514030B (en) * 2013-09-29 2017-01-04 内蒙古恒嘉晶体材料有限公司 Rate of crystalline growth detection method, control method and system
CN105780113B (en) * 2016-03-10 2017-11-28 江西赛维Ldk太阳能高科技有限公司 A kind of method for characterizing crystalline silicon growth interface and the speed of growth

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI240770B (en) * 1999-04-07 2005-10-01 Memc Electronic Materials Method and system of controlling taper growth in a semiconductor crystal growth process

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101660198A (en) * 2009-09-08 2010-03-03 中山大学 High-precision automatic photoelectric crystal pulling furnace
CN101962799A (en) * 2010-08-23 2011-02-02 清华大学 Crystal growth speed automatic measurement device for photovoltaic polycrystalline silicon ingot casting furnace
CN202099411U (en) * 2011-04-06 2012-01-04 镇江荣德新能源科技有限公司 Automatic measuring device for crystal growth speed of multi-crystal furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI240770B (en) * 1999-04-07 2005-10-01 Memc Electronic Materials Method and system of controlling taper growth in a semiconductor crystal growth process

Also Published As

Publication number Publication date
CN103243384A (en) 2013-08-14
TW201333280A (en) 2013-08-16

Similar Documents

Publication Publication Date Title
US5714004A (en) Process for producing polycrystalline semiconductors
JP3388664B2 (en) Method and apparatus for manufacturing polycrystalline semiconductor
KR20120070080A (en) Single crystal growth device
JP6231622B2 (en) Crystal production method
WO2011050170A2 (en) Crystal growth methods and systems
EP0992618B1 (en) Method of manufacturing compound semiconductor single crystal
KR101385997B1 (en) Apparatus for producing single crystal and method for producing single crystal
KR20120130125A (en) Single crystal producing apparatus, single crystal producing method and single crystal
TWI471463B (en) Measurement and compensation system for ingot growth and method thereof
US20110179992A1 (en) Crystal growth methods and systems
KR101216522B1 (en) Silicon ingot grower including probe
US7014707B2 (en) Apparatus and process for producing crystal article, and thermocouple used therein
CN111088520A (en) Sapphire single crystal growth device and method
JP2012001435A (en) System for continuous growth of single crystal silicon
US9273411B2 (en) Growth determination in the solidification of a crystalline material
JP2005132671A (en) Method for producing high-quality polycrystalline silicon
CN102787351A (en) Monocrystal producing device, monocrystal producing method and monocrystal
TWI815582B (en) Method, device, equipment and computer storage medium for controlling crystal growth diameter
KR20200111775A (en) Convection pattern estimation method of silicon melt, oxygen concentration estimation method of silicon single crystal, silicon single crystal manufacturing method, and silicon single crystal pulling device
KR101679071B1 (en) Melt Gap Controlling System, Method of Manufacturing Single Crystal including the Melt Gap Controlling System
CN210314564U (en) Multiple sapphire single crystal growth device
JP2704032B2 (en) Method for manufacturing compound semiconductor single crystal
KR20190075411A (en) Crucible Member Capable of Removing Lineage Defect, Apparatus and Method for Growing Sapphire Single Crystal of High Quality Using the Same
CN109898136A (en) Multiple Sapphire Crystal Growth device and growing method
JP2005104767A (en) Method and apparatus for manufacturing semiconductor single crystal

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees