TWI469532B - Analog to digital converter - Google Patents

Analog to digital converter Download PDF

Info

Publication number
TWI469532B
TWI469532B TW101123508A TW101123508A TWI469532B TW I469532 B TWI469532 B TW I469532B TW 101123508 A TW101123508 A TW 101123508A TW 101123508 A TW101123508 A TW 101123508A TW I469532 B TWI469532 B TW I469532B
Authority
TW
Taiwan
Prior art keywords
msbs
voltage
logic
value
analog converter
Prior art date
Application number
TW101123508A
Other languages
Chinese (zh)
Other versions
TW201401788A (en
Inventor
Chien Ming Chen
Hui Wen Miao
Ko Yang Tso
Original Assignee
Raydium Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raydium Semiconductor Corp filed Critical Raydium Semiconductor Corp
Priority to TW101123508A priority Critical patent/TWI469532B/en
Priority to CN201210314093.6A priority patent/CN103516368B/en
Priority to US13/920,126 priority patent/US8742967B2/en
Publication of TW201401788A publication Critical patent/TW201401788A/en
Application granted granted Critical
Publication of TWI469532B publication Critical patent/TWI469532B/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/68Digital/analogue converters with conversions of different sensitivity, i.e. one conversion relating to the more significant digital bits and another conversion to the less significant bits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/346Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on modulation of the reflection angle, e.g. micromirrors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters

Description

數位類比轉換器Digital analog converter

本發明是有關於一種數位類比轉換器,且特別是有關於一種可經由內插法(Interpolation)來找出與一數位數值之部分數值範圍對應之類比數值的數位類比轉換器。The present invention relates to a digital analog converter, and more particularly to a digital analog converter that can find an analog value corresponding to a partial value range of a digit value via interpolation.

在科技發展日新月異的現今時代中,液晶顯示器已經廣泛地應用在電子顯示產品上,如電視、電腦螢幕、筆記型電腦、行動電話或個人數位助理等。液晶顯示器之資料驅動器(Data Driver)包括類比數位轉換器,用以根據灰階值(Gray Level)來提供畫素電壓至液晶顯示面板,另外搭配掃描驅動器(Scan Driver)將畫素電壓掃描至液晶顯示面板之各個畫素中,以顯示出欲顯示之影像。In today's fast-changing technology era, liquid crystal displays have been widely used in electronic display products, such as televisions, computer screens, notebook computers, mobile phones or personal digital assistants. The data driver of the liquid crystal display includes an analog digital converter for providing a pixel voltage to the liquid crystal display panel according to a Gray Level value, and scanning the pixel voltage to the liquid crystal with a scan driver (Scan Driver). The pixels of the display panel are displayed to display the image to be displayed.

由於畫素電壓與其對應之灰階值間為非線性(Non-Linear)關係,傳統數位類比轉換器係經由嘉瑪電壓(Gamma Voltage)電阻串來轉換灰階值為畫素電壓,之後輸入液晶顯示面板。然而隨著對液晶顯示器之顯示品質要求不斷地提升,灰階值之位元(Bit)數量及嘉瑪電壓電阻串之級數隨之巨幅增加。這樣一來將使得數位類比轉換器需佔用巨幅之電路面積電路,導致其成本隨之提高。而傳統上採每一數位碼均執行內插(Interpolation)之方式,來減少數位類比轉換器之設計,亦具有畫素電壓誤差較高,及液晶顯示器顯示畫面品質較差之缺點。Since the pixel voltage and its corresponding gray scale value are non-linear (Non-Linear) relationship, the conventional digital analog converter converts the gray scale value to the pixel voltage via a Gamma Voltage resistor string, and then inputs the liquid crystal. Display panel. However, as the display quality requirements for liquid crystal displays continue to increase, the number of bits of grayscale values and the number of levels of the Gamma voltage resistor strings increase dramatically. As a result, the digital analog converter needs to occupy a large circuit area circuit, resulting in an increase in cost. Traditionally, each digital code is subjected to interpolation to reduce the design of the digital analog converter, and also has the disadvantages of high pixel voltage error and poor display quality of the liquid crystal display.

本發明係有關於一種數位類比轉換器及其方法,其係可有效地改善傳統技術中電路面積大、成本較高及全部數位碼內插(Interpolation)導致畫素電壓誤差較高之缺點,而實質上具有面積較小、成本較低、畫素電壓誤差較低且其應用之液晶顯示器的顯示畫面品質較佳之優點。The present invention relates to a digital analog converter and a method thereof, which can effectively improve the disadvantages of large circuit area, high cost and high pixel error caused by interpolation of all digital codes in the conventional technology. The utility model has the advantages of small area, low cost, low pixel voltage error and good display quality of the liquid crystal display to which the application is applied.

根據本發明提出一種數位類比轉換器,回應灰階值的多個數值產生對應之多個電壓,其中灰階值包括k個位元,k為大於1之自然數。數位類比轉換器包括解碼裝置及運算放大器。解碼裝置包括第一至第四解碼電路及邏輯運算電路。第一解碼電路於灰階值中w個最重要位元(Most Significant Bit,MSB)等於相同邏輯值時,提供位準相同之第一至第三輸出電壓。第二解碼電路於w個MSB不等於相同邏輯值時,回應於灰階值中與w個MSB相鄰之x個MSB提供第一中間電壓。邏輯運算電路根據x個MSB及灰階值中與x個MSB相鄰之y個MSB產生第一至第三邏輯控制訊號。第三解碼電路於w個MSB不等於相同邏輯值時,回應於x個MSB及第一至第三邏輯控制訊號提供第二中間電壓。第四解碼電路於w個MSB不等於相同邏輯值時,根據y個MSB及灰階值中與y個MSB相鄰之z個MSB選擇性地控制第一至第三輸出電壓為第一及第二中間電壓其中之一。運算放大器根據第一至第三輸出電壓產生畫素電壓。當w個MSB不等於相同邏輯值時,畫素電壓之位準係介於第一及第二中間電壓之間。w、x、y及z為滿足條件: 之自然數。According to the present invention, a digital analog converter is provided that generates a corresponding plurality of voltages in response to a plurality of values of a grayscale value, wherein the grayscale value comprises k bits and k is a natural number greater than one. The digital analog converter includes a decoding device and an operational amplifier. The decoding device includes first to fourth decoding circuits and logic operation circuits. The first decoding circuit provides first to third output voltages of the same level when the w most significant bits (MSBs) of the grayscale values are equal to the same logic value. The second decoding circuit provides the first intermediate voltage in response to the x MSBs adjacent to the w MSBs in the grayscale value when the w MSBs are not equal to the same logical value. The logic operation circuit generates the first to third logic control signals according to the y MSBs adjacent to the x MSBs among the x MSBs and the grayscale values. The third decoding circuit provides a second intermediate voltage in response to the x MSBs and the first to third logic control signals when the w MSBs are not equal to the same logic value. The fourth decoding circuit selectively controls the first to third output voltages as the first and the third according to the z MSBs adjacent to the y MSBs among the y MSBs and the grayscale values when the w MSBs are not equal to the same logic value One of the two intermediate voltages. The operational amplifier generates a pixel voltage based on the first to third output voltages. When w MSBs are not equal to the same logic value, the level of the pixel voltage is between the first and second intermediate voltages. w, x, y, and z are satisfied: The natural number.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:

請參照第1及第2圖,第1圖繪示本發明實施例的數位類比轉換器的方塊圖,第2圖繪示應用本發明之數位類比轉換器之資料驅動器的方塊圖。數位類比轉換器20應用於資料驅動器10中,以根據資料驅動器10中之硬體(諸如資料暫存器11、線性閂鎖器13及位準移位器14)處理後之灰階值(Gray Level)GS,轉換得到對應之畫素電壓PV。之後,畫素電壓PV係經由輸出緩衝器15輸出至液晶顯示面板(未繪示)上。Please refer to FIG. 1 and FIG. 2, FIG. 1 is a block diagram of a digital analog converter according to an embodiment of the present invention, and FIG. 2 is a block diagram showing a data driver of a digital analog converter to which the present invention is applied. The digital analog converter 20 is applied to the data driver 10 to process the gray scale values according to the hardware in the data drive 10 (such as the data register 11, the linear latch 13 and the level shifter 14). Level) GS, converted to the corresponding pixel voltage PV. Thereafter, the pixel voltage PV is output to the liquid crystal display panel (not shown) via the output buffer 15.

數位類比轉換器20回應灰階值(Gray Level)GS的多個數值,分別控制輸出訊號PV對應至多個電壓位準,其中灰階值GS例如包括k個位元DTk-1、DT2、…、DT0,其中k為大於1之自然數。數位類比轉換器20包括解碼裝置21及運算放大器22。The digital analog converter 20 responds to a plurality of values of a gray level GS, and controls the output signal PV to correspond to a plurality of voltage levels, wherein the gray level value GS includes, for example, k bits DTk-1, DT2, ..., DT0, where k is a natural number greater than one. The digital analog converter 20 includes a decoding device 21 and an operational amplifier 22.

運算放大器22用以根據輸出電壓O1、O2及O3來產生畫素電壓PV,其中畫素電壓PV之位準介於輸出電壓O1至O3之間。舉例來說,本實施例之運算放大器22係經由最近點內插法(Nearest Neighbor Interpolation)來產生畫素電壓PV,而畫素電壓PV之位準經由輸出電壓O1至O3位準分別經由1/2、1/4及1/4之權重相加所得。The operational amplifier 22 is configured to generate a pixel voltage PV according to the output voltages O1, O2, and O3, wherein the level of the pixel voltage PV is between the output voltages O1 to O3. For example, the operational amplifier 22 of the present embodiment generates a pixel voltage PV via Nearest Neighbor Interpolation, and the level of the pixel voltage PV passes through the output voltages O1 to O3, respectively. 2. The weights of 1/4 and 1/4 are added together.

解碼裝置21回應於灰階值GS提供輸出電壓O1至 O3。在一個例子中,解碼裝置21將灰階值GS之數值範圍區分為第一組及第二組數值。當灰階值GS等於第一組數值時,解碼裝置21係提供位準實質上相同之輸出電壓O1至O3,據此,數位類比轉換器20不具有內插法之運算功效。The decoding device 21 provides the output voltage O1 in response to the grayscale value GS to O3. In one example, decoding device 21 divides the range of values of grayscale values GS into first and second sets of values. When the grayscale value GS is equal to the first set of values, the decoding device 21 provides the output voltages O1 to O3 having substantially the same level, whereby the digital analog converter 20 does not have the operational efficiency of the interpolation method.

當灰階值GS等於第二組數值時,解碼裝置21係使輸出電壓O1至O3其中之部分或全部對應至不同位準,據此,數位類比轉換器20可對應地根據輸出電壓O1至O3,經由內插法運算產生畫素電壓PV。When the grayscale value GS is equal to the second set of values, the decoding device 21 causes some or all of the output voltages O1 to O3 to correspond to different levels, whereby the digital analog converter 20 can correspondingly be based on the output voltages O1 to O3. The pixel voltage PV is generated by interpolation.

這樣一來,數位類比轉換器20可彈性地選取灰階值GS與畫素電壓PV間之嘉瑪曲線(Gamma Curve)中較線性(Linear)及較非線性之數值範圍,分別以內插法運算及傳統電阻分壓之方式求得對應之畫素電壓。據此,相較於傳統數位類比轉換器,本實施例之數位類比轉換器20可有效地改善傳統技術中數位類比轉換器面積較大、成本較高及畫素電壓誤差較大之缺點。In this way, the digital analog converter 20 can elastically select a linear range and a relatively non-linear range of values in the gamma curve between the gray scale value GS and the pixel voltage PV, respectively, by interpolation. And the traditional resistor voltage method to obtain the corresponding pixel voltage. Accordingly, the digital analog converter 20 of the present embodiment can effectively improve the disadvantages of the large area, high cost, and large pixel voltage error of the digital analog converter in the conventional technology compared with the conventional digital analog converter.

請參照第3圖,其繪示本實施例中灰階值GS與畫素電壓PV間的嘉瑪曲線。在一個操作實例中,k等於7,換言之,灰階值GS包括8個位元DT0、DT1、…、DT7,且其對應至包括28 (=256)個數值之數值範圍。在這個例子中,嘉瑪曲線於灰階值GS介於32至224時較為線性,而於灰階值小於32及大於224時較為非線性。據此,本實施例之灰階值GS的第一組數值例如包括數值0至31及數值224至255,灰階值GS之第二組數值例如包括數值32至223。Please refer to FIG. 3, which shows the gamma curve between the gray scale value GS and the pixel voltage PV in this embodiment. In one example of operation, k is equal to 7, in other words, the grayscale value GS includes 8 bits DT0, DT1, ..., DT7, and corresponds to a range of values including 2 8 (= 256) values. In this example, the gamma curve is more linear when the grayscale value GS is between 32 and 224, and is less nonlinear when the grayscale value is less than 32 and greater than 224. Accordingly, the first set of values of the grayscale value GS of the present embodiment includes, for example, the values 0 to 31 and the values 224 to 255, and the second set of values of the grayscale value GS includes, for example, the values 32 to 223.

接下來,係舉例來對解碼裝置21之解碼操作進行進一步的說明。在接下來之段落中,灰階值GS中之k個位元DTk-1至DTk0係依據其之次序被劃分為4組,其中各自包括w個最高位位元(Most Significant Bit,MSB)DTk-1至DTk-w、x個最高位位元DTk-w-1至DTk-w-x、y個最高位位元DTk-w-x-1至DTk-w-x-y及z個最高位位元DTk-w-x-y-1至DTk-w-x-y-z,其中,w、x、y及z為滿足條件: 之自然數。解碼裝置21中不同之子解碼單元分別參考前述4組位元來實現出前述解碼操作。Next, the decoding operation of the decoding device 21 will be further described by way of example. In the following paragraphs, k bits DTk-1 to DTk0 in the grayscale value GS are divided into 4 groups according to their order, each of which includes w Most Significant Bits (MSBs) DTk -1 to DTk-w, x highest-order bits DTk-w-1 to DTk-wx, y highest-order bits DTk-wx-1 to DTk-wxy, and z highest-order bits DTk-wxy-1 To DTk-wxyz, where w, x, y, and z satisfy the condition: The natural number. The different sub-decoding units in the decoding device 21 respectively implement the aforementioned decoding operation with reference to the aforementioned four groups of bits.

請參照第4A至4C圖,其繪示乃第1圖之解碼裝置21的詳細電路圖。舉例來說,解碼裝置21包括解碼電路21a、21b、21c、21d及邏輯運算電路21e。Referring to FIGS. 4A to 4C, a detailed circuit diagram of the decoding device 21 of FIG. 1 is shown. For example, the decoding device 21 includes decoding circuits 21a, 21b, 21c, 21d and a logic operation circuit 21e.

解碼電路21aDecoding circuit 21a

請參照第4A圖。解碼電路21a於灰階值GS中w個最重要位元(Most Significant Bit,MSB)DTk-1、DTk-2、…、DTk-w均等於相同邏輯值時,提供位準實質上相同之輸出電壓O1、O2及O3。換言之,當灰階值GS對應其最大之2K-w 個數值及最小之2k-w 個數值時,解碼裝置21提供對應至相同位準之輸出電壓O1至O3。Please refer to Figure 4A. The decoding circuit 21a provides substantially the same level of output when the w most significant bits (MSB) DTk-1, DTk-2, ..., DTk-w are equal to the same logic value in the grayscale value GS. Voltages O1, O2 and O3. In other words, when the grayscale value GS corresponds to its maximum 2 Kw value and the smallest 2 kw value, the decoding device 21 supplies the output voltages O1 to O3 corresponding to the same level.

以k與w分別等於8及3的例子來說,當灰階值GS之w(=3)個MSB DTk-1至DTk-w(即是位元DT7至DT5)均對應至邏輯值0時,表示灰階值GS對應至其最小之32(=2k-w ) 個數值(即是數值(00000000)2 至(00001111)2 )。解碼電路21a回應於灰階值GS最小之32個數值,以中間電壓D做為輸出電壓O1至O3輸出。其中中間電壓D係由子解碼電路(未繪示)所提供,其係回應於灰階值GS最小之32分別提供輸出訊號PV最低之32個電壓位準L0、L1、L2、…、L31。In the case where k and w are equal to 8 and 3, respectively, when w (= 3) MSB DTk-1 to DTk-w (ie, bit DT7 to DT5) of the gray scale value GS correspond to a logical value of 0, , indicating that the grayscale value GS corresponds to its smallest value of 32 (= 2 kw ) (ie, the value (00000000) 2 to (00001111) 2 ). The decoding circuit 21a outputs the intermediate voltage D as the output voltages O1 to O3 in response to the 32 values of the minimum grayscale value GS. The intermediate voltage D is provided by a sub-decoding circuit (not shown), which provides 32 voltage levels L0, L1, L2, ..., L31 of the lowest output signal PV in response to the minimum gray level value GS32.

當灰階值GS之3個MSB DT7至DT5均對應至邏輯值1時,表示灰階值GS對應至其最大之32個數值(11110000)2 至(11111111)2 )。解碼電路21a回應於灰階值GS最大之32個數值,以中間電壓E做為輸出電壓O1至O3輸出。其中中間電壓E係由子解碼電路(未繪示)所提供,其係回應於灰階值GS最大之32分別提供輸出訊號PV最高之32個電壓位準L224、L225、L226…、L255。When the three MSBs DT7 to DT5 of the grayscale value GS correspond to the logical value 1, it means that the grayscale value GS corresponds to its maximum 32 values (11110000) 2 to (11111111) 2 ). The decoding circuit 21a outputs the intermediate voltage E as the output voltages O1 to O3 in response to the 32 values of the grayscale value GS. The intermediate voltage E is provided by a sub-decoding circuit (not shown), which provides 32 voltage levels L224, L225, L226, ..., L255 with the highest output signal PV respectively in response to the maximum gray level value GS32.

據此,經由邏輯電路21a之操作,解碼裝置21可有校地在灰階值GS對應至前述第一組數值時,提供對應至相同位準之輸出電壓O1至O3,使數位類比轉換器20對應地不具有內插法之運算功效。According to the operation of the logic circuit 21a, the decoding device 21 can have the calibration output voltages O1 to O3 corresponding to the same level when the grayscale value GS corresponds to the first group of values, so that the digital analog converter 20 Correspondingly, there is no arithmetic effect of the interpolation method.

舉例來說,解碼電路21a係包括子解碼單元21a1、21a2及21a3,其中包括受控於MSB DT7至DT5及其MSB之反相訊號DN7至DN5的電晶體。如此,子解碼單元21a1至21a3以於MSB DT7至DT5均等於數值0或數值1時,分別對應地提供中間電壓D或E做為輸出電壓O1至O3。For example, the decoding circuit 21a includes sub-decoding units 21a1, 21a2, and 21a3 including transistors controlled by the inverted signals DN7 to DN5 of the MSBs DT7 to DT5 and their MSBs. Thus, the sub-decoding units 21a1 to 21a3 respectively provide the intermediate voltages D or E as the output voltages O1 to O3 when the MSBs DT7 to DT5 are both equal to the value 0 or the value 1.

解碼電路21bDecoding circuit 21b

請參照第4B圖。解碼電路21b於w個MSB DTk-1至 DTk-w不等於相同邏輯值時,回應於灰階值GS中與w個MSB相鄰之x個MSB DTk-w-1、DTk-w-2、…、DTk-w-x(即是僅次於w個MSB之x個MSB)提供中間電壓A。Please refer to Figure 4B. Decoding circuit 21b to w MSB DTk-1 to When DTk-w is not equal to the same logical value, it responds to x MSBs DTk-w-1, DTk-w-2, ..., DTk-wx adjacent to w MSBs in the grayscale value GS (ie, second only to The intermediate voltage A is provided for x MSBs of w MSBs.

以k、w及x分別等於8、3及2的例子來說,當灰階值GS之w(=3)個MSB DT7至DT5(即是DTk-1至DTk-w)不等於相同邏輯值時,解碼電路21b係回應於灰階值GS中與MSB DT7至DT5相鄰之x(=2)個MSB DTk-w-1至DTk-w-x(即是位元DT4至DT3)來提供中間電壓A。因應w個MSB DTk-1至DTk-w可能對應至多種不同的數值組合,解碼電路21b係包括2w (=8)個子解碼單元21b1、21b2、…、21b8來針對3個MSB DT7至DT5之不同數值組合提供解碼操作。由於各子解碼單元21b1至21b8之操作為實質上接近,接下來,係僅以子解碼單元21b1之操作為例,來對所有之子解碼單元21b1至21b8進行進一步的操作說明。In the case where k, w, and x are equal to 8, 3, and 2, respectively, w (= 3) MSBs DT7 to DT5 (ie, DTk-1 to DTk-w) of the grayscale value GS are not equal to the same logical value. The decoding circuit 21b provides an intermediate voltage in response to x (= 2) MSBs DTk-w-1 to DTk-wx (ie, bit DT4 to DT3) adjacent to MSB DT7 to DT5 in the grayscale value GS. A. The decoding circuit 21b includes 2 w (=8) sub-decoding units 21b1, 21b2, ..., 21b8 for 3 MSBs DT7 to DT5 in response to the fact that w MSBs DTk-1 to DTk-w may correspond to a plurality of different value combinations. Different numerical combinations provide decoding operations. Since the operations of the sub-decoding units 21b1 to 21b8 are substantially close, next, the operation of the sub-decoding unit 21b1 is taken as an example to further explain the operation of all the sub-decoding units 21b1 to 21b8.

子解碼單元21b1用以於MSB DT7至DT5分別對應至數值0、0及1時,提供中間電壓A。當位元DT4及DT3分別對應至數值00、01、10及11時,子解碼單元21b1係對應地提供電壓位準L36、L44、L52及L60做為中間電壓A。舉例來說,中間電壓A之真值表(True Table)可如第5A及5B圖所示。The sub-decoding unit 21b1 is configured to provide the intermediate voltage A when the MSBs DT7 to DT5 correspond to the values 0, 0, and 1, respectively. When the bit DT4 and DT3 correspond to the values 00, 01, 10, and 11, respectively, the sub-decoding unit 21b1 correspondingly supplies the voltage levels L36, L44, L52, and L60 as the intermediate voltage A. For example, the True Table of the intermediate voltage A can be as shown in Figures 5A and 5B.

邏輯運算電路21eLogic operation circuit 21e

請參照第4C圖。邏輯運算電路21e根據x個MSB DTk-w-1至DTk-w-x及灰階值GS中與x個MSB DTk-w-1至DTk-w-x相鄰之y個MSB DTk-w-x-1、DTk-w-x-2、…、 DTk-w-x-y產生邏輯控制訊號DTC、DTD及DTB。Please refer to Figure 4C. The logical operation circuit 21e is based on x MSBs DTk-w-1 to DTk-wx and y MSBs DTk-wx-1, DTk- adjacent to x MSBs DTk-w-1 to DTk-wx in the grayscale value GS. Wx-2,..., DTk-w-x-y generates logic control signals DTC, DTD and DTB.

以k、w、x及y分別等於8、3、2及1的例子來說,邏輯運算電路21e根據x(=2)個MSB DTk-w-1至DTk-w-x(即是位元DT4至DT3)中之MSB DT3及y個MSB DTk-w-x-1至DTk-w-x-y(即是位元DT2)來進行邏輯運算。舉例來說,控制訊號DTC、DTD及DTB分別滿足下列方程式運算:DTC=DT2 NOR DT3In the example where k, w, x, and y are equal to 8, 3, 2, and 1, respectively, the logical operation circuit 21e is based on x (= 2) MSBs DTk-w-1 to DTk-wx (that is, bit DT4 to The MSB DT3 and the y MSBs DTk-wx-1 to DTk-wxy (that is, the bit DT2) in DT3) perform logical operations. For example, the control signals DTC, DTD, and DTB satisfy the following equations: DTC=DT2 NOR DT3

DTD=DT2 AND DT3DTD=DT2 AND DT3

舉例來說,控制訊號DTC、DTD及DTB之真值表可如第5A及5B圖所示。 For example, the truth table of the control signals DTC, DTD, and DTB can be as shown in FIGS. 5A and 5B.

解碼電路21cDecoding circuit 21c

請參照第4B圖。解碼電路21c於w個MSB DTk-1至DTk-w不等於相同邏輯值時,回應於x個MSB DTk-1-w-1至DTk-w-x及邏輯控制訊號DTC、DTD及DTB提供中間電壓B。Please refer to Figure 4B. The decoding circuit 21c provides the intermediate voltage B in response to the x MSBs DTk-1-w-1 to DTk-wx and the logic control signals DTC, DTD and DTB when the w MSBs DTk-1 to DTk-w are not equal to the same logic value. .

以k、w及x分別等於8、3及2的例子來說,當灰階值GS之w(=3)個MSB DTk-1至DTk-w(即是位元DT7至DT5)不等於相同邏輯值時,解碼電路21c係回應於灰階值GS中與MSB DT7至DT5相鄰之x(=2)個MSB DTk-w-1至DTk-w-x(即是位元DT4至DT3)與控制訊號DTC、DTD及DTB,來提供中間電壓B。因應w個MSB DTk-1至DTk-w可能對應至多種不同的數值組合,解碼電路21b係包括 2w (=8)個子解碼單元21c1、21c2、…、21c8來針對3個MSB DT7至DT5之不同數值組合提供解碼操作。由於各子解碼單元21c1至21c8之操作為實質上接近,接下來,係僅以子解碼單元21c1之操作為例,來對所有之子解碼單元21c1至21c8進行進一步的操作說明。In the example where k, w, and x are equal to 8, 3, and 2, respectively, w (= 3) MSB DTk-1 to DTk-w (ie, bit DT7 to DT5) of the gray scale value GS are not equal to the same. For the logic value, the decoding circuit 21c responds to the x (= 2) MSBs DTk-w-1 to DTk-wx (ie, the bits DT4 to DT3) adjacent to the MSB DT7 to DT5 in the grayscale value GS and controls The signals DTC, DTD and DTB are used to provide the intermediate voltage B. The decoding circuit 21b includes 2 w (=8) sub-decoding units 21c1, 21c2, ..., 21c8 for 3 MSBs DT7 to DT5 in response to the fact that w MSBs DTk-1 to DTk-w may correspond to a plurality of different value combinations. Different numerical combinations provide decoding operations. Since the operations of the sub-decoding units 21c1 to 21c8 are substantially close, next, the operation of the sub-decoding unit 21c1 is taken as an example to further explain the operation of all the sub-decoding units 21c1 to 21c8.

子解碼單元21c1用以於位元訊號DT7至DT5分別對應至數值0、0及1時,提供中間電壓B。其中,若位元DT4等於數值0,子解碼單元21c1分別於控制訊號DTC、DTB及DTD對應至數值001、010及100時,對應地提供電壓位準L32、L40及L48做為中間電壓B:若位元DT4等於數值1,子解碼單元21c1分別於控制訊號DTC、DTB及DTD對應至數值001、010及100時,對應地提供電壓位準L48、L56及L52做為中間電壓B。舉例來說,中間電壓B之真值表可如第5A及5B圖所示。The sub-decoding unit 21c1 is configured to provide an intermediate voltage B when the bit signals DT7 to DT5 correspond to the values 0, 0, and 1, respectively. Wherein, if the bit DT4 is equal to the value 0, the sub-decoding unit 21c1 correspondingly supplies the voltage levels L32, L40 and L48 as the intermediate voltage B when the control signals DTC, DTB and DTD correspond to the values 001, 010 and 100, respectively: If the bit DT4 is equal to the value 1, the sub-decoding unit 21c1 correspondingly supplies the voltage levels L48, L56 and L52 as the intermediate voltage B when the control signals DTC, DTB and DTD correspond to the values 001, 010 and 100, respectively. For example, the truth table of the intermediate voltage B can be as shown in FIGS. 5A and 5B.

解碼電路21dDecoding circuit 21d

請參照第4A圖。解碼電路21d於w個MSB DTk-1-DTk-w不等於相同邏輯值時,根據灰階值GS中之y個MSB DTk-w-x-1至DTk-w-x-y及灰階值GS中與y個MSB DTk-w-x-1至DTk-w-x-y相鄰之z個MSB DTk-w-x-y-1、…、DTk-w-x-y-z,擇性地控制輸出電壓O1為中間電壓A及B其中之一、選擇性地控制輸出電壓O2為中間電壓A及B其中之一、選擇性地控制輸出電壓o3為中間電壓A及B其中之一。Please refer to Figure 4A. The decoding circuit 21d is based on y MSBs DTk-wx-1 to DTk-wxy in the grayscale value GS and y MSBs in the grayscale value GS when w MSBs DTk-1-DTk-w are not equal to the same logical value. DTk-wx-1 to DTk-wxy adjacent z MSBs DTk-wxy-1, ..., DTk-wxyz, selectively control the output voltage O1 as one of the intermediate voltages A and B, selectively control the output voltage O2 is one of the intermediate voltages A and B, and selectively controls the output voltage o3 to be one of the intermediate voltages A and B.

以k、w、x、y及z分別等於8、3、2、1及2的例子 來說,解碼電路21d於MSB DT7至DT5對應至不同數值時,根據灰階值GS中之y(=1)個MSB DTk-w-x-1至DTk-w-x-y(即是位元DT2)及與位元DT2相鄰之z(=2)個MSB DTk-w-x-y-1至DTk-w-x-y-z(即是位元DT1及DT0),擇性地控制輸出電壓O1、O2及O3為中間電壓A及B其中之一。An example where k, w, x, y, and z are equal to 8, 3, 2, 1, and 2, respectively. In other words, when the MSBs DT7 to DT5 correspond to different values, the decoding circuit 21d is based on y (=1) MSB DTk-wx-1 to DTk-wxy (that is, bit DT2) and the bit in the grayscale value GS. The z(=2) MSBs DTk-wxy-1 to DTk-wxyz (ie, bit DT1 and DT0) adjacent to the DT2 are selectively controlled to output voltages O1, O2, and O3 as intermediate voltages A and B. One.

解碼電路21d例如包括子解碼單元21d1、21d2及21d3,其分別用以決定輸出電壓O1、O2及O3。當位元DT1及DT2對應至數值10或01時,子解碼單元21d1提供中間電壓A做為輸出電壓O1;當位元DT1及DT2對應至數值00或11時,子解碼單元21d1提供中間電壓B做為輸出電壓O1。當位元DT2及DT0對應至數值10或01時,子解碼單元21d2提供中間電壓A做為輸出電壓O2;當位元DT2及DT0對應至數值00及11時,子解碼單元212d2提供中間電壓B做為輸出電壓O2。當位元DT2對應至數值1時,子解碼單元21d3提供中間電壓A做為輸出電壓O3;當位元DT2對應至數值0時,子解碼單元212d3提供中間電壓B做為輸出電壓O3。舉例來說,輸出電壓O1至O3之真值表可如第5A及5B圖所示。The decoding circuit 21d includes, for example, sub-decoding units 21d1, 21d2, and 21d3 for determining output voltages O1, O2, and O3, respectively. When the bit DT1 and DT2 correspond to the value 10 or 01, the sub-decoding unit 21d1 supplies the intermediate voltage A as the output voltage O1; when the bit DT1 and DT2 correspond to the value 00 or 11, the sub-decoding unit 21d1 supplies the intermediate voltage B. As the output voltage O1. When the bit DT2 and DT0 correspond to the value 10 or 01, the sub-decoding unit 21d2 supplies the intermediate voltage A as the output voltage O2; when the bits DT2 and DT0 correspond to the values 00 and 11, the sub-decoding unit 212d2 provides the intermediate voltage B. As the output voltage O2. When the bit DT2 corresponds to the value 1, the sub-decoding unit 21d3 supplies the intermediate voltage A as the output voltage O3; when the bit DT2 corresponds to the value 0, the sub-decoding unit 212d3 supplies the intermediate voltage B as the output voltage O3. For example, the truth table of the output voltages O1 to O3 can be as shown in FIGS. 5A and 5B.

經由前述邏輯電路21e及解碼電路21a至21d之操作,解碼裝置21可對應地實現出第5A及5B圖所示之真值表。如此,運算放大器22可對應地根據輸出電壓O1至O3進行內插運算,並對應地找出灰階值GS等於數值32至223其中之一時,畫素電壓PV所對應之位準L32至 L223。Through the operations of the foregoing logic circuit 21e and the decoding circuits 21a to 21d, the decoding device 21 can correspondingly implement the truth table shown in FIGS. 5A and 5B. In this way, the operational amplifier 22 can correspondingly perform an interpolation operation according to the output voltages O1 to O3, and correspondingly find that the gray level value GS is equal to one of the values 32 to 223, the level corresponding to the pixel voltage PV is L32 to L223.

在本實施例中,雖僅以灰階值GS之位元數k等於8,而w、x、y及z分別等於3、2、1及2的情形為例做說明,然,本實施例之解碼裝置31並不侷限於此。在其他例子中,灰階值GS亦可包括更多或更少之位元數,而其中之w、x、y及z亦可做出其他調整。舉例來說,經由調整數值w及k,可決定第一組數值的數值空間大小(包括2k-w 個元素)大小。In this embodiment, the case where the number of bits k of the gray scale value GS is equal to 8, and w, x, y, and z are equal to 3, 2, 1, and 2, respectively, is taken as an example. However, this embodiment The decoding device 31 is not limited to this. In other examples, the grayscale value GS may also include more or fewer bits, and other adjustments may be made to w, x, y, and z. For example, by adjusting the values w and k, the size of the numerical space of the first set of values (including 2 kw elements) can be determined.

本實施例之數位類比轉換器係經由設置可執行特定邏輯運算之解碼單元,來達到彈性地對灰階值之數值範圍進行分組,並分別以實質上不同之運算方法來得到與不同之灰階值數值分組對應之畫素電壓。據此,本實施例之數位類比轉換器可有效地解決傳統數位類比轉換器面積大、成本高之缺點,而對應地具有面積較小與成本較低之優點。The digital analog converter of the embodiment is configured to elastically group the numerical value range of the gray scale value by setting a decoding unit that can perform a specific logical operation, and obtain different gray scales by using substantially different operation methods. The value value group corresponds to the pixel voltage. Accordingly, the digital analog converter of the embodiment can effectively solve the disadvantages of large area and high cost of the conventional digital analog converter, and correspondingly has the advantages of small area and low cost.

另外,針對傳統經由內插方法來針對全部數位碼進行數位類比轉換之技術來說,本實施例之數位類比轉換器可改善此傳統技術中容易因對應之嘉瑪曲線較為非線性而導致畫素電壓誤差較高且應用其之液晶顯示器的畫面品質較差之缺點,而對應地具有畫素電壓誤差低及應用其之液晶顯示器之顯示畫面品質較佳之優點。In addition, the digital analog converter of the present embodiment can improve the pixel in the conventional technology, which is easy to be nonlinear due to the corresponding non-linearity of the gamma curve, for the conventional technique of digital analog conversion for all digital code via the interpolation method. The voltage error is high and the picture quality of the liquid crystal display to which it is applied is poor, and correspondingly, the pixel voltage error is low and the display quality of the liquid crystal display to which it is applied is better.

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之 更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. Those having ordinary skill in the art to which the present invention pertains can be made in various ways without departing from the spirit and scope of the invention. Change and retouch. Therefore, the scope of the invention is defined by the scope of the appended claims.

10‧‧‧資料驅動器10‧‧‧Data Drive

11‧‧‧資料暫存器11‧‧‧data register

13‧‧‧線性閂鎖器13‧‧‧Linear latch

14‧‧‧位準移位器14‧‧‧ position shifter

15‧‧‧輸出緩衝器15‧‧‧Output buffer

20‧‧‧數位類比轉換器20‧‧‧Digital Analog Converter

21‧‧‧解碼裝置21‧‧‧Decoding device

22‧‧‧運算放大器22‧‧‧Operational Amplifier

21e‧‧‧邏輯電路21e‧‧‧Logical Circuit

21a、21b、21c、21d‧‧‧邏輯電路21a, 21b, 21c, 21d‧‧‧ logic circuits

21a1、21a2、21a3、21d1、21d2、21d3、21b1至21b8、21c1至21c8‧‧‧子解碼單元21a1, 21a2, 21a3, 21d1, 21d2, 21d3, 21b1 to 21b8, 21c1 to 21c8‧‧‧ sub-decoding unit

第1圖繪示本發明實施例的數位類比轉換器的方塊圖。FIG. 1 is a block diagram of a digital analog converter according to an embodiment of the present invention.

第2圖繪示應用本發明之數位類比轉換器之資料驅動器的方塊圖。Figure 2 is a block diagram showing the data driver of the digital analog converter to which the present invention is applied.

第3圖繪示本實施例中灰階值GS與畫素電壓PV間的嘉瑪曲線。FIG. 3 is a diagram showing the gamma curve between the gray scale value GS and the pixel voltage PV in the embodiment.

第4A至4C圖繪示乃第1圖之解碼裝置21的詳細電路圖。4A to 4C are diagrams showing detailed circuits of the decoding device 21 of Fig. 1.

第5A及5B圖繪示乃第1圖之解碼裝置21的真值表。5A and 5B are diagrams showing the truth table of the decoding device 21 of Fig. 1.

20‧‧‧數位類比轉換器20‧‧‧Digital Analog Converter

21‧‧‧解碼裝置21‧‧‧Decoding device

22‧‧‧運算放大器22‧‧‧Operational Amplifier

Claims (9)

一種數位類比轉換器,回應一灰階值的複數個數值產生對應之複數個電壓,其中該灰階值包括k個位元,k為大於1之自然數,該數位類比轉換器包括:一解碼裝置,包括:一第一解碼電路,用以於該灰階值中w個最重要位元(Most Significant Bit,MSB)均等於相同邏輯值時,提供位準實質上相同之一第一輸出電壓、一第二輸出電壓及一第三輸出電壓;一第二解碼電路,用以於該w個MSB不等於相同邏輯值時,回應於該灰階值中與該w個MSB相鄰之x個MSB提供一第一中間電壓;一邏輯運算電路,用以根據該x個MSB及該灰階值中與該x個MSB相鄰之y個MSB產生一第一邏輯控制訊號、一第二邏輯控制訊號及一第三邏輯控制訊號;一第三解碼電路,用以於該w個MSB不等於相同邏輯值時,回應於該x個MSB及該第一至該第三邏輯控制訊號提供一第二中間電壓;及一第四解碼電路,用以於該w個MSB不等於相同邏輯值時,根據該y個MSB及該灰階值中與該y個MSB相鄰之z個MSB選擇性地控制該第一輸出電壓為該第一及該第二中間電壓其中之一、選擇性地控制該第二輸出電壓為該第一及該第二中間電壓其中之一、選擇性地控制該第三輸出電壓為該第一及該第二中間電壓其中之一;以及一運算放大器,根據該第一至該第三輸出電壓來產生 一畫素電壓;其中,當該w個MSB不等於相同邏輯值時,該畫素電壓之位準係介於該第一及該第二中間電壓之間;其中,w、x、y及z為滿足條件:w+x+y+zk之自然數。A digital analog converter that generates a corresponding plurality of voltages in response to a plurality of values of a gray scale value, wherein the gray scale value includes k bits, and k is a natural number greater than 1, the digital analog converter includes: a decoding The device includes: a first decoding circuit, configured to provide a first output voltage substantially equal to the same when the w most significant bits (MSBs) of the grayscale value are equal to the same logic value a second output voltage and a third output voltage, wherein the second decoding circuit is configured to respond to the x of the gray level values adjacent to the w MSBs when the w MSBs are not equal to the same logic value The MSB provides a first intermediate voltage, and a logic operation circuit is configured to generate a first logic control signal and a second logic control according to the x MSBs and the y MSBs adjacent to the x MSBs in the grayscale value. a third logic control signal; a third decoding circuit, configured to provide a second response to the x MSBs and the first to third logic control signals when the w MSBs are not equal to the same logic value Intermediate voltage; and a fourth decoding circuit for the w When the MSB is not equal to the same logical value, the first output voltage is selectively controlled as the first and the second intermediate voltage according to the y MSBs and the z MSBs adjacent to the y MSBs of the grayscale values. One of selectively controlling the second output voltage to be one of the first and second intermediate voltages, and selectively controlling the third output voltage to be one of the first and second intermediate voltages; An operational amplifier, generating a pixel voltage according to the first to the third output voltage; wherein, when the w MSBs are not equal to the same logic value, the pixel voltage level is between the first and the Between the second intermediate voltages; wherein w, x, y, and z satisfy the condition: w+x+y+z The natural number of k. 如申請專利範圍第1項所述之數位類比轉換器,其中該邏輯運算電路更包括:一第一運算單元,用以根據該x個MSB中之一第w+x個MSB及該y個MSB中與該x個MSB相鄰之一第w+x+1個MSB的反或閘(NOR)運算結果與及閘(AND)運算結果分別產生該第一與該第二邏輯控制訊號;及一第二運算單元,用以根據該第一及該第二邏輯控制訊號之反相訊號的及閘運算結果產生該第三邏輯控制訊號。 The digital analog converter of claim 1, wherein the logic operation circuit further comprises: a first operation unit, configured to: w+x MSBs and the y MSBs according to one of the x MSBs The inverse or gate (NOR) operation result and the AND operation result of the w+x+1 MSBs adjacent to the x MSBs respectively generate the first and second logic control signals; The second operation unit is configured to generate the third logic control signal according to the result of the AND operation of the inverted signals of the first and second logic control signals. 如申請專利範圍第1項所述之數位類比轉換器,其中該第一解碼電路更包括:一第一子解碼單元,用以於該w個MSB均為邏輯0時,提供該些電壓中複數個位準最低之電壓來做為該第一電壓,並於該w個MSB均為邏輯1時,提供該些電壓中複數個位準最高之電壓來做為該第一電壓。 The digital analog converter of claim 1, wherein the first decoding circuit further comprises: a first sub-decoding unit, configured to provide the plurality of voltages when the w MSBs are all logic 0 The lowest level voltage is used as the first voltage, and when the w MSBs are both logic 1, the voltage with the highest level of the plurality of voltages is provided as the first voltage. 如申請專利範圍第1項所述之數位類比轉換器, 其中該第一解碼電路更包括:一第二子解碼單元,用以於該w個MSB均為邏輯0時,提供該些電壓中複數個位準最低之電壓來做為該第二電壓,並於該w個MSB均為邏輯1時,提供該些電壓中複數個位準最高之電壓來做為該第二電壓。 For example, the digital analog converter described in claim 1 of the patent scope, The first decoding circuit further includes: a second sub-decoding unit, configured to provide, when the w MSBs are all logic 0, a voltage of a plurality of levels in the voltages as the second voltage, and When the w MSBs are both logic 1, the voltage with the highest level among the voltages is provided as the second voltage. 如申請專利範圍第1項所述之數位類比轉換器,其中該第一解碼電路更包括:一第三子解碼單元,用以於該w個MSB均為邏輯0時,提供該些電壓中複數個位準最低之電壓來做為該第三電壓,並於該w個MSB均為邏輯1時,提供該些電壓中複數個位準最高之電壓來做為該第三電壓。 The digital analog converter of claim 1, wherein the first decoding circuit further comprises: a third sub-decoding unit, configured to provide the plurality of voltages when the w MSBs are all logic 0 The lowest level voltage is used as the third voltage, and when the w MSBs are all logic 1, the voltage with the highest level among the voltages is provided as the third voltage. 如申請專利範圍第1項所述之數位類比轉換器,其中該第四解碼電路更包括:一第一子解碼單元,用以於該y個MSB中之一第w+x+y個MSB對應至邏輯值1時,提供該第一中間電壓做為該第一輸出電壓,並於該第w+x+y個MSB對應至邏輯值0時,提供該第二中間電壓做為該第一輸出電壓。 The digital analog converter of claim 1, wherein the fourth decoding circuit further comprises: a first sub decoding unit, configured to correspond to one of the y MSBs, w+x+y MSBs When the logic value is 1, the first intermediate voltage is provided as the first output voltage, and when the first w+x+y MSBs correspond to the logic value 0, the second intermediate voltage is provided as the first output. Voltage. 如申請專利範圍第1項所述之數位類比轉換器,其中該第四解碼電路更包括:一第二子解碼單元,用以於該y個MSB中之一第w+x+y個MSB及該z個MSB中之一最低位位元(Last Significant Bit,LSB)對應至不同邏輯值時,提供該第一中間電壓做 為該第二輸出電壓,並於該第w+x+y個MSB及該LSB對應至相同邏輯值時,提供該第二中間電壓做為該第二輸出電壓。 The digital analog converter of claim 1, wherein the fourth decoding circuit further comprises: a second sub decoding unit, configured to w+x+y MSBs of the one of the y MSBs The first intermediate voltage is provided when one of the z MSBs corresponds to a different logical value (Last Significant Bit, LSB) For the second output voltage, and when the first w+x+y MSBs and the LSBs correspond to the same logic value, the second intermediate voltage is provided as the second output voltage. 如申請專利範圍第1項所述之數位類比轉換器,其中該第四解碼電路更包括:一第三子解碼單元,用以於該y個MSB中之一第w+x+y個MSB及該z個MSB中與該y個MSB相鄰之一第w+x+y+1個MSB對應至不同邏輯值時,提供該第一中間電壓做為該第三輸出電壓,並於該第w+x+y個MSB及該第w+x+y+1個MSB對應至相同邏輯值時,提供該第二中間電壓做為該第三輸出電壓。 The digital analog converter of claim 1, wherein the fourth decoding circuit further comprises: a third sub decoding unit, configured to w+x+y MSBs of the one of the y MSBs and Providing the first intermediate voltage as the third output voltage when the w+x+y+1 MSBs adjacent to the one of the y MSBs correspond to different logic values, and the When the +x+y MSBs and the w+x+y+1 MSBs correspond to the same logic value, the second intermediate voltage is provided as the third output voltage. 如申請專利範圍第1項所述之數位類比轉換器,其中該運算放大器具有三個正端輸入端,以分別接收該第一、該第二及該第三輸出電壓,該運算放大器係根據該第一至該第三電壓執行內插法以得到該畫素電壓。 The digital analog converter of claim 1, wherein the operational amplifier has three positive terminal inputs for receiving the first, second, and third output voltages, respectively, according to the operational amplifier The first to the third voltage performs interpolation to obtain the pixel voltage.
TW101123508A 2012-06-29 2012-06-29 Analog to digital converter TWI469532B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW101123508A TWI469532B (en) 2012-06-29 2012-06-29 Analog to digital converter
CN201210314093.6A CN103516368B (en) 2012-06-29 2012-08-29 Digital-to-analog converter
US13/920,126 US8742967B2 (en) 2012-06-29 2013-06-18 Analog to digital converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101123508A TWI469532B (en) 2012-06-29 2012-06-29 Analog to digital converter

Publications (2)

Publication Number Publication Date
TW201401788A TW201401788A (en) 2014-01-01
TWI469532B true TWI469532B (en) 2015-01-11

Family

ID=49777555

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101123508A TWI469532B (en) 2012-06-29 2012-06-29 Analog to digital converter

Country Status (3)

Country Link
US (1) US8742967B2 (en)
CN (1) CN103516368B (en)
TW (1) TWI469532B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016035326A1 (en) * 2014-09-03 2017-06-08 日本電気株式会社 Wireless communication system, base station, user equipment, communication method, program
KR102286726B1 (en) * 2015-05-14 2021-08-05 주식회사 실리콘웍스 Display apparatus and driving circuit thereof
US11157437B2 (en) * 2018-09-26 2021-10-26 Micron Technology, Inc. Memory pooling between selected memory resources via a base station
TWI744614B (en) * 2019-03-21 2021-11-01 瑞鼎科技股份有限公司 Source driver and operating method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6680733B2 (en) * 2000-12-15 2004-01-20 Lg. Philips Lcd Co., Ltd. Liquid crystal display device with gamma voltage controller
US20040169629A1 (en) * 2001-06-18 2004-09-02 Jun-Pyo Lee Liquid crystal display
US20110102471A1 (en) * 2009-10-30 2011-05-05 Au Optronics Method and device for driving liquid crystal display

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326913B1 (en) 2000-04-27 2001-12-04 Century Semiconductor, Inc. Interpolating digital to analog converter and TFT-LCD source driver using the same
KR100517734B1 (en) * 2003-12-12 2005-09-29 삼성전자주식회사 Apparatus and Method for Converting Digital Data to Gamma Corrected Analog Signal, Source Driver Integrated Circuits and Flat Panel Display using the same
TWI335731B (en) 2007-04-10 2011-01-01 Raydium Semiconductor Corp Digital to analog converter and method thereof
CN101303834B (en) * 2007-05-08 2011-01-19 瑞鼎科技股份有限公司 Digital-to-analog converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6680733B2 (en) * 2000-12-15 2004-01-20 Lg. Philips Lcd Co., Ltd. Liquid crystal display device with gamma voltage controller
US20040169629A1 (en) * 2001-06-18 2004-09-02 Jun-Pyo Lee Liquid crystal display
US20110102471A1 (en) * 2009-10-30 2011-05-05 Au Optronics Method and device for driving liquid crystal display

Also Published As

Publication number Publication date
CN103516368B (en) 2016-12-21
CN103516368A (en) 2014-01-15
US20140002290A1 (en) 2014-01-02
TW201401788A (en) 2014-01-01
US8742967B2 (en) 2014-06-03

Similar Documents

Publication Publication Date Title
US7580021B2 (en) Display driver converting ki bits gray-scale data to converted gray-scale data of J bits, electro-optical device and gamma correction method
TWI621334B (en) Output buffer circuit and source driving circuit including the same
JP4915841B2 (en) Gradation voltage generation circuit, driver IC, and liquid crystal display device
TWI379112B (en) Display device, apparatus and method for driving the same
CN109817184B (en) Apparatus and method for chromatic aberration correction
JP2009071801A (en) Digital-to-analog converter and method for driving the same, and source driver and display device including the same
JP2004226952A (en) Apparatus for accelerating response of display and driving method
KR102409831B1 (en) Gamma voltage generator, display device having the same, and method for generating gamma voltage
TWI469532B (en) Analog to digital converter
JP4745107B2 (en) Gamma correction device and display device
TWI459358B (en) Liquid crystal display device, driving circuit and driving method thereof
JP6601477B2 (en) Display driver, electro-optical device, and electronic device
CN107808646B (en) Display driver, electro-optical device, electronic apparatus, and method of controlling display driver
ATE457509T1 (en) METHOD FOR CONTROLLING A DISPLAY
US7956779B2 (en) Non-linear interpolation circuit, interpolation current generating circuit thereof and method for converting digital data into analog data
JP2019028291A (en) Display driver, display controller, electro-optic device, and electronic apparatus
US7209144B2 (en) Image-display apparatus, image-display method, and image-display program
TWI396171B (en) Source driving apparatus and driving method thereof
JP2009265260A (en) Display method and display device
KR20060120899A (en) Display device and driving apparatus for the same
CN101303834A (en) Digital-to-analog converter and method thereof
US8786641B2 (en) Digital-to-analog converter and method thereof
JP2005316146A (en) Liquid crystal display device and its processing method
KR20110078839A (en) Liquid crystal display device and driving method the same
JP5864179B2 (en) Image display panel driver