TWI469337B - Non-volatile memory and manufacturing method thereof - Google Patents
Non-volatile memory and manufacturing method thereof Download PDFInfo
- Publication number
- TWI469337B TWI469337B TW101120394A TW101120394A TWI469337B TW I469337 B TWI469337 B TW I469337B TW 101120394 A TW101120394 A TW 101120394A TW 101120394 A TW101120394 A TW 101120394A TW I469337 B TWI469337 B TW I469337B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- nitride layer
- gate
- forming
- volatile memory
- Prior art date
Links
Landscapes
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Description
本發明是有關於一種記憶體及其製作方法,且特別是有關於一種非揮發性記憶體及其製作方法。The present invention relates to a memory and a method of fabricating the same, and more particularly to a non-volatile memory and a method of fabricating the same.
非揮發性記憶體由於具有存入之資料在斷電後也不會消失之優點,因此許多電器產品中必須具備此類記憶體,以維持電器產品開機時的正常操作。特別是,快閃記憶體(flash memory)由於具有可多次進行資料之存入、讀取、抹除等操作,所以已成為個人電腦和電子設備所廣泛採用的一種記憶體元件。Non-volatile memory has the advantage that it does not disappear after power-off, so many electrical products must have such memory to maintain the normal operation of the electrical products when they are turned on. In particular, flash memory has become a memory component widely used in personal computers and electronic devices because it has operations such as storing, reading, and erasing data.
對於快閃記憶體來說,通常希望具有較高的閘極耦合比(gate coupling ratio,GCR)和轉導值(transconductance,Gm),以使記憶體具有較高的效能。閘極耦合比和轉導值通常和閘間介電層(inter-gate dielectric layer)有關。閘間介電層的厚度越薄以及介電常數越高可以提高閘間介電層的電容量(capacitance),且因此可以提高閘極耦合比和轉導值。此外,增加閘間介電層的面積亦可提高閘極耦合比。For flash memory, it is generally desirable to have a higher gate coupling ratio (GCR) and transconductance (Gm) to make the memory more efficient. The gate coupling ratio and transduction value are usually related to the inter-gate dielectric layer. The thinner the thickness of the dielectric layer between the gates and the higher the dielectric constant, the higher the capacitance of the dielectric layer between the gates, and thus the gate coupling ratio and the transconductance value can be improved. In addition, increasing the area of the dielectric layer of the gate can also increase the gate coupling ratio.
然而,較薄的閘間介電層往往會導致資料保持力(retention)下降的問題。此外,高介電常數材料往往不容易相容於現有的記憶體製程中。另外,增加閘間介電層的面積也會導致製程困難度的增加。因此,如何在現有的 製程中有效地提高閘極耦合比和轉導值已成為目前的一個重要課題。However, thinner inter-gate dielectric layers tend to cause problems with reduced data retention. In addition, high dielectric constant materials are often not easily compatible with existing memory systems. In addition, increasing the area of the dielectric layer of the gate also leads to an increase in process difficulty. So how is it in the existing Effectively increasing the gate coupling ratio and transduction value in the process has become an important issue at present.
本發明提供一種非揮發性記憶體,其具有帶電荷氮化物層(charged nitride layer)。The present invention provides a non-volatile memory having a charged nitride layer.
本發明另提供一種非揮發性記憶體的製作方法,其可製作出具有帶電荷氮化物層的非揮發性記憶體。The present invention further provides a method of fabricating a non-volatile memory that can produce a non-volatile memory having a charged nitride layer.
本發明提出一種非揮發性記憶體,其包括閘介電層、浮置閘極、控制閘極、閘間介電結構以及二個摻雜區。閘介電層配置於基底上。浮置閘極配置於閘介電層上。控制閘極配置於浮置閘極上。閘間介電結構配置於控制閘極與浮置閘極之間。閘間介電結構包括第一氧化物層、第二氧化物層以及帶電荷氮化物層。第一氧化物層配置於浮置閘極上。第二氧化物層配置於第一氧化物層上。帶電荷氮化物層配置於第一氧化物層與第二氧化物層之間。二個摻雜區分別配置於浮置閘極二側的基底中。The invention provides a non-volatile memory comprising a gate dielectric layer, a floating gate, a control gate, a gate dielectric structure and two doped regions. The gate dielectric layer is disposed on the substrate. The floating gate is disposed on the gate dielectric layer. The control gate is disposed on the floating gate. The dielectric structure of the gate is disposed between the control gate and the floating gate. The inter-gate dielectric structure includes a first oxide layer, a second oxide layer, and a charged nitride layer. The first oxide layer is disposed on the floating gate. The second oxide layer is disposed on the first oxide layer. The charged nitride layer is disposed between the first oxide layer and the second oxide layer. The two doped regions are respectively disposed in the substrate on the two sides of the floating gate.
依照本發明實施例所述之非揮發性記憶體,上述之帶電荷氮化物層例如中含有N型掺質。According to the non-volatile memory of the embodiment of the invention, the above-mentioned charged nitride layer contains, for example, an N-type dopant.
依照本發明實施例所述之非揮發性記憶體,上述之帶電荷氮化物層中例如含有電子。According to the non-volatile memory of the embodiment of the invention, the charged nitride layer contains, for example, electrons.
本發明另提出一種非揮發性記憶體的製作方法,此方法包括:於基底上形成閘介電層;於閘介電層上形成浮置閘極;於浮置閘極上形成第一氧化物層;於第一氧化物層 上形成氮化物層;於氮化物層上形成第二氧化物層;於第二氧化物層上形成控制閘極;於浮置閘極二側的基底中分別形成摻雜區;對氮化物層進行帶電荷處理,以形成帶電荷氮化物層。The invention further provides a method for fabricating a non-volatile memory, the method comprising: forming a gate dielectric layer on a substrate; forming a floating gate on the gate dielectric layer; forming a first oxide layer on the floating gate On the first oxide layer Forming a nitride layer thereon; forming a second oxide layer on the nitride layer; forming a control gate on the second oxide layer; forming a doped region in the substrate on the two sides of the floating gate; A charge treatment is performed to form a charged nitride layer.
依照本發明實施例所述之非揮發性記憶體的製作方法,上述之帶電荷處理例如是對氮化物層進行N型掺質植入。According to the method for fabricating a non-volatile memory according to an embodiment of the invention, the charge treatment described above is, for example, performing N-type dopant implantation on the nitride layer.
依照本發明實施例所述之非揮發性記憶體的製作方法,上述之帶電荷處理例如在形成氮化物層之後以及在形成第二氧化物層之前進行。According to the method of fabricating a non-volatile memory according to an embodiment of the invention, the charge treatment described above is performed, for example, after forming a nitride layer and before forming a second oxide layer.
依照本發明實施例所述之非揮發性記憶體的製作方法,上述之帶電荷處理例如在形成控制閘極之後以及在形成摻雜區之前進行。In accordance with a method of fabricating a non-volatile memory according to an embodiment of the invention, the charge treatment described above is performed, for example, after forming a control gate and before forming a doped region.
依照本發明實施例所述之非揮發性記憶體的製作方法,上述之帶電荷處理例如與形成摻雜區的步驟同時進行。According to the method of fabricating a non-volatile memory according to an embodiment of the invention, the charge treatment described above is performed simultaneously with the step of forming a doped region, for example.
依照本發明實施例所述之非揮發性記憶體的製作方法,上述之帶電荷處理例如是將電子注入氮化物層。According to the method of fabricating a non-volatile memory according to an embodiment of the invention, the charge treatment described above is, for example, injecting electrons into the nitride layer.
依照本發明實施例所述之非揮發性記憶體的製作方法,上述之帶電荷處理例如在形成摻雜區之後進行,且帶電荷處理例如是對控制閘極施加每公分大於7MV的電壓,以將電子注入氮化物層。According to the method for fabricating a non-volatile memory according to an embodiment of the invention, the charge treatment is performed, for example, after forming a doped region, and the charge treatment is, for example, applying a voltage greater than 7 MV per centimeter to the control gate. The electrons are injected into the nitride layer.
基於上述,本發明在形成閘間介電結構中的氮化物層之後,對氮化物層進行帶電荷處理來形成帶電荷氮化物層,因此增加了氮化物層的導電率,進而能夠提高非揮發 性記憶體的閘極耦合比與轉導值。Based on the above, after forming the nitride layer in the inter-gate dielectric structure, the nitride layer is subjected to a charge treatment to form a charged nitride layer, thereby increasing the conductivity of the nitride layer, thereby improving non-volatileness. The gate coupling ratio and transduction value of the memory.
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.
以下將以實施例對本發明的非揮發性記憶體的製作方法做說明。在本發明的非揮發性記憶體的製作方法中,藉由形成具有帶電荷氮化物層的閘間介電結構,可以有效地提高非揮發性記憶體的閘極耦合比和轉導值。特別一提的是,形成帶電荷氮化物層的步驟並不限於使用在以下所描述的非揮發性記憶體結構的製程中。換句話說,本發明中形成帶電荷氮化物層的步驟可以使用在任何形式的非揮發性記憶體結構的製程中,只要此非揮發性記憶體結構具有由氧化物/氮化物/氧化物(O/N/O)閘間介電結構即可。Hereinafter, a method of producing the non-volatile memory of the present invention will be described by way of examples. In the method of fabricating the non-volatile memory of the present invention, by forming the inter-gate dielectric structure having the charged nitride layer, the gate coupling ratio and the transduction value of the non-volatile memory can be effectively improved. In particular, the step of forming a charged nitride layer is not limited to use in the process of the non-volatile memory structure described below. In other words, the step of forming a charged nitride layer in the present invention can be used in the process of any form of non-volatile memory structure as long as the non-volatile memory structure has an oxide/nitride/oxide ( O/N/O) The dielectric structure of the gate can be used.
圖1A至圖1D為依照本發明一實施例所繪示的非揮發性記憶體之製作流程剖面圖。首先,請參照圖1A,於基底100上形成介電層102。介電層102的材料例如為氧化物。介電層102的形成方法例如為熱氧化法或化學氣相沈積法。然後,於介電層102上形成導體層104。導體層104的材料例如為多晶矽。導體層104的形成方法例如為化學氣相沈積法。1A-1D are cross-sectional views showing a process of fabricating a non-volatile memory according to an embodiment of the invention. First, referring to FIG. 1A, a dielectric layer 102 is formed on the substrate 100. The material of the dielectric layer 102 is, for example, an oxide. The formation method of the dielectric layer 102 is, for example, a thermal oxidation method or a chemical vapor deposition method. Then, a conductor layer 104 is formed on the dielectric layer 102. The material of the conductor layer 104 is, for example, polycrystalline germanium. The method of forming the conductor layer 104 is, for example, a chemical vapor deposition method.
然後,請參照圖1B,將導體層104與介電層102圖案化,以形成浮置閘極104a與閘介電層102a。接著,於基底100上共形地形成氧化物層106、氮化物層108與氧 化物層110。氧化物層106的形成方法例如為化學氣相沈積法。氧化物層106的厚度例如介於15Å至60Å之間,較佳介於30Å至50Å之間,更佳為40Å。氮化物層108的形成方法例如為化學氣相沈積法。氮化物層108的厚度例如介於15Å至100Å之間,較佳介於30Å至50Å之間,更佳為40Å。氧化物層110的厚度例如介於15Å至60Å之間,較佳介於30Å至50Å之間,更佳為50Å。Then, referring to FIG. 1B, the conductor layer 104 and the dielectric layer 102 are patterned to form a floating gate 104a and a gate dielectric layer 102a. Next, the oxide layer 106, the nitride layer 108 and the oxygen are conformally formed on the substrate 100. Compound layer 110. The method of forming the oxide layer 106 is, for example, a chemical vapor deposition method. The thickness of the oxide layer 106 is, for example, between 15 Å and 60 Å, preferably between 30 Å and 50 Å, and more preferably 40 Å. The method of forming the nitride layer 108 is, for example, a chemical vapor deposition method. The thickness of the nitride layer 108 is, for example, between 15 Å and 100 Å, preferably between 30 Å and 50 Å, and more preferably 40 Å. The thickness of the oxide layer 110 is, for example, between 15 Å and 60 Å, preferably between 30 Å and 50 Å, and more preferably 50 Å.
接著,請參照圖1C,對氮化物層108進行帶電荷處理112,以形成帶電荷氮化物層114。在本實施例中,帶電荷處理112例如是對氮化物層108進行N型掺質植入。上述的N型掺質可以是磷或硼。Next, referring to FIG. 1C, the nitride layer 108 is subjected to a charge treatment 112 to form a charged nitride layer 114. In the present embodiment, the charge treatment 112 is, for example, N-type dopant implantation of the nitride layer 108. The above N-type dopant may be phosphorus or boron.
之後,請參照圖1D,於基底100上形成覆蓋氧化物層110的導體層(未繪示)。上述導體層的材料例如為多晶矽,其形成方法例如為化學氣相沈積法。然後,進行圖案化製程,移除部分導體層,以形成控制閘極116。此外,在圖案化的過程中,還會同時移除部分氧化物層110、帶電荷氮化物層114與氧化物層106,以形成氧化物層110a、帶電荷氮化物層114a與氧化物層106a。氧化物層110a、帶電荷氮化物層114a與氧化物層106a構成位於浮置閘極104a與控制閘極116之間的閘間介電結構118。之後,於浮置閘極104a二側的基底100中分別形成摻雜區120,以完成本實施例的非揮發性記憶體10的製作。摻雜區120的形成方法例如是進行離子植入製程。Thereafter, referring to FIG. 1D, a conductor layer (not shown) covering the oxide layer 110 is formed on the substrate 100. The material of the above conductor layer is, for example, polycrystalline germanium, and the formation method thereof is, for example, a chemical vapor deposition method. Then, a patterning process is performed to remove a portion of the conductor layer to form the control gate 116. In addition, during the patterning process, part of the oxide layer 110, the charged nitride layer 114 and the oxide layer 106 are simultaneously removed to form the oxide layer 110a, the charged nitride layer 114a and the oxide layer 106a. . The oxide layer 110a, the charged nitride layer 114a and the oxide layer 106a form an inter-gate dielectric structure 118 between the floating gate 104a and the control gate 116. Thereafter, doped regions 120 are respectively formed in the substrates 100 on both sides of the floating gate 104a to complete the fabrication of the non-volatile memory 10 of the present embodiment. The method of forming the doping region 120 is, for example, performing an ion implantation process.
在非揮發性記憶體10中,由於閘間介電結構118中 的氮化物層帶有電荷,因此氮化物層具有內部電場(internal E-field)。如此一來,電子的捕捉阻障(trapping barrier)變低,使得電子有較大的機率能夠隨機移動,因而增加了氮化物層的導電率。由於氮化物層的導電率增加,因此可視為氮化物層的電性厚度減少,且因此具有較高的電容值。由於閘間介電結構118中的氮化物層具有較高的電容值,因此提高了非揮發性記憶體10的閘極耦合比和轉導值。In the non-volatile memory 10, due to the inter-gate dielectric structure 118 The nitride layer is charged, so the nitride layer has an internal electric field (internal E-field). As a result, the trapping barrier of the electrons becomes lower, so that the electrons have a greater probability of being randomly moved, thereby increasing the conductivity of the nitride layer. Since the conductivity of the nitride layer is increased, it can be considered that the electrical thickness of the nitride layer is reduced, and thus has a higher capacitance value. Since the nitride layer in the gate dielectric structure 118 has a higher capacitance value, the gate coupling ratio and the transconductance value of the non-volatile memory 10 are improved.
圖2為本實施例中的閘間介電結構(具有帶電荷氮化物層)與一般的閘間介電結構(氮化物層不帶有電荷)的電性厚度的比較圖。本實施例的閘間介電結構與一般的閘間介電結構具有相同的實際厚度,但由圖2可以看出,本實施例的閘間介電結構具有較薄的電性厚度,其表示本實施例的閘間介電結構可具有較大的電容值,因此本實施例的非揮發性記憶體可以具有較高的閘極耦合比。2 is a comparison diagram of the electrical thickness of the inter-gate dielectric structure (having a charged nitride layer) and the general inter-gate dielectric structure (the nitride layer is not charged) in the present embodiment. The gate dielectric structure of the present embodiment has the same actual thickness as the general gate dielectric structure, but it can be seen from FIG. 2 that the gate dielectric structure of the present embodiment has a thin electrical thickness, which is represented by The inter-gate dielectric structure of the present embodiment can have a large capacitance value, so the non-volatile memory of the present embodiment can have a higher gate coupling ratio.
圖3為本實施例的非揮發性記憶體的轉導值與臨界電壓(threshold voltage,Vt)的關係圖。由圖3可以看出,隨著臨界電壓增加,轉導值也隨之增加。換句話說,本實施例的非揮發性記憶體可以容易地具有較高的轉導值。3 is a graph showing the relationship between the transduction value of the non-volatile memory and the threshold voltage (Vt) of the present embodiment. As can be seen from Figure 3, as the threshold voltage increases, the transduction value also increases. In other words, the non-volatile memory of the present embodiment can easily have a higher transduction value.
特別一提的是,在本實施例中,帶電荷氮化物層114是藉由在形成氧化物層110之後對氮化物層108進行帶電荷處理112而形成。然而,本發明並不限於此。在其他實施例中,也可以是在形成氮化物層108之後的其他時機對氮化物層108進行帶電荷處理112。舉例來說,可以在以 下情況下對氮化物層108進行帶電荷處理:在一實施例中,可以在形成氮化物層108之後,立即對氮化物層108進行帶電荷處理112來形成帶電荷氮化物層114,如圖4所示;在一實施例中,可以在形成控制閘極116之後,立即對經圖案化的氮化物層108進行帶電荷處理112來形成帶電荷氮化物層114a,如圖5所示;在一實施例中,可以在形成摻雜區120的過程中,同時對經圖案化的氮化物層108進行帶電荷處理112來形成帶電荷氮化物層114a,如圖6所示。In particular, in the present embodiment, the charged nitride layer 114 is formed by subjecting the nitride layer 108 to a charge treatment 112 after forming the oxide layer 110. However, the invention is not limited thereto. In other embodiments, the nitride layer 108 may also be subjected to a charge treatment 112 at other timings after the formation of the nitride layer 108. For example, you can The nitride layer 108 is subjected to a charge treatment in the following case: in an embodiment, the nitride layer 108 may be subjected to a charge treatment 112 to form a charged nitride layer 114 immediately after the formation of the nitride layer 108, as shown in the figure. 4; in an embodiment, the patterned nitride layer 108 may be subjected to a charge treatment 112 to form a charged nitride layer 114a immediately after forming the control gate 116, as shown in FIG. 5; In one embodiment, the patterned nitride layer 108 may be subjected to a charge treatment 112 to form a charged nitride layer 114a during formation of the doped region 120, as shown in FIG.
此外,在上述各實施例中,皆是藉由對閘間介電結構中的氮化物層進行N型掺質植入來形成帶電荷氮化物層。然而,本發明並不限於此。在另一實施例中,也可以是在在現有製程中於形成一般的非揮發性記憶體之後,對控制閘極施加電壓,利用FN穿隧(Fowler-Nordheim tunneling)的方式將電子注入閘間介電結構的氮化物層中來形成帶電荷氮化物層。In addition, in each of the above embodiments, the charged nitride layer is formed by N-type dopant implantation of the nitride layer in the gate dielectric structure. However, the invention is not limited thereto. In another embodiment, after the general non-volatile memory is formed in the existing process, a voltage is applied to the control gate, and the electron is injected into the gate by means of Fowler-Nordheim tunneling. A charged nitride layer is formed in the nitride layer of the dielectric structure.
圖7A至圖7B為依照本發明另一實施例所繪示的非揮發性記憶體之製作流程剖面圖。首先,請參照圖7A,藉由與圖1A至圖1D所述相似的方式形成非揮發性記憶體70,除了在形成氮化物層108之後並未對其進行N型掺質植入而僅形成未帶有電荷的氮化物層108a。7A-7B are cross-sectional views showing a process of fabricating a non-volatile memory according to another embodiment of the invention. First, referring to FIG. 7A, the non-volatile memory 70 is formed in a manner similar to that described in FIGS. 1A through 1D except that the nitride layer 108 is not N-type dopant implanted after formation of the nitride layer 108. The nitride layer 108a is not charged.
之後,請參照圖7B,進行帶電荷處理122,對控制閘極116施加電壓V,利用FN穿隧的方式將電子注入氮化物層108a中而形成帶電荷氮化物層124,以完成本實施例 的非揮發性記憶體70a的製作。在本實施例中,電壓V例如每公分大於7MV。Thereafter, referring to FIG. 7B, a charge treatment 122 is performed, a voltage V is applied to the control gate 116, and electrons are implanted into the nitride layer 108a by FN tunneling to form a charged nitride layer 124 to complete the embodiment. The production of non-volatile memory 70a. In the present embodiment, the voltage V is, for example, greater than 7 MV per centimeter.
圖8為利用氮化矽元件(Nbit cell)來驗證帶電荷氮化物層與記憶體效能提高的關係圖。如圖8所示,在進行利用FN穿隧的方式施加電壓之後,隨著臨界電壓的改變量(△Vt)提高,轉導值存在逐漸提高的趨勢。Figure 8 is a graph showing the relationship between the charged nitride layer and the improved memory efficiency using a Nb cell. As shown in FIG. 8, after the voltage is applied by the FN tunneling method, as the amount of change in the threshold voltage (ΔVt) increases, the transduction value tends to gradually increase.
綜上所述,本發明在形成閘間介電結構中的氮化物層之後,對此氮化物層進行帶電荷處理來形成帶電荷氮化物層,因此增加了氮化物層的導電率,進而提高了閘間介電結構的電容值。由於閘間介電結構具有較高的電容值,因此本發明的非揮發性記憶體能夠具有較高的閘極耦合比和轉導值。In summary, after forming the nitride layer in the inter-gate dielectric structure, the nitride layer is subjected to charge treatment to form a charged nitride layer, thereby increasing the conductivity of the nitride layer and thereby improving The capacitance value of the dielectric structure of the gate. Since the dielectric structure of the gate has a high capacitance value, the non-volatile memory of the present invention can have a high gate coupling ratio and a transconductance value.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
10、70、70a‧‧‧非揮發性記憶體10, 70, 70a‧‧‧ non-volatile memory
100‧‧‧基底100‧‧‧Base
102‧‧‧介電層102‧‧‧ dielectric layer
102a‧‧‧閘介電層102a‧‧‧gate dielectric layer
104‧‧‧導體層104‧‧‧Conductor layer
104a‧‧‧浮置閘極104a‧‧‧Floating gate
106、106a、110、110a‧‧‧氧化物層106, 106a, 110, 110a‧‧‧ oxide layer
108、108a‧‧‧氮化物層108, 108a‧‧‧ nitride layer
112、122‧‧‧帶電荷處理112, 122‧‧‧ with charge treatment
114、114a、124‧‧‧帶電荷氮化物層114, 114a, 124‧‧‧Charged nitride layer
116‧‧‧控制閘極116‧‧‧Control gate
118‧‧‧閘間介電結構118‧‧‧Intermittent dielectric structure
120‧‧‧摻雜區120‧‧‧Doped area
圖1A至圖1D為依照本發明一實施例所繪示的非揮發性記憶體之製作流程剖面圖。1A-1D are cross-sectional views showing a process of fabricating a non-volatile memory according to an embodiment of the invention.
圖2為本實施例中的閘間介電結構(具有帶電荷氮化物層)與一般的閘間介電結構(氮化物層不帶有電荷)的電性厚度的比較圖。2 is a comparison diagram of the electrical thickness of the inter-gate dielectric structure (having a charged nitride layer) and the general inter-gate dielectric structure (the nitride layer is not charged) in the present embodiment.
圖3為本實施例的非揮發性記憶體的轉導值與臨界電 壓(threshold voltage,Vt)的關係圖。FIG. 3 is a transduction value and a critical power of the non-volatile memory of the embodiment. Diagram of the threshold voltage (Vt).
圖4至圖6為本發明各實施例中對氮化物層進行帶電荷處理的剖面示意圖。4 to 6 are schematic cross-sectional views showing a charge treatment of a nitride layer in various embodiments of the present invention.
圖7A至圖7B為依照本發明另一實施例所繪示的非揮發性記憶體之製作流程剖面圖。7A-7B are cross-sectional views showing a process of fabricating a non-volatile memory according to another embodiment of the invention.
圖8為利用Nbit cell來驗證帶電荷氮化物層與記憶體效能提高的關係圖。Figure 8 is a graph showing the relationship between the charged nitride layer and the improved memory efficiency using Nbit cells.
100‧‧‧基底100‧‧‧Base
102a‧‧‧閘介電層102a‧‧‧gate dielectric layer
104a‧‧‧浮置閘極104a‧‧‧Floating gate
106、110‧‧‧氧化物層106, 110‧‧‧ oxide layer
112‧‧‧帶電荷處理112‧‧‧with charge treatment
114‧‧‧帶電荷氮化物層114‧‧‧Charged nitride layer
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101120394A TWI469337B (en) | 2012-06-07 | 2012-06-07 | Non-volatile memory and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101120394A TWI469337B (en) | 2012-06-07 | 2012-06-07 | Non-volatile memory and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201351630A TW201351630A (en) | 2013-12-16 |
TWI469337B true TWI469337B (en) | 2015-01-11 |
Family
ID=50158134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101120394A TWI469337B (en) | 2012-06-07 | 2012-06-07 | Non-volatile memory and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI469337B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200701441A (en) * | 2005-06-27 | 2007-01-01 | Powerchip Semiconductor Corp | Non-volatile memory and manufacturing method and operating method thereof |
TW200713278A (en) * | 2005-09-28 | 2007-04-01 | Macronix Int Co Ltd | Method of operating non-volatile memory |
TW200905888A (en) * | 2007-07-30 | 2009-02-01 | Promos Technologies Pte Ltd | Nonvolatile memories with charge trapping layers containing silicon nitride with germanium or phosphorus |
-
2012
- 2012-06-07 TW TW101120394A patent/TWI469337B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200701441A (en) * | 2005-06-27 | 2007-01-01 | Powerchip Semiconductor Corp | Non-volatile memory and manufacturing method and operating method thereof |
TW200713278A (en) * | 2005-09-28 | 2007-04-01 | Macronix Int Co Ltd | Method of operating non-volatile memory |
TW200905888A (en) * | 2007-07-30 | 2009-02-01 | Promos Technologies Pte Ltd | Nonvolatile memories with charge trapping layers containing silicon nitride with germanium or phosphorus |
Also Published As
Publication number | Publication date |
---|---|
TW201351630A (en) | 2013-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100735534B1 (en) | Nano crystal nonvolatile semiconductor integrated circuit device and fabrication method thereof | |
KR100690925B1 (en) | Nano crystal nonvolatile semiconductor integrated circuit device and fabrication method thereof | |
US7795088B2 (en) | Method for manufacturing memory cell | |
US7855411B2 (en) | Memory cell | |
CN100477266C (en) | Non-volatile memory devices including barrier layers and methods of manufacturing the same | |
JP2015070266A (en) | Method for forming non-volatile memory cell and structure thereof | |
US20130062684A1 (en) | Gate stack structure and fabricating method used for semiconductor flash memory device | |
JP2009231373A (en) | Nonvolatile semiconductor memory device | |
US7449384B2 (en) | Method of manufacturing flash memory device | |
US20080142875A1 (en) | Memory cells having split charge storage nodes and methods for fabricating memory cells having split charge storage nodes | |
TWI469337B (en) | Non-volatile memory and manufacturing method thereof | |
JP2011142246A (en) | Semiconductor storage device | |
KR101111917B1 (en) | Non-volatile memory cell using state of three kinds and method of manufacturing the same | |
US8859364B2 (en) | Manufacturing method of non-volatile memory | |
KR100609067B1 (en) | Non-volatile memory device and method for fabricating the same | |
KR100652351B1 (en) | Method for manufacturing flash device | |
CN103972179A (en) | Method for improving durability of B4-Flash device | |
CN103474476B (en) | Non-volatility memory and preparation method thereof | |
US7118965B2 (en) | Methods of fabricating nonvolatile memory device | |
TWI493660B (en) | Non-volatile memory and manufacturing method thereof | |
KR20060087640A (en) | Non-volatile memory device having side wall gate electrode and method of fabricating the same | |
Oh et al. | 3D gate-all-around bandgap-engineered SONOS flash memory in vertical silicon pillar with metal gate | |
KR101051957B1 (en) | Manufacturing method of the pyromium element | |
KR100728645B1 (en) | Semiconductor memory device and manufacturing method thereof | |
US20130168754A1 (en) | Method for fabricating a semiconductor device with increased reliability |