TWI469270B - Method for fabricating nand type flash memory device - Google Patents

Method for fabricating nand type flash memory device Download PDF

Info

Publication number
TWI469270B
TWI469270B TW101100753A TW101100753A TWI469270B TW I469270 B TWI469270 B TW I469270B TW 101100753 A TW101100753 A TW 101100753A TW 101100753 A TW101100753 A TW 101100753A TW I469270 B TWI469270 B TW I469270B
Authority
TW
Taiwan
Prior art keywords
gate
layer
flash memory
memory device
region
Prior art date
Application number
TW101100753A
Other languages
Chinese (zh)
Other versions
TW201330182A (en
Inventor
Lu Ping Chiang
Hsiu Han Liao
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to TW101100753A priority Critical patent/TWI469270B/en
Publication of TW201330182A publication Critical patent/TW201330182A/en
Application granted granted Critical
Publication of TWI469270B publication Critical patent/TWI469270B/en

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Description

反及閘型快閃記憶裝置之製造方法Reverse gate type flash memory device manufacturing method

本發明係有關於一種非揮發性記憶裝置,特別是有關於一種反及閘型(NAND type)快閃記憶裝置之製造方法。The present invention relates to a non-volatile memory device, and more particularly to a method of fabricating a NAND type flash memory device.

快閃記憶體具有面積小、省電、高速和低操作電壓等優點,因而廣泛地運用於非揮發記憶體技術中。反及閘型(NAND type)快閃記憶體是快閃記憶體的一種類型,其因具有大容量、耐撞擊、雜訊少及輕薄短小等優點而成為數位相機、行動電話、印表機、個人數位助理(PDA)等產品的重要元件。Flash memory has the advantages of small area, power saving, high speed and low operating voltage, so it is widely used in non-volatile memory technology. NAND type flash memory is a type of flash memory. It is a digital camera, mobile phone, printer, because of its large capacity, impact resistance, less noise, and lightness and shortness. Important components of products such as personal digital assistants (PDAs).

在現行的反及閘型快閃記憶裝置製作中,為了將週邊邏輯電路的高壓及低壓操作元件(即電晶體)製作整合於記憶單元陣列的製作,高壓及低壓操作元件的閘極與每一記憶單元的浮置閘極必須使用相同導電型(例如,n型)的摻雜的半導體層作為材料。如此一來,對於p型低壓操作元件來說,會降低元件本身的電特性及效能。再者,由於低壓操作元件的閘極介電層的厚度必須受限於記憶單元的穿隧氧化(tunnel oxide)層的厚度。如此一來,並無法藉由降低低壓操作元件的閘極介電層的厚度來提升元件本身的電特性及效能。In the production of the current anti-gate type flash memory device, in order to integrate the high-voltage and low-voltage operating elements (ie, transistors) of the peripheral logic circuit into the fabrication of the memory cell array, the gates of the high-voltage and low-voltage operating elements are each The floating gate of the memory cell must use a doped semiconductor layer of the same conductivity type (eg, n-type) as the material. As a result, for the p-type low-voltage operating element, the electrical characteristics and performance of the component itself are reduced. Furthermore, the thickness of the gate dielectric layer of the low voltage operating element must be limited by the thickness of the tunnel oxide layer of the memory cell. As a result, the electrical characteristics and performance of the component itself cannot be improved by reducing the thickness of the gate dielectric layer of the low voltage operating element.

因此,有必要尋求一種反及閘型快閃記憶裝置之製造方法,其能夠改善或解決上述問題。Therefore, it is necessary to find a manufacturing method of the anti-gate type flash memory device which can improve or solve the above problems.

本發明一實施例提供一種反及閘型快閃記憶裝置之製造方法,包括:提供一半導體基底,其具有一第一區及鄰接第一區的一第二區及一第三區;在半導體基底上形成一第一閘極氧化層,其中對應於第一及第二區的第一閘極氧化層具有一第一厚度,而對應於第三區的第一閘極氧化層具有大於第一厚度的一第二厚度;在第二及第三區的第一閘極氧化層上分別形成一第一閘極層及一第二閘極層,且露出位於第一區的第一閘極氧化層;對露出的第一閘極氧化層進行氧化處理,以形成具有一第三厚度的一第二閘極氧化層,其中第三厚度不同於第一及第二厚度;在第二閘極氧化層上依序形成一第三閘極層及一閘極間介電層;以及在第一閘極層、第二閘極層及閘極間介電層上分別形成一第四閘極層、一第五閘極層及一第六閘極層。An embodiment of the present invention provides a method for fabricating a reverse-gate type flash memory device, including: providing a semiconductor substrate having a first region and a second region and a third region adjacent to the first region; Forming a first gate oxide layer on the substrate, wherein the first gate oxide layer corresponding to the first and second regions has a first thickness, and the first gate oxide layer corresponding to the third region has a larger than the first a second thickness of the thickness; forming a first gate layer and a second gate layer on the first gate oxide layer of the second and third regions, respectively, and exposing the first gate oxide in the first region a layer; the exposed first gate oxide layer is oxidized to form a second gate oxide layer having a third thickness, wherein the third thickness is different from the first and second thicknesses; and the second gate is oxidized Forming a third gate layer and an inter-gate dielectric layer on the layer; and forming a fourth gate layer on the first gate layer, the second gate layer and the inter-gate dielectric layer, A fifth gate layer and a sixth gate layer.

以下說明本發明實施例之反及閘型快閃記憶裝置之製造方法。然而,可輕易了解本發明所提供的實施例僅用於說明以特定方法製作及使用本發明,並非用以侷限本發明的範圍。Hereinafter, a method of manufacturing the anti-gate type flash memory device according to the embodiment of the present invention will be described. However, the present invention is to be understood as being limited to the details of the present invention.

第1A至1J圖係繪示出根據本發明一實施例之反及閘型快閃記憶裝置之製造方法剖面示意圖。請參照第1A及1B圖,提供一半導體基底100,例如一矽基底或其他半導體材料基底。半導體基底100具有一第一區10以及鄰接第一區10的一第二區20a及一第三區20b。在本實施例中,第一區可作為反及閘型快閃記憶裝置的一單元陣列(cell array)區。再者,第二區20a及第三區20b可作為反及閘型快閃記憶裝置的一週邊電路區。在一實施例中,第二區20a可位於第一區10與第三區20b之間,其中第二區20a可為低壓操作元件區,而第三區20b可為高壓操作元件區。1A to 1J are schematic cross-sectional views showing a manufacturing method of an anti-gate type flash memory device according to an embodiment of the present invention. Referring to Figures 1A and 1B, a semiconductor substrate 100, such as a germanium substrate or other semiconductor material substrate, is provided. The semiconductor substrate 100 has a first region 10 and a second region 20a and a third region 20b adjacent to the first region 10. In this embodiment, the first region can serve as a cell array region of the anti-gate type flash memory device. Furthermore, the second region 20a and the third region 20b can serve as a peripheral circuit region of the anti-gate type flash memory device. In an embodiment, the second zone 20a can be located between the first zone 10 and the third zone 20b, wherein the second zone 20a can be a low voltage operating element zone and the third zone 20b can be a high voltage operating element zone.

接著,在半導體基底100上形成一第一閘極氧化層102,例如氧化矽層,其中對應於第一區10及第二區20a的第一閘極氧化層102具有一第一厚度T1。再者,對應於第三區20b的第一閘極氧化層102具有大於第一厚度T1的一第二厚度T2,如第1A圖所示。舉例來說,第一厚度T1可在30至50埃()的範圍,而第二厚度T2可在300至500埃的範圍。Next, a first gate oxide layer 102, such as a hafnium oxide layer, is formed on the semiconductor substrate 100, wherein the first gate oxide layer 102 corresponding to the first region 10 and the second region 20a has a first thickness T1. Furthermore, the first gate oxide layer 102 corresponding to the third region 20b has a second thickness T2 greater than the first thickness T1, as shown in FIG. 1A. For example, the first thickness T1 can be between 30 and 50 angstroms ( The range of the second thickness T2 may be in the range of 300 to 500 angstroms.

接下來,在第一閘極氧化層102上形成一半導體層104,例如是未摻雜的多晶矽層或是其他適當的半導體材料層,以供後續在週邊電路區中製作高壓及低壓操作元件的閘極之用。在半導體層104上形成一罩幕層(未繪示),例如氮化矽層。接著,利用習知微影及蝕刻技術來圖案化罩幕層,以在第二區20a及第三區20b的半導體層104上形成一罩幕圖案層106,而露出位於第一區10的半導體層104。Next, a semiconductor layer 104, such as an undoped polysilicon layer or other suitable layer of semiconductor material, is formed over the first gate oxide layer 102 for subsequent fabrication of high voltage and low voltage operating elements in the peripheral circuit region. The purpose of the gate. A mask layer (not shown) such as a tantalum nitride layer is formed on the semiconductor layer 104. Next, the mask layer is patterned by conventional lithography and etching techniques to form a mask pattern layer 106 on the semiconductor layer 104 of the second region 20a and the third region 20b, thereby exposing the semiconductor located in the first region 10. Layer 104.

接下來,請參照第1B圖,可利用罩幕圖案層106作為蝕刻罩幕,以進一步去除露出的半導體層104,而露出位於第一區10的第一閘極氧化層102,且在第二區20a及第三區20b的第一閘極氧化層102上分別形成一第一閘極層104a及一第二閘極層104b。Next, referring to FIG. 1B, the mask pattern layer 106 can be used as an etching mask to further remove the exposed semiconductor layer 104 to expose the first gate oxide layer 102 in the first region 10, and in the second A first gate layer 104a and a second gate layer 104b are formed on the first gate oxide layer 102 of the region 20a and the third region 20b, respectively.

請參照第1C圖,在第1B圖的結構上順應性形成一罩幕層(未繪示),例如氮化矽層。對罩幕層實施一非等向性(anisotropic)蝕刻,以在第二區20a的半導體層(即第一閘極層104a)的側壁上形成一罩幕間隙壁108。之後,對露出的第一閘極氧化層102進行氧化處理,例如熱氧化處理,以在第一區10形成具有一第三厚度T3的一第二閘極氧化層110,其中第三厚度T3不同於第一厚度T1及第二厚度T2(標示於第1A圖)。在本實施例中,第三厚度T3大於第一厚度T1且小於第二厚度T2。舉例來說,第三厚度T3可在70至80埃的範圍。第二閘極氧化層110係作為單元陣列區中每一記憶單元的穿遂氧化(tunnel oxide)層材料。如此一來,第二區20a的第一閘極氧化層102的厚度(即,第一厚度T1)可不受限於第二閘極氧化層110的厚度(即,第三厚度T3)。Referring to FIG. 1C, a mask layer (not shown) such as a tantalum nitride layer is formed conformally to the structure of FIG. 1B. An anisotropic etch is performed on the mask layer to form a mask spacer 108 on the sidewall of the semiconductor layer of the second region 20a (i.e., the first gate layer 104a). Thereafter, the exposed first gate oxide layer 102 is subjected to an oxidation treatment, such as thermal oxidation treatment, to form a second gate oxide layer 110 having a third thickness T3 in the first region 10, wherein the third thickness T3 is different. The first thickness T1 and the second thickness T2 (indicated in FIG. 1A). In the embodiment, the third thickness T3 is greater than the first thickness T1 and smaller than the second thickness T2. For example, the third thickness T3 may range from 70 to 80 angstroms. The second gate oxide layer 110 serves as a tunnel oxide layer material for each memory cell in the cell array region. As such, the thickness of the first gate oxide layer 102 of the second region 20a (ie, the first thickness T1) may not be limited to the thickness of the second gate oxide layer 110 (ie, the third thickness T3).

接下來,請參照第1D圖,在去除第1C圖中的罩幕圖案層106及罩幕間隙壁108之後,在第二閘極氧化層110(即穿遂氧化層)上形成一第三閘極層112,以供後續在單元陣列區中製作記憶單元的浮置閘極(floating gate,FG)之用。第三閘極層112可為一單層或一多層結構。在一實施例中,可在第一閘極層104a、第二閘極層104b及第二閘極氧化層110上依序形成一未摻雜的半導體層112a(例如,未摻雜的多晶矽層)及一摻雜的半導體層112b(例如,n型摻雜的多晶矽層)。之後,可利用習知微影及蝕刻技術來圖案化未摻雜半導體層112a及一摻雜的半導體層112b,以去除位於第一閘極層104a、第二閘極層104b上的未摻雜的半導體層112a及一摻雜的半導體層112b,而在第二閘極氧化層110形成具有多層結構的第三閘極層112。Next, referring to FIG. 1D, after removing the mask pattern layer 106 and the mask spacer 108 in FIG. 1C, a third gate is formed on the second gate oxide layer 110 (ie, the tantalum oxide layer). The pole layer 112 is for subsequent use of a floating gate (FG) for fabricating a memory cell in the cell array region. The third gate layer 112 can be a single layer or a multilayer structure. In an embodiment, an undoped semiconductor layer 112a (eg, an undoped polysilicon layer) may be sequentially formed on the first gate layer 104a, the second gate layer 104b, and the second gate oxide layer 110. And a doped semiconductor layer 112b (eg, an n-doped polysilicon layer). Thereafter, the undoped semiconductor layer 112a and the doped semiconductor layer 112b may be patterned by conventional lithography and etching techniques to remove undoped layers on the first gate layer 104a and the second gate layer 104b. The semiconductor layer 112a and a doped semiconductor layer 112b form a third gate layer 112 having a multilayer structure in the second gate oxide layer 110.

請參照第1E圖,在第一閘極層104a、第二閘極層104b及第三閘極氧化層112上依序形成一硬式罩幕(hard mask)層114及一光阻層(未繪示)。之後,可透過習知微影及蝕刻製程,在硬式罩幕層114內形成用以定義隔離區的開口116。接著,依序蝕刻開口116下方的閘極層(例如,第一閘極層104a、第二閘極層104b及第三閘極氧化層112)、閘極氧化層(例如,第一閘極氧化層102及第二閘極氧化層110)以及半導體基底100,以在半導體基底100內形成複數個開口117。開口117係供後續形成隔離結構之用。位於開口117之間的區域係作為主動區(active area,AA)。需注意的是第1E圖所示的剖面是垂直每一記憶單元的位元線方向(或平行於每一記憶單元的字元線方向)。Referring to FIG. 1E, a hard mask layer 114 and a photoresist layer are sequentially formed on the first gate layer 104a, the second gate layer 104b, and the third gate oxide layer 112. Show). Thereafter, an opening 116 defining an isolation region can be formed in the hard mask layer 114 by conventional lithography and etching processes. Next, the gate layer (eg, the first gate layer 104a, the second gate layer 104b, and the third gate oxide layer 112) under the opening 116 is sequentially etched, and the gate oxide layer (eg, the first gate oxide) The layer 102 and the second gate oxide layer 110) and the semiconductor substrate 100 are formed with a plurality of openings 117 in the semiconductor substrate 100. The opening 117 is for subsequent formation of an isolation structure. The area between the openings 117 serves as an active area (AA). It should be noted that the section shown in Fig. 1E is the direction of the bit line of each memory cell (or the direction of the word line parallel to each memory cell).

請參照第1F圖,在去除硬式罩幕層114之後,可透過習知沉積技術,例如化學氣相沉積(chemical vapor deposition,CVD),在每一開口117內及其上方形成一介電材料,例如氧化矽,以形成隔離結構118(例如,淺溝槽隔離(shallow trench isolation,STI))。接著,在位於第一區10的浮置閘極(即,第三閘極層112)的上表面及側壁以及位於第一區10的隔離結構118的上表面順應性形成一介電層120,以作為閘極間介電(inter-gate dielectric)層。在一實施例中,介電層120可包括一氧化層-氮化層-氧化層(oxide-nitride-oxide,ONO)結構。Referring to FIG. 1F, after removing the hard mask layer 114, a dielectric material can be formed in and over each opening 117 by a conventional deposition technique, such as chemical vapor deposition (CVD). For example, yttrium oxide is formed to form isolation structures 118 (eg, shallow trench isolation (STI)). Next, a dielectric layer 120 is formed in compliance with the upper surface and sidewalls of the floating gate (ie, the third gate layer 112) of the first region 10 and the upper surface of the isolation structure 118 of the first region 10. As an inter-gate dielectric layer. In an embodiment, the dielectric layer 120 may include an oxide-nitride-oxide (ONO) structure.

接下來,請參照第1G及1G-1圖,在第1F圖所示的結構上形成一半導體層122,例如是未摻雜的多晶矽層或是其他適當的半導體材料層,以供後續在週邊電路區中製作高壓及低壓操作元件的閘極以及在單元陣列區中製作控制閘極(control gate,CG)之用。此處需注意的是第1G-1圖所示的剖面是平行每一記憶單元的位元線方向(或垂直於每一記憶單元的字元線方向)。Next, referring to FIGS. 1G and 1G-1, a semiconductor layer 122 is formed on the structure shown in FIG. 1F, such as an undoped polysilicon layer or other suitable semiconductor material layer for subsequent periphery. A gate of a high voltage and low voltage operating element is fabricated in the circuit region and a control gate (CG) is fabricated in the cell array region. It should be noted here that the section shown in Fig. 1G-1 is parallel to the bit line direction of each memory cell (or perpendicular to the word line direction of each memory cell).

接下來,請參照第1H圖,其中所示的剖面是平行每一記憶單元的位元線方向(或垂直於每一記憶單元的字元線方向)。可透過習知微影及蝕刻製程來圖案化半導體層122及其下方的閘極層(例如,第一閘極層104a、第二閘極層104b及第三閘極氧化層112)以及閘極間介電層120,以在第一閘極層104a、第二閘極層104b及閘極間介電層120上分別形成一第四閘極層122a、一第五閘極層122b及一第六閘極層122c。在本實施例中,第六閘極層122c係作為控制閘極,而控制閘極下方的第三閘極氧化層112係作為浮置閘極。Next, please refer to FIG. 1H, in which the cross section is parallel to the bit line direction of each memory cell (or perpendicular to the word line direction of each memory cell). The semiconductor layer 122 and its underlying gate layers (eg, the first gate layer 104a, the second gate layer 104b, and the third gate oxide layer 112) and the gate can be patterned by conventional lithography and etching processes The dielectric layer 120 is formed with a fourth gate layer 122a, a fifth gate layer 122b and a first layer on the first gate layer 104a, the second gate layer 104b and the inter-gate dielectric layer 120. Six gate layers 122c. In the present embodiment, the sixth gate layer 122c serves as a control gate, and the third gate oxide layer 112 under the control gate serves as a floating gate.

之後,可去除隔離結構118上部分的介電材料以及位於閘極層(例如,第一閘極層104a、第二閘極層104b及第三閘極氧化層112)外側的閘極氧化層(例如,第一閘極氧化層102及第二閘極氧化層110),以露出半導體基底100的表面。在本實施例中,位於第一閘極層104a及第四閘極層122a係作為低壓操作元件的閘極,而第一閘極層104a下方的第一閘極層102a則作為低壓操作元件的閘極氧化層。再者,位於第二閘極層104b及第五閘極層122b係作為高壓操作元件的閘極,而第二閘極層104b下方的第一閘極層102b則作為高壓操作元件的閘極氧化層。Thereafter, a portion of the dielectric material on the isolation structure 118 and a gate oxide layer on the outside of the gate layer (eg, the first gate layer 104a, the second gate layer 104b, and the third gate oxide layer 112) may be removed ( For example, the first gate oxide layer 102 and the second gate oxide layer 110) expose the surface of the semiconductor substrate 100. In this embodiment, the first gate layer 104a and the fourth gate layer 122a are used as gates of the low voltage operating element, and the first gate layer 102a under the first gate layer 104a is used as the low voltage operating element. Gate oxide layer. Furthermore, the second gate layer 104b and the fifth gate layer 122b serve as gates of the high voltage operation element, and the first gate layer 102b under the second gate layer 104b is oxidized as the gate of the high voltage operation element. Floor.

接下來,請參照第1I圖,在第1H圖的結構上順應性形成一介電層(未繪示),例如氧化矽層。接著,非等向性蝕刻介電層,以分別在第一區10、第二區20a及第三區20b形成閘極間隙壁124、126及128。Next, referring to FIG. 1I, a dielectric layer (not shown) such as a hafnium oxide layer is formed conformally in the structure of FIG. 1H. Next, the dielectric layer is anisotropically etched to form gate spacers 124, 126, and 128 in the first region 10, the second region 20a, and the third region 20b, respectively.

接下來,請參照第1J圖,可對第1I圖的結構進行n型及/或p型離子佈值,以分別在第一區10、第二區20a及第三區20b中形成具有所需導電型的閘極以及對應這些閘極的源極/汲極區(未繪示)。如此一來,便完成本實施例之反及閘型快閃記憶裝置之製作。在其他實施例中,可透過習知金屬矽化製程,在第四閘極層122a、第五閘極層122及第六閘極層122c上對應形成一金屬矽化物層130,且在絕緣間隙壁126及128外側的半導體基底100上分別形成金屬矽化物層140及142。金屬矽化物層可有效降低元件與內連線之間的接觸電阻。在一實施例中,金屬矽化物層130、140及142可包括矽化鈷(CoSix )。Next, referring to FIG. 1J, an n-type and/or p-type ion cloth value may be performed on the structure of FIG. 1I to form a desired one in the first region 10, the second region 20a, and the third region 20b, respectively. Conductive gates and source/drain regions corresponding to these gates (not shown). In this way, the fabrication of the anti-gate type flash memory device of the embodiment is completed. In other embodiments, a metal germanide layer 130 is formed on the fourth gate layer 122a, the fifth gate layer 122, and the sixth gate layer 122c through a conventional metal germanium process, and the insulating spacers are formed. Metal telluride layers 140 and 142 are formed on the semiconductor substrate 100 on the outer sides of 126 and 128, respectively. The metal telluride layer can effectively reduce the contact resistance between the component and the interconnect. In an embodiment, the metal telluride layers 130, 140, and 142 may include cobalt telluride (CoSi x ).

根據上述實施例,由於用於製造低壓操作元件的閘極的摻雜的半導體層不同於製造記憶單元的浮置閘極的摻雜的半導體層,因此低壓操作元件的閘極與記憶單元的浮置閘極可具有不同的導電型,進而避免降低低壓操作元件的電特性及效能。再者,由於低壓操作元件的閘極氧化層的厚度可不受限於記憶單元的穿隧氧化層的厚度,因此可藉由降低低壓操作元件的閘極層的厚度來提升低壓操作元件的電特性及效能。According to the above embodiment, since the doped semiconductor layer for fabricating the gate of the low voltage operating element is different from the doped semiconductor layer of the floating gate of the memory cell, the gate of the low voltage operating element and the floating of the memory cell The gates can have different conductivity types, thereby avoiding reducing the electrical characteristics and performance of the low voltage operating elements. Furthermore, since the thickness of the gate oxide layer of the low voltage operating element is not limited to the thickness of the tunneling oxide layer of the memory cell, the electrical characteristics of the low voltage operating element can be improved by reducing the thickness of the gate layer of the low voltage operating element. And performance.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can be modified and retouched without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

10...第一區10. . . First district

20a...第二區20a. . . Second district

20b...第三區20b. . . Third district

T1...第一厚度T1. . . First thickness

T2...第二厚度T2. . . Second thickness

T3...第三厚度T3. . . Third thickness

100...半導體基底100. . . Semiconductor substrate

102、102a、102b...第一閘極氧化層102, 102a, 102b. . . First gate oxide

104、122...半導體層104, 122. . . Semiconductor layer

104a...第一閘極層104a. . . First gate layer

104b...第二閘極層104b. . . Second gate layer

106...罩幕圖案層106. . . Mask pattern layer

108...罩幕間隙壁108. . . Curtain spacer

110...第二閘極氧化層110. . . Second gate oxide

112...第三閘極層112. . . Third gate layer

112a...未摻雜的半導體層112a. . . Undoped semiconductor layer

112b...摻雜的半導體層112b. . . Doped semiconductor layer

114...硬式罩幕層114. . . Hard mask layer

116、117...開口116, 117. . . Opening

118...隔離結構118. . . Isolation structure

120...介電層120. . . Dielectric layer

122a...第四閘極層122a. . . Fourth gate layer

122b...第五閘極層122b. . . Fifth gate layer

122c...第六閘極層122c. . . Sixth gate layer

124、126、128...閘極間隙壁124, 126, 128. . . Gate spacer

130、140、142...金屬矽化物層130, 140, 142. . . Metal telluride layer

第1A至1J圖係繪示出根據本發明一實施例之反及閘型快閃記憶裝置之製造方法剖面示意圖。1A to 1J are schematic cross-sectional views showing a manufacturing method of an anti-gate type flash memory device according to an embodiment of the present invention.

10...第一區10. . . First district

20a...第二區20a. . . Second district

20b...第三區20b. . . Third district

100...半導體基底100. . . Semiconductor substrate

102...第一閘極氧化層102. . . First gate oxide

104a...第一閘極層104a. . . First gate layer

104b...第二閘極層104b. . . Second gate layer

110...第二閘極氧化層110. . . Second gate oxide

112...第三閘極層112. . . Third gate layer

112a...未摻雜的半導體層112a. . . Undoped semiconductor layer

112b...摻雜的半導體層112b. . . Doped semiconductor layer

Claims (10)

一種反及閘型快閃記憶裝置之製造方法,包括:提供一半導體基底,其具有一第一區及鄰接該第一區的一第二區及一第三區;在該半導體基底上形成一第一閘極氧化層,其中對應於該第一及該第二區的該第一閘極氧化層具有一第一厚度,而對應於該第三區的該第一閘極氧化層具有大於該第一厚度的一第二厚度;在該第二及該第三區的該第一閘極氧化層上分別形成一第一閘極層及一第二閘極層,且露出位於該第一區的該第一閘極氧化層;對該露出的該第一閘極氧化層進行氧化處理,以形成具有一第三厚度的一第二閘極氧化層,其中該第三厚度不同於該第一及該第二厚度;在該第二閘極氧化層上依序形成一第三閘極層及一閘極間介電層;以及在該第一閘極層、該第二閘極層及該閘極間介電層上分別形成一第四閘極層、一第五閘極層及一第六閘極層。A manufacturing method of a gate-type flash memory device, comprising: providing a semiconductor substrate having a first region and a second region and a third region adjacent to the first region; forming a semiconductor substrate a first gate oxide layer, wherein the first gate oxide layer corresponding to the first and second regions has a first thickness, and the first gate oxide layer corresponding to the third region has a larger a second thickness of the first thickness; a first gate layer and a second gate layer respectively formed on the first gate oxide layer of the second and third regions, and the exposed region is located in the first region The first gate oxide layer; the exposed first gate oxide layer is oxidized to form a second gate oxide layer having a third thickness, wherein the third thickness is different from the first And the second thickness; a third gate layer and an inter-gate dielectric layer are sequentially formed on the second gate oxide layer; and the first gate layer, the second gate layer, and the A fourth gate layer, a fifth gate layer and a sixth gate layer are respectively formed on the inter-gate dielectric layer. 如申請專利範圍第1項所述之反及閘型快閃記憶裝置之製造方法,更包括在該第四、該第五及該第六閘極層上對應形成一金屬矽化物層。The manufacturing method of the anti-gate type flash memory device according to claim 1, further comprising forming a metal germanide layer on the fourth, the fifth and the sixth gate layer. 如申請專利範圍第1項所述之反及閘型快閃記憶裝置之製造方法,其中該第一區係該反及閘型快閃記憶裝置的一單元陣列區且該第二及該第三區係該反及閘型快閃記憶裝置的一週邊電路區。The manufacturing method of the anti-gate type flash memory device according to claim 1, wherein the first area is a cell array area of the anti-gate type flash memory device, and the second and the third The zone is a peripheral circuit area of the gate flash memory device. 如申請專利範圍第1項所述之反及閘型快閃記憶裝置之製造方法,其中形成該第一及該第二閘極層的步驟更包括:在該第一閘極氧化層上形成一半導體層;在該第二及該第三區的該半導體層上形成一罩幕圖案層,以露出位於該第一區的該半導體層;以及去除該露出的該半導體層。The method of manufacturing the anti-gate type flash memory device of claim 1, wherein the forming the first and the second gate layer further comprises: forming a first oxide layer on the first gate oxide layer a semiconductor layer; a mask pattern layer is formed on the semiconductor layer of the second and third regions to expose the semiconductor layer located in the first region; and the exposed semiconductor layer is removed. 如申請專利範圍第4項所述之反及閘型快閃記憶裝置之製造方法,其中在進行該氧化處理之前,更包括在第二區的該半導體層的側壁上形成一罩幕間隙壁。The manufacturing method of the anti-gate type flash memory device according to claim 4, wherein before the oxidizing treatment, a mask spacer is further formed on a sidewall of the semiconductor layer of the second region. 如申請專利範圍第5項所述之反及閘型快閃記憶裝置之製造方法,其中該罩幕層及該罩幕間隙壁係由氮化矽所構成。The manufacturing method of the anti-gate type flash memory device according to claim 5, wherein the mask layer and the mask spacer are made of tantalum nitride. 如申請專利範圍第1項所述之反及閘型快閃記憶裝置之製造方法,其中該第三厚度大於該第一厚度且小於該第二厚度。The manufacturing method of the anti-gate type flash memory device according to claim 1, wherein the third thickness is greater than the first thickness and smaller than the second thickness. 如申請專利範圍第1項所述之反及閘型快閃記憶裝置之製造方法,其中該第三閘極層包括一未摻雜半導體層及一摻雜的半導體層。The method of manufacturing the anti-gate type flash memory device of claim 1, wherein the third gate layer comprises an undoped semiconductor layer and a doped semiconductor layer. 如申請專利範圍第1項所述之反及閘型快閃記憶裝置之製造方法,其中該閘極間介電層包括一氧化層-氮化層-氧化層結構。The manufacturing method of the anti-gate type flash memory device according to claim 1, wherein the inter-gate dielectric layer comprises an oxide layer-nitride layer-oxide layer structure. 如申請專利範圍第1項所述之反及閘型快閃記憶裝置之製造方法,其中該第四、該第五及該第六閘極層由圖案化一半導體層所構成。The method of manufacturing a reverse-gate type flash memory device according to claim 1, wherein the fourth, fifth, and sixth gate layers are formed by patterning a semiconductor layer.
TW101100753A 2012-01-09 2012-01-09 Method for fabricating nand type flash memory device TWI469270B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101100753A TWI469270B (en) 2012-01-09 2012-01-09 Method for fabricating nand type flash memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101100753A TWI469270B (en) 2012-01-09 2012-01-09 Method for fabricating nand type flash memory device

Publications (2)

Publication Number Publication Date
TW201330182A TW201330182A (en) 2013-07-16
TWI469270B true TWI469270B (en) 2015-01-11

Family

ID=49225835

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101100753A TWI469270B (en) 2012-01-09 2012-01-09 Method for fabricating nand type flash memory device

Country Status (1)

Country Link
TW (1) TWI469270B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI691019B (en) * 2019-03-19 2020-04-11 華邦電子股份有限公司 Flash memory device and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070012979A1 (en) * 2005-07-12 2007-01-18 Samsung Electronics Co., Ltd. NAND flash memory device and method of fabricating the same
US20070133289A1 (en) * 2005-12-01 2007-06-14 Aplus Flash Technology, Inc. NAND-type flash memory device with high voltage PMOS and embedded poly and methods of fabricating the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070012979A1 (en) * 2005-07-12 2007-01-18 Samsung Electronics Co., Ltd. NAND flash memory device and method of fabricating the same
US20070133289A1 (en) * 2005-12-01 2007-06-14 Aplus Flash Technology, Inc. NAND-type flash memory device with high voltage PMOS and embedded poly and methods of fabricating the same

Also Published As

Publication number Publication date
TW201330182A (en) 2013-07-16

Similar Documents

Publication Publication Date Title
US7763928B2 (en) Multi-time programmable memory
KR102008738B1 (en) Semiconductor devices and methods of manufacturing the same
TWI490982B (en) Semiconductor structure and method of forming the same
JP5278320B2 (en) Semiconductor device and manufacturing method thereof
CN111244104B (en) SONOS memory and manufacturing method thereof
JP5389075B2 (en) Method for manufacturing nonvolatile semiconductor memory device
CN103208459B (en) The manufacture method of not b gate type flash memory devices
JP2012204358A (en) Method of manufacturing semiconductor device
KR100723476B1 (en) Scalable two transistor memory cell and method of fabricating the same
TWI469270B (en) Method for fabricating nand type flash memory device
TW202018917A (en) Non-volatile memory and manufacturing method thereof
KR102479666B1 (en) Semiconductor Device including Non-Volatile Memory Cell and Manufacturing Method Thereof
TWI506735B (en) Method of manufacturing non-volatile memory
US10896910B2 (en) Memory structure and manufacturing method thereof
JP2014187132A (en) Semiconductor device
US20150194434A1 (en) Memory device and methods of forming memory device and semiconductor device
US20130049094A1 (en) Non-volatile memory device and method for fabricating the same
TW201624622A (en) Non-volatile memory cell, NAND-type non-volatile memory and method of manufacturing thereof
TW201644005A (en) Semiconductor device and method of forming the same
JP2006093215A (en) Nonvolatile semiconductor memory device and manufacturing method thereof
CN111261706B (en) Memory structure and manufacturing method thereof
KR100654558B1 (en) Method for forming floating gate in flash memory device
TW202305879A (en) Method of manufacturing semiconductor structure
KR100944665B1 (en) NOR flash memory device and method for fabricating the same
US9437715B1 (en) Non-volatile memory and manufacturing method thereof