TWI468653B - Micro spectrometer capable of receiving zeroth-order and first-order spectrum components - Google Patents

Micro spectrometer capable of receiving zeroth-order and first-order spectrum components Download PDF

Info

Publication number
TWI468653B
TWI468653B TW99109792A TW99109792A TWI468653B TW I468653 B TWI468653 B TW I468653B TW 99109792 A TW99109792 A TW 99109792A TW 99109792 A TW99109792 A TW 99109792A TW I468653 B TWI468653 B TW I468653B
Authority
TW
Taiwan
Prior art keywords
spectrometer
optical signal
micro
sensing
order
Prior art date
Application number
TW99109792A
Other languages
Chinese (zh)
Other versions
TW201132945A (en
Inventor
Cheng Hao Ko
Original Assignee
Oto Photonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oto Photonics Inc filed Critical Oto Photonics Inc
Priority to TW99109792A priority Critical patent/TWI468653B/en
Publication of TW201132945A publication Critical patent/TW201132945A/en
Application granted granted Critical
Publication of TWI468653B publication Critical patent/TWI468653B/en

Links

Description

能接收零階光譜分量及一階光譜分量之微型光譜儀Miniature spectrometer capable of receiving zero-order spectral components and first-order spectral components

本發明係關於一種光譜儀,尤其關於一種能接收零階光譜分量及一階光譜分量之光譜儀。The present invention relates to a spectrometer, and more particularly to a spectrometer capable of receiving a zero-order spectral component and a first-order spectral component.

輻射源的光度測定(photometry)通常利用光譜儀(spectrometer)來進行量測,光譜儀需要使用狹縫結構來控制一定量的光源進入其中,再透過繞射光柵配合準直器(collimator)與校正鏡片(correcting lens)的組合將輸出的光譜分量聚焦在一個影像平面。影像平面上可以放置光感測器,這樣就可以獲得各個光譜分量。The photometry of the radiation source is usually measured using a spectrometer, which requires a slit structure to control a certain amount of light source into it, and then a diffraction grating to cooperate with a collimator and a correction lens ( The combination of correcting lenses focuses the output spectral components on an image plane. A light sensor can be placed on the image plane so that individual spectral components can be obtained.

圖8顯示一種傳統之光譜儀100之示意圖。如圖8所示,傳統之光譜儀100包含一光源110、一輸入部120、一準直面鏡130、一平面光柵140、一聚焦面鏡150及一直線狀光感測器160。光源110輸出光訊號200通過輸入部120,然後被準直面鏡130處理後到達平面光柵140。平面光柵140之繞射圖案142的巨觀輪廓為一平面,這種平面光柵140比較適合傳統以鑽石刀刻劃繞射圖案的加工方式,但也因此無法將光柵之輪廓做成具有聚焦作用的曲面,因此在平面光柵140將光訊號分離成數個光譜分量之後,為了將這些光譜分量聚焦於直線狀光感測器160上,需要加入聚焦面鏡150才能達成。因此,整個光譜儀100的光路很長,且體積相對龐大許多。Figure 8 shows a schematic diagram of a conventional spectrometer 100. As shown in FIG. 8, the conventional spectrometer 100 includes a light source 110, an input portion 120, a collimating mirror 130, a planar grating 140, a focusing mirror 150, and a linear photo sensor 160. The light source 110 outputs the optical signal 200 through the input portion 120 and is then processed by the collimating mirror 130 to reach the planar grating 140. The macroscopic profile of the diffraction pattern 142 of the planar grating 140 is a plane. The planar grating 140 is more suitable for the conventional processing method of scribing the diffraction pattern with a diamond knife, but it is therefore impossible to make the contour of the grating into a focusing effect. The curved surface, therefore, after the planar grating 140 separates the optical signal into a plurality of spectral components, in order to focus the spectral components on the linear photosensor 160, it is necessary to add the focusing mirror 150. Therefore, the optical path of the entire spectrometer 100 is long and relatively bulky.

因此,傳統的光譜儀是無法同時接收零階光譜分量及一階光譜分量的,因為很長的光路使得零階光譜分量跟一階光譜分量的聚焦位置會離開很遠,而一般的光感測器的長度也是有限,故無法達成此功能。申請人不確定以下技術是否為習知技術。為了在一個傳統光譜儀中可以取得零階光譜分量與一階光譜分量的訊號,申請人認為可以使用一可移動的反射鏡170及另一光感測器180。當需要量測零階光譜分量時,反射鏡170被移動至光路上以將光線反射至光感測器180。但這種方式既不方便且又會增加成本,不符合經濟效益。此外,如此取得的零階光譜分量與一階光譜分量其實是分時取得,並非同時,所以當光源110的訊號會隨時間變化時,以這種方法取得的零階光譜分量的訊號將會不可靠。因此,傳統的光譜儀通常僅針對一階光譜分量來設計。長久以來,光譜儀的零階光譜分量是不會被擷取來使用的。因此,若要獲得所有的繞射光強度,必須將一階、二階、三階等光譜分量加總起來,而因為零階以外的光譜分量是被依波長長度分開來的,所以加總本身將需要耗費計算資源,且當光譜儀無法接收到二階、三階以外的光譜分量時,所造成的誤差會更大。除了取得繞射光強度之外,零階光可能的各種應用(如校正、對位等),在傳統光譜儀中將難以實現。Therefore, the traditional spectrometer cannot receive the zero-order spectral components and the first-order spectral components at the same time, because the long optical path makes the zero-order spectral components and the focus position of the first-order spectral components far away, and the general photosensor The length is also limited, so this feature cannot be achieved. Applicants are not sure if the following technologies are conventional techniques. In order to obtain the signals of the zero-order spectral components and the first-order spectral components in a conventional spectrometer, Applicants believe that a movable mirror 170 and another photosensor 180 can be used. When it is desired to measure the zero-order spectral components, the mirror 170 is moved to the optical path to reflect the light to the light sensor 180. However, this method is not convenient and will increase the cost and is not economical. In addition, the zero-order spectral component and the first-order spectral component thus obtained are actually obtained in a time-sharing manner, not at the same time. Therefore, when the signal of the light source 110 changes with time, the signal of the zero-order spectral component obtained by this method will not be reliable. Therefore, conventional spectrometers are usually designed only for first-order spectral components. The zero-order spectral components of the spectrometer have long been used without being extracted. Therefore, in order to obtain all the diffracted light intensities, the spectral components of the first, second, and third order must be added together, and since the spectral components other than the zeroth order are separated by the wavelength length, the summation itself will be required. It consumes computational resources, and when the spectrometer cannot receive spectral components other than the second and third orders, the resulting error will be greater. In addition to the intensity of the diffracted light, various applications of zero-order light (such as calibration, alignment, etc.) will be difficult to achieve in conventional spectrometers.

因此,本發明之一個目的係提供一種能接收零階光譜分量及一階光譜分量之微型光譜儀,破除習知技術對於光譜儀的使用立場,藉以獲得繞射光的總強度,作為特殊測定計算、校正與對位之用。Accordingly, it is an object of the present invention to provide a miniature spectrometer capable of receiving zero-order spectral components and first-order spectral components, breaking the position of the prior art for spectrometers, and obtaining the total intensity of the diffracted light, as a special measurement calculation, correction, and For the purpose of alignment.

為達上述目的,本發明提供一種能接收零階光譜分量及一階光譜分量之微型光譜儀,其包含一輸入部、一微型繞射光柵及一光感測器。輸入部用以接收一光學訊號。微型繞射光柵具有一聚焦曲面及形成於聚焦曲面上之一繞射圖案,並用以接收光學訊號並用以將光學訊號分離成複數個光譜分量,此等光譜分量包含零階光譜分量及一階光譜分量。光感測器具有一第一感測區段及一第二感測區段,用以接收被微型繞射光柵分離並聚焦而來的此等光譜分量。第一感測區段接收零階光譜分量,而第二感測區段接收一階光譜分量。To achieve the above object, the present invention provides a miniature spectrometer capable of receiving a zero-order spectral component and a first-order spectral component, comprising an input portion, a micro-diffraction grating, and a photo sensor. The input unit is configured to receive an optical signal. The micro-diffraction grating has a focusing curved surface and a diffraction pattern formed on the focusing curved surface, and is configured to receive an optical signal and separate the optical signal into a plurality of spectral components, wherein the spectral components include a zero-order spectral component and a first-order spectral component. Component. The photo sensor has a first sensing section and a second sensing section for receiving the spectral components separated and focused by the micro-diffraction grating. The first sensing section receives the zeroth order spectral component and the second sensing section receives the first order spectral component.

本發明亦提供一種微型光譜儀,其包含一輸入部、一微型繞射光柵、一光感測器以及一波導裝置。輸入部用以接收一光學訊號。微型繞射光柵接收光學訊號並用以將光學訊號分離成複數個光譜分量。微型繞射光柵包含一第一晶片區段及一第二晶片區段。第一晶片區段具有一聚焦曲面及形成於聚焦曲面上之一繞射圖案,聚焦曲面及繞射圖案可以產生前述光譜分量並將前述光譜分量聚焦於光感測器上,藉此縮短光譜儀之光程。第二晶片區段具有一反射面。光感測器用以接收此等光譜分量。波導裝置包含一第一波導片及一第二波導片,兩者彼此面對以與輸入部、微型繞射光柵及光感測器共同定義出一光通道。第一波導片位於第一晶片區段之一上表面上。第二波導片與第二晶片區段之反射面局部接觸,以使光學訊號之一第一部分到達繞射圖案,並使光學訊號之一第二部分到達反射面與第二波導片不相接觸之局部。The invention also provides a miniature spectrometer comprising an input portion, a micro-diffraction grating, a photo sensor and a waveguide device. The input unit is configured to receive an optical signal. The micro-diffraction grating receives the optical signal and is used to separate the optical signal into a plurality of spectral components. The micro-diffraction grating comprises a first wafer segment and a second wafer segment. The first wafer segment has a focusing curved surface and a diffraction pattern formed on the focusing curved surface, and the focusing curved surface and the diffraction pattern can generate the aforementioned spectral components and focus the spectral components on the photo sensor, thereby shortening the spectrometer Optical path. The second wafer section has a reflective surface. A light sensor is used to receive the spectral components. The waveguide device includes a first waveguide piece and a second waveguide piece facing each other to define a light path together with the input portion, the micro diffraction grating and the photo sensor. The first waveguide sheet is located on an upper surface of one of the first wafer segments. The second waveguide sheet is in partial contact with the reflective surface of the second wafer segment such that the first portion of the optical signal reaches the diffraction pattern, and the second portion of the optical signal reaches the reflective surface and is in contact with the second waveguide sheet. Partial.

藉此,微型光譜儀可以擷取零階光譜分量,以供後續分析或處理使用。In this way, the miniature spectrometer can capture the zero-order spectral components for subsequent analysis or processing.

為讓本發明之上述內容能更明顯易懂,下文特舉一較佳實施例,並配合所附圖式,作詳細說明如下。In order to make the above description of the present invention more comprehensible, a preferred embodiment will be described below in detail with reference to the accompanying drawings.

圖1顯示依據本發明較佳實施例之能接收零階光譜分量及一階光譜分量之微型光譜儀1之示意圖。如圖1所示,本實施例之微型光譜儀1包含一輸入部10、一微型繞射光柵20以及一光感測器30。1 shows a schematic diagram of a miniature spectrometer 1 capable of receiving a zero-order spectral component and a first-order spectral component in accordance with a preferred embodiment of the present invention. As shown in FIG. 1, the micro spectrometer 1 of the present embodiment includes an input portion 10, a micro diffraction grating 20, and a photo sensor 30.

輸入部10包含譬如狹縫,用以接收一光學訊號SO,如有需要亦可包含濾波器,來將不必要的成分過濾掉。The input unit 10 includes, for example, a slit for receiving an optical signal SO and, if necessary, a filter to filter out unnecessary components.

微型繞射光柵20具有一聚焦曲面23及形成於聚焦曲面23上之一繞射圖案24(詳細結構顯示於圖4中),並用以接收光學訊號SO並用以將光學訊號SO分離成複數個光譜分量SO0、SO1、SO2...等。值得注意的是,此等光譜分量SO0、SO1、SO2包含零階光譜分量SO0、一階光譜分量SO1、二階光譜分量SO2、三階光譜分量及四階光譜分量等。光感測器30譬如是電荷耦合元件(CCD)式感測器或CMOS式感測器,並具有一第一感測區段32及一第二感測區段34,用以接收被微型繞射光柵20分離並聚焦而來的光譜分量SO0、SO1、SO2...等。第一感測區段32接收零階光譜分量SO0,而第二感測區段34接收一階光譜分量SO1。此外,依實際設計所採用的感測器長度而定,第二感測區段34更可接收二階光譜分量SO2、三階光譜分量、四階光譜分量等。The micro-diffraction grating 20 has a focusing curved surface 23 and a diffraction pattern 24 (shown in detail in FIG. 4) formed on the focusing curved surface 23, and is used for receiving the optical signal SO and separating the optical signal SO into a plurality of spectra. Component SO0, SO1, SO2, etc. It is worth noting that the spectral components SO0, SO1, and SO2 include a zero-order spectral component SO0, a first-order spectral component SO1, a second-order spectral component SO2, a third-order spectral component, and a fourth-order spectral component. The photo sensor 30 is, for example, a charge coupled device (CCD) sensor or a CMOS sensor, and has a first sensing section 32 and a second sensing section 34 for receiving the micro winding. The spectral components SO0, SO1, SO2, etc., which are separated and focused by the grating grating 20. The first sensing section 32 receives the zero-order spectral component SO0 and the second sensing section 34 receives the first-order spectral component SO1. In addition, depending on the length of the sensor used in the actual design, the second sensing section 34 can further receive the second-order spectral component SO2, the third-order spectral component, the fourth-order spectral component, and the like.

於本實施例中,第一感測區段32及第二感測區段34排成一直線且相連接。光感測器30具有複數個感光單元36,此等感光單元36亦排列成一直線。In this embodiment, the first sensing section 32 and the second sensing section 34 are arranged in a line and connected. The photo sensor 30 has a plurality of photosensitive cells 36, which are also arranged in a line.

此外,微型光譜儀1可以更包含一發光裝置40、一波導裝置60及一殼體80。輸入部10、微型繞射光柵20、光感測器30及波導裝置60係安裝於殼體80中。發光裝置40用以發出一光線經過一試樣50(例如待測的化學物質)後產生光學訊號SO。如此一來,微型光譜儀1可以成為一個獨立的測定裝置,使用者可以攜帶此微型光譜儀1到任何地方進行檢測,達成行動化的目的。In addition, the micro spectrometer 1 may further include a light emitting device 40, a waveguide device 60, and a casing 80. The input unit 10, the micro-diffraction grating 20, the photo sensor 30, and the waveguide device 60 are mounted in the casing 80. The illuminating device 40 is configured to generate a light signal SO after passing a sample 50 (for example, a chemical to be tested). In this way, the micro spectrometer 1 can be an independent measuring device, and the user can carry the micro spectrometer 1 to any place for detection and achieve the purpose of action.

圖2顯示依據本發明較佳實施例之光譜儀之側視圖。圖3顯示依據本發明較佳實施例之微型繞射光柵之工作示意圖。請參考圖1至3,本發明提出另一種組合之微型光譜儀1,其包含輸入部10、微型繞射光柵20、光感測器30及波導裝置60。輸入部10用以接收光學訊號SO。微型繞射光柵20接收光學訊號SO並用以將光學訊號SO分離成複數個光譜分量SO0、SO1、SO2...。微型繞射光柵20包含一第一晶片區段22及一第二晶片區段26。第一晶片區段22具有一聚焦曲面23及形成於聚焦曲面23上之一繞射圖案24。具有聚焦曲面23及繞射圖案24之微型繞射光柵20可以將上述光學訊號SO分離成此等光譜分量SO0、SO1、SO2...,並將此等光譜分量聚焦於光 感測器30上,藉此縮短光譜儀之光程。聚焦曲面23的功用是光譜聚焦,而繞射圖案24的主要功用是光譜分離,兩者共同作用即可達到將光學訊號SO分離並聚焦的功用。第二晶片區段26一般是微機電製程刻製繞射圖案24時所用的基底(substrate)或其部分,並具有一反射面27。光感測器30用以接收此等光譜分量SO0、SO1、SO2。波導裝置60包含一第一波導片62及一第二波導片64,兩者都是平面式波導片,彼此面對以與輸入部10、微型繞射光柵20及光感測器30共同定義出一光通道66。第一波導片62位於第一晶片區段22之一上表面25上。第二波導片64與第二晶片區段26之反射面27局部接觸,以使光學訊號SO之一第一部分SOA到達繞射圖案24,並使光學訊號SO之一第二部分SOB到達反射面27與第二波導片64不相接觸之局部。反射面27具有一第一部分27A及一第二部分27B。第一部分27A接收光學訊號SO之第二部分SOB。第二部分27B係與第二波導片64接觸,故會被第二波導片64擋住而沒有接收光訊號。Figure 2 shows a side view of a spectrometer in accordance with a preferred embodiment of the present invention. Figure 3 is a schematic illustration of the operation of a micro-diffraction grating in accordance with a preferred embodiment of the present invention. Referring to FIGS. 1 through 3, the present invention proposes another combined miniature spectrometer 1 comprising an input portion 10, a micro-diffraction grating 20, a photo sensor 30, and a waveguide device 60. The input unit 10 is configured to receive the optical signal SO. The micro-diffraction grating 20 receives the optical signal SO and is used to separate the optical signal SO into a plurality of spectral components SO0, SO1, SO2, . The micro-diffraction grating 20 includes a first wafer segment 22 and a second wafer segment 26. The first wafer section 22 has a focusing curved surface 23 and a diffraction pattern 24 formed on the focusing curved surface 23. The micro-diffraction grating 20 having the focusing curved surface 23 and the diffraction pattern 24 can separate the optical signal SO into the spectral components SO0, SO1, SO2, ... and focus the spectral components on the light. On the sensor 30, thereby shortening the optical path of the spectrometer. The function of the focusing surface 23 is spectral focusing, and the main function of the diffraction pattern 24 is spectral separation, and the two functions together to achieve the function of separating and focusing the optical signal SO. The second wafer section 26 is typically a substrate or portion thereof used in the microelectromechanical process to scribe the diffraction pattern 24 and has a reflective surface 27. The photo sensor 30 is configured to receive the spectral components SO0, SO1, and SO2. The waveguide device 60 includes a first waveguide sheet 62 and a second waveguide sheet 64, both of which are planar waveguide sheets, facing each other to be defined together with the input portion 10, the micro-diffraction grating 20, and the photo sensor 30. A light channel 66. The first waveguide sheet 62 is located on an upper surface 25 of one of the first wafer segments 22. The second waveguide 64 is in partial contact with the reflective surface 27 of the second wafer section 26 such that a first portion of the optical signal SO, SOA, reaches the diffraction pattern 24 and a second portion of the optical signal SO, SOB, reaches the reflective surface 27. A portion that is not in contact with the second waveguide sheet 64. The reflecting surface 27 has a first portion 27A and a second portion 27B. The first portion 27A receives the second portion SOB of the optical signal SO. The second portion 27B is in contact with the second waveguide sheet 64 and is thus blocked by the second waveguide sheet 64 without receiving the optical signal.

所謂的微型光譜儀,其中的微型繞射光柵20係由微機電製程(MEMS)所製造出來。微型繞射光柵20的繞射圖案24的高度一般約有數十微米至數百微米,光通道66的高度一般也在數十微米到數百微米之間,相較於傳統光譜儀內部光源是在一開放空間中抵達一平面光柵140而被分光,微型光譜儀的光通道66高度可說是極為扁平。於一例子中,光通道66的高度為150微米。微型 繞射光柵20之總厚度(H22+H26)為625微米,繞射圖案24之高度為80微米,亦即,圖3的H22等於80微米。因此,第二晶片區段26有70微米的高度包含在光通道66中。使得光學訊號SO之第二部分SOB可以到達反射面27而被反射。依據此尺寸所量測出來的結果如圖4所示。於圖4中,橫軸為光感測器30的畫素號碼,縱軸為強度指標。The so-called miniature spectrometer in which the micro-diffraction grating 20 is manufactured by a microelectromechanical process (MEMS). The height of the diffraction pattern 24 of the micro-diffraction grating 20 is generally about several tens of micrometers to several hundreds of micrometers, and the height of the light tunnel 66 is generally between several tens of micrometers and hundreds of micrometers, compared to the internal light source of the conventional spectrometer. An open space reaches a planar grating 140 and is split, and the optical path 66 of the micro spectrometer is extremely flat. In one example, the height of the light tunnel 66 is 150 microns. miniature The total thickness (H22 + H26) of the diffraction grating 20 is 625 μm, and the height of the diffraction pattern 24 is 80 μm, that is, H22 of Fig. 3 is equal to 80 μm. Therefore, the second wafer section 26 has a height of 70 microns included in the light tunnel 66. The second portion SOB of the optical signal SO can be reflected by the reflective surface 27. The results measured according to this size are shown in Fig. 4. In FIG. 4, the horizontal axis represents the pixel number of the photo sensor 30, and the vertical axis represents the intensity index.

如圖4所示,由於感測器表面會濾除大約250奈米以下波長的光線,圖中畫素號碼700以上才出現一階或一階以上的光,至於畫素號碼1-700的畫素則感測到零階光以及經由反射面27之第一部分27A直接反射過來的光。區段AA表示被反射面27的第一部分27A反射的光訊號,這是因為第一部分27A為一平整的反射面,不具有聚焦效果,所以光學訊號SOB會散開到感測器的數百個畫素的區段。因為有第一部分27A反射的光訊號,所以該區段因此使得整個光強度被提高了大約5000個單位。畫素號碼150左右的畫素感測到的是被繞射圖案24反射的光強度以及被反射面27反射的光強度,因此其加總的總強度大約是66000單位。As shown in FIG. 4, since the surface of the sensor filters out light of a wavelength of about 250 nm or less, the first or first order light appears above the pixel number of 700, and the picture of the pixel number 1-700 is drawn. The element senses zero-order light and light that is directly reflected by the first portion 27A of the reflective surface 27. The section AA represents the optical signal reflected by the first portion 27A of the reflecting surface 27, because the first portion 27A is a flat reflecting surface and has no focusing effect, so the optical signal SOB spreads to hundreds of paintings of the sensor. The segment of the prime. Because of the optical signal reflected by the first portion 27A, the segment thus increases the overall light intensity by approximately 5000 units. The pixel of the pixel number 150 senses the intensity of the light reflected by the diffraction pattern 24 and the intensity of the light reflected by the reflection surface 27, so that the total intensity of the sum is about 66,000 units.

值得注意的是,利用本發明,亦可以用來校正微型繞射光柵20的定位狀況。當微型繞射光柵20有被妥善安置時,區段BB的寬度是固定的,區段BB的寬度是一個可以從光學理論推算出來的固定值,其中,區段BB是從區段AA的結尾處到某一預先選定的特徵頻譜的波峰間的距離。當微型繞射光柵20有歪斜時,整個光路會 有所改變,因此區段BB的寬度就會被改變。It should be noted that the present invention can also be used to correct the positioning of the micro-diffractive grating 20. When the micro-diffraction grating 20 is properly placed, the width of the section BB is fixed, and the width of the section BB is a fixed value which can be derived from optical theory, wherein the section BB is the end from the section AA. The distance between the peaks of a pre-selected characteristic spectrum. When the micro-diffraction grating 20 is skewed, the entire optical path will There is a change, so the width of section BB will be changed.

圖5係以習知的羅蘭圓(Rowland circle)的理論來解說本發明之微型光譜儀之所以可以聚焦於一直線的感測器的示意圖。如圖5所示,依據羅蘭圓(Rowland circle)的理論,入射光通過譬如是狹縫結構之輸入部10後,被微型繞射光柵20'繞射並聚焦成像於羅蘭圓RC上。因此,一個與羅蘭圓RC有交叉的光感測器30可以接收至少兩個光譜分量。由於適用於羅蘭圓之微型繞射光柵20'的繞射圖案具有固定之節距(Pitch),所以僅能將光譜分量聚焦成像於一直線的兩點上。改變節距可以改變羅蘭圓的大小,所以將繞射圖案設計成具有非固定的節距,即可將至少三個光譜分量聚焦於一直線上,也就是達成圖1的效果。Figure 5 is a schematic diagram illustrating the reason why the miniature spectrometer of the present invention can focus on a straight line sensor in the conventional theory of Rowland circle. As shown in FIG. 5, according to the theory of Rowland circle, the incident light passes through the input portion 10 of the slit structure, for example, and is diffracted by the micro-diffraction grating 20' and focused and imaged on the Roland circle RC. Thus, a photosensor 30 that intersects the Roland circle RC can receive at least two spectral components. Since the diffraction pattern of the micro-diffraction grating 20' suitable for the Roland circle has a fixed pitch, only the spectral components can be focused and imaged at two points of the line. Changing the pitch can change the size of the Roland circle, so the diffraction pattern is designed to have a non-fixed pitch, and at least three spectral components can be focused on a straight line, that is, the effect of FIG. 1 is achieved.

圖6顯示依據本發明另一實施例之能接收零階光譜分量及一階光譜分量之光譜儀之示意圖。如圖6所示,本實施例之光譜儀1係類似於圖1,不同之處在於光感測器30中的第一感測區段32與第二感測區段34之間的夾角不等於0度或180度。如此一來,可以在零階光譜分量與一階光譜分量的聚焦平面不共平面時,使用光感測器的兩個感測區段分別對零階與一階光譜分量進行感測。6 shows a schematic diagram of a spectrometer capable of receiving a zero-order spectral component and a first-order spectral component in accordance with another embodiment of the present invention. As shown in FIG. 6, the spectrometer 1 of the present embodiment is similar to FIG. 1, except that the angle between the first sensing section 32 and the second sensing section 34 in the photo sensor 30 is not equal to 0 degrees or 180 degrees. In this way, the zero-order and first-order spectral components can be sensed using the two sensing sections of the photosensor, respectively, when the zero-order spectral component is not coplanar with the focal plane of the first-order spectral component.

圖7顯示依據本發明又另一實施例之能接收零階光譜分量及一階光譜分量之光譜儀之示意圖。如圖7所示,本實施例係類似於第一實施例,不同之處在於光譜儀1更包含一雜散光濾除構造90,用以濾除光學訊號SO中 之一雜散光成分SOC。雜散光濾除構造90包含一第一過濾區段92及一第二過濾區段94,兩者可以是獨立的元件或是一體成型的元件。第一過濾區段92具有一第一齒狀結構92T。第二過濾區段94具有一第二齒狀結構94T面對第一齒狀結構92T。第一齒狀結構92T與第二齒狀結構94T之間定義出一通道96,以供光學訊號SO中之非雜散光成分SOA、SOB通過。於本實施例中,第一過濾區段92及第二過濾區段94為兩個薄片結構,且位於同一平面上。7 shows a schematic diagram of a spectrometer capable of receiving a zero-order spectral component and a first-order spectral component in accordance with yet another embodiment of the present invention. As shown in FIG. 7, the embodiment is similar to the first embodiment, except that the spectrometer 1 further includes a stray light filtering structure 90 for filtering out the optical signal SO. One of the stray light components SOC. The stray light filtering structure 90 includes a first filter section 92 and a second filter section 94, which may be separate components or integrally formed components. The first filter section 92 has a first toothed structure 92T. The second filter section 94 has a second toothed structure 94T that faces the first toothed structure 92T. A channel 96 is defined between the first tooth structure 92T and the second tooth structure 94T for the non-stray light components SOA, SOB in the optical signal SO to pass. In this embodiment, the first filter section 92 and the second filter section 94 are two sheet structures and are located on the same plane.

值得注意的是,雜散光成分SOC除了包含雜訊以外,亦可以包含入射角度不對時所要量測的光訊號。在沒有裝設雜散光濾除構造90的情況下,這種入射角度不對的光訊號在通過輸入部10以後,就會被殼體80或內部波導經過幾次反射後到達微型繞射光柵20,因此會干擾到繞射結果。此外,雜散光濾除構造90亦可以裝設於繞射光柵20與光感測器30之間。It should be noted that the stray light component SOC may include an optical signal to be measured when the incident angle is not correct, in addition to the noise. In the case where the stray light filtering structure 90 is not provided, such an optical signal having an incorrect incident angle passes through the input portion 10 and is reflected by the housing 80 or the internal waveguide several times to reach the micro-diffractive grating 20. Therefore, it will interfere with the diffraction result. In addition, the stray light filtering structure 90 can also be disposed between the diffraction grating 20 and the photo sensor 30.

藉由本發明之光譜儀,可以濾除不必要的雜散光成分,避免其干擾到光譜成分而影響光感測器的判讀結果。雜散光濾除構造的厚度可以是相當薄,且其材質可以是金屬、塑膠或半導體材料等。發明人根據圖1的架構實施時,特別比較有裝設雜散光濾除構造跟沒有裝設雜散光濾除構造的結果,發現有裝設雜散光濾除構造的光譜儀可以獲得較佳的判讀結果。因此,本案之光譜儀,確有其效能的大幅增進,且特別適合於微型光譜儀。With the spectrometer of the present invention, unnecessary stray light components can be filtered out to avoid interference with spectral components and affect the interpretation results of the photosensor. The thickness of the stray light filtering structure can be quite thin and can be made of metal, plastic or semiconductor materials. When the inventor implemented the architecture according to FIG. 1, the results of installing a stray light filtering structure and a stray light filtering structure were compared, and it was found that a spectrometer equipped with a stray light filtering structure can obtain better interpretation results. . Therefore, the spectrometer of this case does have a substantial improvement in its performance, and is particularly suitable for miniature spectrometers.

藉此感測零階光譜分量,使用者在不需要將各階光 譜分量進行加總的情況下,可以迅速獲得微型繞射光柵20所輸出的總光強度,使用者可以利用此資料來進行校正、定位或其他後續處理,譬如計算一階光譜分量的比例、二階光譜分量的比例等。By sensing the zero-order spectral component, the user does not need to In the case where the spectral components are summed, the total light intensity output by the micro-diffractive grating 20 can be quickly obtained, and the user can use the data for correction, positioning or other subsequent processing, such as calculating the ratio of the first-order spectral components, second order. The ratio of the spectral components, etc.

在較佳實施例之詳細說明中所提出之具體實施例僅用以方便說明本發明之技術內容,而非將本發明狹義地限制於上述實施例,在不超出本發明之精神及以下申請專利範圍之情況,所做之種種變化實施,皆屬於本發明之範圍。The specific embodiments of the present invention are intended to be illustrative only and not to limit the invention to the above embodiments, without departing from the spirit of the invention and the following claims. The scope of the invention and the various changes made are within the scope of the invention.

RC‧‧‧羅蘭圓RC‧‧‧Roland

SO‧‧‧光學訊號SO‧‧‧ optical signal

SOA‧‧‧第一部分(非雜散光成分)SOA‧‧‧Part 1 (non-stray light components)

SOB‧‧‧第二部分(非雜散光成分)SOB‧‧‧Part 2 (non-stray light components)

SOC‧‧‧雜散光成分SOC‧‧‧ stray light components

SO0、SO1、SO2‧‧‧光譜分量SO0, SO1, SO2‧‧‧ spectral components

1‧‧‧光譜儀1‧‧‧ Spectrometer

10‧‧‧輸入部10‧‧‧ Input Department

20、20'‧‧‧微型繞射光柵20, 20'‧‧‧ miniature diffraction grating

22‧‧‧第一晶片區段22‧‧‧First wafer section

23‧‧‧聚焦曲面23‧‧‧Focused surface

24‧‧‧繞射圖案24‧‧‧Diffraction pattern

25‧‧‧上表面25‧‧‧ upper surface

26‧‧‧第二晶片區段26‧‧‧Second wafer section

27‧‧‧反射面27‧‧‧reflecting surface

27A‧‧‧第一部分27A‧‧‧Part 1

27B‧‧‧第二部分27B‧‧‧Part II

30‧‧‧光感測器30‧‧‧Light sensor

32‧‧‧第一感測區段32‧‧‧First sensing section

34‧‧‧第二感測區段34‧‧‧Second sensing section

36‧‧‧感光單元36‧‧‧Photosensitive unit

40‧‧‧發光裝置40‧‧‧Lighting device

50‧‧‧試樣50‧‧‧sample

60‧‧‧波導裝置60‧‧‧Wave device

62‧‧‧第一波導片62‧‧‧First waveguide

64‧‧‧第二波導片64‧‧‧Second waveguide

66‧‧‧光通道66‧‧‧Light channel

80‧‧‧殼體80‧‧‧shell

92‧‧‧第一過濾區段92‧‧‧First filter section

92T‧‧‧第一齒狀結構92T‧‧‧First tooth structure

94‧‧‧第二過濾區段94‧‧‧Second filter section

94T‧‧‧第二齒狀結構94T‧‧‧second tooth structure

96‧‧‧通道96‧‧‧ channel

100‧‧‧光譜儀100‧‧‧ Spectrometer

110‧‧‧光源110‧‧‧Light source

120‧‧‧輸入部120‧‧‧ Input Department

130‧‧‧準直面鏡130‧‧ ‧collimating mirror

140‧‧‧平面光柵140‧‧‧Flat grating

150‧‧‧聚焦面鏡150‧‧‧Focus mirror

160‧‧‧直線狀光感測器160‧‧‧Linear light sensor

170‧‧‧反射鏡170‧‧‧Mirror

180‧‧‧光感測器180‧‧‧Light sensor

200‧‧‧光訊號200‧‧‧Optical signal

圖1顯示依據本發明較佳實施例之能接收零階光譜分量及一階光譜分量之微型光譜儀之示意圖。1 shows a schematic diagram of a miniature spectrometer capable of receiving zero-order spectral components and first-order spectral components in accordance with a preferred embodiment of the present invention.

圖2顯示依據本發明較佳實施例之微型光譜儀之側視圖。2 shows a side view of a miniature spectrometer in accordance with a preferred embodiment of the present invention.

圖3顯示依據本發明較佳實施例之繞射光柵之工作示意圖。Figure 3 is a schematic illustration of the operation of a diffraction grating in accordance with a preferred embodiment of the present invention.

圖4顯示依據本發明較佳實施例之微型光譜儀所量測出來的結果。Figure 4 shows the results measured by a miniature spectrometer in accordance with a preferred embodiment of the present invention.

圖5顯示羅蘭圓(Rowland circle)的示意圖。Figure 5 shows a schematic of the Rowland circle.

圖6顯示依據本發明另一實施例之能接收零階光譜分量及一階光譜分量之光譜儀之示意圖。6 shows a schematic diagram of a spectrometer capable of receiving a zero-order spectral component and a first-order spectral component in accordance with another embodiment of the present invention.

圖7顯示依據本發明又另一實施例之能接收零階光譜分量及一階光譜分量之光譜儀之示意圖。7 shows a schematic diagram of a spectrometer capable of receiving a zero-order spectral component and a first-order spectral component in accordance with yet another embodiment of the present invention.

圖8顯示一種傳統之光譜儀之示意圖。Figure 8 shows a schematic of a conventional spectrometer.

SO‧‧‧光學訊號SO‧‧‧ optical signal

SOA‧‧‧第一部分SOA‧‧‧Part 1

SOB‧‧‧第二部分SOB‧‧‧Part II

SO0、SO1、SO2‧‧‧光譜分量SO0, SO1, SO2‧‧‧ spectral components

1‧‧‧光譜儀1‧‧‧ Spectrometer

10‧‧‧輸入部10‧‧‧ Input Department

20‧‧‧微型繞射光柵20‧‧‧Micro Diffraction Grating

23‧‧‧聚焦曲面23‧‧‧Focused surface

24‧‧‧繞射圖案24‧‧‧Diffraction pattern

27‧‧‧反射面27‧‧‧reflecting surface

30‧‧‧光感測器30‧‧‧Light sensor

32‧‧‧第一感測區段32‧‧‧First sensing section

34‧‧‧第二感測區段34‧‧‧Second sensing section

36‧‧‧感光單元36‧‧‧Photosensitive unit

40‧‧‧發光裝置40‧‧‧Lighting device

50‧‧‧試樣50‧‧‧sample

60‧‧‧波導裝置60‧‧‧Wave device

80‧‧‧殼體80‧‧‧shell

Claims (15)

一種能接收零階光譜分量及一階光譜分量之微型光譜儀,包含:一輸入部,用以接收一光學訊號;一微型繞射光柵,具有一聚焦曲面及形成於該聚焦曲面上之一繞射圖案,並用以接收該光學訊號並用以將該光學訊號分離成複數個光譜分量,該等光譜分量至少包含零階光譜分量及一階光譜分量;以及一光感測器,其具有一第一感測區段及一第二感測區段,用以接收被該微型繞射光柵分離並聚焦而來的該等光譜分量,其中,該第一感測區段接收該零階光譜分量,該第二感測區段接收該一階光譜分量,該第一感測區段與該第二感測區段相連接。 A miniature spectrometer capable of receiving a zero-order spectral component and a first-order spectral component, comprising: an input portion for receiving an optical signal; and a micro-diffraction grating having a focusing surface and a diffraction pattern formed on the focusing surface a pattern for receiving the optical signal and for separating the optical signal into a plurality of spectral components, the spectral components comprising at least a zero-order spectral component and a first-order spectral component; and a light sensor having a first sense a measurement section and a second sensing section for receiving the spectral components separated and focused by the micro-diffraction grating, wherein the first sensing section receives the zero-order spectral component, the first The second sensing section receives the first-order spectral component, and the first sensing section is coupled to the second sensing section. 如申請專利範圍第1項所述之光譜儀,其中該第一感測區段及該第二感測區段排成一直線,該光感測器具有複數個感光單元,該等感光單元排列成一直線,且該等光譜分量之數目大於或等於2。 The spectrometer of claim 1, wherein the first sensing section and the second sensing section are arranged in a line, the photo sensor has a plurality of photosensitive units, and the photosensitive units are arranged in a line. And the number of the spectral components is greater than or equal to two. 如申請專利範圍第1項所述之光譜儀,更包含一發光裝置,用以發出一光線經過一試樣後產生該光學訊號。 The spectrometer of claim 1, further comprising a light emitting device for emitting a light through a sample to generate the optical signal. 如申請專利範圍第1項所述之光譜儀,更包含:一殼體,其中該輸入部、該微型繞射光柵及該光感測器係安裝於該殼體中。 The spectrometer of claim 1, further comprising: a housing, wherein the input portion, the micro-diffraction grating, and the photo sensor are mounted in the housing. 如申請專利範圍第1項所述之光譜儀,其中該等光譜分量更包含二階光譜分量,且該光感測器之該第 二感測區段更接收該二階光譜分量。 The spectrometer of claim 1, wherein the spectral components further comprise a second-order spectral component, and the photosensor is The second sensing section further receives the second order spectral component. 如申請專利範圍第1項所述之光譜儀,其中該第一感測區段與該第二感測區段之間的夾角不等於0度或180度。 The spectrometer of claim 1, wherein an angle between the first sensing section and the second sensing section is not equal to 0 degrees or 180 degrees. 一種微型光譜儀,包含:一輸入部,用以接收一光學訊號;一微型繞射光柵,用以接收該光學訊號並用以將該光學訊號分離成複數個光譜分量,該微型繞射光柵包含一第一晶片區段及一第二晶片區段,該第一晶片區段具有一聚焦曲面及形成於該聚焦曲面上之一繞射圖案,該第二晶片區段具有一反射面;一光感測器,用以接收被該微型繞射光柵分離並聚焦而來的該等光譜分量;以及一波導裝置,其包含一第一波導片及一第二波導片,兩者彼此面對以與該輸入部、該微型繞射光柵及該光感測器共同定義出一光通道,該第一波導片位於該第一晶片區段之一上表面上,該第二波導片與該第二晶片區段之該反射面局部接觸,以使該光學訊號之一第一部分到達該繞射圖案,並使該光學訊號之一第二部分到達該反射面與該第二波導片不相接觸之局部。 A miniature spectrometer comprising: an input portion for receiving an optical signal; a micro-diffraction grating for receiving the optical signal and for separating the optical signal into a plurality of spectral components, the micro-diffraction grating comprising a first a wafer segment and a second wafer segment, the first wafer segment having a focusing curved surface and a diffraction pattern formed on the focusing curved surface, the second wafer segment having a reflecting surface; a light sensing And receiving the spectral components separated and focused by the micro-diffractive grating; and a waveguide device including a first waveguide sheet and a second waveguide sheet, the two facing each other to input with the input The micro-diffraction grating and the photo sensor together define an optical channel, the first waveguide is located on an upper surface of the first wafer segment, the second waveguide and the second wafer segment The reflective surface is in partial contact such that a first portion of the optical signal reaches the diffraction pattern and a second portion of the optical signal reaches a portion of the reflective surface that is not in contact with the second waveguide. 如申請專利範圍第7項所述之微型光譜儀,其中:該等光譜分量包含零階光譜分量及一階光譜分量;且該光感測器具有一第一感測區段及一第二感測區段,該第一感測區段接收該零階光譜分量,該第二感測 區段接收該一階光譜分量,且該第一感測區段及該第二感測區段同時接收從該反射面反射來之該光學訊號之該第二部分。 The micro spectrometer of claim 7, wherein: the spectral components comprise a zero-order spectral component and a first-order spectral component; and the photo sensor has a first sensing segment and a second sensing region. Segment, the first sensing section receives the zero-order spectral component, the second sensing The segment receives the first-order spectral component, and the first sensing segment and the second sensing segment simultaneously receive the second portion of the optical signal reflected from the reflective surface. 如申請專利範圍第8項所述之光譜儀,其中該第一感測區段及該第二感測區段排成一直線,該光感測器具有複數個感光單元,該等感光單元排列成一直線,且該等光譜分量之數目大於或等於2。 The spectrometer of claim 8, wherein the first sensing section and the second sensing section are arranged in a line, the photo sensor has a plurality of photosensitive units, and the photosensitive units are arranged in a line. And the number of the spectral components is greater than or equal to two. 如申請專利範圍第8項所述之光譜儀,更包含一發光裝置,用以發出一光線經過一試樣後產生該光學訊號。 The spectrometer of claim 8 further comprising a light-emitting device for emitting a light through a sample to generate the optical signal. 如申請專利範圍第8項所述之光譜儀,更包含:一殼體,其中該輸入部、該微型繞射光柵、該光感測器及該波導裝置係安裝於該殼體中。 The spectrometer of claim 8, further comprising: a housing, wherein the input portion, the micro-diffraction grating, the photo sensor, and the waveguide device are mounted in the housing. 如申請專利範圍第8項所述之光譜儀,其中該等光譜分量更包含二階光譜分量,且該光感測器之該第二感測區段更接收該二階光譜分量。 The spectrometer of claim 8, wherein the spectral components further comprise second-order spectral components, and the second sensing segment of the photosensor further receives the second-order spectral components. 如申請專利範圍第8項所述之光譜儀,其中該第一感測區段與該第二感測區段之間的夾角不等於0度或180度。 The spectrometer of claim 8, wherein an angle between the first sensing section and the second sensing section is not equal to 0 or 180 degrees. 如申請專利範圍第7項所述之微型光譜儀,更包含一雜散光濾除構造,用以濾除該光學訊號中之一雜散光成分,該雜散光濾除構造包含:一第一過濾區段,具有一第一齒狀結構;及一第二過濾區段,具有一第二齒狀結構面對該第一齒狀結構,該第一齒狀結構與該第二齒狀結構之間定義 出一光通道,以供該光學訊號中之非雜散光成分通過。 The micro spectrometer of claim 7, further comprising a stray light filtering structure for filtering out one of the stray light components of the optical signal, the stray light filtering structure comprising: a first filtering section Having a first toothed structure; and a second filter section having a second toothed structure facing the first toothed structure, defined between the first toothed structure and the second toothed structure An optical channel is provided for the passage of non-stray light components in the optical signal. 如申請專利範圍第14項所述之光譜儀,其中該第一過濾區段及該第二過濾區段位於同一平面上。 The spectrometer of claim 14, wherein the first filter section and the second filter section are on the same plane.
TW99109792A 2010-03-31 2010-03-31 Micro spectrometer capable of receiving zeroth-order and first-order spectrum components TWI468653B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99109792A TWI468653B (en) 2010-03-31 2010-03-31 Micro spectrometer capable of receiving zeroth-order and first-order spectrum components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99109792A TWI468653B (en) 2010-03-31 2010-03-31 Micro spectrometer capable of receiving zeroth-order and first-order spectrum components

Publications (2)

Publication Number Publication Date
TW201132945A TW201132945A (en) 2011-10-01
TWI468653B true TWI468653B (en) 2015-01-11

Family

ID=46750999

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99109792A TWI468653B (en) 2010-03-31 2010-03-31 Micro spectrometer capable of receiving zeroth-order and first-order spectrum components

Country Status (1)

Country Link
TW (1) TWI468653B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016124197A3 (en) * 2015-02-06 2016-10-06 Unisensor Sensorsysteme Gmbh Method and apparatus for identifying plastics and/or the additives therein
WO2018024300A1 (en) * 2016-08-04 2018-02-08 Gunther Krieg Apparatus for identifying substances

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6061542B2 (en) * 2012-08-06 2017-01-18 浜松ホトニクス株式会社 Spectrometer
JP6068039B2 (en) 2012-08-06 2017-01-25 浜松ホトニクス株式会社 Spectrometer
TWI525308B (en) 2012-11-16 2016-03-11 台灣超微光學股份有限公司 Spectrometer, assembling method thereof, and assembling system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4674883A (en) * 1984-09-01 1987-06-23 Carl-Zeiss-Stiftung Measuring microscope arrangement for measuring thickness and line width of an object

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4674883A (en) * 1984-09-01 1987-06-23 Carl-Zeiss-Stiftung Measuring microscope arrangement for measuring thickness and line width of an object

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016124197A3 (en) * 2015-02-06 2016-10-06 Unisensor Sensorsysteme Gmbh Method and apparatus for identifying plastics and/or the additives therein
US10533943B2 (en) 2015-02-06 2020-01-14 Unisensor Sensorsysteme Gmbh Method and apparatus for identifying plastics and/or the additives therein
WO2018024300A1 (en) * 2016-08-04 2018-02-08 Gunther Krieg Apparatus for identifying substances

Also Published As

Publication number Publication date
TW201132945A (en) 2011-10-01

Similar Documents

Publication Publication Date Title
JP7129809B2 (en) Optical filters and spectrometers
TWI429887B (en) Spectrometer capable of eliminating side-tail effects
WO2011120234A1 (en) Micro spectrometer capable of receiving zero order and first order spectral components
TWI468653B (en) Micro spectrometer capable of receiving zeroth-order and first-order spectrum components
US7292337B2 (en) Optical processor using detecting assembly and method using same
WO2011134156A1 (en) Optomechanical module of micro-spectrometer with conical slit and slit structure thereof
JP5538194B2 (en) Optical apparatus and electronic apparatus
TWI437215B (en) Micro spectrometer with stray light filtering structure
JP2011047693A (en) Optical unit
TW200839202A (en) Optical system
WO2011130899A1 (en) Micro spectrometer with stray light filtering structure
JP5315817B2 (en) Diffraction grating and spectrometer
CN111579069B (en) Spectrum self-calibration grating and spectrometer
JP5900248B2 (en) Spectrophotometer
CN103759826A (en) Micro spectrometer with stray light filtering structure
KR101054017B1 (en) Calibration method of the spectrometer
JP7191311B2 (en) A spectrometer using a spectroscopic element with a light-collecting function
JPS63250534A (en) Spectrophotometric device
WO2018138609A1 (en) Spectrometer and method for measuring the spectral characteristics thereof
KR102465675B1 (en) Imaging spectrometer with area scan function
WO2002012950A1 (en) Method of analyzing spectrum using multi-slit member and multi-channel spectrograph using the same
JP5812735B2 (en) Spectral imaging device
KR102287914B1 (en) Spectrometer and imaging apparatus
CN108713135B (en) Spectral analysis system
CN109716079B (en) Spectrometer, wavelength measuring device, and spectrum measuring method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees