TWI437215B - Micro spectrometer with stray light filtering structure - Google Patents

Micro spectrometer with stray light filtering structure Download PDF

Info

Publication number
TWI437215B
TWI437215B TW99111207A TW99111207A TWI437215B TW I437215 B TWI437215 B TW I437215B TW 99111207 A TW99111207 A TW 99111207A TW 99111207 A TW99111207 A TW 99111207A TW I437215 B TWI437215 B TW I437215B
Authority
TW
Taiwan
Prior art keywords
filtering
micro
optical signal
spectrometer
stray light
Prior art date
Application number
TW99111207A
Other languages
Chinese (zh)
Other versions
TW201135196A (en
Inventor
Cheng Hao Ko
Original Assignee
Oto Photonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oto Photonics Inc filed Critical Oto Photonics Inc
Priority to TW99111207A priority Critical patent/TWI437215B/en
Publication of TW201135196A publication Critical patent/TW201135196A/en
Application granted granted Critical
Publication of TWI437215B publication Critical patent/TWI437215B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0262Constructional arrangements for removing stray light

Description

具有雜散光濾除構造之微型光譜儀Micro spectrometer with stray light filtering structure

本發明係關於一種光譜儀,且特別是關於一種具有雜散光濾除構造之微型光譜儀。This invention relates to a spectrometer, and more particularly to a microspectrometer having a stray light filtering configuration.

輻射源的光度測定(photometry)通常利用光譜儀(spectrometer)來進行量測,光譜儀需要使用狹縫結構來控制一定量的光源進入其中,再透過繞射光柵配合準直器(collimator)與校正鏡片(correcting lens)的組合將輸出的光譜分量聚焦在一個影像平面。影像平面上可以放置光感測器,這樣就可以獲得各個光譜分量。然而,這種光譜儀的光感測器所偵測到的結果在某些情況下是不能用的,因為有很多雜散光會進入到狹縫中,並到達繞射光柵,進而影響繞射光柵的繞射結果。因此,輸入光源必須受到良好的控制,這也限制了傳統光譜儀的應用層面。The photometry of the radiation source is usually measured using a spectrometer, which requires a slit structure to control a certain amount of light source into it, and then a diffraction grating to cooperate with a collimator and a correction lens ( The combination of correcting lenses focuses the output spectral components on an image plane. A light sensor can be placed on the image plane so that individual spectral components can be obtained. However, the results detected by the spectrometer's photosensor are not available in some cases because there is a lot of stray light that enters the slit and reaches the diffraction grating, which in turn affects the diffraction grating. Diffraction results. Therefore, the input source must be well controlled, which limits the application level of traditional spectrometers.

圖6顯示一種傳統之光譜儀100之示意圖。如圖6所示,傳統之光譜儀100包含一光源110、一輸入部120、一準直面鏡130、一平面光柵140、一聚焦面鏡150及一直線狀光感測器160。光源110輸出光訊號200通過輸入部120,在自由空間裡經過準直面鏡130後到達平面光柵140。平面光柵140之繞射圖案142的巨觀輪廓為一平面,這種平面光柵140比較適合傳統以鑽石刀刻劃繞射圖案的加工方式,但也因此無法將光柵之輪廓做成 具有聚焦作用的曲面,因此當平面光柵140將光訊號分離成數個光譜分量之後,為了將這些光譜分量聚焦於直線狀光感測器160上,需要加入聚焦面鏡150才能達成。因此,整個光譜儀100的光路很長,且體積相對龐大許多。但也因為如此,傳統光譜儀之進光量可以很大,雜散光對繞射結果的影響因此較小,所以傳統光譜儀未必需要去考慮雜散光對待測訊號的影響的問題。Figure 6 shows a schematic diagram of a conventional spectrometer 100. As shown in FIG. 6, the conventional spectrometer 100 includes a light source 110, an input portion 120, a collimating mirror 130, a planar grating 140, a focusing mirror 150, and a linear photo sensor 160. The light source 110 outputs the optical signal 200 through the input unit 120 and passes through the collimating mirror 130 in the free space to reach the planar grating 140. The macroscopic profile of the diffraction pattern 142 of the planar grating 140 is a plane. The planar grating 140 is more suitable for the conventional processing method of scribing a diffraction pattern with a diamond knife, but it is therefore impossible to make the outline of the grating. The surface has a focusing effect, so that after the planar grating 140 separates the optical signal into a plurality of spectral components, in order to focus the spectral components on the linear photosensor 160, it is necessary to add the focusing mirror 150. Therefore, the optical path of the entire spectrometer 100 is long and relatively bulky. However, because of this, the amount of light entering the conventional spectrometer can be large, and the influence of stray light on the diffraction result is small, so the conventional spectrometer does not necessarily need to consider the influence of the stray light on the signal to be measured.

因此,本發明之一個目的係提供一種具有雜散光濾除構造之微型光譜儀,用以阻擋雜散光行進到微型繞射光柵而影響到整個光譜儀的感測結果。Accordingly, it is an object of the present invention to provide a miniature spectrometer having a stray light filtering configuration for blocking the travel of stray light to a micro-diffractive grating that affects the sensing results of the entire spectrometer.

為達上述目的,本發明提供一種具有雜散光濾除構造之微型光譜儀,其包含一輸入部、一雜散光濾除構造以及一微型繞射光柵。輸入部接收一第一光訊號及一第二光訊號。雜散光濾除構造濾除第二光訊號,並包含一第一過濾區段及一第二過濾區段。第一過濾區段具有一第一齒狀結構。第二過濾區段具有一第二齒狀結構與第一齒狀結構安置於相對位置,第一齒狀結構與第二齒狀結構之間定義出一光通道以供第一光訊號通過,並使第二光訊號進入第一過濾區段或第二過濾區段之中而被濾除。微型繞射光柵接收通過雜散光濾除構造之第一光訊號並將第一光訊號分離成複數個光譜分量。To achieve the above object, the present invention provides a micro spectrometer having a stray light filtering structure including an input portion, a stray light filtering structure, and a micro-diffractive grating. The input unit receives a first optical signal and a second optical signal. The stray light filtering structure filters out the second optical signal and includes a first filtering section and a second filtering section. The first filter section has a first toothed structure. The second filter section has a second tooth structure disposed at a relative position with the first tooth structure, and an optical path is defined between the first tooth structure and the second tooth structure for the first optical signal to pass, and The second optical signal is filtered into the first filtering section or the second filtering section. The micro-diffraction grating receives the first optical signal constructed by the stray light filtering and separates the first optical signal into a plurality of spectral components.

為讓本發明之上述內容能更明顯易懂,下文特舉一 較佳實施例,並配合所附圖式,作詳細說明如下。In order to make the above content of the present invention more obvious, the following is a special The preferred embodiment, in conjunction with the drawings, is described in detail below.

圖1顯示依據本發明較佳實施例之具有雜散光濾除構造之微型光譜儀之俯視圖。圖2顯示依據本發明較佳實施例之微型光譜儀之側視圖。如圖1與2所示,本發明之微型光譜儀包含一輸入部10、一雜散光濾除構造20以及一微型繞射光柵30。當然,光譜儀可以更包含一光感測器40、一殼體80及一發光裝置60。輸入部10、雜散光濾除構造20、微型繞射光柵30及光感測器40係安裝於殼體80中。微型繞射光柵30之繞射圖案32的巨觀輪廓包含圖1所示之一反射曲面,而非如傳統的圖6所示之平面,反射曲面的作用是用以將經過微型繞射光柵30的光線聚焦到前方的光感測器40上。發光裝置60亦可固定至殼體80。由於繞射光柵30可以利用微機電製程(MEMS)、半導體製程、光刻電鑄模造(LIGA)或其他製程所製造出來的超薄微小零件,故可以被稱為是微型繞射光柵,因此本發明之光譜儀可以被稱為是微型光譜儀。1 shows a top view of a microspectrometer having a stray light filtering configuration in accordance with a preferred embodiment of the present invention. 2 shows a side view of a miniature spectrometer in accordance with a preferred embodiment of the present invention. As shown in Figures 1 and 2, the microspectrometer of the present invention includes an input portion 10, a stray light filtering structure 20, and a micro-diffraction grating 30. Of course, the spectrometer may further include a photo sensor 40, a housing 80 and a light emitting device 60. The input unit 10, the stray light filtering structure 20, the micro diffraction grating 30, and the photo sensor 40 are mounted in the casing 80. The macroscopic profile of the diffraction pattern 32 of the micro-diffraction grating 30 includes one of the reflective curved surfaces shown in FIG. 1, instead of the plane as shown in the conventional FIG. 6, which serves to pass the micro-diffractive grating 30. The light is focused onto the front light sensor 40. Light emitting device 60 can also be secured to housing 80. Since the diffraction grating 30 can utilize ultra-thin tiny parts manufactured by microelectromechanical process (MEMS), semiconductor process, photolithography electroforming (LIGA) or other processes, it can be called a micro-diffraction grating, so The spectrometer of the invention can be referred to as a miniature spectrometer.

輸入部10譬如包含狹縫結構,用以接收一第一光訊號S1及一第二光訊號S2,其中S1是從一適當的預設角度之範圍內進入本發明之微型光譜儀之中而可以直接抵達微型繞射光柵30的待測的光訊號(如圖1所示),S2則是從上述適當的預設角度之範圍之外進入光譜儀之中、若不濾除將會經過幾度反射或其他無法預測的光學路徑之後才會以無法預測的角度抵達微型繞射光柵30的光訊 號(如圖1),其本身本來可能也是待測光訊號的一部分,但經過上述路徑之後已成不可使用的雜散光。雜散光濾除構造20可以設置於輸入部10與微型繞射光柵30之間,用以濾除第二光訊號S2,並包含一第一過濾區段22及一第二過濾區段24。The input unit 10 includes a slit structure for receiving a first optical signal S1 and a second optical signal S2, wherein S1 is directly into the micro spectrometer of the present invention from a suitable preset angle. The light signal to be measured that arrives at the micro-diffraction grating 30 (as shown in FIG. 1), and S2 enters the spectrometer from the range of the above-mentioned appropriate preset angle, and if it is not filtered, it will undergo several degrees of reflection or other The unpredictable optical path will then arrive at the micro-diffraction grating 30 at an unpredictable angle The number (Figure 1), which may itself be part of the optical signal to be measured, has become unusable stray light after the above path. The stray light filtering structure 20 can be disposed between the input portion 10 and the micro-diffractive grating 30 for filtering the second optical signal S2 and includes a first filtering section 22 and a second filtering section 24.

第一過濾區段22具有薄片狀結構,並具有一第一齒狀結構22T。第二過濾區段24具有薄片狀結構,並具有一第二齒狀結構24T,第二齒狀結構24T與第一齒狀結構22T置於相對位置。第一齒狀結構22T與第二齒狀結構24T之間定義出一光通道26以供上述以適當預設角度從輸入部10進入的第一光訊號S1通過而到達微型繞射光柵30。第一及第二過濾區段22、24包含很多尖銳的鋸齒,鋸齒係用來阻擋第二光訊號S2(即雜散光),並將其導引至鋸齒之間的凹槽內,以防止第二光訊號S2經過各種不可預測的路徑之後行進到微型繞射光柵30。第一過濾區段22及第二過濾區段24位於同一平面上。The first filter section 22 has a sheet-like structure and has a first toothed structure 22T. The second filter section 24 has a sheet-like structure and has a second toothed structure 24T that is placed in a relative position with the first toothed structure 22T. An optical passage 26 is defined between the first tooth structure 22T and the second tooth structure 24T for the passage of the first optical signal S1 entering from the input portion 10 at an appropriate predetermined angle to reach the micro diffraction grating 30. The first and second filter sections 22, 24 include a plurality of sharp serrations for blocking the second optical signal S2 (ie, stray light) and guiding it into the groove between the serrations to prevent The two optical signals S2 travel to the micro-diffraction grating 30 after various unpredictable paths. The first filter section 22 and the second filter section 24 are located on the same plane.

微型繞射光柵30係用以接收通過雜散光濾除構造20之第一光訊號S1並將第一光訊號S1分離成複數個光譜分量C。The micro-diffraction grating 30 is configured to receive the first optical signal S1 of the structure 20 by the stray light filtering and separate the first optical signal S1 into a plurality of spectral components C.

為了獲得這些光譜分量C以便作處理,可利用光感測器40來接收此等光譜分量C。透過後續的處理後,可以將這些光譜分量C轉成數位訊號。於本實施例中,可以聚焦在上述光感測器40的此等光譜分量C之數量大於2。In order to obtain these spectral components C for processing, the photosensor 40 can be utilized to receive such spectral components C. These spectral components C can be converted into digital signals after subsequent processing. In the present embodiment, the number of such spectral components C that can be focused on the photosensor 40 is greater than two.

為了方便安裝雜散光濾除構造20,殼體80具有複數 個定位柱80R,第一過濾區段22及第二過濾區段24具有複數個定位孔22H、24H。定位柱80R分別插至定位孔22H、24H中,使得定位孔22H、24H分別包圍定位柱80R,達成定位的效果。值得注意的是,第一過濾區段22及第二過濾區段24可以是一體成型之構造。In order to facilitate the installation of the stray light filtering structure 20, the housing 80 has a plurality of The positioning post 80R, the first filtering section 22 and the second filtering section 24 have a plurality of positioning holes 22H, 24H. The positioning posts 80R are respectively inserted into the positioning holes 22H, 24H, so that the positioning holes 22H, 24H respectively surround the positioning post 80R, and the positioning effect is achieved. It should be noted that the first filter section 22 and the second filter section 24 may be in an integrally formed configuration.

發光裝置60係用以發出一光源經過一試樣70後產生第一光訊號S1及第二光訊號S2,試樣譬如是試紙或其他待測物。The light-emitting device 60 is configured to generate a first light signal S1 and a second light signal S2 after a light source passes through a sample 70, such as a test paper or other object to be tested.

此外,微型光譜儀可以更包含一波導裝置50,其包含一第一波導片52及一第二波導片54,兩者彼此面對以與輸入部10、雜散光濾除構造20及微型繞射光柵30共同定義出光通道26,使第一光訊號S1可以在光通道26中反射行進。由於微型光譜儀的進光量很少,一般會使用波導裝置50來減少光損,並配合雜散光濾除構造20以濾除雜散光。In addition, the micro spectrometer may further include a waveguide device 50 including a first waveguide sheet 52 and a second waveguide sheet 54 facing each other to interact with the input portion 10, the stray light filtering structure 20, and the micro diffraction grating. The light path 26 is defined in common so that the first light signal S1 can be reflected and traveled in the light channel 26. Since the amount of light entering the micro spectrometer is small, the waveguide 50 is generally used to reduce the light loss, and the stray light filtering structure 20 is used to filter out stray light.

所謂的微型光譜儀,其中的微型繞射光柵30係由微機電製程(MEMS)或半導體製程所製造出來。微型繞射光柵30的繞射圖案32的高度一般約有數十微米至數百微米,因此,第一過濾區段22及第二過濾區段24一般也會採用在數十微米至數百微米的厚度,以形成一個數十微米至數百微米高度的光通道26。這種微型光譜儀的進光量很少,不像習知之傳統光譜儀的進光量很大的情況。在進光量很大的情況下,雜散光對繞射結果的影響較小,因此傳統的光譜儀並不太需要去考慮這個問題。在進光量很少的情況下,雜散光的濾除就顯得相當重要。因為 本案發明人實際在研發此產品時,發現了這個問題,故提出具有高效能的的雜散光濾除構造來解決此問題,經過驗證也得到相當好的成果。A so-called miniature spectrometer in which the micro-diffraction grating 30 is fabricated by a microelectromechanical process (MEMS) or semiconductor process. The height of the diffraction pattern 32 of the micro-diffraction grating 30 is generally about several tens of micrometers to several hundreds of micrometers. Therefore, the first filtering section 22 and the second filtering section 24 are generally also used in the tens of micrometers to hundreds of micrometers. The thickness is formed to form a light tunnel 26 having a height of several tens of micrometers to hundreds of micrometers. This miniature spectrometer has a small amount of light entering, unlike conventional polarizers that have a large amount of light entering the device. In the case of a large amount of light, the effect of stray light on the diffraction result is small, so the conventional spectrometer does not need to consider this problem. In the case of a small amount of light, the filtering of stray light is quite important. because The inventor of the present invention actually discovered this problem when developing this product, so it was proposed to solve this problem by having a high-efficiency stray light filtering structure, and it has been proved to be quite good.

圖3係以習知的羅蘭圓(Rowland circle)的理論來解說本發明之微型光譜儀之所以可以聚焦於一直線的感測器的示意圖。如圖3所示,依據羅蘭圓(Rowland circle)的理論,入射光通過狹縫結構10後,被雜散光濾除構造20濾除不必要的成分,最後到達微型繞射光柵30'。微型繞射光柵30'產生繞射並聚焦成像於羅蘭圓RC上。因此,一個與羅蘭圓RC有交叉的光感測器40可以接收至少兩個光譜成分。由於適用於羅蘭圓之微型繞射光柵30'的繞射圖案具有固定之節距(Pitch),所以僅能將光譜成分聚焦成像於一直線的兩點上。改變節距可以改變羅蘭圓的大小,所以將繞射圖案設計成具有非固定的節距,即可將至少三個光譜成分聚焦於一直線上,也就是達成圖1的效果。Figure 3 is a schematic illustration of the theory of the Rowland circle of the prior art illustrating the ability of the miniature spectrometer of the present invention to focus on a straight line of sensors. As shown in FIG. 3, according to the theory of Rowland circle, after the incident light passes through the slit structure 10, the stray light filtering structure 20 filters out unnecessary components and finally reaches the micro-diffraction grating 30'. The micro-diffraction grating 30' produces a diffraction and focuses imaging on the Roland circle RC. Thus, a light sensor 40 that intersects the Roland circle RC can receive at least two spectral components. Since the diffraction pattern of the micro-diffraction grating 30' suitable for the Roland circle has a fixed pitch, only the spectral components can be focused and imaged at two points of the line. Changing the pitch can change the size of the Roland circle, so the diffraction pattern is designed to have a non-fixed pitch, and at least three spectral components can be focused on the straight line, that is, the effect of FIG. 1 is achieved.

因此,圖1之光感測器40可具有複數個感光單元42,譬如是兩個、三個或三個以上,此等感光單元42排列成一直線。Therefore, the photo sensor 40 of FIG. 1 can have a plurality of photosensitive cells 42, such as two, three or more, and the photosensitive cells 42 are arranged in a line.

值得再度提起的是,雜散光訊號除了包含雜訊以外,亦可以包含入射角度不對的所要量測的光訊號。在沒有裝設雜散光濾除構造20的情況下,這種入射角度不對的光訊號在通過輸入部10以後,就會被殼體80經過幾次反射後到達微型繞射光柵30,因此會干擾到繞射結果。此外,也可以在微型繞射光柵30與光感測器40之間加 裝雜散光濾除構造20。It is worth mentioning again that the stray light signal can contain not only the noise but also the optical signal to be measured with the wrong angle of incidence. In the case where the stray light filtering structure 20 is not provided, such an optical signal having an incorrect incident angle passes through the input portion 10 and is reflected by the housing 80 several times to reach the micro-diffractive grating 30, thereby interfering with To the diffraction result. In addition, it is also possible to add between the micro diffraction grating 30 and the photo sensor 40. A stray light filtering structure 20 is installed.

圖4顯示雜散光濾除構造之濾除原理之示意圖。前述之預設角度為2 θ,其係與第一過濾區段22之第一齒狀結構22T及第二過濾區段24之第二齒狀結構24T相關,其中角度θ為第一光訊號S1與輸入部10的光軸之間的夾角,角度θ是被第一齒狀結構22T所定義,角度2 θ-θ是被第二齒狀結構24T所定義。第二光訊號S2之進入角度大於角度2 θ,而第一光訊號S1之進入角度小於角度2 θ。第一光訊號S1不會進入過濾區段中,故不會被過濾區段消耗。第二光訊號S2會進入過濾區段之其中一個三角形凹口中而在裡面來回反射而耗弱。如此一來,原本會造成雜散光訊號之第二光訊號S2皆可由過濾區段而消弭,進而使所欲得到之光譜分量更為清楚分明。Figure 4 shows a schematic diagram of the filtering principle of a stray light filtering construction. The preset angle is 2 θ, which is related to the first tooth structure 22T of the first filter section 22 and the second tooth structure 24T of the second filter section 24, wherein the angle θ is the first optical signal S1 The angle θ with respect to the optical axis of the input portion 10 is defined by the first tooth structure 22T, and the angle 2 θ-θ is defined by the second tooth structure 24T. The entry angle of the second optical signal S2 is greater than the angle 2 θ, and the entry angle of the first optical signal S1 is less than the angle 2 θ. The first optical signal S1 does not enter the filtering section and is therefore not consumed by the filtering section. The second optical signal S2 will enter one of the triangular recesses of the filtering section and be reflected back and forth inside to be weak. In this way, the second optical signal S2, which would otherwise cause the stray optical signal, can be eliminated by the filtering section, so that the spectral components to be obtained are more clearly defined.

圖5顯示平滑側壁之反射結果之示意圖。為了證明雜散光濾除構造的功效,申請人特別提供第一平滑側壁21及第二平滑側壁23來取代圖4之第一過濾區段22及第二過濾區段24。第一平滑側壁21及第二平滑側壁23不具有齒狀結構,因此,第二光訊號S2會被平滑側壁21及23反射,而逐漸往微型繞射光柵30的方向移動。因而干擾到光譜儀的量測結果。Figure 5 shows a schematic representation of the results of the reflection of the smooth sidewalls. In order to demonstrate the efficacy of the stray light filtering construction, Applicants specifically provide a first smooth side wall 21 and a second smooth side wall 23 in place of the first filter section 22 and the second filter section 24 of FIG. The first smooth sidewall 21 and the second smooth sidewall 23 do not have a toothed structure. Therefore, the second optical signal S2 is reflected by the smooth sidewalls 21 and 23 and gradually moves in the direction of the micro-diffraction grating 30. This interferes with the measurement results of the spectrometer.

在本發明的微型光譜儀裡,繞射光柵是一個可以利用微機電製程(MEMS)或半導體製程製造出來的超薄微小零件。一般而言一個微型繞射光柵的繞射圖案的高度大約只有數十微米到數百微米之間,為了讓待測的光源不會在自由空間裡散開,以致超薄的微型繞射光柵僅僅接 收到照射到上述數十微米到數百微米高度的繞射圖案的光線,通常會以一種反射率較好的材質做成波導片將微型繞射光柵上下夾住,形成一個光訊號波導,使得光源訊號從輸入部進入微型光譜儀之後,藉著波導的作用,絕大部分的光(包含雜散光)都可抵達微型繞射光柵。儘管如此,微型光譜儀的進光量比起傳統的大型光譜儀仍然很少,在進光量很少的情況下,雜散光的濾除就顯得相當重要。In the miniature spectrometer of the present invention, the diffraction grating is an ultra-thin micro-component that can be fabricated using a microelectromechanical process (MEMS) or semiconductor process. Generally, the diffraction pattern of a micro-diffraction grating has a height of only about tens of micrometers to hundreds of micrometers. In order to prevent the light source to be measured from being scattered in the free space, the ultra-thin micro-diffractive grating is only connected. Receiving light of a diffraction pattern irradiated to the above-mentioned height of several tens of micrometers to several hundred micrometers, a waveguide sheet is generally formed by a material having a better reflectance, and the micro-diffraction grating is sandwiched up and down to form an optical signal waveguide. After the light source signal enters the micro spectrometer from the input section, most of the light (including stray light) can reach the micro-diffraction grating by the action of the waveguide. Despite this, the amount of light entering a miniature spectrometer is still small compared to conventional large spectrometers, and the filtering of stray light is quite important in the case of a small amount of light.

此外,前述之預設角度係依據光柵的尺寸及光路而定。於一較佳實施例中,前述之預設角度可為4度(左右各2度),相較於傳統光譜儀大約10度(左右各5度)的預設角度,本發明之預設角度明顯小很多。因此,雜散光的濾除顯得更加重要。In addition, the aforementioned preset angle depends on the size of the grating and the optical path. In a preferred embodiment, the preset angle can be 4 degrees (2 degrees left and right), and the preset angle of the present invention is obvious compared to a preset angle of about 10 degrees (5 degrees left and right) of a conventional spectrometer. A lot smaller. Therefore, the filtering of stray light is more important.

藉由本發明之光譜儀,可以濾除不必要的雜散光成分,避免其干擾到光譜成分而影響光感測器的判讀結果。雜散光濾除構造的厚度可以是相當薄,且其材質可以是金屬、塑膠或半導體材料等。發明人根據圖1的架構實施時,特別比較有裝設雜散光濾除構造跟沒有裝設雜散光濾除構造的結果,發現有裝設雜散光濾除構造的光譜儀可以獲得較佳的判讀結果。因此,本案之光譜儀,確有其效能的大幅增進。With the spectrometer of the present invention, unnecessary stray light components can be filtered out to avoid interference with spectral components and affect the interpretation results of the photosensor. The thickness of the stray light filtering structure can be quite thin and can be made of metal, plastic or semiconductor materials. When the inventor implemented the architecture according to FIG. 1, the results of installing a stray light filtering structure and a stray light filtering structure were compared, and it was found that a spectrometer equipped with a stray light filtering structure can obtain better interpretation results. . Therefore, the spectrometer of this case does have a substantial increase in its performance.

相較於譬如照相機或光學筆之傳統光學裝置的立體錐狀雜散光過濾構造,本案之平面狀雜散光過濾構造特別適合於微型光譜儀。The planar stray light filtering structure of the present invention is particularly suitable for a micro spectrometer compared to a stereoscopic stray light filtering structure of a conventional optical device such as a camera or an optical pen.

在較佳實施例之詳細說明中所提出之具體實施例僅 用以方便說明本發明之技術內容,而非將本發明狹義地限制於上述實施例,在不超出本發明之精神及以下申請專利範圍之情況,所做之種種變化實施,皆屬於本發明之範圍。The specific embodiments set forth in the detailed description of the preferred embodiment are only The present invention is not limited to the above embodiments, and various changes are made without departing from the spirit of the invention and the scope of the following claims. range.

C‧‧‧光譜分量C‧‧ ‧ spectral component

H‧‧‧高度H‧‧‧ Height

RC‧‧‧羅蘭圓RC‧‧‧Roland

S1‧‧‧第一光訊號S1‧‧‧first optical signal

S2‧‧‧第二光訊號S2‧‧‧second optical signal

10‧‧‧輸入部10‧‧‧ Input Department

20‧‧‧雜散光濾除構造20‧‧‧ stray light filtering structure

21‧‧‧第一平滑側壁21‧‧‧First smooth side wall

22‧‧‧第一過濾區段22‧‧‧First filter section

22T‧‧‧第一齒狀結構22T‧‧‧First tooth structure

22H、24H‧‧‧定位孔22H, 24H‧‧‧ positioning holes

23‧‧‧第二平滑側壁23‧‧‧Second smooth side wall

24‧‧‧第二過濾區段24‧‧‧Second filter section

24T‧‧‧第二齒狀結構24T‧‧‧second tooth structure

26‧‧‧光通道26‧‧‧Light channel

30、30'‧‧‧微型繞射光柵30, 30'‧‧‧ miniature diffraction grating

32‧‧‧繞射圖案32‧‧‧Diffraction pattern

40‧‧‧光感測器40‧‧‧Light sensor

50‧‧‧波導裝置50‧‧‧Wave device

52‧‧‧第一波導片52‧‧‧First waveguide

54‧‧‧第二波導片54‧‧‧Second waveguide

60‧‧‧發光裝置60‧‧‧Lighting device

70‧‧‧試樣70‧‧‧sample

80‧‧‧殼體80‧‧‧shell

80R‧‧‧定位柱80R‧‧‧ positioning column

100‧‧‧光譜儀100‧‧‧ Spectrometer

110‧‧‧光源110‧‧‧Light source

120‧‧‧輸入部120‧‧‧ Input Department

130‧‧‧準直面鏡130‧‧ ‧collimating mirror

140‧‧‧平面光柵140‧‧‧Flat grating

142‧‧‧繞射圖案142‧‧‧Diffraction pattern

150‧‧‧聚焦面鏡150‧‧‧Focus mirror

160‧‧‧直線狀光感測器160‧‧‧Linear light sensor

200‧‧‧光訊號200‧‧‧Optical signal

圖1顯示依據本發明較佳實施例之具有雜散光濾除構造之微型光譜儀之俯視圖。1 shows a top view of a microspectrometer having a stray light filtering configuration in accordance with a preferred embodiment of the present invention.

圖2顯示依據本發明較佳實施例之微型光譜儀之側視圖。2 shows a side view of a miniature spectrometer in accordance with a preferred embodiment of the present invention.

圖3顯示本發明之另一種光譜儀之立體示意圖。Figure 3 shows a perspective view of another spectrometer of the present invention.

圖4顯示雜散光濾除構造之濾除原理之示意圖。Figure 4 shows a schematic diagram of the filtering principle of a stray light filtering construction.

圖5顯示平滑側壁之反射結果之示意圖。Figure 5 shows a schematic representation of the results of the reflection of the smooth sidewalls.

圖6顯示一種傳統之光譜儀之示意圖。Figure 6 shows a schematic of a conventional spectrometer.

C‧‧‧光譜分量C‧‧ ‧ spectral component

S1‧‧‧第一光訊號S1‧‧‧first optical signal

S2‧‧‧第二光訊號S2‧‧‧second optical signal

10‧‧‧輸入部10‧‧‧ Input Department

20‧‧‧雜散光濾除構造20‧‧‧ stray light filtering structure

22‧‧‧第一過濾區段22‧‧‧First filter section

22H、24H‧‧‧定位孔22H, 24H‧‧‧ positioning holes

22T‧‧‧第一齒狀結構22T‧‧‧First tooth structure

24‧‧‧第二過濾區段24‧‧‧Second filter section

24T‧‧‧第二齒狀結構24T‧‧‧second tooth structure

26‧‧‧光通道26‧‧‧Light channel

30‧‧‧微型繞射光柵30‧‧‧Micro Diffraction Grating

32‧‧‧繞射圖案32‧‧‧Diffraction pattern

40‧‧‧光感測器40‧‧‧Light sensor

50‧‧‧波導裝置50‧‧‧Wave device

60‧‧‧發光裝置60‧‧‧Lighting device

70‧‧‧試樣70‧‧‧sample

80‧‧‧殼體80‧‧‧shell

80R‧‧‧定位柱80R‧‧‧ positioning column

Claims (16)

一種具有雜散光濾除構造之微型光譜儀,包含:一輸入部,用以接收一從一預設角度之範圍內進入該微型光譜儀內部的第一光訊號及一從該預設角度之範圍外進入該微型光譜儀內部的第二光訊號;一雜散光濾除構造,用以濾除該第二光訊號,該雜散光濾除構造包含:一第一過濾區段,具有一第一齒狀結構;及一第二過濾區段,具有一第二齒狀結構與該第一齒狀結構安置於相對位置,該第一齒狀結構與該第二齒狀結構之間定義出一光通道以供該第一光訊號通過,並使該第二光訊號進入該第一過濾區段或該第二過濾區段之中而被濾除;以及一微型繞射光柵,接收通過該雜散光濾除構造之該第一光訊號並將該第一光訊號分離成複數個光譜分量,其中該雜散光濾除構造設置於該輸入部與該微型繞射光柵之間。 A miniature spectrometer having a stray light filtering structure, comprising: an input portion for receiving a first optical signal entering the interior of the micro spectrometer from a predetermined angle and entering from a range of the preset angle a second optical signal inside the micro spectrometer; a stray light filtering structure for filtering the second optical signal, the stray light filtering structure comprising: a first filtering section having a first tooth structure; And a second filter segment having a second tooth structure disposed at an opposite position to the first tooth structure, wherein the first tooth structure and the second tooth structure define an optical path for the Passing the first optical signal and filtering the second optical signal into the first filtering section or the second filtering section; and a micro-diffraction grating receiving the structure by the stray light filtering The first optical signal separates the first optical signal into a plurality of spectral components, wherein the stray light filtering structure is disposed between the input portion and the micro-diffractive grating. 如申請專利範圍第1項所述之微型光譜儀,更包含:一光感測器,用以接收該等光譜分量。 The micro spectrometer of claim 1, further comprising: a photo sensor for receiving the spectral components. 如申請專利範圍第2項所述之微型光譜儀,其中可以聚焦在光感測器上的該等光譜分量之數量大於2。 The microspectrometer of claim 2, wherein the number of the spectral components that can be focused on the photosensor is greater than two. 如申請專利範圍第2項所述之微型光譜儀,其中該光感測器具有複數個感光單元,該等感光單元排列成一直線。 The micro spectrometer of claim 2, wherein the photo sensor has a plurality of photosensitive cells, and the photosensitive cells are arranged in a line. 如申請專利範圍第2項所述之微型光譜儀,更包含:一殼體,其中該輸入部、該雜散光濾除構造、該微型繞射光柵及該光感測器係安裝於該殼體中。 The micro spectrometer of claim 2, further comprising: a housing, wherein the input portion, the stray light filtering structure, the micro-diffractive grating, and the photo sensor are mounted in the housing . 如申請專利範圍第5項所述之微型光譜儀,其中該殼體具有複數個定位柱,該第一過濾區段及該第二過濾區段具有複數個定位孔,該等定位孔分別包圍該等定位柱。 The micro spectrometer of claim 5, wherein the housing has a plurality of positioning posts, the first filtering section and the second filtering section having a plurality of positioning holes, the positioning holes respectively surrounding the Positioning column. 如申請專利範圍第2項所述之微型光譜儀,更包含一發光裝置,用以發出一光源經過一試樣後產生該第一光訊號及該第二光訊號。 The micro spectrometer of claim 2, further comprising a light emitting device for emitting a light source through a sample to generate the first optical signal and the second optical signal. 如申請專利範圍第1項所述之微型光譜儀,其中該第一過濾區段及該第二過濾區段位於同一平面上。 The micro spectrometer of claim 1, wherein the first filter segment and the second filter segment are on the same plane. 如申請專利範圍第1項所述之微型光譜儀,其中該預設角度實質上等於4度。 The micro spectrometer of claim 1, wherein the preset angle is substantially equal to 4 degrees. 如申請專利範圍第1項所述之微型光譜儀,其中該第一過濾區段及該第二過濾區段係一體成型。 The micro spectrometer of claim 1, wherein the first filter section and the second filter section are integrally formed. 如申請專利範圍第1項所述之微型光譜儀,其中該微型繞射光柵具有一繞射圖案,該繞射圖案之巨觀輪廓包含一曲面。 The micro spectrometer of claim 1, wherein the micro-diffraction grating has a diffraction pattern, and the macroscopic profile of the diffraction pattern comprises a curved surface. 如申請專利範圍第1項所述之微型光譜儀,更包含一波導裝置,其包含一第一波導片及一第二波導片,兩者彼此面對以與該輸入部、該雜散光濾除構造及該微型繞射光柵共同定義出該光通道,使該第一光訊號可以在該光通道反射行進。 The micro spectrometer of claim 1, further comprising a waveguide device comprising a first waveguide sheet and a second waveguide sheet, the two facing each other to interact with the input portion, the stray light filtering structure And the micro-diffraction grating jointly defines the optical channel, so that the first optical signal can be reflected and traveled in the optical channel. 一種光譜儀,包含:一輸入部,用以接收一從一預設角度之範圍內進入該光譜儀內部的第一光訊號及一從該預設角度之範圍外進入該光譜儀內部的第二光訊號;一雜散光濾除構造,包含具有至少一第一齒狀結構的一第一過濾區段,用以濾除該第二光訊號;一微型繞射光柵,接收通過該雜散光濾除構造之該第一光訊號並將該第一光訊號分離成複數個光譜分量;以及一光感測器,接收被該微型繞射光柵所分離的光。 A spectrometer comprising: an input unit for receiving a first optical signal entering the interior of the spectrometer from a predetermined angle and a second optical signal entering the interior of the spectrometer from a range of the preset angle; a stray light filtering structure comprising a first filtering section having at least one first tooth structure for filtering the second optical signal; a micro diffraction grating receiving the structure by the stray light filtering The first optical signal separates the first optical signal into a plurality of spectral components; and a photo sensor receives the light separated by the micro-diffractive grating. 如申請專利範圍第13項所述之光譜儀,其中該第二光訊號進入該些第一過濾區段之中經過多次反射而被濾除。 The spectrometer of claim 13, wherein the second optical signal enters the first filtering sections and is filtered by multiple reflections. 一種光譜儀,包含:一輸入部;一微型繞射光柵,接收通過該輸入部的一第一光訊號,並將該第一光訊號分離成複數個光譜分量;一雜散光濾除構造,包括具有至少一第一齒狀結構的一第一過濾區段,用以濾除該些光譜分量中超出一預設角度之外的光,並使該些光譜分量中落於該預設角度之內的光通過;以及一光感測器,接收通過該雜散光濾除構造的光。 A spectrometer comprising: an input portion; a micro-diffraction grating, receiving a first optical signal passing through the input portion, and separating the first optical signal into a plurality of spectral components; a stray light filtering structure comprising a first filtering section of the at least one first tooth structure for filtering out light of the spectral components beyond a predetermined angle, and causing the spectral components to fall within the preset angle Light passes through; and a light sensor receives light that is constructed by filtering the stray light. 如申請專利範圍第15項所述之光譜儀,其中該些光譜分量中超出該預設角度之外的光進入該些第一過濾區段之中經過多次反射而被濾除。 The spectrometer of claim 15, wherein the light outside the predetermined angle of the spectral components enters the first filtering sections and is filtered by multiple reflections.
TW99111207A 2010-04-12 2010-04-12 Micro spectrometer with stray light filtering structure TWI437215B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99111207A TWI437215B (en) 2010-04-12 2010-04-12 Micro spectrometer with stray light filtering structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99111207A TWI437215B (en) 2010-04-12 2010-04-12 Micro spectrometer with stray light filtering structure

Publications (2)

Publication Number Publication Date
TW201135196A TW201135196A (en) 2011-10-16
TWI437215B true TWI437215B (en) 2014-05-11

Family

ID=46751780

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99111207A TWI437215B (en) 2010-04-12 2010-04-12 Micro spectrometer with stray light filtering structure

Country Status (1)

Country Link
TW (1) TWI437215B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI525308B (en) 2012-11-16 2016-03-11 台灣超微光學股份有限公司 Spectrometer, assembling method thereof, and assembling system
CN106415222B (en) 2014-04-03 2018-06-08 台湾超微光学股份有限公司 Spectrometer, spectrometer waveguide piece manufacturing method and its structure
TWI510774B (en) * 2014-04-03 2015-12-01 Oto Photonics Inc A spectrometer and a method for fabricating the waveguide of spectrometer and structure thereof
TWI715599B (en) 2016-07-12 2021-01-11 台灣超微光學股份有限公司 Spectrometer and manufacturing method thereof

Also Published As

Publication number Publication date
TW201135196A (en) 2011-10-16

Similar Documents

Publication Publication Date Title
JP7129809B2 (en) Optical filters and spectrometers
TWI429887B (en) Spectrometer capable of eliminating side-tail effects
JP5419301B2 (en) Sample analyzer
CN102812340B (en) Micro spectrometer capable of receiving zero order and first order spectral components
WO2011134156A1 (en) Optomechanical module of micro-spectrometer with conical slit and slit structure thereof
JP5880053B2 (en) Spectral characteristic acquisition apparatus and image forming apparatus
TWI437215B (en) Micro spectrometer with stray light filtering structure
TWI468653B (en) Micro spectrometer capable of receiving zeroth-order and first-order spectrum components
JP2022050664A (en) Spectrograph
JP5538194B2 (en) Optical apparatus and electronic apparatus
CN103017905B (en) The micro spectrometer of integrated planar grid pitch changing grating and micro-slit and manufacture method thereof
TWI610066B (en) Spectrometer and manufacturing method thereof
TWI473981B (en) Optical module of micro spectrometer with tapered slit and slit structure thereof
JP2009008471A (en) Optical spectrometer and optical apparatus using same
CN105758566B (en) Glass surface stress meter
WO2011130899A1 (en) Micro spectrometer with stray light filtering structure
CN103759826A (en) Micro spectrometer with stray light filtering structure
JP2010008706A (en) Diffraction grating and spectrometer
JP5900248B2 (en) Spectrophotometer
CN111579069B (en) Spectrum self-calibration grating and spectrometer
JP6273996B2 (en) Polychromator and analyzer equipped with the same
WO2002012950A1 (en) Method of analyzing spectrum using multi-slit member and multi-channel spectrograph using the same
CN204064886U (en) Far-infrared spectrum scanner
JPS6366424A (en) Luminescence spectroscopic measuring apparatus
KR20090073302A (en) Spectrophotometer system having the position adjustable cell guide and measuring method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees