TW201132945A - Micro spectrometer capable of receiving zeroth-order and first-order spectrum components - Google Patents

Micro spectrometer capable of receiving zeroth-order and first-order spectrum components Download PDF

Info

Publication number
TW201132945A
TW201132945A TW99109792A TW99109792A TW201132945A TW 201132945 A TW201132945 A TW 201132945A TW 99109792 A TW99109792 A TW 99109792A TW 99109792 A TW99109792 A TW 99109792A TW 201132945 A TW201132945 A TW 201132945A
Authority
TW
Taiwan
Prior art keywords
spectrometer
optical signal
micro
order
sensing
Prior art date
Application number
TW99109792A
Other languages
Chinese (zh)
Other versions
TWI468653B (en
Inventor
Cheng-Hao Ko
Original Assignee
Oto Science Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oto Science Inc filed Critical Oto Science Inc
Priority to TW99109792A priority Critical patent/TWI468653B/en
Publication of TW201132945A publication Critical patent/TW201132945A/en
Application granted granted Critical
Publication of TWI468653B publication Critical patent/TWI468653B/en

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

A micro spectrometer capable of receiving zeroth-order and first-order spectrum components includes an input section, a micro diffraction grating and a photosensor. The input section receives an optical signal. The diffraction grating has a focusing curved surface and a diffraction pattern formed on the focusing curved surface, and receives the optical signal and separates the optical signal into a plurality of spectrum components, which includes a zeroth-order spectrum component and a first-order spectrum component. The photosensor for receiving the spectrum components separated and focused by the diffraction grating has a first sensing sector and a second sensing sector. The first sensing sector receives the zeroth-order spectrum component, and the second sensing sector receives the first-order spectrum component.

Description

201132945 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種光譜儀’尤其關於一種能接收零 階光譜分量及一階光譜分量之光諸儀。 【先前技術】 輻射源的光度測定(photometry)通常利用光摄儀 (spectrometer)來進行量測’光譜儀需要使用狹縫結構來 φ 控制一定量的光源進入其中,再透過繞射光柵配合準直 器(collimator)與校正鏡片(correcting lens)的組合將輸出 的光譜分量聚焦在一個影像平面。影像平面上可以放置 光感測器,這樣就可以獲得各個光譜分量。 圖8顯示一種傳統之光譜儀丨〇〇之示意圖。如圖8 所示’傳統之光譜儀100包含一光源110、一輸入部12〇、 一準直面鏡130、一平面光柵140、一聚焦面鏡15〇及一 直線狀光感測器160。光源11〇輸出光訊號2〇〇通過輸 籲 入部12〇,然後被準直面鏡130處理後到達平面光柵14〇。 平面光柵140之繞射圖案142的巨觀輪廓為一平面,這 種平面光栅140比較適合傳統以鑽石刀刻劃繞射圖案的 加工方式,但也因此無法將光柵之輪廓做成具有聚焦作 用的曲面’因此在平面光柵140將光訊號分離成數個光 譜分量之後’為了將這些光譜分量聚焦於直線狀光感測 器160上’需要加入聚焦面鏡15〇才能達成。因此,整 個光譜儀1〇〇的光路很長’且體積相對龐大許多。 因此’傳統的光譜儀是無法同時接收零階光譜分量 201132945 及一階光譜分量的,因為很長的光路使得零階光譜分量 跟一階光譜分量的聚焦位置會離開很遠,而一般的光感 測器的長度也是有限,故無法達成此功能。申請人不確 定以下技術是否為習知技術。為了在一個傳統光譜儀中 可以取得零階光譜分量與一階光譜分量的訊號,申請人 認為可以使用一可移動的反射鏡170及另一光感測器 180。當需要量測零階光譜分量時,反射鏡ι7〇被移動至 光路上以將光線反射至光感測器i 80。但這種方式既不 方便且又會增加成本,不符合經濟效益。此外,如此取 得的零階光譜分量與一階光譜分量其實是分時取得,並 非同時’所以當光源11 〇的訊號會隨時間變化時,以這 種方法取得的零階光譜分量的訊號將會不可靠。因此, 傳統的光譜儀通常僅針對一階光譜分量來設計。長久以 來,光譜儀的零階光譜分量是不會被擷取來使用的。因 此’右要獲得所有的繞射光強度,必須將一階、二階、 三階等光譜分量加總起來,而因為零階以外的光譜分量 是被依波長長度分開來的,所以加總本身將需要耗費計 算資源,且當光譜儀無法接收到二階、三階以外的光譜 分量時,所造成的誤差會更大《除了取得繞射光強度之 外’零階光可能的各種應用(如校正、對位等),在傳統 光譜儀中將難以實現。 【發明内容】 因此,本發明之一個目的係提供一種能接收零階光 譜分量及一階光譜分量之微型光譜儀,破除習知技術對 201132945 於光譜儀的使用立場,藉以獲得繞射光的總強度,作為 特殊測定計算、校正與對位之用。 為達上述目的,本發明提供一種能接收零階光譜分 量及一階光譜分量之微型光譜儀’其包含一輸入部、一 微型繞射光柵及一光感測器。輸入部用以接收一光學訊 號。微型繞射光栅具有一聚焦曲面及形成於聚焦曲面上 之一繞射圖案’並用以接收光學訊號並用以將光學訊號 分離成複數個光譜分量,此等光譜分量包含零階光譜分 量及一階光譜分量。光感測器具有一第一感測區段及一 第二感測區段’用以接收被微型繞射光柵分離並聚焦而 來的此等光譜分量。第一感測區段接收零階光譜分量, 而第二感測區段接收一階光譜分量。 本發明亦提供一種微型光譜儀,其包含一輸入部、 一微型繞射光柵、一光感測器以及一波導裝置。輸入部 用以接收一光學訊號。微型繞射光栅接收光學訊號並用 以將光學訊號分離成複數個光譜分量。微型繞射光栅包 含一第一晶片區段及一第二晶片區段。第一晶片區段具 有一聚焦曲面及形成於聚焦曲面上之一繞射圖案,聚焦 曲面及繞射圖案可以產生前述光譜分量並將前述光譜分 量聚焦於光感測器上,藉此縮短光譜儀之光程β第二晶 片區段具有一反射面。光感測器用以接收此等光譜分量。 波導裝置包含一第一波導片及一第二波導片,兩者彼此 面對以與輸入部、微型繞射光柵及光感測器共同定義出 一光通道。第一波導片位於第一晶片區段之一上表面上。 第二波導片與第二晶片區段之反射面局部接觸,以使光 201132945 學訊號之―第—部分到達繞射®案,並使光學訊號 第二部分到達反射面與第二波導片不相接觸之局^ 藉此,微型光譜儀可以擷取零階光譜分量以 續分析或處理使用。 〃 為讓本發明之上述内容能更明顯易懂,下文特舉 較佳實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 圖1顯不依據本發明較佳實施例之能接收零階光譜 分ϊ及一階光譜分量之微型光譜儀〖之示意圖。如圖I 所示,本實施例之微型光譜儀丨包含一輸入部1〇、一微 型繞射光栅20以及一光感測器3〇。 輸入部10包含譬如狹縫,用以接收一光學訊號8〇, 如有需要亦可包含濾波器,來將不必要的成分過濾掉。 微型繞射光栅20具有一聚焦曲面23及形成於聚焦 曲面23上之一繞射圖案24(詳細結構顯示於圖4中),並 用以接收光學訊號SO並用以將光學訊號SO分離成複數 個光譜分量SOO、SOI、S02…等。值得注意的是,此等 光譜分量SOO、S01、S02包含零階光譜分量SOO ' —階 光譜分量S01、二階光譜分量S02、三階光譜分量及四 階光譜分量等。光感測器30譬如是電荷鶴合元件 式感測器或CMOS式感測器’並具有一第一感測區段32 及一第二感測區段34,用以接收被微型繞射光柵20分 離並聚焦而來的光譜分量SO0、SOl、SO2…等。第一感 測區段32接收零階光譜分量SO0,而第二感測區段34 201132945 接收一階光譜分量SOI。此外,依實際設計所採用的感 測器長度而定,第二感測區段34更可接收二階光譜分量 S02、三階光譜分量、四階光譜分量等。 於本實施例中,第一感測區段32及第二感測區段34 排成一直線。光感測器30具有複數個感光單元36,此 等感光單元36亦排列成一直線。 此外,微型光譜儀1可以更包含一發光裝置40、一 波導裝置60及一殼體80。輸入部1〇、微型繞射光柵20、BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectrometer, particularly to a light meter capable of receiving a zero-order spectral component and a first-order spectral component. [Prior Art] The photometry of the radiation source is usually measured by a spectrometer. The spectrometer needs to use a slit structure to control a certain amount of light source into the spectrometer, and then pass through the diffraction grating to cooperate with the collimator. The combination of a collimator and a correcting lens focuses the output spectral components on an image plane. A light sensor can be placed on the image plane so that individual spectral components can be obtained. Figure 8 shows a schematic diagram of a conventional spectrometer. As shown in Fig. 8, the conventional spectrometer 100 includes a light source 110, an input portion 12A, a collimating mirror 130, a planar grating 140, a focusing mirror 15A, and a linear photo sensor 160. The light source 11 〇 outputs an optical signal 2 〇〇 through the input portion 12 〇 and is processed by the collimating mirror 130 to reach the planar grating 14 〇. The macroscopic profile of the diffraction pattern 142 of the planar grating 140 is a plane. The planar grating 140 is more suitable for the conventional processing method of scribing the diffraction pattern with a diamond knife, but it is therefore impossible to make the contour of the grating into a focusing effect. The curved surface 'is therefore required to be added to the focusing mirror 15 after the planar grating 140 separates the optical signal into several spectral components 'in order to focus these spectral components on the linear photosensor 160'. Therefore, the optical path of the entire spectrometer is very long and the volume is relatively large. Therefore, 'traditional spectrometers cannot receive the zero-order spectral components 201132945 and the first-order spectral components at the same time, because the long optical path makes the zero-order spectral components and the focus position of the first-order spectral components far away, and the general light sensing The length of the device is also limited, so this function cannot be achieved. The applicant is not sure whether the following technologies are conventional techniques. In order to obtain the signals of the zero-order spectral components and the first-order spectral components in a conventional spectrometer, Applicants believe that a movable mirror 170 and another photosensor 180 can be used. When it is desired to measure the zero-order spectral component, the mirror ι7 〇 is moved to the optical path to reflect the light to the photo sensor i 80. However, this method is not convenient and will increase the cost and is not economical. In addition, the zero-order spectral component and the first-order spectral component thus obtained are actually obtained in a time-sharing manner, not at the same time. Therefore, when the signal of the light source 11 会 changes with time, the signal of the zero-order spectral component obtained by this method will be Unreliable. Therefore, conventional spectrometers are usually designed only for first-order spectral components. For a long time, the zero-order spectral components of the spectrometer are not used for extraction. Therefore, to obtain all the diffracted light intensities, the first, second and third order spectral components must be added together, and since the spectral components other than the zeroth order are separated by the wavelength length, the summing itself will be required. It consumes computational resources, and when the spectrometer cannot receive spectral components other than the second and third orders, the error caused by it will be larger. In addition to obtaining the intensity of the diffracted light, various applications such as correction, alignment, etc. ), will be difficult to achieve in traditional spectrometers. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a microspectrometer capable of receiving a zero-order spectral component and a first-order spectral component, and eliminating the use of the conventional technique for the spectrometer in 201132945, in order to obtain the total intensity of the diffracted light, as Special measurement calculation, calibration and alignment. To achieve the above object, the present invention provides a miniature spectrometer capable of receiving a zero-order spectral component and a first-order spectral component, which includes an input portion, a micro-diffraction grating, and a photo sensor. The input unit is configured to receive an optical signal. The micro-diffraction grating has a focusing curved surface and a diffraction pattern formed on the focusing curved surface and is used for receiving an optical signal and separating the optical signal into a plurality of spectral components, wherein the spectral components include a zero-order spectral component and a first-order spectral component. Component. The photo sensor has a first sensing section and a second sensing section ' for receiving the spectral components separated and focused by the micro-diffraction grating. The first sensing section receives a zero order spectral component and the second sensing section receives a first order spectral component. The invention also provides a miniature spectrometer comprising an input portion, a micro-diffraction grating, a photo sensor and a waveguide device. The input unit is configured to receive an optical signal. The micro-diffraction grating receives the optical signal and is used to separate the optical signal into a plurality of spectral components. The micro-diffraction grating includes a first wafer segment and a second wafer segment. The first wafer segment has a focusing curved surface and a diffraction pattern formed on the focusing curved surface, and the focusing curved surface and the diffraction pattern can generate the aforementioned spectral components and focus the spectral components on the photo sensor, thereby shortening the spectrometer The optical path β second wafer section has a reflective surface. A light sensor is used to receive the spectral components. The waveguide device includes a first waveguide piece and a second waveguide piece facing each other to define a light path together with the input portion, the micro diffraction grating and the photo sensor. The first waveguide sheet is located on an upper surface of one of the first wafer segments. The second waveguide sheet is in partial contact with the reflective surface of the second wafer segment, so that the "part" portion of the light 201132945 reaches the diffraction pattern, and the second portion of the optical signal reaches the reflective surface and is not in phase with the second waveguide sheet. Contact Bureau ^ By this, the micro spectrometer can capture the zero-order spectral components for continued analysis or processing. BRIEF DESCRIPTION OF THE DRAWINGS In order to make the above description of the present invention more comprehensible, the preferred embodiments of the present invention are described in detail below with reference to the accompanying drawings. [Embodiment] FIG. 1 is a schematic view showing a micro spectrometer capable of receiving a zero-order spectral bifurcation and a first-order spectral component according to a preferred embodiment of the present invention. As shown in FIG. 1, the micro spectrometer 本 of the present embodiment includes an input portion 1A, a micro-diffraction grating 20, and a photo sensor 3A. The input unit 10 includes, for example, a slit for receiving an optical signal 8 〇 and, if necessary, a filter to filter out unnecessary components. The micro-diffraction grating 20 has a focusing curved surface 23 and a diffraction pattern 24 (shown in detail in FIG. 4) formed on the focusing curved surface 23, and is used for receiving the optical signal SO and separating the optical signal SO into a plurality of spectra. Component SOO, SOI, S02, etc. It is worth noting that these spectral components SOO, S01, and S02 include a zero-order spectral component SOO'-order spectral component S01, a second-order spectral component S02, a third-order spectral component, and a fourth-order spectral component. The photo sensor 30 is, for example, a charge-healing element sensor or a CMOS sensor' and has a first sensing section 32 and a second sensing section 34 for receiving the micro-diffraction grating. 20 separate and focused spectral components SO0, SO1, SO2, etc. The first sensing section 32 receives the zero-order spectral component SO0, while the second sensing section 34 201132945 receives the first-order spectral component SOI. In addition, depending on the length of the sensor used in the actual design, the second sensing section 34 can further receive the second-order spectral component S02, the third-order spectral component, the fourth-order spectral component, and the like. In this embodiment, the first sensing section 32 and the second sensing section 34 are arranged in a line. The photo sensor 30 has a plurality of photosensitive cells 36, and the photosensitive cells 36 are also arranged in a line. Further, the micro spectrometer 1 may further include a light emitting device 40, a waveguide device 60, and a casing 80. Input portion 1〇, micro diffraction grating 20,

光感測器30及波導裝置60係安裝於殼體80中。發光裝 置40用以發出一光源經過一試樣5〇(例如待測的化學物 質)後產生光學訊號SO。如此一來,微型光譜儀1可以 成為一個獨立的測定裝置’使用者可以攜帶此微型光譜 儀1到任何地方進行檢測,達成行動化的目的。 圖2顯示依據本發明較佳實施例之光譜儀之側視圖。 圖3顯示依據本發明較佳實施例之微型繞射光柵之工作 不意圖。請參考圖1至3,本發明提出另一種組合之微 型光譜儀1,其包含輸入部1〇、微型繞射光栅2〇、光感 測器30及波導裝置60。輸入部1〇用以接收光學訊號s〇。 微型繞射光柵20接收光學訊號s〇並用以將光學訊號s〇 分離成複數個光譜分量S〇〇、S01、S02 。微型繞射光 柵20包含-第一晶片區段22及一第二晶片區段%。第 —晶片區& 22具有一聚焦曲自23 &形成於聚焦曲面23 上之一繞射圖案24。具有聚焦曲面23及繞射圖案以之 微型繞射光柵20可以將上述光學訊號so分離成此等光 譜分量SOO、SOI、S02,.·,並將此等光譜分量聚焦於光 201132945 感測器30上,藉此縮短光譜儀之光程。聚焦曲面23的 功用是光譜聚焦,而繞射圖案24的主要功用是光譜分 離,兩者共同作用即可達到將光學訊號s〇分離並聚焦 的功用。第二晶片區段26 一般是微機電製程刻製繞射圖 案24時所用的基底(substrate)或其部分,並具有一反射 面27。光感測器30用以接收此等光譜分量s〇〇、s〇i、 S02。波導裝置60包含一第—波導片62及一第二波導 片64,兩者都是平面式波導片,彼此面對以與輪入部1〇、 _ 微型繞射光栅2〇及光感測器30共同定義出一光通道%。 第一波導片62位於第一晶片區段22之一上表面25上。 第一波導片64與第二晶片區段26之反射面27局部接 觸,以使光學訊號SO之一第一部分s〇A到達繞射圖案 24,並使光學訊號S0之一第二部分S〇B到達反射面27 與第一波導片64不相接觸之局部。反射面27具有一第 一部分27A及一第二部分27B。第一部分27A接收光學 訊號SO之第二部分SOB。第二部分27B係與第二波導 片64接觸,故會被第二波導片04擋住而沒有接收光訊 *號。 所謂的微型光譜儀’其中的微型繞射光栅2〇係由微 機電製程(MEMS)所製造出來。微型繞射光柵2〇的繞射 圖案24的高度一般約有數十微米至數百微米,光通道96 的高度一般也在數十微米到數百微米之間,相較於傳統 光譜儀内部光源是在一開放空間中抵達一平面光栅140 而被分光’微型光譜儀的光通道96高度可說是極為扁 平。於一例子中’光通道96的高度為15〇微米。微型繞 201132945 射光柵20之總厚度(H22+H26)為625微米,繞射圖案24 之高度為80微米,亦即’圖3的H22等於80微米。因 此’第二晶片區段26有70微米的高度包含在光通道96 中。使得光學訊號SO之第二部分SOB可以到達反射面 27而被反射。依據此尺寸所量測出來的結果如圖4所示。 於圖4中’橫軸為光感測器30的畫素號碼,縱軸為強度 指標。 如圖4所示,由於感測器表面會濾除大約25〇奈米 以下波長的光線’圖中晝素號碼700以上才出現一階或 一階以上的光,至於晝素號碼1 -700的畫素則感測到零 階光以及經由反射面27之第一部分27A直接反射過來的 光。區段AA表示被反射面27的第一部分27A反射的光 訊號,這是因為第一部分27A為一平整的反射面,不具 有聚焦效果,所以光學訊號SOB會散開到感測器的數百 個晝素的區段。因為有第一部分27A反射的光訊號,所 以該區段因此使得整個光強度被提高了大約5000個單 位。畫素號碼1 50左右的畫素感測到的是被繞射圖案24 反射的光強度以及被反射面27反射的光強度,因此其加 總的總強度大約是66000單位。 值得注意的是,利用本發明,亦可以用來校正微型 繞射光柵20的定位狀況。當微型繞射光栅2〇有被妥善 安置時,區段BB的寬度是固定的,區段bb的寬度是一 個可以從光學理論推算出來的固定值,其中,區段BB 是從區段AA的結尾處到某一預先選定的特徵頻譜的波 峰間的距離。當微型繞射光柵20有歪斜時,整個光路會 10 m 201132945 有所改變,因此區段BB的寬度就會被改變。 圖5係以習知的羅蘭圓(Rowland circle)的理論來解 說本發明之微型光譜儀之所以可以聚焦於一直線的感測 器的示意圖。如圖5所示’依據羅蘭圓(R0wiand circle) 的理論,入射光通過譬如是狹縫結構之輸入部1 〇後,被 微型繞射光栅20'繞射並聚焦成像於羅蘭圓rc上。因此, 一個與羅蘭圓RC有交叉的光感測器30可以接收至少兩 個光譜分量。由於適用於羅蘭圓之微型繞射光柵20'的繞 射圖案具有固定之節距(Pitch),所以僅能將光讀分量聚 焦成像於一直線的兩點上。改變節距可以改變羅蘭圓的 大小,所以將繞射圖案設計成具有非固定的節距,即可 將至少三個光譜分量聚焦於一直線上,也就是達成圖1 的效果》 圖6顯示依據本發明另一實施例之能接收零階光譜 分量及一階光譜分量之光譜儀之示意圖。如圖6所示, 本實施例之光譜儀1係類似於圖1,不同之處在於第一 感測區段32與第二感測區段34是分開的,且第一感測 區段32與第二感測區段34之間的夾角不等於0度或1 80 度。如此一來,可以在零階光譜分量與一階光譜分量的 聚焦平面相差甚遠時,使用兩個光感測器來進行光譜分 量的感測。 圖7顯示依據本發明又另一實施例之能接收零階光 譜分量及一階光譜分量之光譜儀之示意圖。如圖7所示, 本實施例係類似於第一實施例,不同之處在於光譜儀1 更包含一雜散光濾除構造90,用以濾除光學訊號SO中 11 m 201132945 之一雜散光成分SOC。雜散光瀘、除構造90包含一第一過 濾區段92及一第二過濾區段94,兩者可以是獨立的元 件或是一體成型的元件。第一過濾區段92具有一第一齒 狀結構92T。第二過濾區段94具有一第二齒狀結構94T 面對第一齒狀結構92Τ。第一齒狀結構92Τ與第二齒狀 結構94Τ之間定義出一通道96,以供光學訊號SO中之 非雜散光成分SO A、SOB通過。於本實施例中,第一過 濾區段92及第二過濾區段94為兩個薄片結構,且位於 同一平面上。 值得注意的是,雜散光成分S0C除了包含雜訊以外, 亦可以包含入射角度不對時所要量測的光訊號。在沒有 裝設雜散光濾除構造90的情況下’這種入射角度不對的 光訊號在通過輸入部10以後,就會被殼體8〇或内部波 導經過幾次反射後到達微型繞射光栅2 〇,因此會干擾到 繞射結果。此外’雜散光濾除構造9〇亦可以裝設於繞射 光栅20與光感測器30之間。 藉由本發明之光譜儀,可以濾除不必要的雜散光成 分,避免其干擾到光譜成分而影響光感測器的判讀結果。 雜散光濾除構造的厚度可以是相當薄,且其材質可以是 金屬、塑膠或半導體材料等。發明人根據圖丨的架構實 施時,特別比較有裝設雜散光濾除構造跟沒有裝設雜散 光濾除構造的結果,發現有裝設雜散光濾除構造的光譜 儀可以獲得較佳的判讀結果。因此,本案之光譜儀,確 有其效能的大幅增進,且特別適合於微型光譜儀。 稭此感測零階光譜分量,使用者在不需要將各階光 12The photo sensor 30 and the waveguide device 60 are mounted in the housing 80. The illuminating device 40 is configured to generate a light signal SO after a light source passes through a sample 5 (for example, a chemical substance to be tested). In this way, the micro spectrometer 1 can be an independent measuring device. The user can carry the micro spectrometer 1 to any place for detection and achieve the purpose of action. Figure 2 shows a side view of a spectrometer in accordance with a preferred embodiment of the present invention. Figure 3 shows the operation of a micro-diffraction grating in accordance with a preferred embodiment of the present invention. Referring to Figures 1 through 3, the present invention provides another combined microspectrometer 1 comprising an input portion 1A, a micro-diffraction grating 2A, a photosensor 30, and a waveguide device 60. The input unit 1 is configured to receive an optical signal s〇. The micro-diffraction grating 20 receives the optical signal s 〇 and is used to separate the optical signal s 成 into a plurality of spectral components S 〇〇 , S01 , S02 . The micro-diffuser grating 20 includes a first wafer segment 22 and a second wafer segment %. The first wafer region & 22 has a focusing curve from 23 & a diffraction pattern 24 formed on the focusing curved surface 23. The micro-diffraction grating 20 having the focusing curved surface 23 and the diffraction pattern can separate the optical signal so into the spectral components SOO, SOI, S02, . . . , and focus the spectral components on the light 201132945 sensor 30 In this way, the optical path of the spectrometer is shortened. The function of the focusing surface 23 is spectral focusing, and the main function of the diffraction pattern 24 is spectral separation, and the two functions together to achieve the function of separating and focusing the optical signal s. The second wafer section 26 is typically a substrate or portion thereof used in the microelectromechanical process to scribe the diffraction pattern 24 and has a reflective surface 27. The photo sensor 30 is configured to receive the spectral components s 〇〇, s 〇 i, S02. The waveguide device 60 includes a first waveguide sheet 62 and a second waveguide sheet 64, both of which are planar waveguide sheets facing each other to form a turn-in portion, a micro-diffraction grating 2A, and a photo sensor 30. A light channel % is defined together. The first waveguide sheet 62 is located on an upper surface 25 of one of the first wafer segments 22. The first waveguide piece 64 is in partial contact with the reflective surface 27 of the second wafer section 26 such that a first portion s 〇 A of the optical signal SO reaches the diffraction pattern 24 and a second portion S 〇 B of the optical signal S0 It reaches a portion where the reflecting surface 27 is not in contact with the first waveguide sheet 64. The reflecting surface 27 has a first portion 27A and a second portion 27B. The first portion 27A receives the second portion SOB of the optical signal SO. The second portion 27B is in contact with the second waveguide piece 64 and is thus blocked by the second waveguide piece 04 without receiving the optical signal number. The so-called miniature spectrometers' micro-diffraction gratings 2 are manufactured by microelectromechanical processes (MEMS). The height of the diffraction pattern 24 of the micro-diffraction grating 2 is generally about several tens of micrometers to several hundreds of micrometers, and the height of the optical channel 96 is generally between several tens of micrometers and hundreds of micrometers, compared with the internal light source of the conventional spectrometer. The height of the optical channel 96 that is split into a planar grating 140 in an open space and split by the 'micro spectrometer' is extremely flat. In one example, the height of the light tunnel 96 is 15 inches. The total thickness (H22 + H26) of the micro-wounds 201132945 is 625 microns, and the height of the diffraction pattern 24 is 80 microns, that is, the H22 of Fig. 3 is equal to 80 microns. Therefore, the second wafer segment 26 has a height of 70 μm contained in the light tunnel 96. The second portion of the optical signal SO, SOB, can be reflected by the reflective surface 27. The results measured according to this size are shown in Fig. 4. In Fig. 4, the horizontal axis represents the pixel number of the photo sensor 30, and the vertical axis represents the intensity index. As shown in Fig. 4, since the surface of the sensor filters out light of a wavelength of about 25 nanometers or less, the first or first order light appears above the pixel number 700 in the figure, and the pixel number is 1-700. The pixels sense zero-order light and light that is directly reflected by the first portion 27A of the reflective surface 27. The section AA indicates the optical signal reflected by the first portion 27A of the reflecting surface 27, because the first portion 27A is a flat reflecting surface and has no focusing effect, so the optical signal SOB spreads to hundreds of sensors. The segment of the prime. Because of the optical signal reflected by the first portion 27A, the segment thus increases the overall light intensity by approximately 5000 units. The pixel of the pixel number of about 1 50 senses the intensity of the light reflected by the diffraction pattern 24 and the intensity of the light reflected by the reflection surface 27, so that the total intensity of the addition is about 66,000 units. It should be noted that the present invention can also be used to correct the positioning of the micro-diffractive grating 20. When the micro-diffractive grating 2 is properly positioned, the width of the segment BB is fixed, and the width of the segment bb is a fixed value that can be derived from optical theory, wherein the segment BB is from the segment AA. The distance from the end to the peak of a pre-selected characteristic spectrum. When the micro-diffraction grating 20 is skewed, the entire optical path will change from 10 m to 201132945, so the width of the segment BB will be changed. Figure 5 is a schematic illustration of the theory of the Rowland circle of the present invention illustrating the ability of the miniature spectrometer of the present invention to focus on a linear sensor. As shown in Fig. 5, according to the theory of R0wiand circle, the incident light passes through, for example, the input portion 1 of the slit structure, is then diffracted by the micro-diffraction grating 20' and is focused and imaged on the Roland circle rc. Therefore, a photo sensor 30 that intersects the Roland circle RC can receive at least two spectral components. Since the diffraction pattern of the micro-diffraction grating 20' suitable for the Roland circle has a fixed pitch, only the optical reading component can be focused on two points of the straight line. Changing the pitch can change the size of the Roland circle, so the diffraction pattern is designed to have a non-fixed pitch, so that at least three spectral components can be focused on the straight line, that is, the effect of Figure 1 is achieved. A schematic diagram of a spectrometer capable of receiving a zero-order spectral component and a first-order spectral component in another embodiment of the invention. As shown in FIG. 6, the spectrometer 1 of this embodiment is similar to FIG. 1, except that the first sensing section 32 and the second sensing section 34 are separated, and the first sensing section 32 is The angle between the second sensing sections 34 is not equal to 0 degrees or 180 degrees. In this way, two photosensors can be used to sense the spectral components when the zero-order spectral components are far from the focal plane of the first-order spectral components. Figure 7 is a diagram showing a spectrometer capable of receiving a zero-order spectral component and a first-order spectral component in accordance with yet another embodiment of the present invention. As shown in FIG. 7, the embodiment is similar to the first embodiment, except that the spectrometer 1 further includes a stray light filtering structure 90 for filtering out a stray light component SOC of 11 m 201132945 in the optical signal SO. . The stray aperture, removal structure 90 includes a first filter section 92 and a second filter section 94, which may be separate components or integrally formed components. The first filter section 92 has a first toothed structure 92T. The second filter section 94 has a second toothed structure 94T that faces the first toothed structure 92A. A channel 96 is defined between the first dentate structure 92A and the second dentate structure 94A for the passage of the non-stray light components SOA, SOB in the optical signal SO. In this embodiment, the first filter section 92 and the second filter section 94 are two sheet structures and are located on the same plane. It should be noted that the stray light component S0C may include an optical signal to be measured when the incident angle is not correct, in addition to the noise. In the case where the stray light filtering structure 90 is not installed, the optical signal whose angle of incidence is incorrect will pass through the input portion 10 and be reflected by the housing 8 or the internal waveguide several times to reach the micro-diffractive grating 2 Oh, so it will interfere with the diffraction results. Further, the stray light filtering structure 9 can be installed between the diffraction grating 20 and the photo sensor 30. With the spectrometer of the present invention, unnecessary stray light components can be filtered out to avoid interference with spectral components and affect the interpretation of the photosensor. The thickness of the stray light filtering structure can be quite thin and can be made of metal, plastic or semiconductor materials. When the inventor implemented the architecture according to the diagram, the results of the stray light filtering structure and the stray light filtering structure were compared, and it was found that the spectrometer equipped with the stray light filtering structure can obtain better interpretation results. . Therefore, the spectrometer of this case has a substantial improvement in its performance and is particularly suitable for miniature spectrometers. The sensor senses the zero-order spectral component, and the user does not need to use the order light 12

I SJ 201132945 譜分量進行加總的情況下,可以迅速獲得微型繞射光柵 2〇所輸出的總光強度,使用者可以利用此資料來進行校 正、定位或其他後續處理,譬如計算一階光譜分量的比 例、一階光譜分量的比例等。 在較佳實施例之詳細說明中所提出之具體實施例僅 用以方便說明本發明之技術内容,而非將本發明狹義地 限制於上述實施例’在不超出本發明之精神及以下申請 專利範圍之情況’所做之種種變化實施,皆屬於本發明 之範圍。 201132945 【圖式簡單說明】 圖1顯示依據本發明較佳實施例之能接收零階光譜 分量及一階光譜分量之微型光譜儀之示意圖。 圖2顯不依據本發明較佳實施例之微型光譜儀之側 視圖。 圖3顯示依據本發明較佳實施例之繞射光柵之工作 不意圖。 圖4顯不依據本發明較佳實施例之微型光譜儀所量 測出來的結果。 圖5顯示羅蘭圓(R〇wland以“⑷的示意圖。 圖6顯示依據本發明另一實施例之能接收零階光譜 分量及一階光譜分量之光譜儀之示意圖。 日 圖7顯不依據本發明又另一實施例之能接收零階先 错分量及一階光譜分量之光譜儀之示意圖。 圖8顯示一種傳統之光譜儀之示意圖。 【主要元件符號說明】 RC :羅蘭圓 SO :光學訊號 S〇A :第—部分(非雜散光成分) SOB:第二部分(非雜散光成分) SOC :雜散光成分 SCK)' SOI' 光譜分量 1 :光譜儀 10 :輸入部 14 201132945 20、20':微型繞射光柵 22 :第一晶片區段 23 :聚焦曲面 24 :繞射圖案 25 :上表面 26 :第二晶片區段 27 :反射面 27A :第一部分 27B :第二部分 3 0 :光感測器 32 :第一感測區段 3 4 :第二感測區段 36 :感光單元 40 :發光裝置 50 :試樣 60 :波導裝置 62 :第一波導片 64 :第二波導片 80 :殼體 92 :第一過濾區段 92T :第一齒狀結構 94 :第二過濾區段 94T :第二齒狀結構 96 :光通道 100 :光譜儀 15 201132945 110 : 光源 120 : 輸入部 130 : 準直面鏡 140 : 平面光柵 150 : 聚焦面鏡 160 : 直線狀光感測器 170 : 反射鏡 180 : 光感測器 200 : 光訊號I SJ 201132945 When the spectral components are summed, the total light intensity output by the micro-diffractive grating 2〇 can be quickly obtained, and the user can use this data for correction, positioning or other subsequent processing, such as calculating the first-order spectral component. The ratio, the ratio of the first-order spectral components, and so on. The specific embodiments described in the detailed description of the preferred embodiments are merely used to illustrate the technical content of the present invention, and the invention is not limited to the above-described embodiments, without departing from the spirit of the invention and the following claims. The scope of the 'various implementations' are within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a schematic diagram of a miniature spectrometer capable of receiving zero-order spectral components and first-order spectral components in accordance with a preferred embodiment of the present invention. Figure 2 shows a side view of a miniature spectrometer in accordance with a preferred embodiment of the present invention. Figure 3 shows the operation of a diffraction grating in accordance with a preferred embodiment of the present invention. Figure 4 shows the results measured by a miniature spectrometer in accordance with a preferred embodiment of the present invention. Figure 5 shows a Roland circle (R(w) is a schematic diagram of "(4). Figure 6 shows a schematic diagram of a spectrometer capable of receiving a zero-order spectral component and a first-order spectral component in accordance with another embodiment of the present invention. A schematic diagram of another embodiment of a spectrometer capable of receiving a zero-order first error component and a first-order spectral component. Figure 8 shows a schematic diagram of a conventional spectrometer. [Main component symbol description] RC: Roland circle SO: optical signal S〇A : Part--(non-stray light component) SOB: second part (non-stray light component) SOC: stray light component SCK)' SOI' spectral component 1: spectrometer 10: input section 14 201132945 20, 20': micro-diffraction Grating 22: first wafer section 23: focusing curved surface 24: diffraction pattern 25: upper surface 26: second wafer section 27: reflecting surface 27A: first portion 27B: second portion 30: photo sensor 32: First sensing section 3 4 : second sensing section 36 : photosensitive unit 40 : light emitting device 50 : sample 60 : waveguide device 62 : first waveguide piece 64 : second waveguide piece 80 : housing 92 : a filter section 92T: first tooth structure 94: second filter Segment 94T: second tooth structure 96: light channel 100: spectrometer 15 201132945 110: light source 120: input portion 130: collimating mirror 140: plane grating 150: focusing mirror 160: linear photo sensor 170: mirror 180 : Photosensor 200 : Optical signal

Claims (1)

201132945 七、申請專利範圍: 1· 一種能接收零階光譜分量及一階光譜分量之微型 光譜儀,包含: 一輸入部,用以接收一光學訊號; 一微型繞射光柵,具有一聚焦曲面及形成於該聚焦 曲面上之一繞射圖案,並用以接收該光學訊號並用以將 該光學訊號分離成複數個光譜分量,該等光譜分量至少 包含零階光譜分量及一階光譜分量;以及 一光感測器,其具有一第一感測區段及一第二感測 區段,用以接收被該微型繞射光柵分離並聚焦而來的該 等光譜分量,其中,該第一感測區段接收該零階光譜分 量,該第二感測區段接收該一階光譜分量。 2. 如申請專利範圍第1項所述之光譜儀,其中該第 一感測區段及該第二感測區段排成一直線,該光感測器 具有複數個感光單元,該等感光單元排列成一直線,且 該等光譜分量之數目大於或等於2。 3. 如申請專利範圍第1項所述之光譜儀,更包含一 發光裝置,用以發出一光源經過一試樣後產生該光學訊 號。 4. 如申請專利範圍第1項所述之光譜儀,更包含: 一殼體,其中該輸入部、該微型繞射光柵及該光感 測器係安裝於該殼體中。 5. 如申請專利範圍第1項所述之光譜儀,其中該 等光譜分里更包含二階光譜分量,且該光感測器之該第 一感測區段更接收該二階光譜分量。 17 201132945 6. 如申請專利範圍第1項所述之光譜儀,其中該 第一感測區段與該第二感測區段之間的夾角不等於〇度 或180度。 7. —種微型光譜儀,包含: 一輸入部,用以接收一光學訊號; 一微型繞射光柵,用以接收該光學訊號並用以將該 光學訊號分離成複數個光譜分量,該微型繞射光栅包含 一第一晶片區段及一第二晶片區段,該第一晶片區段具 有一聚焦曲面及形成於該聚焦曲面上之一繞射圖案,該 第一晶片區段具有一反射面; 一光感測器,用以接收被該微型繞射光柵分離並聚 焦而來的該等光譜分量;以及 一波導裝置’其包含一第一波導片及一第二波導片, 兩者彼此面對以與該輸入部、該微型繞射光柵及該光感 測器共同定義出一光通道,該第一波導片位於該第一晶 片區段之一上表面上’該第二波導片與該第二晶片區段 之該反射面局部接觸,以使該光學訊號之一第一部分到 達該繞射圖案,並使該光學訊號之一第二部分到達該反 射面與該第二波導片不相接觸之局部。 8. 如申請專利範圍第7項所述之微型光譜儀,其中: 該等光譜分量包含零階光譜分量及一階光譜分量; 且 該光感測器具有一第一感測區段及一第二感測區 段,該第一感測區段接收該零階光譜分量,該第二感測 區&接收該一階光譜分量,且該第一感測區段及該第二 18 201132945 感測區段同時接收從該反射面反射來之該光學訊號之該 第二部分。 9. 如申請專利範圍第8項所述之光譜儀,其中該第 一感測區段及該第二感測區段排成一直線,該光感測器 具有複數個感光單元,該等感光單元排列成一直線,且 該等光譜分量之數目大於或等於2。 10. 如申請專利範圍第8項所述之光譜儀,更包含 一發光裝置,用以發出一光源經過一試樣後產生該光學 ^ 訊號。 11. 如申請專利範圍第8項所述之光譜儀,更包含: 一殼體,其中該輸入部、該微型繞射光柵、該光感 測器及該波導裝置係安裝於該殼體中。 12. 如申請專利範圍第8項所述之光譜儀,其中該 等光譜分量更包含二階光譜分量,且該光感測器之該第 二感測區段更接收該二階光譜分量。 13. 如申請專利範圍第8項所述之光譜儀,其中該 第一感測區段與該第二感測區段之間的夾角不等於〇度 •或180度。 14. 如申請專利範圍第7項所述之微型光譜儀,更 包含一雜散光濾除構造,用以濾除該光學訊號中之一雜 散光成分,該雜散光濾除構造包含: 一第一過濾區段,具有一第一齒狀結構;及 一第二過據區段,具有一第二齒狀結構面對該第一 齒狀結構’該第一齒狀結構與該第二齒狀結構之間定義 出一光通道,以供該光學訊號中之非雜散光成分通過。 19 201132945 15. 如申請專利範圍第14項所述之光譜儀,其中 該第一過濾區段及該第二過濾區段位於同一平面上。201132945 VII. Patent application scope: 1. A miniature spectrometer capable of receiving zero-order spectral components and first-order spectral components, comprising: an input portion for receiving an optical signal; a micro-diffraction grating having a focusing surface and forming Drilling a pattern on the focusing surface for receiving the optical signal and separating the optical signal into a plurality of spectral components, the spectral components including at least a zero-order spectral component and a first-order spectral component; and a light sensation a detector having a first sensing section and a second sensing section for receiving the spectral components separated and focused by the micro-diffractive grating, wherein the first sensing section The zero-order spectral component is received, and the second sensing segment receives the first-order spectral component. 2. The spectrometer of claim 1, wherein the first sensing section and the second sensing section are aligned, the photo sensor has a plurality of photosensitive units, and the photosensitive units are arranged In a straight line, and the number of the spectral components is greater than or equal to two. 3. The spectrometer of claim 1, further comprising a light emitting device for emitting a light source through a sample to generate the optical signal. 4. The spectrometer of claim 1, further comprising: a housing, wherein the input portion, the micro-diffraction grating, and the photo sensor are mounted in the housing. 5. The spectrometer of claim 1, wherein the spectral score further comprises a second order spectral component, and the first sensing segment of the photosensor further receives the second order spectral component. 6. The spectrometer of claim 1, wherein the angle between the first sensing section and the second sensing section is not equal to a twist or 180 degrees. 7. A miniature spectrometer comprising: an input portion for receiving an optical signal; a micro-diffraction grating for receiving the optical signal and for separating the optical signal into a plurality of spectral components, the micro-diffraction grating a first wafer segment having a focusing curved surface and a diffraction pattern formed on the focusing curved surface, the first wafer segment having a reflective surface; a light sensor for receiving the spectral components separated and focused by the micro-diffractive grating; and a waveguide device comprising a first waveguide sheet and a second waveguide sheet, the two facing each other Forming an optical channel together with the input portion, the micro-diffractive grating and the photo sensor, the first waveguide sheet being located on an upper surface of the first wafer segment, the second waveguide sheet and the second The reflective surface of the wafer segment is in partial contact such that a first portion of the optical signal reaches the diffraction pattern and a second portion of the optical signal reaches a portion where the reflective surface does not contact the second waveguide sheet unit. 8. The micro spectrometer of claim 7, wherein: the spectral components comprise a zero-order spectral component and a first-order spectral component; and the photosensor has a first sensing segment and a second sense a first sensing segment receiving the zero-order spectral component, the second sensing region & receiving the first-order spectral component, and the first sensing segment and the second 18 201132945 sensing region The segment simultaneously receives the second portion of the optical signal reflected from the reflective surface. 9. The spectrometer of claim 8, wherein the first sensing section and the second sensing section are aligned, the photo sensor has a plurality of photosensitive units, and the photosensitive units are arranged In a straight line, and the number of the spectral components is greater than or equal to two. 10. The spectrometer of claim 8 further comprising a light emitting device for emitting a light source through a sample to generate the optical signal. 11. The spectrometer of claim 8, further comprising: a housing, wherein the input portion, the micro-diffraction grating, the photo sensor, and the waveguide device are mounted in the housing. 12. The spectrometer of claim 8, wherein the spectral components further comprise a second order spectral component, and the second sensing segment of the photosensor further receives the second order spectral component. 13. The spectrometer of claim 8, wherein an angle between the first sensing section and the second sensing section is not equal to a twist • or 180 degrees. 14. The micro spectrometer of claim 7, further comprising a stray light filtering structure for filtering out one of the stray light components of the optical signal, the stray light filtering structure comprising: a first filtering a section having a first toothed structure; and a second passage section having a second toothed structure facing the first toothed structure 'the first toothed structure and the second toothed structure An optical channel is defined between the non-stray light components in the optical signal. The spectrometer of claim 14, wherein the first filter section and the second filter section are on the same plane.
TW99109792A 2010-03-31 2010-03-31 Micro spectrometer capable of receiving zeroth-order and first-order spectrum components TWI468653B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99109792A TWI468653B (en) 2010-03-31 2010-03-31 Micro spectrometer capable of receiving zeroth-order and first-order spectrum components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99109792A TWI468653B (en) 2010-03-31 2010-03-31 Micro spectrometer capable of receiving zeroth-order and first-order spectrum components

Publications (2)

Publication Number Publication Date
TW201132945A true TW201132945A (en) 2011-10-01
TWI468653B TWI468653B (en) 2015-01-11

Family

ID=46750999

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99109792A TWI468653B (en) 2010-03-31 2010-03-31 Micro spectrometer capable of receiving zeroth-order and first-order spectrum components

Country Status (1)

Country Link
TW (1) TWI468653B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9273997B2 (en) 2012-11-16 2016-03-01 Oto Photonics, Inc. Spectrometer, assembling method thereof, and assembling system
US9625314B2 (en) 2012-08-06 2017-04-18 Hamamatsu Photonics K.K. Spectrometer
TWI588458B (en) * 2012-08-06 2017-06-21 Hamamatsu Photonics Kk Splitter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016124197A2 (en) * 2015-02-06 2016-08-11 Unisensor Sensorsysteme Gmbh Method and apparatus for identifying plastics and/or the additives therein
DE102016214496A1 (en) * 2016-08-04 2018-02-08 Gunther Krieg Device for the identification of substances

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3432252A1 (en) * 1984-09-01 1986-03-06 Fa. Carl Zeiss, 7920 Heidenheim MEASURING MICROSCOPE

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9625314B2 (en) 2012-08-06 2017-04-18 Hamamatsu Photonics K.K. Spectrometer
TWI588458B (en) * 2012-08-06 2017-06-21 Hamamatsu Photonics Kk Splitter
US9759604B2 (en) 2012-08-06 2017-09-12 Hamamatsu Photonics K.K. Spectrometer
TWI607203B (en) * 2012-08-06 2017-12-01 Hamamatsu Photonics Kk Splitter
TWI635259B (en) * 2012-08-06 2018-09-11 日商濱松赫德尼古斯股份有限公司 Splitter
US9273997B2 (en) 2012-11-16 2016-03-01 Oto Photonics, Inc. Spectrometer, assembling method thereof, and assembling system

Also Published As

Publication number Publication date
TWI468653B (en) 2015-01-11

Similar Documents

Publication Publication Date Title
WO2011120234A1 (en) Micro spectrometer capable of receiving zero order and first order spectral components
CN102269833B (en) The manufacture method of spectral device, detecting device and spectral device
US8976359B2 (en) Nanostructure diffraction gratings for integrated spectroscopy and sensing
JP5419301B2 (en) Sample analyzer
TW201132945A (en) Micro spectrometer capable of receiving zeroth-order and first-order spectrum components
WO2005074525A2 (en) Entangled-photon fourier transform spectroscopy
WO2011134156A1 (en) Optomechanical module of micro-spectrometer with conical slit and slit structure thereof
JP5674050B2 (en) Optical displacement meter
WO2016129033A1 (en) Multi-channel spectrophotometer and data processing method for multi-channel spectrophotometer
US10393585B2 (en) Spectral detector and spectral detecting method using the same
TWI437215B (en) Micro spectrometer with stray light filtering structure
US3951526A (en) Line rejection mirror for filter spectrograph
TW200839202A (en) Optical system
WO2011130899A1 (en) Micro spectrometer with stray light filtering structure
JP3316012B2 (en) Temperature measuring device using a micro-Raman spectrophotometer
CN112752958B (en) High flux compact static Fourier transform spectrometer
JP2010008706A (en) Diffraction grating and spectrometer
US3947302A (en) Method of producing a spectral line rejection mirror
KR100788822B1 (en) Optical system for measuring temperature of air molecular by splitting rotational raman-scattered signals
JP2005156343A (en) Spectroscopic device and optical filter for spectroscopic device
JP2005156414A (en) Apparatus for measuring surface plasmon resonance
KR101054017B1 (en) Calibration method of the spectrometer
JP3220550B2 (en) Multi-element type pyroelectric detector
JP7191311B2 (en) A spectrometer using a spectroscopic element with a light-collecting function
WO2002012950A1 (en) Method of analyzing spectrum using multi-slit member and multi-channel spectrograph using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees