TWI466714B - Method for making colloidal metal oxide particles - Google Patents

Method for making colloidal metal oxide particles Download PDF

Info

Publication number
TWI466714B
TWI466714B TW97150396A TW97150396A TWI466714B TW I466714 B TWI466714 B TW I466714B TW 97150396 A TW97150396 A TW 97150396A TW 97150396 A TW97150396 A TW 97150396A TW I466714 B TWI466714 B TW I466714B
Authority
TW
Taiwan
Prior art keywords
metal oxide
oxide particles
rate
particles
colloidal
Prior art date
Application number
TW97150396A
Other languages
Chinese (zh)
Other versions
TW200938294A (en
Inventor
James Neil Pryor
Original Assignee
Grace W R & Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grace W R & Co filed Critical Grace W R & Co
Publication of TW200938294A publication Critical patent/TW200938294A/en
Application granted granted Critical
Publication of TWI466714B publication Critical patent/TWI466714B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0047Preparation of sols containing a metal oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Silicon Compounds (AREA)
  • Colloid Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

製造膠態金屬氧化物粒子之方法Method for producing colloidal metal oxide particles

本發明係指製造膠態金屬氧化物粒子之方法。The present invention is directed to a method of making colloidal metal oxide particles.

在所屬領域中持續努力以高效能方式來形成膠態金屬氧化物粒子。Efforts continue to be made in the art to form colloidal metal oxide particles in a highly efficient manner.

在所屬領域中,具有在最佳化裝置利用時以高效能方式改良來形成膠態金屬氧化物粒子之方法的需求。There is a need in the art for a method of improving the formation of colloidal metal oxide particles in a highly efficient manner when utilizing an optimized device.

本發明提供形成膠態金屬氧化物粒子之新方法。所揭露形成膠態金屬氧化物粒子之方法,在接近最適方法條件下,能使膠態金屬氧化物粒子形成,以便以非常有效率的方式形成膠態金屬氧化物粒子。再者,所揭露的形成膠態金屬氧化物粒子之方法,由於能夠減少形成膠態金屬氧化物粒子所需之反應週期,而能使反應槽最適利用。The present invention provides a novel method of forming colloidal metal oxide particles. It is disclosed that a method of forming colloidal metal oxide particles can form colloidal metal oxide particles under conditions close to the optimum method to form colloidal metal oxide particles in a very efficient manner. Furthermore, the disclosed method of forming colloidal metal oxide particles enables the reaction tank to be optimally utilized because it can reduce the reaction cycle required to form colloidal metal oxide particles.

所揭露形成膠態金屬氧化物粒子之方法,其包括添加一種或多種反應物至反應槽的步驟,其中該添加一種或多種反應物之步驟考慮不同的原位反應條件,其包括但不受限於(i)反應槽中粒子成核速率,(ii)存在的金屬氧化物粒子之上的金屬氧化物沉積速率(例如:晶種金屬氧化物粒子及/或成核金屬氧化物粒子,及/或(iii)反應槽中金屬氧化物粒子的生長(例如:晶種金屬氧化物粒子及/或成核金屬氧化物粒子)中的至少一個。A method of forming colloidal metal oxide particles comprising the step of adding one or more reactants to a reaction tank, wherein the step of adding one or more reactants takes into account different in situ reaction conditions, including but not limited (i) particle nucleation rate in the reaction tank, (ii) metal oxide deposition rate over the metal oxide particles present (eg, seed metal oxide particles and/or nucleating metal oxide particles, and/or Or (iii) at least one of the growth of metal oxide particles (for example, seed metal oxide particles and/or nucleating metal oxide particles) in the reaction tank.

在一個範例的具體實施例中,製造膠態金屬氧化物粒子之方法包括以金屬氧化物質量添加速率將反應性金屬氧化物添加至反應槽的步驟,該金屬氧化物質量添加速率係基於數學模式,該數學模式考慮至少一個的(i)粒子成核速率,(ii)存在的金屬氧化物之上的金屬氧化物粒子沉積速率,及/或(iii)反應槽中金屬氧化物粒子的生長,其中增加該金屬氧化物質量添加速率作為反應時間的函數。另一個具體實施例中,在至少一部分的該反應週期期間,該添加速率每小時每1000平方公尺(m2 )之總粒子表面積的反應性金屬氧化物係大於10.0克(g/1000m2 -hr)。在甚至另一個範例性具體實施例中,根據本發明之製造膠態金屬氧化物粒子之方法,其包括以根據數學模式之金屬氧化物質量添加速率將反應性金屬氧化物添加至反應槽的步驟,該數學模式提供最適金屬氧化物質量添加速率,q由下式表示:In an exemplary embodiment, the method of making colloidal metal oxide particles includes the step of adding a reactive metal oxide to a reaction vessel at a metal oxide mass addition rate, the metal oxide mass addition rate being based on a mathematical model The mathematical model considers at least one of (i) particle nucleation rate, (ii) metal oxide particle deposition rate over the metal oxide present, and/or (iii) growth of metal oxide particles in the reaction cell, The metal oxide mass addition rate is increased as a function of reaction time. In another particular embodiment, during at least a portion of the reaction period, the addition rate of 1000 per hour per square meter of reactive metal oxide (m 2) of total particle surface area of greater than 10.0 grams (g / 1000m 2 - Hr). In even another exemplary embodiment, a method of making a colloidal metal oxide particle according to the present invention, comprising the step of adding a reactive metal oxide to a reaction vessel at a metal oxide mass addition rate according to a mathematical mode This mathematical mode provides the optimum metal oxide mass addition rate, q is represented by:

q=(3m0 Gr /DPO 3 )(DPO +Gr t)2 q=(3m 0 G r /D PO 3 )(D PO +G r t) 2

其中:among them:

(a)m0 代表在反應槽中金屬氧化物粒子的質量,其量測以克(g)計;(a) m 0 represents the mass of the metal oxide particles in the reaction tank, and the measurement is in grams (g);

(b)Gr 代表在反應槽中金屬氧化物粒子之金屬氧化物粒子生長速率,其係藉由增加粒徑來求出並且以每小時奈米(nm/hr)量測;(b) G r represents the growth rate of the metal oxide particles of the metal oxide particles in the reaction tank, which is determined by increasing the particle diameter and measured in nanometers per hour (nm/hr);

(c)DPO 代表以奈米(nm)量測之平均金屬氧化物粒徑;以及(c) D PO represents the average metal oxide particle size measured in nanometers (nm);

(d)t代表以小時計之時間(hr)。(d) t represents the time in hours (hr).

揭露製造膠態金屬氧化物粒子之方法可包括形成成核金屬氧化物粒子之步驟及/或使金屬氧化物晶種粒子成長之步驟。在一個範例性具體實施例中,製造膠態金屬氧化物粒子之方法包括添加一種或多種反應物至(i)含有水且(ii)實質上無任何晶種金屬氧化物粒子之反應槽的步驟,其中該一種或多種反應物可以形成成核金屬氧化物粒子;在反應槽中形成成核金屬氧化物粒子;以及在反應槽中使成核金屬氧化物粒子成長,以便形成膠態金屬氧化物粒子,其中成長步驟包括在反應週期期間,增加一種或多種反應物之進料速率。It is disclosed that the method of producing colloidal metal oxide particles may include the steps of forming nucleating metal oxide particles and/or growing metal oxide seed particles. In an exemplary embodiment, the method of making colloidal metal oxide particles includes the step of adding one or more reactants to (i) a reaction vessel containing water and (ii) substantially free of any seed metal oxide particles. Wherein the one or more reactants can form nucleating metal oxide particles; forming nucleating metal oxide particles in the reaction tank; and growing the nucleating metal oxide particles in the reaction tank to form a colloidal metal oxide The particles, wherein the growing step comprises increasing the feed rate of the one or more reactants during the reaction cycle.

揭露製造膠態金屬氧化物粒子之方法,為了形成膠態金屬氧化物粒子,而以具有反應週期遠低於傳統反應週期之能量效率方式可能產生膠態金屬氧化物粒子。在一個範例性具體實施例中,係製造膠態金屬氧化物粒子之方法,其包括在超過反應週期期間、以金屬氧化物質量添加速率將反應性金屬氧化物添加至反應槽中的步驟,以便形成具有範圍為約10nm至約200nm平均最終粒徑之膠態金屬氧化物粒子,其中該反應週期係與低於50%的使用傳統技術(例如:恆定之反應性金屬氧化物進料速率)之相似反應週期一樣。例如:當形成相似大小膠態金屬氧化物粒子的傳統方法需要至少30分鐘的反應週期,典型上為約31至40分鐘時,使用本方法可在約21-28分鐘之反應週期形成具有範圍為約20-30nm平均粒徑之膠態金屬氧化物粒子。It is disclosed that a method of producing colloidal metal oxide particles may produce colloidal metal oxide particles in order to form colloidal metal oxide particles in an energy efficient manner having a reaction period much lower than a conventional reaction period. In an exemplary embodiment, a method of making colloidal metal oxide particles comprising the step of adding a reactive metal oxide to a reaction vessel at a metal oxide mass addition rate during a reaction period in excess of Forming colloidal metal oxide particles having an average final particle size ranging from about 10 nm to about 200 nm, wherein the reaction period is less than 50% using conventional techniques (eg, a constant reactive metal oxide feed rate) The similar reaction cycle is the same. For example, when conventional methods of forming colloidal metal oxide particles of similar size require a reaction cycle of at least 30 minutes, typically about 31 to 40 minutes, the process can be formed in a reaction cycle of about 21-28 minutes using the process. Colloidal metal oxide particles having an average particle size of about 20-30 nm.

在另一範例性具體實施例中,係製造膠態金屬氧化物粒子之方法,其包括在超過反應週期期間、以金屬氧化物質量添加速率將反應性金屬氧化物添加至反應槽中的步驟,以便形成具有範圍為約20nm至約200nm平均最終粒徑之膠態金屬氧化物粒子,該金屬氧化物質量添加速率在反應週期期間至少增加一次。該金屬氧化物質量添加速率的增加(例如)可為單一步驟增加或多步驟增加。In another exemplary embodiment, a method of producing colloidal metal oxide particles, the method comprising the step of adding a reactive metal oxide to a reaction vessel at a metal oxide mass addition rate during a reaction period, To form colloidal metal oxide particles having an average final particle size ranging from about 20 nm to about 200 nm, the metal oxide mass addition rate is increased at least once during the reaction cycle. The increase in the rate of mass addition of the metal oxide, for example, can be a single step increase or a multi-step increase.

本發明進一步指的是使用膠態金屬氧化物粒子之方法。在一個使用膠態金屬氧化物粒子之範例方法中,該方法包括在基材上施用膠態金屬氧化物粒子組成物,並乾燥該膠態金屬氧化物粒子組成物,以便在基材上形成塗層。The invention further refers to a method of using colloidal metal oxide particles. In an exemplary method of using colloidal metal oxide particles, the method comprises applying a colloidal metal oxide particle composition on a substrate and drying the colloidal metal oxide particle composition to form a coating on the substrate. Floor.

本發明的這些和其他特徵以及優點在看過下列所揭露之具體實施例和所附之申請專利範圍的詳細敘述後將變得清楚。These and other features and advantages of the present invention will become apparent from the Detailed Description of the appended claims.

為促進對本發明原理的理解,本發明遵循特定具體實施例的描述並採用特定的語言描述特定具體實施例。然而,應理解的是並不打算利用特定語言對於本發明範圍進行限制。如本發明所屬技術領域中具有通常知識者通常所為,預期將對前面討論過之本發明原理,進行改變、進一步修飾和進一步應用。The present invention has been described with respect to the specific embodiments and the specific embodiments are described in the specific language. However, it should be understood that the scope of the invention is not intended to be limited by the specific language. Variations, further modifications, and further applications of the principles of the invention discussed above are contemplated as would be apparent to those of ordinary skill in the art.

必須要注意在本發明及所附的申請專利範圍中使用之單數形式「一」、「及」和「該」除本文清楚地不同指定外,否則包括複數指示對象。因此,(例如)提及「氧化物」包括複數的該氧化物,以及提及「氧化物」包括提及一種或一種以上之氧化物和本技術領域中嫻熟技藝者所知之其相等物等等。It must be noted that the singular forms "a", "and" and "the" are used in the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Thus, for example, reference to "an oxide" includes a plurality of such oxides, and reference to "oxide" includes reference to one or more oxides and equivalents known to those skilled in the art. Wait.

「約」使用於揭露具體實施例的描述之組成物、濃度、體積、程序溫度、程序時間、回收率或產率、流率、和類似値、和其範圍中修飾(例如)組分的數量,其指的是(例如)可經典型量測和處理程序;經在這些程序中不注意的犯錯;經不同的使用於進行本方法之組分;以及類似的原因發生的數値量的變化。術語「約」亦包含因具特定初始濃度之調配物或混合物的老化之不同量,以及因具特定初始濃度的調配物或混合物之混合和處理之不同量。不管是藉由術語「約」修飾,申請專利範圍關於這個附加,包含相同的這些量。"About" is used to disclose the composition, concentration, volume, program temperature, procedure time, recovery or yield, flow rate, and similar enthalpy of the description of the specific embodiments, and the number of modified (for example) components in its range. , which refers to, for example, classical type measurement and processing procedures; mistakes that are not noticed in these procedures; components that are used differently for performing the method; and variations in the number of measurements that occur for similar reasons . The term "about" also encompasses different amounts of aging due to a particular initial concentration of the formulation or mixture, as well as different amounts of mixing and handling of the formulation or mixture with a particular initial concentration. Whether modified by the term "about", the scope of the patent application relates to this addition and includes the same quantities.

使用於本文之「金屬氧化物」係定義為二元氧化合物(binary oxygen compound),其中該金屬為陽離子,該氧化物為陰離子。該金屬亦可包含準金屬(metalloid)。金屬包含在周期表上由硼至釙所劃斜線的左邊那些元素。準金屬或半金屬(semi-metal)包含在此線上那些元素。金屬氧化物的例子包含二氧化矽、氧化鋁、二氧化鈦、二氧化鋯等及其混合物。As used herein, "metal oxide" is defined as a binary oxygen compound wherein the metal is a cation and the oxide is an anion. The metal may also comprise a metalloid. The metal contains those elements on the left side of the periodic table that are diagonally drawn from boron to germanium. The quasi-metal or semi-metal contains those elements on this line. Examples of metal oxides include cerium oxide, aluminum oxide, titanium oxide, zirconium dioxide, and the like, and mixtures thereof.

本發明係指製造膠態金屬氧化物粒子之方法。本發明進一步指的是膠態金屬氧化物粒子、包括膠態金屬氧化物粒子之組成物以及使用膠態金屬氧化物粒子之方法。以下提供膠態金屬氧化物粒子、製造膠態金屬氧化物粒子之方法、以及使用膠態金屬氧化物粒子之方法之範例的敘述。The present invention is directed to a method of making colloidal metal oxide particles. The invention further refers to colloidal metal oxide particles, compositions comprising colloidal metal oxide particles, and methods of using colloidal metal oxide particles. The following is a description of examples of colloidal metal oxide particles, methods of making colloidal metal oxide particles, and methods of using colloidal metal oxide particles.

I . 製造膠態金屬氧化物粒子之方法 I. Method of producing colloidal metal oxide particles

本發明係指製造膠態金屬氧化物粒子之方法。以下詳述用來形成本發明膠態金屬氧化物粒子之原料,以及形成本發明膠態金屬氧化物粒子之方法步驟。The present invention is directed to a method of making colloidal metal oxide particles. The materials used to form the colloidal metal oxide particles of the present invention, as well as the method steps for forming the colloidal metal oxide particles of the present invention, are detailed below.

A . 原料 A. Raw materials

揭露製造膠態金屬氧化物粒子之方法,其可利用一種或多種下列原料以製造膠態二氧化矽粒子,但替代的原料可被利用於形成其他種類的膠態金屬氧化物材料,像是膠態氧化鋁粒子、膠態二氧化鈦粒子、膠態二氧化鋯粒子等等、以及其組合。A method of making colloidal metal oxide particles that utilizes one or more of the following materials to produce colloidal ceria particles, but alternative materials can be utilized to form other types of colloidal metal oxide materials, such as glue Alumina particles, colloidal titanium dioxide particles, colloidal zirconium dioxide particles, and the like, and combinations thereof.

1 . 矽酸鹽 1. Silicate

製造膠態二氧化矽粒子之方法,其可利用一種或多種之含矽原料。合適的含矽原料包括但不受限於矽酸鹽,如鹼金屬矽酸鹽。合意地,使用一種或多種鹼金屬矽酸鹽以形成膠態二氧化矽粒子。合適的鹼金屬矽酸鹽包括但不受限於矽酸鈉鹽、矽酸鉀鹽、矽酸鈣鹽、矽酸鋰鹽、矽酸鎂鹽及其組合。A method of making colloidal cerium oxide particles that utilizes one or more cerium-containing materials. Suitable ruthenium containing materials include, but are not limited to, phthalates, such as alkali metal ruthenates. Desirably, one or more alkali metal silicates are used to form colloidal cerium oxide particles. Suitable alkali metal silicates include, but are not limited to, sodium citrate, potassium citrate, calcium citrate, lithium niobate, magnesium citrate, and combinations thereof.

合適的商業獲得矽酸鹽包括但不受限於由包含PQ股份有限公司(Valley Forge,PA)和Zaclon公司(Cleveland,OH)之數個來源之商購取得的矽酸鈉鹽以及矽酸鉀鹽。Suitable commercially available phthalates include, but are not limited to, commercially available sodium citrate salts and potassium citrate from several sources including PQ Corporation (Valley Forge, PA) and Zaclon Corporation (Cleveland, OH). salt.

2 . 離子交換樹脂 2. Ion exchange resin

在所揭露之方法中,任何單一矽酸鹽或矽酸鹽之組合可與一種或多種陽離子交換樹脂反應以形成膠態二氧化矽粒子。本發明所使用的合適的陽離子交換樹脂包含但不受限於強酸陽離子(SAC)樹脂、弱酸陽離子(WAC)樹脂、以及其組合。In the disclosed method, any single citrate or citrate combination can be reacted with one or more cation exchange resins to form colloidal cerium oxide particles. Suitable cation exchange resins for use in the present invention include, but are not limited to, strong acid cation (SAC) resins, weak acid cation (WAC) resins, and combinations thereof.

合適的商業獲得陽離子交換樹脂包含,但不受限於,由數種來源之商業獲得陽離子交換樹脂,該來源包含Purolite有限公司(Bala Cynwyd,PA),像是以商品設計所販賣的;以及陶氏化學(Dow Chemical)(Midland,MI),像是以商品設計所販賣的。Suitable commercially available cation exchange resins include, but are not limited to, commercially available cation exchange resins from several sources, including Purolite Ltd. (Bala Cynwyd, PA), such as Commercially designed to sell; and Dow Chemical (Midland, MI), like Sold by commodity design.

典型上,以樹脂添加速率,將一種或多種陽粒子交換樹脂添加至反應槽,以便保持反應槽的pH在約8.0和約10.0之間,期望在約9.2和約9.6之間。Typically, one or more positive particle exchange resins are added to the reaction tank at a resin addition rate to maintain the pH of the reaction tank between about 8.0 and about 10.0, desirably between about 9.2 and about 9.6.

3 . 晶種金屬氧化物粒子 3. Seed metal oxide particles

在本發明之一些具體實施例中,晶種金屬氧化物粒子被用作為開始原料。在這些具體實施例中,可使用數個提供者之晶種膠態金屬氧化物粒子。使用於本發明之合適的晶種膠態金屬氧化物粒子包含但不受限於晶種膠態金屬氧化物粒子,像是由Nissan化學美國公司(Houston,TX)和Eka化學有限公司(Marietta,GA)商業獲得之膠態二氧化矽粒子。In some embodiments of the invention, seed metal oxide particles are used as starting materials. In these embodiments, a plurality of donor seed colloidal metal oxide particles can be used. Suitable seed colloidal metal oxide particles for use in the present invention include, but are not limited to, seed colloidal metal oxide particles, such as by Nissan Chemicals, Inc. (Houston, TX) and Eka Chemical Co., Ltd. (Marietta, GA) Commercially obtained colloidal cerium oxide particles.

B . 方法步驟 B. Method steps

揭露製造膠態金屬氧化物粒子之方法,其包括數個如下詳述之步驟。A method of making colloidal metal oxide particles is disclosed which includes a number of steps as detailed below.

1 . 反應槽的製備 1. Preparation of reaction tank

揭露製造膠態金屬氧化物粒子之方法,為了形成膠態金屬氧化物粒子而可能產生具有反應週期遠低於傳統反應週期之能量效率方式使膠態金屬氧化物粒子。在一個範例實施例中,製造膠態金屬氧化物粒子之方法,其包括添加一種或多種反應物至(i)含有水且(ii)實質上無任何晶種金屬氧化物粒子之反應槽的步驟,其中該一種或多種反應物可以形成成核金屬氧化物粒子。在此具體實施例中,製備反應槽的步驟簡單包括添加預定量去離子(DI)水至反應槽。Disclosure of methods for making colloidal metal oxide particles, in order to form colloidal metal oxide particles, may result in colloidal metal oxide particles having a reaction cycle that is much lower than the conventional reaction cycle energy efficiency. In an exemplary embodiment, a method of making colloidal metal oxide particles comprising the step of adding one or more reactants to (i) a reaction vessel containing water and (ii) substantially free of any seed metal oxide particles Where the one or more reactants can form nucleating metal oxide particles. In this particular embodiment, the step of preparing the reaction vessel simply involves adding a predetermined amount of deionized (DI) water to the reaction vessel.

在另一具體實施例中,製造膠態金屬氧化物粒子之方法,其包括添加一種或多種反應物至含(i)去離子(DI)水和(ii)實質上無任何晶種金屬氧化物粒子之反應槽的步驟,其中該一種或多種反應物能形成成核金屬氧化物粒子及/或使晶種金屬氧化物粒子生長。在此具體實施例中,製備反應槽的步驟包括將(i)去離子(DI)水之期望量和(ii)晶種金屬氧化物粒子添加至反應槽之期望量。在利用晶種金屬氧化物粒子的時候,該晶種金屬氧化物粒子典型上具有範圍為約5nm至約15nm的初始平均粒子大小(亦即最大尺寸)。In another embodiment, a method of making colloidal metal oxide particles comprising adding one or more reactants to (i) deionized (DI) water and (ii) substantially free of any seed metal oxide A step of a reaction vessel of particles, wherein the one or more reactants are capable of forming nucleating metal oxide particles and/or growing seed metal oxide particles. In this particular embodiment, the step of preparing the reaction vessel includes the desired amount of (i) deionized (DI) water and (ii) seed metal oxide particles added to the reaction vessel. The seed metal oxide particles typically have an initial average particle size (i.e., maximum dimension) ranging from about 5 nm to about 15 nm when the seed metal oxide particles are utilized.

2 . 添加反應性金屬氧化物 2. Add reactive metal oxides

揭露形成膠態金屬氧化物粒子之方法,其包括將一種或多種上述反應物添加至反應槽的步驟,其中添加一種或多種反應物的步驟考慮不同的原位反應條件,該反應條件包含但不受限於至少一個的(i)反應槽中粒子成核速率、(ii)反應槽中,存在的金屬氧化物粒子(例如:晶種金屬氧化物粒子及/或成核金屬氧化物粒子)之上的金屬氧化物沉積速率、及/或(iii)反應槽中金屬氧化物粒子(例如:晶種金屬氧化物粒子及/或成核金屬氧化物粒子)的生長。揭露平衡反應物進料速率抑制存在的金屬氧化物粒子之上的反應性金屬氧化物沉積速率所形成的膠態金屬化物粒子之方法,以便於溶液相中控制反應性金屬氧化物的過飽和程度。A method of forming colloidal metal oxide particles comprising the step of adding one or more of the above reactants to a reaction tank, wherein the step of adding one or more reactants takes into account different in situ reaction conditions, including but not Limited to at least one of (i) particle nucleation rate in the reaction tank, and (ii) metal oxide particles (eg, seed metal oxide particles and/or nucleating metal oxide particles) present in the reaction tank The rate of metal oxide deposition thereon, and/or (iii) the growth of metal oxide particles (eg, seed metal oxide particles and/or nucleating metal oxide particles) in the reaction bath. A method of balancing the reactant feed rate to inhibit colloidal metallization particles formed by the rate of reactive metal oxide deposition over the metal oxide particles present is disclosed to facilitate control of the degree of supersaturation of the reactive metal oxide in the solution phase.

在一個範例性具體實施例中,製造膠態金屬氧化物粒子之方法,其包括以金屬氧化物質量添加速率將反應性金屬氧化物添加至反應槽的步驟,在基於數學模式之金屬氧化物質量添加速率下,將反應性金屬氧化物添加至反應槽,該金屬氧化物質量添加速率係基於考慮至少一個之(i)粒子成核速率,(ii)存在的金屬氧化物粒子之上的金屬氧化物沉積速率,及/或(iii)反應槽中金屬氧化物粒子的生長之數學模式,其中該金屬氧化物質量添加速率隨著反應時間函數增加。在另一具體實施例中,在至少一部分的反應週期期間,該添加速率每小時每1000平方公尺(m2 )總粒子表面積的反應性金屬氧化物係大於10.0克(g/1000m2 -hr)。在更進一步的具體實施例中,根據本發明所製造的膠態金屬氧化物粒子之方法,其包括以根據數學模式之金屬氧化物質量添加速率,將反應性金屬氧化物添加至反應槽的步驟,該數學模式提供最適金屬氧化物質量添加速率,q由下式表示:q=(3m0 Gr /DPO 3 )(DPO +Gr t)2 In an exemplary embodiment, a method of making colloidal metal oxide particles comprising the step of adding a reactive metal oxide to a reaction vessel at a metal oxide mass addition rate, in a mathematical mode based metal oxide quality At the rate of addition, a reactive metal oxide is added to the reaction tank based on the rate of nucleation of at least one of (i) particles, (ii) metal oxidation over the metal oxide particles present. A mathematical mode of deposition rate of the material, and/or (iii) growth of metal oxide particles in the reaction vessel, wherein the metal oxide mass addition rate increases as a function of reaction time. In another embodiment, the rate of addition of the reactive metal oxide system per 1000 square meters (m 2 ) of total particle surface area per hour is greater than 10.0 grams (g/1000 m 2 -hr during at least a portion of the reaction cycle) ). In a still further embodiment, the method of colloidal metal oxide particles produced in accordance with the present invention comprises the step of adding a reactive metal oxide to the reaction vessel at a metal oxide mass addition rate according to a mathematical model , the mathematical mode provides the optimum metal oxide mass addition rate, q is represented by the following formula: q = (3m 0 G r / D PO 3 ) (D PO + G r t) 2

其中:among them:

(a)m0 代表在反應槽中金屬氧化物粒子的質量,其量測以克(g)計;(a) m 0 represents the mass of the metal oxide particles in the reaction tank, and the measurement is in grams (g);

(b)Gr 代表在反應槽中金屬氧化物粒子之金屬氧化物粒子生長速率,其係藉由增加粒徑來求出並且以每小時奈米(nm/hr)來量測;(b) G r represents the growth rate of the metal oxide particles of the metal oxide particles in the reaction tank, which is determined by increasing the particle diameter and measured in nanometers per hour (nm/hr);

(c)DPO 代表以奈米(nm)來量測之平均金屬氧化物粒徑;以及(c) D PO represents the average metal oxide particle size measured in nanometers (nm);

(d)t代表以小時計之時間(hr)。(d) t represents the time in hours (hr).

某些具體實施例中,在至少一部分的反應週期期間,Gr 範圍為約10至約50nm/hr,以及q範圍為約10.6至約52.8g/1000m2 -hr。在其他具體實施例中,在至少一部分的反應週期期間,Gr 範圍為約20至約40nm/hr,以及q範圍為約21.1至約42.3g/1000m2 -hr。In certain embodiments, during at least part of the reaction period, G r is the range from about 10 to about 50nm / hr, and q ranges from about 10.6 to about 52.8g / 1000m 2 -hr. In other embodiments, during at least part of the reaction period, G r is the range from about 20 to about 40nm / hr, and q ranges from about 21.1 to about 42.3g / 1000m 2 -hr.

第1圖為以圖表描述隨著反應性金屬氧化物濃度的改變之(i)反應性金屬氧化物之成核速率(RN )以及(ii)在存在的粒子上之反應性金屬氧化物的沉積速率(DR )的曲線圖。如第1圖所示,直到(i)反應性金屬氧化物濃度超過飽和濃度(CS ),以及(ii)達到以CC 識別之過飽和臨界程度才發生成核作用。在此時點,當沉積速率隨著反應性金屬氧化物濃度增加而持續沿著線性路徑時,成核作用以指數速率進行。Figure 1 is a graph depicting (i) the nucleation rate (R N ) of the reactive metal oxide and (ii) the reactive metal oxide on the particles present as a function of the concentration of the reactive metal oxide A plot of deposition rate (D R ). As shown in Fig. 1, nucleation occurs until (i) the reactive metal oxide concentration exceeds the saturation concentration (C S ), and (ii) reaches the critical degree of supersaturation identified by C C . At this point, nucleation proceeds at an exponential rate as the deposition rate continues along the linear path as the concentration of reactive metal oxide increases.

第2圖為以圖表描述方法條件,該方法條件有利於(i)在存在的粒子之上的反應性金屬氧化物沉積速率(即在反應性金屬氧化物濃度低於CC 時),(ii)新膠態金屬氧化物粒子的成核作用(即在反應性金屬氧化物濃度在CC 以上時),以及(iii)(i)和(ii)兩者(即反應性金屬氧化物濃度高於CC 或低於第2圖所示之濃度CN )隨著反應性金屬氧化物濃度而增加。當反應性金屬氧化物的濃度增加在第2圖所示之CN 以上時,方法條件顯著地有利於在存在的粒子上之金屬氧化物的沉積期間,新金屬氧化物粒子的成核作用。Figure 2 is a graphical representation of the process conditions that favor (i) the rate of reactive metal oxide deposition over the particles present (i.e., when the reactive metal oxide concentration is below C C ), (ii) Nucleation of new colloidal metal oxide particles (ie, when the reactive metal oxide concentration is above C C ), and (iii) both (i) and (ii) (ie, high concentration of reactive metal oxides) in C C shown in FIG. 2 or below the concentration C N) with the concentration of reactive metal oxide increases. When the concentration of the reactive metal oxide increases above the C N shown in Figure 2, the process conditions significantly favor the nucleation of the new metal oxide particles during the deposition of the metal oxide on the particles present.

3 . 粒子成形步驟的完成 3. Finishing of the particle forming step

一旦達到預定的金屬氧化物粒子尺寸,停止反應物添加至反應槽,以及為了淬火該反應而添加一定量去離子水至反應槽中。Once the predetermined metal oxide particle size is reached, the addition of reactants to the reaction tank is stopped, and a certain amount of deionized water is added to the reaction tank for quenching the reaction.

4 . 過濾步驟 4. Filtering steps

淬火步驟之後係過濾步驟(例如:超過濾步驟)可用於移除由一種或多種陽離子交換樹脂與一種或多種金屬氧化物原料所產生之多餘的鹽類。A post-quenching step followed by a filtration step (eg, an ultrafiltration step) can be used to remove excess salts produced by one or more cation exchange resins and one or more metal oxide feedstocks.

C . 方法之優勢 C. Advantages of the method

揭露製造膠態金屬氧化物粒子之方法,在使反應器時間及能量的利用最適化的同時,能夠生產膠態金屬氧化物粒子。在某些範例性的具體實施例中,製造膠態金屬氧化物粒子之方法,在反應週期中,使能生產具有範圍為約30至約200nm最終粒徑之膠態金屬氧化物粒子,該反應週期代表使用傳統方法製造相同的膠態金屬氧化物粒子所需之反應週期減少50%。A method of producing colloidal metal oxide particles is disclosed which is capable of producing colloidal metal oxide particles while optimizing reactor time and energy utilization. In certain exemplary embodiments, the method of making colloidal metal oxide particles enables the production of colloidal metal oxide particles having a final particle size ranging from about 30 to about 200 nm during the reaction cycle. The cycle represents a 50% reduction in the reaction cycle required to produce the same colloidal metal oxide particles using conventional methods.

第3圖為以圖表描述使用(i)本發明之最適反應性二氧化矽進料速率和(ii)傳統方法使用不變的反應性二氧化矽進料速率,而減少形成具有22nm平均粒徑之膠態二氧化矽粒子所需的反應時間。Figure 3 is a graphical depiction of the use of (i) the optimum reactive ceria feed rate of the present invention and (ii) the conventional method using a constant reactive ceria feed rate to reduce the formation of an average particle size of 22 nm. The reaction time required for the colloidal ceria particles.

第4圖為以圖表描述使用本發明之最適方法逐步地添加反應性二氧化矽,以便接近緊接的最適進料速率。如第4圖所示,揭露製造膠態二氧化矽粒子之方法可包括在所給予之反應週期期間,一次或多次逐步地增加反應性二氧化矽進料速率。雖然第4圖已顯示只有兩階段或三階段之方法,但任何次數階段增加反應性二氧化矽進料速率,該反應速率係為使用於本發明以緊隨著藉由第4圖所示之「最適的」線描述之最適進料速率。Figure 4 is a graphical depiction of the progressive addition of reactive ceria using the optimum method of the present invention to approximate the immediate optimum feed rate. As shown in FIG. 4, it is disclosed that the method of making colloidal ceria particles can include gradually increasing the reactive ceria feed rate one or more times during the given reaction cycle. Although Figure 4 has shown that there are only two-stage or three-stage processes, the reactive ceria feed rate is increased for any number of stages, which is used in the present invention to follow the Figure 4 The "Optimum" line describes the optimum feed rate.

II . 產生膠態金屬氧化物粒子 II . Producing colloidal metal oxide particles

在上述本發明方法中形成的膠態金屬氧化物粒子,其具有相似如下所述之形成膠態金屬氧化物粒子之傳統方法中所形成的膠態金屬氧化物粒子之物理結構和性質。The colloidal metal oxide particles formed in the above method of the present invention have physical structures and properties similar to those of the colloidal metal oxide particles formed in the conventional method of forming colloidal metal oxide particles as described below.

A . 金屬氧化物粒子之尺寸 A. Size of metal oxide particles

本發明之膠態金屬氧化物粒子具有平均最大粒子尺寸(即最大直徑尺寸)之球型粒子形狀。典型上,本發明之膠態金屬氧化物粒子具有低於約700μm的平均最大粒子尺寸,更典型為低於約100μm。在本發明之一個期望的具體實施例中,膠態金屬氧化物粒子具有約10.0至約100μm的平均最大粒子尺寸,更期望為約10.0至約30μm。The colloidal metal oxide particles of the present invention have a spherical particle shape having an average maximum particle size (i.e., a maximum diameter size). Typically, the colloidal metal oxide particles of the present invention have an average maximum particle size of less than about 700 [mu]m, more typically less than about 100 [mu]m. In a desirable embodiment of the invention, the colloidal metal oxide particles have an average maximum particle size of from about 10.0 to about 100 μm, more desirably from about 10.0 to about 30 μm.

本發明之膠態金屬氧化物粒子典型上具有低於約1.4的縱橫比,其係(例如)使用透射式電子顯微鏡(TEM)技術來量測。本文所使用術語「縱橫比」用來描述(i)膠態金屬氧化物粒子之平均最大粒子尺寸以及(ii)膠態金屬氧化物粒子之平均最大截面粒子尺寸之間的比,其中截面粒子尺寸實質上垂直膠態金屬氧化物粒子之最大粒子尺寸。在本發明的一些具體實施例中,膠態金屬氧化物粒子具有低於約1.3(或低於約1.2、或低於約1.1、或低於約1.05)的縱橫比。典型上,膠態金屬氧化物粒子具有約1.0至約1.2的縱橫比。The colloidal metal oxide particles of the present invention typically have an aspect ratio of less than about 1.4, which is measured, for example, using transmission electron microscopy (TEM) techniques. The term "aspect ratio" as used herein is used to describe the ratio between (i) the average maximum particle size of the colloidal metal oxide particles and (ii) the average maximum cross-sectional particle size of the colloidal metal oxide particles, wherein the cross-sectional particle size The maximum particle size of substantially vertical colloidal metal oxide particles. In some embodiments of the invention, the colloidal metal oxide particles have an aspect ratio of less than about 1.3 (or less than about 1.2, or less than about 1.1, or less than about 1.05). Typically, the colloidal metal oxide particles have an aspect ratio of from about 1.0 to about 1.2.

B. 金屬氧化物粒子之表面積B. Surface area of metal oxide particles

本發明之膠態金屬氧化物粒子具有相似傳統方法形成之膠態金屬氧化物粒子的平均表面積。典型上,本發明之膠態金屬氧化物粒子具有範圍為約90m2 /g至約180m2 /g的平均表面積。期望地,本發明之膠態金屬氧化物粒子具有範圍為約100m2 /g至約160m2 /g的平均表面積,更期望為約110m2 /g至約150m2 /g。The colloidal metal oxide particles of the present invention have an average surface area similar to that of the colloidal metal oxide particles formed by conventional methods. Typical, colloidal metal oxide particles of the present invention have a range of g to about 180m 2 / average surface area of about 90m 2 / g of. Desirably, the colloidal metal oxide particles of the present invention have an average surface area ranging from about 100 m 2 /g to about 160 m 2 /g, more desirably from about 110 m 2 /g to about 150 m 2 /g.

第5圖藉由圖表來比較由本發明最適方法所形成的膠態金屬氧化物粒子(在此情況為膠態二氧化矽粒子)與由傳統方法(即非最適方法,亦即不變的金屬氧化物原料進料速率)所形成的膠態二氧化矽粒子。如第5圖所示,傳統方法所形成的膠態二氧化矽粒子具有約27.6nm的平均粒子大小以及約136m2 /g的平均粒子表面積,然而本發明最適方法所形成的膠態二氧化矽粒子具有約28.7nm的平均粒子大小以及約142m2 /g的平均粒子表面積。Figure 5 is a graph comparing the colloidal metal oxide particles (in this case colloidal ceria particles) formed by the optimum method of the present invention with conventional methods (i.e., non-optimal methods, i.e., constant metal oxidation). The raw material feed rate) formed colloidal cerium oxide particles. As shown in Fig. 5, the colloidal ceria particles formed by the conventional method have an average particle size of about 27.6 nm and an average particle surface area of about 136 m 2 /g, whereas the colloidal ceria formed by the optimum method of the present invention particles have an average particle size of about 28.7nm, and from about 142m 2 / g, average particle surface area.

如第5圖所示,本發明最適方法所形成的膠態金屬氧化物(例如:二氧化矽)粒子實質上可生產類似由傳統方法所形成的膠態金屬氧化物粒子。然而,如上所述,藉由本發明之最適方法所形成的膠態金屬氧化物粒子可利用高達50%之更少的反應器時間和方法能量之更有效方式生產。As shown in Fig. 5, the colloidal metal oxide (e.g., cerium oxide) particles formed by the optimum method of the present invention can substantially produce colloidal metal oxide particles similar to those formed by conventional methods. However, as noted above, the colloidal metal oxide particles formed by the optimum method of the present invention can be produced in a more efficient manner with up to 50% less reactor time and process energy.

III.使用金屬氧化物粒子之方法III. Method of using metal oxide particles

本發明進一步指以上述方法形成之膠態金屬氧化物粒子的使用方法。在一個使用膠態金屬氧化物粒子的示範性方法中,該方法包括在基材上施用膠態金屬氧化物粒子組成物,並乾燥該膠態金屬氧化物粒子組成物,以便在基材上形成塗層。合適的基材包含但不受限於紙、聚合物的薄膜、聚合物的泡沫材料、玻璃、金屬、陶瓷、及織物。The invention further refers to the use of colloidal metal oxide particles formed by the above process. In an exemplary method of using colloidal metal oxide particles, the method comprises applying a colloidal metal oxide particle composition on a substrate and drying the colloidal metal oxide particle composition to form on a substrate coating. Suitable substrates include, but are not limited to, paper, polymeric films, polymeric foams, glass, metals, ceramics, and fabrics.

在一個示範性具體實施例中,使用膠態金屬氧化物粒子之方法包括利用膠態金屬氧化物粒子作為用於微電子或其他物件之研磨/磨光組成物。在其他示範性具體實施例中,使用膠態金屬氧化物粒子的方法包括利用膠態金屬氧化物粒子作為塗料之添加劑以改良乾塗膜之機械性質。In an exemplary embodiment, a method of using colloidal metal oxide particles includes utilizing colloidal metal oxide particles as a grinding/polishing composition for microelectronics or other articles. In other exemplary embodiments, the method of using colloidal metal oxide particles includes utilizing colloidal metal oxide particles as an additive to the coating to improve the mechanical properties of the dry coating film.

實施例Example

本發明進一步藉由下列實施例說明,但不以任何形式構成對本發明範圍之限制。相反地,可清楚了解,在閱讀過本文之敘述後,技術領域中嫻熟此技藝者,將在不脫離本發明精神及/或所附申請專利範圍之範圍的情況下,根據本發明方法得到各種實施例、改變及其等價物。The invention is further illustrated by the following examples, which are not to be construed as limiting the scope of the invention. Rather, it will be apparent that, after reading the description herein, the skilled artisan will be able to obtain various methods in accordance with the present invention without departing from the scope of the invention and/or the scope of the appended claims. Embodiments, changes, and equivalents thereof.

實施例1Example 1

使用晶種二氧化矽粒子和最適二氧化矽添加速率來製備膠態二氧化矽粒子Preparation of colloidal cerium oxide particles using seed cerium oxide particles and optimum cerium oxide addition rate

將28.4公斤(kg)(62,6磅(1b))去離子(DI)水添加至113.5升(1)(30加侖(gal))的加熱攪拌槽,該槽已加入4.9kg(10.91b)的12nm膠態二氧化矽材料的40重量%固體懸浮液作為晶種材料。在攪拌的時候,加熱該混合物並保持溫度在90~96℃範圍之間。接著以等同167.8克(g)SiO2 /min(0.37lbSiO2 /min)之初始矽酸鹽添加速率同時將矽酸鈉鹽(29重量%SiO2 ,9重量%Na2 O)和強酸離子交換樹脂加入該槽。10分鐘後,將矽酸鹽添加速率增加至317.5g SiO2 /min(0.70lbSiO2 /min),並在另外的11分鐘維持在此較高的速率。Add 28.4 kg (kg, 62 lbs (1b)) of deionized (DI) water to a 113.5 liter (1) (30 gallon (gal)) heated stirred tank that has been added to 4.9 kg (10.91b) A 40% by weight solid suspension of a 12 nm colloidal ceria material was used as the seed material. While stirring, the mixture was heated and maintained at a temperature between 90 and 96 °C. Then 167.8 g equivalent to (g) SiO 2 /min(0.37lbSiO 2 / min) of the initial silicate addition rate while silicic acid sodium salt (29 wt% SiO 2, 9 wt% Na 2 O) and a strong acid ion exchange The resin is added to the tank. After 10 minutes, the silicate addition rate was increased to 317.5g SiO 2 /min(0.70lbSiO 2 / min) , and maintained at a higher rate in a further 11 minutes.

整個方法中,控制樹脂添加速率來維持該槽之pH在9.2及9.6之間。在矽酸鹽添加21分鐘後,兩者的添加皆停止並藉由DI水的添加來淬火該反應。Throughout the process, the resin addition rate was controlled to maintain the pH of the cell between 9.2 and 9.6. After 21 minutes of citrate addition, both additions were stopped and the reaction was quenched by the addition of DI water.

所產生之產物被量測為具有22+2nm的粒子大小,與小粒子之額外成核作用的最細微讀數。The resulting product was measured to have a particle size of 22+2 nm, the finest reading of additional nucleation with small particles.

比較實施例1Comparative Example 1

使用晶種二氧化矽粒子和矽酸鹽進料速率維持恆定來製備膠態二氧化矽粒子Preparation of colloidal cerium oxide particles using seed cerium oxide particles and citrate feed rate maintained at a constant rate

除了整個方法維持等同167.8克(g)SiO2 /min(0.371bSiO2 /min)之矽酸鹽添加速率外,重複實施例1之程序。控制樹脂添加速率維持該槽之pH在9.2及9.6之間。在停止添加矽酸鹽和離子交換樹脂以及藉由添加DI水以淬火該生長反應之後,此方法持續31分鐘。In addition to maintaining the overall process equivalents 167.8 grams (g) SiO 2 /min(0.371bSiO 2 / min) of silicate addition rate, the procedure of Example 1 was repeated. The rate of resin addition was controlled to maintain the pH of the cell between 9.2 and 9.6. This method lasted for 31 minutes after the addition of the citrate and ion exchange resin was stopped and the growth reaction was quenched by the addition of DI water.

所產生之產物被量測為具有22+2nm的粒子大小。The resulting product was measured to have a particle size of 22 + 2 nm.

雖然本發明已描述有限數量的具體實施例,但這些具體的實施例並不會像本文其他地方所描述或主張被認為限制本發明之範圍。在所屬技術領域中具有通常知識者,重新檢視本發明之範例性具體實施例如此可進一步地修改、相等物以及變化應為顯而易見的。在實施例中之全部與百分比以及說明書中剩餘物,除了明確說明以外,係根據重量。此外,在本說明書或申請專利範圍中詳述之任何數字的範圍,像是代表特定組的性質、測量單位、條件、物理狀態或百分比,係被認為清楚地完全併入本文做為參考或其反面,任何落在該範圍間的數字係包括在所描述的任何範圍中數字的任何子集。例如:無論何時揭露具有下限RL 以及上限RU 之數値範圍,落入該範圍中被具體地揭露的任何數字R。特別是,在該範圍中之下列數字被具體揭露:R=RL +k(RU -RL ),其中k為在具有1%增加量之1%至100%的範圍變化,例如:k為1%、2%、3%、4%、5%...50%、51%、52%...95%、96%、97%、98%、99%或100%。此外,亦具體揭露如上述被計算之R的任何兩個値來表示任何數値範圍。除本文已顯示及已敘述的之外,由前面的敘述及所附圖式,本發明的任何改變對於技術領域中熟知此技藝者將變得更顯而易見的。此種改變被認為落入所附申請專利範圍的範圍中。所有在本文被引用之公開案,將其全文併入做為參考。While the invention has been described with respect to a particular embodiment of the invention, the specific embodiments are not to It will be apparent that the exemplary embodiments of the present invention may be further modified, equivalents, and variations. All and percentages in the examples, as well as the remainder of the specification, are by weight unless otherwise indicated. In addition, any range of numbers, such as properties, units of measurement, conditions, physical states, or percentages, which are recited in the specification or the scope of the claims, are considered to be fully incorporated herein by reference. In contrast, any number falling within the range includes any subset of the number in any range described. For example, whenever a range of numbers 下限 having a lower limit R L and an upper limit R U is revealed, any number R that is specifically disclosed in the range is disclosed. In particular, the following numbers in this range are specifically disclosed: R = R L + k(R U - R L ), where k is a range change from 1% to 100% with a 1% increase, for example: k It is 1%, 2%, 3%, 4%, 5%...50%, 51%, 52%...95%, 96%, 97%, 98%, 99% or 100%. In addition, any two enthalpy of R calculated as described above is also specifically disclosed to represent any range of numbers. Any changes to the present invention will become apparent to those skilled in the art from the foregoing description and appended claims. Such changes are considered to fall within the scope of the appended claims. All publications cited herein are incorporated by reference in their entirety.

第1圖為以圖表描述隨著反應性金屬氧化物濃度的改變之(i)反應性金屬氧化物之成核速率以及(ii)反應性金屬氧化物在存在的粒子上的沉積速率;Figure 1 is a graph depicting (i) the rate of nucleation of the reactive metal oxide and (ii) the rate of deposition of the reactive metal oxide on the particles present as the concentration of reactive metal oxide changes;

第2圖為圖表描述有利於(i)在存在的粒子之上的反應性金屬氧化物沉積速率,(ii)新膠態金屬氧化物粒子的成核以及(iii)(i)和(ii)兩者隨著反應性金屬氧化物濃度的改變;Figure 2 is a diagram depicting the benefits of (i) reactive metal oxide deposition rates over existing particles, (ii) nucleation of new colloidal metal oxide particles, and (iii) (i) and (ii) Both change with the concentration of reactive metal oxides;

第3圖為圖表描述使用(i)本發明之最適反應性金屬氧化物進料速率和(ii)傳統方法所使用之維持反應性金屬氧化物粒子進料速率恆定,而減少形成具有22nm平均粒徑之膠態金屬氧化物粒子所需的反應時間;Figure 3 is a graph depicting the use of (i) the optimum reactive metal oxide feed rate of the present invention and (ii) the conventional method to maintain a constant feed metal oxide particle feed rate while reducing the formation of an average particle size of 22 nm. The reaction time required for the colloidal metal oxide particles of the diameter;

第4圖為圖表描述使用本發明之最適方法逐步地添加反應性金屬氧化物,以便緊隨著最適進料速率;以及Figure 4 is a diagram depicting the stepwise addition of a reactive metal oxide using the optimum method of the present invention to follow the optimum feed rate;

第5圖為圖表描述粒子大小和表面積且以經本發明最適方法形成之膠態二氧化矽粒子對上經由傳統方法形成的膠態二氧化矽粒子(亦即維持反應性二氧化矽進料速率恆定)。Figure 5 is a graph depicting particle size and surface area and colloidal ceria particles formed by the optimum method of the present invention on colloidal ceria particles formed by conventional methods (i.e., maintaining a reactive ceria feed rate constant) ).

Claims (23)

一種製造膠態金屬氧化物粒子之方法,該方法包括下列的步驟:(a)在基於數學模式下,計算最適金屬氧化物質量添加速率q,其以每小時的金屬氧化物克數(g/hr)測量,該數學模式考慮(i)粒子成核速率,(ii)存在的金屬氧化物粒子之上的金屬氧化物沉積速率,以及(iii)在槽中金屬氧化物粒子的生長;(b)在生長該膠態金屬氧化物粒子的情況下之反應期間內,將金屬氧化物溶液以該最適金屬氧化物質量添加速率q加入槽中;(c)在該反應期間內,依該數學模式計算之作為時間的函數的增加速率,增加該最適金屬氧化物質量添加速率q,該增加速率大於導致金屬氧化物粒子成核的添加速率,其中該槽中的該金屬氧化物粒子的金屬氧化物粒子生長速率Gr 由增加的粒徑所決定,並且以每小時奈米(nm/hr)量測,其範圍在約10至約50nm/hr。A method of producing colloidal metal oxide particles, the method comprising the steps of: (a) calculating a mass metal addition mass rate q based on a mathematical mode, in grams per hour of metal oxide (g/ Hr) measurement, which considers (i) particle nucleation rate, (ii) metal oxide deposition rate over the metal oxide particles present, and (iii) growth of metal oxide particles in the trench; a metal oxide solution is added to the tank at a mass addition rate q of the optimum metal oxide during the reaction in the case of growing the colloidal metal oxide particles; (c) during the reaction, according to the mathematical mode Calculating the rate of increase as a function of time, increasing the optimum metal oxide mass addition rate q that is greater than the rate of addition that results in nucleation of the metal oxide particles, wherein the metal oxide particles of the metal oxide in the bath G r particle growth rate is determined by the increase in particle size, and by using nanotechnology hour (nm / hr) measured, in the range from about 10 to about 50nm / hr. 如申請專利範圍第1項之方法,其中該數學模式提供的該最適金屬氧化物質量添加速率,q由下式表示:q=(3m0 Gr /DPO 3 )(DPO +Gr t)2 其中:(a)m0 代表在該金屬氧化物粒子生長前在該槽中金屬氧化物粒子的質量,其量測以克(g)計; (b)Gr 代表在該槽中該金屬氧化物粒子之該金屬氧化物粒子生長速率,其係藉由增加粒徑來求出並且以每小時奈米(nm/hr)量測;(c)DPO 代表該金屬氧化物粒子生長前以奈米(nm)量測之平均金屬氧化物粒徑;以及(d)t代表以小時計之時間(hr)。The method of claim 1, wherein the mathematical mode provides a mass addition rate of the optimum metal oxide, q is represented by the following formula: q = (3m 0 G r / D PO 3 ) (D PO + G r t ) 2 wherein: (a) m 0 represents before the growth of the metal oxide particles in the mass of the groove of the metal oxide particles, which is measured in grams (g) the count; (b) G r representing the in the groove The growth rate of the metal oxide particles of the metal oxide particles, which is determined by increasing the particle diameter and measured in nanometers per hour (nm/hr); (c) D PO represents the growth of the metal oxide particles before The average metal oxide particle size measured in nanometers (nm); and (d) t represents the time in hours (hr). 如申請專利範圍第2項之方法,其中Gr 範圍為約20至約40nm/hr。The method of claim 2, wherein the G r ranges from about 20 to about 40 nm/hr. 如申請專利範圍第1項之方法,其中該添加金屬氧化物的步驟包括一次或多次逐步地增加該金屬氧化物質量添加速率。 The method of claim 1, wherein the step of adding a metal oxide comprises gradually increasing the mass addition rate of the metal oxide one or more times. 如申請專利範圍第1項之方法,其中進一步包括下列步驟:在該添加金屬氧化物溶液的步驟前,先將晶種金屬氧化物粒子引至該槽。 The method of claim 1, further comprising the step of introducing seed metal oxide particles into the tank prior to the step of adding the metal oxide solution. 如申請專利範圍第5項之方法,其中該晶種金屬氧化物粒子具有範圍為約5nm至約15nm的初始平均粒子大小。 The method of claim 5, wherein the seed metal oxide particles have an initial average particle size ranging from about 5 nm to about 15 nm. 如申請專利範圍第1項之方法,其中在至少一部分的該反應期間內,該添加步驟導致在該槽中形成成核金屬氧化物粒子。 The method of claim 1, wherein the adding step results in the formation of nucleating metal oxide particles in the bath during at least a portion of the reaction. 如申請專利範圍第7項之方法,其中進一步包括下列步驟:在該添加金屬氧化物溶液的步驟前,先初始添加水溶液 至該槽中,該水溶液實質上無金屬氧化物。 The method of claim 7, further comprising the step of: initially adding an aqueous solution before the step of adding the metal oxide solution To the tank, the aqueous solution is substantially free of metal oxides. 如申請專利範圍第1項之方法,其中該金屬氧化物溶液為一種或多種矽酸鹽。 The method of claim 1, wherein the metal oxide solution is one or more citrate salts. 如申請專利範圍第1項之方法,其中形成該膠態金屬氧化物粒子所需的時間至少50%少於使用金屬氧化物質量添加速率為恆定之形成金屬氧化物粒子之方法形成膠態金屬氧化物粒子所需的時間。 The method of claim 1, wherein the time required to form the colloidal metal oxide particles is at least 50% less than the method of forming metal oxide particles by using a metal oxide mass addition rate constant to form a colloidal metal oxide. The time required for the particles. 如申請專利範圍第1項之方法,其中在該反應期間內,Gr 為恆定。The method of claim 1, wherein G r is constant during the reaction period. 一種製造膠態金屬氧化物粒子之方法,包括:將晶種金屬氧化物粒子引入至槽中;在該引入步驟之後,在形成該膠態金屬氧化物粒子的情況下之反應期間內,以最適金屬氧化物質量添加速率q,將金屬氧化物溶液添加至該槽中,該最適金屬氧化物質量添加速率q以每小時金屬氧化物的克數量測(g/hr),並由下式表示:q=(3m0 Gr /DPO 3 )(DPO +Gr t)2 其中:m0 代表在該金屬氧化物粒子生長前該槽中金屬氧化物粒子的質量,其量測以克(g)計;Gr 代表在該槽中該金屬氧化物粒子之金屬氧化物粒子生長速率,其係藉由增加粒徑來求出,並且以每小時奈米(nm/hr)量測; DPO 代表在該金屬氧化物粒子生長前以奈米(nm)量測之平均金屬氧化物粒徑;以及t代表以小時計之時間(hr),以及在該反應期間內,作為時間的函數且依該式所計算,增加該最適金屬氧化物質量添加速率q,而在至少一部分該反應期間內,使該最適金屬氧化物質量添加速率q大於導致金屬氧化物粒子成核的添加速率。A method of producing colloidal metal oxide particles, comprising: introducing seed metal oxide particles into a bath; after the introducing step, optimizing during a reaction period in the case of forming the colloidal metal oxide particles The metal oxide mass addition rate q, the metal oxide solution is added to the tank, and the optimum metal oxide mass addition rate q is measured in grams per hour of metal oxide (g/hr) and is represented by the following formula: q=(3m 0 G r /D PO 3 )(D PO +G r t) 2 wherein: m 0 represents the mass of the metal oxide particles in the bath before the growth of the metal oxide particles, and the measurement is in grams ( g); G r represents the growth rate of the metal oxide particles of the metal oxide particles in the bath, which is determined by increasing the particle diameter, and is measured in nanometers per hour (nm/hr); PO represents the average metal oxide particle size measured in nanometers (nm) before the growth of the metal oxide particles; and t represents the time in hours (hr), and as a function of time during the reaction period and Increasing the optimum metal oxide mass addition rate q according to the formula During at least a portion of the reaction, the optimum metal oxide mass addition rate q is greater than the rate of addition of metal oxide particles results in nucleation. 一種製造膠態二氧化矽粒子之方法,該方法包括下列步驟:(a)在形成該膠態金屬氧化物粒子的情況下之反應期間內,以最適二氧化矽質量添加速率q,將二氧化矽溶液添加至槽中,其中該最適二氧化矽質量添加速率q以每小時的金屬氧化物克數(g/hr)測量,並基於數學模式考慮(i)粒子成核速率,(ii)存在的二氧化矽粒子之上的二氧化矽沉積速率,以及(iii)該槽中二氧化矽粒子的生長,該q由下式表示:q=(3m0 Gr /DPO 3 )(DPO +Gr t)2 其中:m0 代表在該二氧化矽粒子生長前該槽中二氧化矽粒子的質量,其量測以克(g)計;Gr 代表在該槽中該二氧化矽粒子之二氧化矽粒子生長速率,其係藉由增加粒徑來求出,並且以每小時奈米(nm/hr)量測; DPO 代表在該二氧化矽粒子生長前以奈米(nm)量測之平均二氧化矽粒徑;以及t代表以小時計之時間(hr),以及(b)依該式所計算的為時間的函數的速率,增加該最適二氧化矽質量添加速率q,而在至少一部分該反應期間內,使該最適二氧化矽質量添加速率q大於導致二氧化矽粒子成核的添加速率。A method for producing colloidal cerium oxide particles, the method comprising the steps of: (a) adding a rate q to an optimum cerium oxide mass during the reaction in the case of forming the colloidal metal oxide particles, and oxidizing The cerium solution is added to the tank, wherein the optimum cerium oxide mass addition rate q is measured in grams per hour of metal oxide (g/hr), and based on a mathematical model (i) particle nucleation rate, (ii) presence The rate of deposition of cerium oxide on the cerium oxide particles, and (iii) the growth of cerium oxide particles in the tank, which is represented by the following formula: q = (3m 0 G r / D PO 3 ) (D PO +G r t) 2 where: m 0 represents the mass of the cerium oxide particles in the bath before the growth of the cerium oxide particles, the measurement being in grams (g); G r representing the cerium oxide in the tank The growth rate of the cerium oxide particles of the particles, which is determined by increasing the particle diameter, and is measured in nanometers per hour (nm/hr); D PO represents nanometers before the growth of the cerium oxide particles (nm) Measuring the average ceria particle size; and t representing the time in hours (hr), and (b) calculating the time according to the formula Rate function, increasing the addition rate q optimum quality silicon dioxide, and during at least a portion of the reaction, the optimum mass of silicon dioxide addition rate q is greater than silicon dioxide particles to cause nucleation rate of addition. 如申請專利範圍第13項之方法,其中Gr 範圍為約10至約50nm/hr。The method of claim 13, wherein G r ranges from about 10 to about 50 nm/hr. 如申請專利範圍第13項之方法,其中Gr 範圍為約20至約40nm/hr。The method of claim 13, wherein G r ranges from about 20 to about 40 nm/hr. 如申請專利範圍第13項之方法,其中該添加該二氧化矽溶液的步驟包括一次或多次逐步地增加該二氧化矽質量添加速率。 The method of claim 13, wherein the step of adding the cerium oxide solution comprises gradually increasing the mass addition rate of the cerium oxide one or more times. 如申請專利範圍第13項之方法,其中進一步包括下列步驟:在該添加該二氧化矽溶液的步驟前,先將晶種二氧化矽粒子引入至該槽中。 The method of claim 13, further comprising the step of introducing seed cerium oxide particles into the tank before the step of adding the cerium oxide solution. 如申請專利範圍第17項之方法,其中該晶種二氧化矽粒子具有範圍為約5nm至約15nm的初始平均粒子大小。 The method of claim 17, wherein the seed cerium oxide particles have an initial average particle size ranging from about 5 nm to about 15 nm. 如申請專利範圍第13項之方法,其中在至少一部分該反應期間內,該添加步驟導致在該槽中形成成核二氧化矽粒子。 The method of claim 13, wherein the adding step results in the formation of nucleating cerium oxide particles in the tank during at least a portion of the reaction period. 如申請專利範圍第19項之方法,進一步包括下列步驟:在該添加該二氧化矽溶液的步驟前,先初始添加水溶液至該槽中,該水溶液實質上無二氧化矽。 The method of claim 19, further comprising the step of initially adding an aqueous solution to the tank prior to the step of adding the cerium oxide solution, the aqueous solution being substantially free of cerium oxide. 如申請專利範圍第13項之方法,其中形成該膠態二氧化矽粒子所需的時間至50%少於使用該二氧化矽質量添加速率為恆定之形成二氧化矽粒子之方法形成膠態二氧化矽粒子所需的時間。 The method of claim 13, wherein the time required to form the colloidal cerium oxide particles is less than 50% less than the method of forming the cerium oxide particles by using the cerium oxide mass increasing rate to form a colloidal second The time required for cerium oxide particles. 如申請專利範圍第13項之方法,其中在該反應期間內,Gr 為恆定。The method of claim 13, wherein G r is constant during the reaction period. 如申請專利範圍第13項之方法,其中該方法在約14至約21分鐘內生產出具有粒徑約22奈米的膠態二氧化矽粒子,該膠態二氧化矽粒子在該反應期間前具有初始粒徑約12奈米。 The method of claim 13, wherein the method produces colloidal ceria particles having a particle size of about 22 nm in about 14 to about 21 minutes, the colloidal ceria particles before the reaction period It has an initial particle size of about 12 nm.
TW97150396A 2007-12-27 2008-12-24 Method for making colloidal metal oxide particles TWI466714B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US924507P 2007-12-27 2007-12-27

Publications (2)

Publication Number Publication Date
TW200938294A TW200938294A (en) 2009-09-16
TWI466714B true TWI466714B (en) 2015-01-01

Family

ID=40723278

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97150396A TWI466714B (en) 2007-12-27 2008-12-24 Method for making colloidal metal oxide particles

Country Status (13)

Country Link
EP (1) EP2231323A2 (en)
JP (1) JP5637863B2 (en)
KR (1) KR101629035B1 (en)
CN (1) CN101959590B (en)
AR (1) AR069976A1 (en)
AU (1) AU2008344012A1 (en)
BR (1) BRPI0821516A2 (en)
CA (1) CA2710768A1 (en)
CL (1) CL2008003914A1 (en)
MX (1) MX2010007105A (en)
RU (1) RU2557238C2 (en)
TW (1) TWI466714B (en)
WO (1) WO2009085091A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5602190B2 (en) * 2012-06-08 2014-10-08 住友ゴム工業株式会社 Method for simulating polymer materials
CN110217799B (en) * 2018-03-02 2020-12-18 中国石油化工股份有限公司 Silica sol and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789009A (en) * 1971-07-15 1974-01-29 Du Pont Process for the preparation of large particle silica sols
TW200706492A (en) * 2005-08-10 2007-02-16 Nalco Co Silica sols with controlled minimum particle size and preparation thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3538015A (en) * 1967-12-07 1970-11-03 Nalco Chemical Co Large particle silica sols and method of production
US3969266A (en) * 1971-06-23 1976-07-13 E. I. Du Pont De Nemours And Company Microporous membrane process for making concentrated silica sols
SU1452789A1 (en) * 1987-03-13 1989-01-23 Армянский филиал Всесоюзного научно-исследовательского института химических реактивов и особо чистых химических веществ Method of producing silica hydrosols
US5352277A (en) * 1988-12-12 1994-10-04 E. I. Du Pont De Nemours & Company Final polishing composition
SU1712307A1 (en) * 1989-11-01 1992-02-15 Всесоюзный Научно-Исследовательский И Проектный Институт "Теплопроект" Method of producing silicon sol
US5100581A (en) * 1990-02-22 1992-03-31 Nissan Chemical Industries Ltd. Method of preparing high-purity aqueous silica sol
DE4216119C2 (en) * 1992-05-15 1995-08-10 Bayer Ag Process for the preparation and concentration of silica sols
US6906109B2 (en) * 2000-09-01 2005-06-14 Chemical Products Corp. Method for controling uniformity of colloidal silica particle size
FR2819245B1 (en) * 2001-01-09 2004-11-26 Clariant NOVEL AQUEOUS SUSPENSIONS OF NEUTRAL PH ANIONIC COLLOIDAL SILICA AND PREPARATION METHOD THEREOF, AND APPLICATIONS THEREOF
WO2004035473A1 (en) * 2002-10-14 2004-04-29 Akzo Nobel N.V. Colloidal silica dispersion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789009A (en) * 1971-07-15 1974-01-29 Du Pont Process for the preparation of large particle silica sols
TW200706492A (en) * 2005-08-10 2007-02-16 Nalco Co Silica sols with controlled minimum particle size and preparation thereof

Also Published As

Publication number Publication date
AR069976A1 (en) 2010-03-03
WO2009085091A3 (en) 2009-11-12
BRPI0821516A2 (en) 2017-06-06
EP2231323A2 (en) 2010-09-29
KR101629035B1 (en) 2016-06-09
JP5637863B2 (en) 2014-12-10
RU2010131001A (en) 2012-02-10
MX2010007105A (en) 2010-08-26
CN101959590A (en) 2011-01-26
KR20100105863A (en) 2010-09-30
TW200938294A (en) 2009-09-16
CL2008003914A1 (en) 2010-10-01
JP2011508719A (en) 2011-03-17
CA2710768A1 (en) 2009-07-09
WO2009085091A2 (en) 2009-07-09
AU2008344012A1 (en) 2009-07-09
RU2557238C2 (en) 2015-07-20
CN101959590B (en) 2014-12-10

Similar Documents

Publication Publication Date Title
TWI491563B (en) Method of producing silica sols with controllable broad size distribution and minimum particle size
JP5587957B2 (en) Konpira sugar-like sol
JP5602358B2 (en) Non-spherical silica sol, method for producing the same, and polishing composition
JP5334385B2 (en) Production and use of polysilicate particulate material
WO2010052945A1 (en) Aspherical silica sol, process for producing the same, and composition for polishing
TW200539935A (en) Colloidal compositions and methods of preparing same
TWI440601B (en) Silica sols with controlled minimum particle size and preparation thereof
JP5787745B2 (en) Method for producing silica-based composite particles
JP5253095B2 (en) Method for producing zirconia sol
JPWO2019189610A1 (en) Method for producing silica particle dispersion, polishing composition and silica particle dispersion
TWI466714B (en) Method for making colloidal metal oxide particles
JP5431120B2 (en) Method for producing colloidal silica
JP2003026417A (en) Method of manufacturing silica sol and silica-base multiple oxide sol
JPWO2018181713A1 (en) Method for producing silica particle dispersion
US20100284884A1 (en) Method for making colloidal silica particles
JP2021054683A (en) Silica particle dispersion and its manufacturing method
JP7482699B2 (en) Method for producing irregular silica particle dispersion
JP5346167B2 (en) Particle-linked alumina-silica composite sol and method for producing the same
JP2011026140A (en) Colloidal silica and method for producing the same
JP2009078936A (en) Method for preparing &#34;konpeito&#34; (pointed sugar candy ball)-like composite silica sol
JPH0455124B2 (en)
JP2023121705A (en) Method for producing high-purity alkali silicate solution, apparatus for producing high-purity alkali silicate solution, high-purity alkali silicate solution, high-purity silica sol, and method for producing the same
JP5646143B2 (en) Flaky composite silica fine particle dispersion and method for producing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees