TWI463697B - Light-emitting diode and method for making the same - Google Patents

Light-emitting diode and method for making the same Download PDF

Info

Publication number
TWI463697B
TWI463697B TW098145726A TW98145726A TWI463697B TW I463697 B TWI463697 B TW I463697B TW 098145726 A TW098145726 A TW 098145726A TW 98145726 A TW98145726 A TW 98145726A TW I463697 B TWI463697 B TW I463697B
Authority
TW
Taiwan
Prior art keywords
diffusion
layer
diffusion portion
sio
emitting diode
Prior art date
Application number
TW098145726A
Other languages
Chinese (zh)
Other versions
TW201123534A (en
Inventor
Chih Chen Lai
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW098145726A priority Critical patent/TWI463697B/en
Publication of TW201123534A publication Critical patent/TW201123534A/en
Application granted granted Critical
Publication of TWI463697B publication Critical patent/TWI463697B/en

Links

Description

發光二極體及其製作方法Light-emitting diode and manufacturing method thereof

本發明涉及一種發光二極體,尤其涉及一種電流擴散均勻性較佳之發光二極體以及該發光二極體之製作方法。The present invention relates to a light-emitting diode, and more particularly to a light-emitting diode having better current spreading uniformity and a method of fabricating the same.

發光二極體(Light Emitting Diode,LED)為一種可將電流轉換成特定波長範圍光之半導體元件。發光二極體以其亮度高、工作電壓低、功耗小、易與積體電路匹配、驅動簡單、壽命長等優點,從而可作為光源而廣泛應用於照明領域。A Light Emitting Diode (LED) is a semiconductor component that converts current into light of a specific wavelength range. The light-emitting diode is widely used in the field of illumination because of its high brightness, low operating voltage, low power consumption, easy matching with integrated circuits, simple driving, and long life.

LED通常包括p型半導體層、活性層及n型半導體層。在LED兩端施加電壓,空穴與電子將會在活性層複合,輻射出光子。LED在應用過程中所面臨之一個問題係其出光效率問題。由於在活性層中有電流流過才能產生光子,因此LED之出光效率與電流在LED器件表面之分佈均勻性有很大關係。在實際應用過程中,為防止發光二極體所發出之光線被電極所阻擋,電極之面積通常設置成比較小,此時將會出現在電極下方之位置電流密度較大,而遠離電極位置之電流密度較小之情況,從而使到在發光二極體表面之電流分佈不均勻。其在遠離電極之邊緣部位之活性層沒有電流流過,從而使其發光效率較低。The LED typically includes a p-type semiconductor layer, an active layer, and an n-type semiconductor layer. Applying a voltage across the LED, holes and electrons will recombine in the active layer, radiating photons. One of the problems faced by LEDs in the application process is their light efficiency. Since photons are generated by current flowing in the active layer, the light extraction efficiency of the LED is greatly related to the uniformity of current distribution on the surface of the LED device. In the actual application process, in order to prevent the light emitted by the light-emitting diode from being blocked by the electrode, the area of the electrode is usually set to be relatively small, and the current density at the position below the electrode will be larger, and away from the electrode position. The current density is small, so that the current distribution on the surface of the light-emitting diode is not uniform. There is no current flowing through the active layer away from the edge of the electrode, so that its luminous efficiency is low.

有鑒於此,有必要提供一種電流擴散均勻性較佳之發光二極體。In view of the above, it is necessary to provide a light-emitting diode having better current spreading uniformity.

一種發光二極體,其包括一基板及在基板上依次形成之P-GaN層、活性層及n-GaN層。該發光二極體進一步包括一電極層,該電極層設置n-GaN層之表面。該n-GaN層包括第一擴散部及第二擴散部。該第一擴散部臨近該電極層,該第二擴散部設置於該第一擴散部之遠離該電極層一側,且該第一擴散部之摻雜濃度小於該第二擴散部之摻雜濃度。A light emitting diode comprising a substrate and a P-GaN layer, an active layer and an n-GaN layer sequentially formed on the substrate. The light emitting diode further includes an electrode layer that is provided with a surface of the n-GaN layer. The n-GaN layer includes a first diffusion portion and a second diffusion portion. The first diffusion portion is adjacent to the electrode layer, and the second diffusion portion is disposed on a side of the first diffusion portion away from the electrode layer, and a doping concentration of the first diffusion portion is smaller than a doping concentration of the second diffusion portion .

一種發光二極體之製作方法,其包括以下步驟:A method for fabricating a light emitting diode, comprising the steps of:

提供一個基板;Providing a substrate;

在基板上依次形成P-GaN層、活性層及n-GaN層;Forming a P-GaN layer, an active layer, and an n-GaN layer sequentially on the substrate;

在n-GaN層表面設置第一擴散部及第二擴散部,在製作過程中,使第一擴散部之摻雜濃度小於第二擴散部之摻雜濃度;Providing a first diffusion portion and a second diffusion portion on a surface of the n-GaN layer, wherein a doping concentration of the first diffusion portion is smaller than a doping concentration of the second diffusion portion during the manufacturing process;

在n-GaN層表面製作電極層。An electrode layer is formed on the surface of the n-GaN layer.

與先前技術相比,本發明藉由設置沿遠離電極方向排列之第一擴散部及第二擴散部,由於第一擴散部之摻雜濃度小於第二擴散部之摻雜濃度,即第一擴散部之電阻率大於第二擴散部之電阻率。由於電流會朝電阻率小之地方流動。因此,設置摻雜率不同之第一擴散部及第二擴散部能夠使電流在發光二極體之表面分佈均勻,從而提高發光二極體之發光效率。Compared with the prior art, the present invention provides a first diffusion portion and a second diffusion portion arranged in a direction away from the electrode, since the doping concentration of the first diffusion portion is smaller than the doping concentration of the second diffusion portion, that is, the first diffusion The resistivity of the portion is greater than the resistivity of the second diffusing portion. Since the current will flow toward a place where the resistivity is small. Therefore, the first diffusion portion and the second diffusion portion having different doping rates can be distributed to uniformize the current on the surface of the light-emitting diode, thereby improving the light-emitting efficiency of the light-emitting diode.

下面以具體之實施例對本發明作進一步地說明。The invention is further illustrated by the following specific examples.

請參見圖1,本發明第一實施例之發光二極體100包括一個基板11及依次在基板11上層疊設置之p-GaN層12、活性層13、n-GaN層14、鏡面反射層15及電極層16。同時,該發光二極體100還進一步包括一第一擴散部17與一第二擴散部18。Referring to FIG. 1, a light-emitting diode 100 according to a first embodiment of the present invention includes a substrate 11 and a p-GaN layer 12, an active layer 13, an n-GaN layer 14, and a specular reflection layer 15 which are sequentially stacked on the substrate 11. And electrode layer 16. At the same time, the LED 100 further includes a first diffusion portion 17 and a second diffusion portion 18.

基板11由具有高導熱率之材料製成,其可以採用銅、鋁、鎳、銀、金等金屬材料或者任意兩種以上金屬所形成之合金所製成之基板,或者採用導熱性能好之陶瓷基板如矽基板、鍺基板。在本實施例中,基板11為具有高導熱效率之金屬鎳層。藉由MOCVD之方法在藍寶石基板上生長p-GaN層12、活性層13、n-GaN層14及鏡面反射層15後,採用鐳射切割之方法使藍寶石基板基板剝離,然後再藉由粘合或者電鍍之方法使p-GaN層12、活性層13、n-GaN層14及鏡面反射層15與導熱基板11結合。The substrate 11 is made of a material having high thermal conductivity, and may be a substrate made of a metal material such as copper, aluminum, nickel, silver, gold or the like, or an alloy formed of any two or more metals, or a ceramic having good thermal conductivity. The substrate is a germanium substrate or a germanium substrate. In the present embodiment, the substrate 11 is a metallic nickel layer having high thermal conductivity. After the p-GaN layer 12, the active layer 13, the n-GaN layer 14 and the specular reflection layer 15 are grown on the sapphire substrate by MOCVD, the sapphire substrate is peeled off by laser cutting, and then bonded or The plating method combines the p-GaN layer 12, the active layer 13, the n-GaN layer 14, and the specular reflection layer 15 with the thermally conductive substrate 11.

p-GaN層12、活性層13及n-GaN層14依次層疊設置於基板11之表面上。當在p-GaN層12表面施加正電壓,在n-GaN層14表面施加負電壓時,p-GaN層12中之空穴與n-GaN層14電子將會在活性層複合,能量以光子之形式發出,從而使發光二極體發光。在本實施例中,發光層由GaN材料製作。根據需要,發光層之製作材料還可包括AlGaN、InGaN等。The p-GaN layer 12, the active layer 13, and the n-GaN layer 14 are sequentially laminated on the surface of the substrate 11. When a positive voltage is applied to the surface of the p-GaN layer 12, and a negative voltage is applied to the surface of the n-GaN layer 14, the holes in the p-GaN layer 12 and the n-GaN layer 14 electrons will recombine in the active layer, and the energy is photon. The form is emitted so that the light emitting diode emits light. In this embodiment, the light emitting layer is made of a GaN material. The material for forming the light-emitting layer may further include AlGaN, InGaN, or the like, as needed.

鏡面反射層15設置於p-GaN層12與基板11之間,鏡面反射層15由銀、鎳、鋁、銅、金等金屬所製成。該鏡面反射層15之目的在於將活性層13所發出之,朝向p-GaN層12之光線反射,使其從n-GaN層14表面發出,提高整個發光二極體100之出光效率。在本實施例中,鏡面反射層15可以藉由真空蒸鍍,濺射等方法形成。The specular reflection layer 15 is disposed between the p-GaN layer 12 and the substrate 11, and the specular reflection layer 15 is made of a metal such as silver, nickel, aluminum, copper, or gold. The purpose of the specular reflection layer 15 is to reflect the light emitted from the active layer 13 toward the p-GaN layer 12 and to emit it from the surface of the n-GaN layer 14, thereby improving the light extraction efficiency of the entire light emitting diode 100. In the present embodiment, the specular reflection layer 15 can be formed by vacuum evaporation, sputtering, or the like.

電極層16設置於n-GaN層14之表面,該電極層16之作用在於使外界電源與發光二極體100相接觸從而為發光二極體100提供電流使其發光。在本實施例中,電極層16位於n-GaN層14之中心位置。該電極層16由銀材料製成,其藉由熱蒸鍍或化學蒸鍍之方法形成於n-GaN層14之表面上。The electrode layer 16 is disposed on the surface of the n-GaN layer 14. The electrode layer 16 functions to bring the external power source into contact with the light emitting diode 100 to supply current to the light emitting diode 100 to emit light. In the present embodiment, the electrode layer 16 is located at the center of the n-GaN layer 14. The electrode layer 16 is made of a silver material which is formed on the surface of the n-GaN layer 14 by thermal evaporation or chemical vapor deposition.

第一擴散部17與第二擴散部18設置於n-GaN層14表面。該第一擴散部17與第二擴散部18沿遠離電極層16之方向排列。即第二擴散部18與電極層16之間之距離比第一擴散部17與電極層16之間之距離要短。該第一擴散部17與第二擴散部18採用B、P、As等氣態原子摻雜。其中,第一擴散部17之摻雜濃度小於第二擴散部18之摻雜濃度。即第一擴散部17之電阻率要大於第二擴散部18之電阻率。在這種情況下,由於電流會傾向於朝電阻率小之地方流動,從而使電流朝遠離電極層16之第二擴散部18流動,使電流在發光二極體100之表面充分分佈均勻,從而提高了發光二極體100之出光效率。在本實施例中,第一擴散部17與第二擴散部18為設置於電極層16周圍之兩個圓環,其中,第一擴散部17之圓環之半徑要小於第二擴散部18之圓環之半徑。在本實施例中,第一擴散部17與第二擴散部18之摻雜濃度可在1×1018 cm-3 至9×1018 cm-3 範圍內變化。The first diffusion portion 17 and the second diffusion portion 18 are provided on the surface of the n-GaN layer 14. The first diffusion portion 17 and the second diffusion portion 18 are arranged in a direction away from the electrode layer 16. That is, the distance between the second diffusion portion 18 and the electrode layer 16 is shorter than the distance between the first diffusion portion 17 and the electrode layer 16. The first diffusion portion 17 and the second diffusion portion 18 are doped with gaseous atoms such as B, P, and As. The doping concentration of the first diffusion portion 17 is smaller than the doping concentration of the second diffusion portion 18. That is, the resistivity of the first diffusing portion 17 is greater than the resistivity of the second diffusing portion 18. In this case, since the current tends to flow toward a place where the resistivity is small, the current flows toward the second diffusion portion 18 away from the electrode layer 16, so that the current is sufficiently distributed uniformly on the surface of the light-emitting diode 100, thereby The light extraction efficiency of the light emitting diode 100 is improved. In the present embodiment, the first diffusing portion 17 and the second diffusing portion 18 are two rings disposed around the electrode layer 16 , wherein the radius of the ring of the first diffusing portion 17 is smaller than that of the second diffusing portion 18 . The radius of the ring. In the present embodiment, the doping concentration of the first diffusion portion 17 and the second diffusion portion 18 may vary from 1 × 10 18 cm -3 to 9 × 10 18 cm -3 .

請一併參閱圖2A-圖2F,在本實施例中,該第一擴散部17與第二擴散部18藉由以下方式製作。Referring to FIG. 2A to FIG. 2F together, in the embodiment, the first diffusion portion 17 and the second diffusion portion 18 are fabricated in the following manner.

首先為第二擴散部18之製作。如圖2A所示,在n-GaN層14表面製作具有第二擴散部18圖案之SiO2 阻擋層19,即SiO2 阻擋層19覆蓋在除第二擴散部18所處區域以外之區域。該SiO2 阻擋層19圖案之製作步驟包括:在n-GaN層14表面沈積一層SiO2 阻擋層19,其沈積方法可以為等離子體增強化學氣相沈積法(PECVD)或者感應耦合等離子體增強化學氣相沈積法(ICPECVD)。然後在SiO2 阻擋層19之表面塗覆塗覆感光層。感光層可以採用正光阻或者負光阻,其塗布方法可以為旋轉式、噴塗式、浸粘式或者滾筒式等。利用曝光顯影之方法在感光層上定義出需要進行擴散之第二擴散部18之區域。然後將第二擴散部18區域上感光層去除,露出SiO2 阻擋層19之表面。採用感應耦合等離子體蝕刻技術(ICP)對未被感光層覆蓋之SiO2 阻擋層19進行蝕刻,顯露出n-GaN層14表面。然後將剩餘之感光層去除。此時,未被SiO2 阻擋層19覆蓋之區域即為需要進行擴散之第二擴散部18之區域。如圖2B所示,將具有SiO2 阻擋層19圖案之發光二極體100放置於通有B、P、As等氣體或者蒸氣源之高溫爐中,由於溫度之作用,B、P、As等氣體原子將會擴散到n-GaN層14中,形成具有特定摻雜濃度之第二擴散部18。一般地,擴散溫度選擇在500度至750度之溫度範圍內。其中,第二擴散部18之摻雜濃度與深度可以藉由高溫爐中之氣體濃度及發光二極體100在高溫爐中之擴散時間來確定。高溫爐中B、P、As等氣體原子之濃度越大,第二擴散部18之摻雜濃度就越大。發光二極體100在高溫爐中之擴散時間越長,第二擴散部18在n-GaN層14中之擴散深度就越深,即第二擴散部18之厚度越高。因此,第二擴散部18之摻雜濃度與厚度就可以藉由高溫爐中B、P、As等氣體原子之濃度與擴散時間確定。優選地,藉由選擇合適之氣體原子濃度與擴散時間,使第二擴散部18之擴散深度不超過n-GaN層14之厚度,以避免B、P、As等氣體原子擴散到活性層13中,從而對活性層13之發光性能造成影響。在擴散完成後,去除SiO2 阻擋層19,如圖2C所示。去除之方法可採用鹽酸或者硫酸等酸性溶液腐蝕。First, the second diffusion unit 18 is fabricated. As shown in FIG. 2A, a SiO 2 barrier layer 19 having a pattern of a second diffusion portion 18 is formed on the surface of the n-GaN layer 14, that is, the SiO 2 barrier layer 19 covers a region other than the region where the second diffusion portion 18 is located. The SiO 2 barrier layer 19 pattern is formed by depositing a SiO 2 barrier layer 19 on the surface of the n-GaN layer 14 by plasma enhanced chemical vapor deposition (PECVD) or inductively coupled plasma enhanced chemistry. Vapor deposition (ICPECVD). A photosensitive layer is then applied to the surface of the SiO 2 barrier layer 19. The photosensitive layer may be a positive photoresist or a negative photoresist, and the coating method may be a rotary method, a spray coating method, a dipping method or a drum type. A region of the second diffusion portion 18 to be diffused is defined on the photosensitive layer by exposure development. The photosensitive layer on the second diffusion portion 18 is then removed to expose the surface of the SiO 2 barrier layer 19. The SiO 2 barrier layer 19 not covered by the photosensitive layer is etched by inductively coupled plasma etching (ICP) to expose the surface of the n-GaN layer 14. The remaining photosensitive layer is then removed. At this time, the region not covered by the SiO 2 barrier layer 19 is the region of the second diffusion portion 18 that needs to be diffused. As shown in FIG. 2B, the light-emitting diode 100 having the pattern of the SiO 2 barrier layer 19 is placed in a high-temperature furnace having a gas or a vapor source such as B, P, As, etc., due to the action of temperature, B, P, As, etc. Gas atoms will diffuse into the n-GaN layer 14 to form a second diffusion 18 having a particular doping concentration. Generally, the diffusion temperature is selected to be in the range of from 500 degrees to 750 degrees. The doping concentration and depth of the second diffusion portion 18 can be determined by the gas concentration in the high temperature furnace and the diffusion time of the light emitting diode 100 in the high temperature furnace. The higher the concentration of gas atoms such as B, P, and As in the high temperature furnace, the larger the doping concentration of the second diffusion portion 18. The longer the diffusion time of the light-emitting diode 100 in the high-temperature furnace, the deeper the diffusion depth of the second diffusion portion 18 in the n-GaN layer 14, that is, the higher the thickness of the second diffusion portion 18. Therefore, the doping concentration and thickness of the second diffusion portion 18 can be determined by the concentration and diffusion time of gas atoms such as B, P, and As in the high temperature furnace. Preferably, the diffusion depth of the second diffusion portion 18 does not exceed the thickness of the n-GaN layer 14 by selecting a suitable gas atom concentration and diffusion time to prevent gas atoms such as B, P, and As from diffusing into the active layer 13. Thereby affecting the luminescent properties of the active layer 13. After the diffusion is completed, the SiO 2 barrier layer 19 is removed as shown in Fig. 2C. The removal method can be etched using an acidic solution such as hydrochloric acid or sulfuric acid.

在第二擴散部18之擴散過程完成之後,就可以採用相同之過程製作第一擴散部17。即首先製作具有第一擴散部17圖案之SiO2 阻擋層110,如圖2D所示,未被SiO2 阻擋層110所覆蓋之區域即為需進行擴散之第一擴散部17。參見圖2E,將具有SiO2 阻擋層110之發光二極體100放置於通有B、P、As等氣體或者蒸氣源之高溫爐中,由於溫度之作用,B、P、As等氣體原子將會擴散到n-GaN層14中,形成具有特定摻雜濃度之第一擴散部17。需要注意,在第一擴散部17之製作過程中,可以藉由降低高溫爐中B、P、As等氣體原子之濃度來降低第一擴散部17之摻雜濃度。使第一擴散部17之摻雜濃度小於第二擴散部18之摻雜濃度。在擴散完成之後,去除SiO2 阻擋層110,參見圖2F。After the diffusion process of the second diffusion portion 18 is completed, the first diffusion portion 17 can be fabricated by the same process. 17 by first fabricating a pattern of SiO 2 portion of the first diffusion barrier layer 110, shown in Figure 2D, SiO 2 barrier layer 110 not covered with the first area is the need of diffusion of the diffusion portion 17. Referring to FIG. 2E, the light-emitting diode 100 having the SiO 2 barrier layer 110 is placed in a high-temperature furnace having a gas or a vapor source such as B, P, As, etc., due to the action of temperature, B, P, As, etc. It will diffuse into the n-GaN layer 14 to form a first diffusion portion 17 having a specific doping concentration. It should be noted that in the process of fabricating the first diffusion portion 17, the doping concentration of the first diffusion portion 17 can be lowered by lowering the concentration of gas atoms such as B, P, and As in the high temperature furnace. The doping concentration of the first diffusion portion 17 is made smaller than the doping concentration of the second diffusion portion 18. After the diffusion is completed, the SiO 2 barrier layer 110 is removed, see FIG. 2F.

在第一擴散部17與第二擴散部18都製作好之後,在n-GaN層14之中心位置製作電極層16。該電極層16與第一擴散部17之間之距離小於與第二擴散部18之間之距離。After both the first diffusion portion 17 and the second diffusion portion 18 are formed, the electrode layer 16 is formed at the center of the n-GaN layer 14. The distance between the electrode layer 16 and the first diffusion portion 17 is smaller than the distance between the electrode portion 16 and the second diffusion portion 18.

可以理解地,亦可先在n-GaN層表面沈積一層感光層,然後對感光層進行曝光顯影,定義出需進行擴散之區域。將不需要進行擴散之區域上之感光層去除,然後沈積SiO2 阻擋層,從而形成具有需擴散區域圖案之SiO2 阻擋層。It can be understood that a photosensitive layer may be deposited on the surface of the n-GaN layer, and then the photosensitive layer is exposed and developed to define a region to be diffused. A photosensitive layer formed on the diffusion region does not need to be removed, followed by deposition of SiO 2 barrier layer, thereby forming a SiO 2 barrier layer having a required pattern of the diffusion region.

可以理解地,在該第一擴散部17與第二擴散部18之製作過程中並不限於首先製作第二擴散部18,然後製作第一擴散部17。其亦可以首先製作第一擴散部17,後製作第二擴散部18。It can be understood that in the manufacturing process of the first diffusion portion 17 and the second diffusion portion 18, it is not limited to first making the second diffusion portion 18, and then the first diffusion portion 17 is fabricated. Alternatively, the first diffusion portion 17 may be formed first, and then the second diffusion portion 18 may be formed.

可以理解地,本實施例之擴散部並不限於兩個,其亦可以為三個或者三個以上。該三個或者三個以上之擴散部沿著遠離電極層之方向上分佈,其摻雜濃度亦沿著遠離電極層之方向上逐漸增大。從而形成一個摻雜濃度從n-GaN層之中心位置朝邊緣逐漸變化之摻雜區域,使電流從發光二極體之中心區域朝邊緣流動,從而提高了發光二極體電流分佈之均勻性,提高了其發光效率。It is to be understood that the diffusion portion of the embodiment is not limited to two, and may be three or more. The three or more diffusing portions are distributed in a direction away from the electrode layer, and the doping concentration thereof also gradually increases in a direction away from the electrode layer. Thereby forming a doping region whose doping concentration gradually changes from the center position of the n-GaN layer toward the edge, so that current flows from the central region of the light emitting diode toward the edge, thereby improving the uniformity of current distribution of the light emitting diode, Improve its luminous efficiency.

另,該第一擴散部及第二擴散部並不限於以上製作方法,請參見圖3,為本發明第二實施例之發光二極體200。In addition, the first diffusion portion and the second diffusion portion are not limited to the above manufacturing method. Referring to FIG. 3, the light emitting diode 200 according to the second embodiment of the present invention.

本發明第二實施例之發光二極體200包括一個基板21及依次在基板21上層疊之p-GaN層22、活性層23、n-GaN層24、鏡面反射層25及電極層26。同時,該發光二極體200還進一步包括一第一擴散部27與一第二擴散部28。該第一擴散部27與第二擴散部28沿遠離電極層26之方向上順序分佈。The light-emitting diode 200 according to the second embodiment of the present invention includes a substrate 21, a p-GaN layer 22 laminated on the substrate 21, an active layer 23, an n-GaN layer 24, a specular reflection layer 25, and an electrode layer 26. At the same time, the light emitting diode 200 further includes a first diffusion portion 27 and a second diffusion portion 28. The first diffusion portion 27 and the second diffusion portion 28 are sequentially distributed in a direction away from the electrode layer 26.

其中,在本實施例中,基板21、 p-GaN層22、活性層23、n-GaN層24、鏡面反射層25及電極層26在發光二極體200中之作用與第一實施例之相同。In the present embodiment, the role of the substrate 21, the p-GaN layer 22, the active layer 23, the n-GaN layer 24, the specular reflection layer 25, and the electrode layer 26 in the light emitting diode 200 is the same as that of the first embodiment. the same.

與第一實施例不同,該第一擴散部27包括擴散區域271與非擴散區域272。第二擴散部28同樣包括擴散區域281與非擴散區域282。在本實施例中,擴散區域271與擴散區域281之摻雜濃度相同。但,在第一擴散部27中,擴散區域271與非擴散區域272寬度之間之比值要小於第二擴散部28中擴散區域281與非擴散區域282寬度之間之比值。因此,從整體上講,第一擴散部27之摻雜濃度要小於第二擴散部28之摻雜濃度。即第二擴散部28之電阻率小於第一擴散部27之電阻率,從而使電流從電極層26朝遠離電極層26之第二擴散部28流動。使電流在發光二極體100之表面分佈均勻,從而提高其出光效率。Unlike the first embodiment, the first diffusion portion 27 includes a diffusion region 271 and a non-diffusion region 272. The second diffusion portion 28 also includes a diffusion region 281 and a non-diffusion region 282. In the present embodiment, the diffusion concentration of the diffusion region 271 and the diffusion region 281 are the same. However, in the first diffusion portion 27, the ratio between the widths of the diffusion regions 271 and the non-diffusion regions 272 is smaller than the ratio between the widths of the diffusion regions 281 and the non-diffusion regions 282 in the second diffusion portion 28. Therefore, the doping concentration of the first diffusion portion 27 is smaller than the doping concentration of the second diffusion portion 28 as a whole. That is, the resistivity of the second diffusing portion 28 is smaller than the resistivity of the first diffusing portion 27, so that a current flows from the electrode layer 26 toward the second diffusing portion 28 that is away from the electrode layer 26. The current is evenly distributed on the surface of the light-emitting diode 100, thereby improving the light-emitting efficiency.

藉由將第一擴散部27分成擴散區域271及非擴散區域272與將第二擴散部28同樣分成擴散區域281與非擴散區域282,使到第一擴散部27與第二擴散部28之製作在一次擴散過程中完成,從而提高了效率。請一併參閱圖4A-圖4C,本實施例之發光二極體200之第一擴散部27與第二擴散部28之製作過程如下:By dividing the first diffusion portion 27 into the diffusion region 271 and the non-diffusion region 272 and dividing the second diffusion portion 28 into the diffusion region 281 and the non-diffusion region 282, the fabrication of the first diffusion portion 27 and the second diffusion portion 28 is performed. Completed in a diffusion process to increase efficiency. Referring to FIG. 4A to FIG. 4C, the first diffusion portion 27 and the second diffusion portion 28 of the LED 200 of the present embodiment are manufactured as follows:

請參見圖4A,在n-GaN層24表面製作具有擴散區域271與擴散區域281圖案之SiO2 阻擋層29,即SiO2 阻擋層29覆蓋除擴散區域271與擴散區域281外之其他區域。該SiO2 阻擋層29圖案之製作步驟包括:在n-GaN層24表面沈積一層SiO2 阻擋層29,其沈積方法可以為等離子體增強化學氣相沈積法(PECVD)或者感應耦合等離子體增強化學氣相沈積法(ICPECVD)。然後在SiO2 阻擋層29之表面塗覆塗覆感光層。感光層可以採用正光阻或者負光阻,其塗布方法可以為旋轉式、噴塗式、浸粘式或者滾筒式等。利用曝光顯影之方法在感光層上定義出需要進行擴散之擴散區域271與擴散區域281。然後將擴散區域271與擴散區域281上感光層去除,露出SiO2 阻擋層29之表面。採用感應耦合等離子體蝕刻技術(ICP)對未被感光層覆蓋之SiO2 阻擋層29進行蝕刻,顯露出n-GaN層24表面,然後將剩餘之感光層去除。此時,未被SiO2 阻擋層29覆蓋之區域即為需要進行擴散之擴散區域271與擴散區域281。需要注意,在第一擴散部27中,擴散區域271與與非擴散區域272之間寬度之比值要小於第二擴散部28中擴散區域281與非擴散區域282之間之比值。請參見圖4B,將製作好之具有SiO2 阻擋層29圖案之發光二極體200放置於通有B、P、As等氣體或者蒸氣源之高溫爐中,由於溫度之作用,B、P、As等氣體原子將會擴散到n-GaN層24中,從而在擴散區域271與擴散區域281摻雜B、P、As等原子。同樣,擴散溫度選擇在500度至750度之溫度範圍內。擴散區域271與擴散區域281摻雜濃度與深度可以藉由高溫爐中之氣體濃度及發光二極體200在高溫爐中之擴散時間來確定。高溫爐中B、P、As等氣體原子之濃度越大,擴散區域271與擴散區域281之摻雜濃度就越大。發光二極體200在高溫爐中之擴散時間越長,B、P、As等氣體原子在n-GaN層24中之擴散深度就越深,即擴散區域271與擴散區域281之厚度越大。一般來講,B、P、As等氣體原子之擴散區域271與擴散區域281之擴散深度不超過n-GaN層24之厚度,以避免B、P、As等氣體原子擴散到活性層23中,從而對活性層23之發光性能造成影響。擴散過程完成後,去除SiO2 阻擋層29,如圖4C所示。Referring to FIG. 4A, a SiO 2 barrier layer 29 having a pattern of a diffusion region 271 and a diffusion region 281 is formed on the surface of the n-GaN layer 24, that is, the SiO 2 barrier layer 29 covers other regions than the diffusion region 271 and the diffusion region 281. The SiO 2 barrier layer 29 pattern is formed by depositing a SiO 2 barrier layer 29 on the surface of the n-GaN layer 24, which may be deposited by plasma enhanced chemical vapor deposition (PECVD) or inductively coupled plasma enhanced chemistry. Vapor deposition (ICPECVD). A photosensitive layer is then applied to the surface of the SiO 2 barrier layer 29. The photosensitive layer may be a positive photoresist or a negative photoresist, and the coating method may be a rotary method, a spray coating method, a dipping method or a drum type. A diffusion region 271 and a diffusion region 281 which are required to be diffused are defined on the photosensitive layer by exposure development. The diffusion layer 271 and the photosensitive layer on the diffusion region 281 are then removed to expose the surface of the SiO 2 barrier layer 29. The SiO 2 barrier layer 29 not covered by the photosensitive layer is etched by inductively coupled plasma etching (ICP) to expose the surface of the n-GaN layer 24, and then the remaining photosensitive layer is removed. At this time, the region not covered by the SiO 2 barrier layer 29 is the diffusion region 271 and the diffusion region 281 which are required to be diffused. It is to be noted that in the first diffusion portion 27, the ratio of the width between the diffusion region 271 and the non-diffusion region 272 is smaller than the ratio between the diffusion region 281 and the non-diffusion region 282 in the second diffusion portion 28. Referring to FIG. 4B, the light-emitting diode 200 having the pattern of the SiO 2 barrier layer 29 is placed in a high-temperature furnace having a gas or a vapor source such as B, P, As, etc., due to the effect of temperature, B, P, Gas atoms such as As will diffuse into the n-GaN layer 24, thereby doping atoms such as B, P, and As in the diffusion region 271 and the diffusion region 281. Also, the diffusion temperature is selected to be in the range of 500 to 750 degrees. The doping concentration and depth of the diffusion region 271 and the diffusion region 281 can be determined by the gas concentration in the high temperature furnace and the diffusion time of the light emitting diode 200 in the high temperature furnace. The higher the concentration of gas atoms such as B, P, and As in the high temperature furnace, the larger the doping concentration of the diffusion region 271 and the diffusion region 281. The longer the diffusion time of the light-emitting diode 200 in the high-temperature furnace, the deeper the diffusion depth of gas atoms such as B, P, and As in the n-GaN layer 24, that is, the greater the thickness of the diffusion region 271 and the diffusion region 281. In general, the diffusion depth of the diffusion region 271 and the diffusion region 281 of the gas atoms such as B, P, and As does not exceed the thickness of the n-GaN layer 24, so as to prevent gas atoms such as B, P, and As from diffusing into the active layer 23, Thereby, the luminescent properties of the active layer 23 are affected. After the diffusion process is completed, the SiO 2 barrier layer 29 is removed, as shown in Fig. 4C.

可以理解地,本發明還可以有其他之實施方式,請參見圖5,本發明之第三實施例之發光二極體300。It can be understood that the present invention can also have other embodiments. Referring to FIG. 5, the LED 201 of the third embodiment of the present invention.

本發明第二實施例之發光二極體300包括一個基板31及依次在基板31上層疊之p-GaN層32、活性層33、n-GaN層34、鏡面反射層35及電極層36。同時,該發光二極體300還進一步包括一第一擴散部37與一第二擴散部38。The light-emitting diode 300 according to the second embodiment of the present invention includes a substrate 31 and a p-GaN layer 32, an active layer 33, an n-GaN layer 34, a specular reflection layer 35, and an electrode layer 36 which are sequentially laminated on the substrate 31. At the same time, the LED 300 further includes a first diffusion portion 37 and a second diffusion portion 38.

其中,本實施例中之基板31、p-GaN層32、活性層33、n-GaN層34、鏡面反射層35與第一實施例中之相同。The substrate 31, the p-GaN layer 32, the active layer 33, the n-GaN layer 34, and the specular reflection layer 35 in this embodiment are the same as those in the first embodiment.

請一併參見圖6,與第一實施例不同,本實施例之電極層36為網狀電極,該網狀之電極層36將n-GaN層34之表面分割成複數個正方形之區域。第二擴散部38設置於由電極層36所分割而成之正方形區域之內部,第一擴散部37設置於電極層36與第二擴散部38之間。且第一擴散部37之摻雜濃度小於第二擴散部38之摻雜濃度。在本實施例中,不對第一擴散部37實施擴散過程而只對第二擴散部38進行擴散過程,同樣可實現第一擴散部37之摻雜濃度小於第二擴散部38之摻雜濃度。Referring to FIG. 6, together with the first embodiment, the electrode layer 36 of the present embodiment is a mesh electrode, and the mesh electrode layer 36 divides the surface of the n-GaN layer 34 into a plurality of square regions. The second diffusion portion 38 is provided inside the square region divided by the electrode layer 36, and the first diffusion portion 37 is provided between the electrode layer 36 and the second diffusion portion 38. The doping concentration of the first diffusion portion 37 is smaller than the doping concentration of the second diffusion portion 38. In the present embodiment, the diffusion process is not performed on the first diffusion portion 37 and only the diffusion process is performed on the second diffusion portion 38. Similarly, the doping concentration of the first diffusion portion 37 is smaller than the doping concentration of the second diffusion portion 38.

第二擴散部38之製作過程可參照第一實施例及第二實施例。即利用SiO2 阻擋層將除第二擴散部38以外之其他區域覆蓋。然後將具有SiO2 阻擋層之發光二極體300放置於通有B、P、As等氣體或者蒸氣源之高溫爐中進行擴散,從而形成具有特定摻雜濃度之第二擴散部38。The manufacturing process of the second diffusion portion 38 can be referred to the first embodiment and the second embodiment. I.e. SiO 2 barrier layer by using the area other than the second portion 38 of the diffusion cover. Then, the light-emitting diode 300 having the SiO 2 barrier layer is placed in a high-temperature furnace through which a gas such as B, P, As or the like or a vapor source is diffused to form a second diffusion portion 38 having a specific doping concentration.

在應用過程中,由於第二擴散部38之摻雜濃度比第一擴散部37之摻雜濃度高,因此電流將會從電極層36往其圍成之正方形區域之中心之第二擴散部38上流動,從而使電流分佈均勻。In the application process, since the doping concentration of the second diffusion portion 38 is higher than the doping concentration of the first diffusion portion 37, the current will flow from the electrode layer 36 to the second diffusion portion 38 at the center of the square region enclosed therein. Flows up to make the current distribution uniform.

同樣,在本實施例中,擴散部並不限於兩個,其亦可以為三個或者三個以上,其摻雜濃度亦隨著遠離電極層之方向上逐漸增大。這需要根據實際應用來確定。Also, in the present embodiment, the diffusion portion is not limited to two, and it may be three or more, and the doping concentration thereof also gradually increases in a direction away from the electrode layer. This needs to be determined based on the actual application.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施方式,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

100、200、300‧‧‧發光二極體100, 200, 300‧‧‧Lighting diodes

11、21、31‧‧‧基板11, 21, 31‧‧‧ substrates

12、22、32‧‧‧p-GaN層12, 22, 32‧‧‧p-GaN layer

13、23、33‧‧‧活性層13, 23, 33‧‧‧ active layer

14、24、34‧‧‧n-GaN層14, 24, ‧ ‧ n-GaN layer

15、25、35‧‧‧鏡面反射層15, 25, 35‧‧ ‧ specular reflection layer

16、26、36‧‧‧電極層16, 26, 36‧‧‧ electrode layer

17、27、37‧‧‧第一擴散部17, 27, 37‧‧ First diffusion department

18、28、38‧‧‧第二擴散部18, 28, 38‧‧‧ Second Diffusion Department

19、29、110‧‧‧SiO2 阻擋層19, 29, 110‧‧‧ SiO 2 barrier

271、281‧‧‧擴散區域271, 281‧‧‧Diffusion area

272、282‧‧‧非擴散區域272, 282‧‧‧ Non-diffusion areas

圖1為本發明第一實施例之發光二極體之結構示意圖。1 is a schematic structural view of a light emitting diode according to a first embodiment of the present invention.

圖2A-2F為第一實施例中第一擴散部與第二擴散部之製作過程。2A-2F show the manufacturing process of the first diffusion portion and the second diffusion portion in the first embodiment.

圖3為本發明第二實施例之發光二極體之結構示意圖。3 is a schematic structural view of a light emitting diode according to a second embodiment of the present invention.

圖4A-4C為第二實施例中第一擴散部與第二擴散部之製作過程。4A-4C show the fabrication process of the first diffusion portion and the second diffusion portion in the second embodiment.

圖5為本發明第三實施例之發光二極體之結構示意圖。FIG. 5 is a schematic structural view of a light emitting diode according to a third embodiment of the present invention.

圖6為圖5中之發光二極體之n-GaN層表面示意圖。FIG. 6 is a schematic view showing the surface of the n-GaN layer of the light-emitting diode of FIG. 5. FIG.

100‧‧‧發光二極體 100‧‧‧Lighting diode

11‧‧‧基板 11‧‧‧Substrate

12‧‧‧p-GaN層 12‧‧‧p-GaN layer

13‧‧‧活性層 13‧‧‧Active layer

14‧‧‧n-GaN層 14‧‧‧n-GaN layer

15‧‧‧鏡面反射層 15‧‧‧Mirror reflection layer

16‧‧‧電極層 16‧‧‧electrode layer

17‧‧‧第一擴散部 17‧‧‧First Diffusion Department

18‧‧‧第二擴散部 18‧‧‧Second Diffusion Department

Claims (10)

一種發光二極體,其包括一基板及在基板上依次形成之P-GaN層、活性層及n-GaN層,該發光二極體進一步包括一電極層,該電極層設置n-GaN層之表面,其特徵在於,該n-GaN層包括第一擴散部及第二擴散部,該第一擴散部臨近該電極層,該第二擴散部設置於該第一擴散部之遠離該電極層一側,且該第一擴散部之摻雜濃度小於該第二擴散部之摻雜濃度。A light emitting diode comprising a substrate and a P-GaN layer, an active layer and an n-GaN layer formed sequentially on the substrate, the light emitting diode further comprising an electrode layer, wherein the electrode layer is provided with an n-GaN layer a surface, wherein the n-GaN layer includes a first diffusion portion and a second diffusion portion, the first diffusion portion is adjacent to the electrode layer, and the second diffusion portion is disposed on the first diffusion portion away from the electrode layer a side, and a doping concentration of the first diffusion portion is smaller than a doping concentration of the second diffusion portion. 如申請專利範圍第1項所述之發光二極體,其中,該電極層設置於n-GaN層之中心位置且位於該第一擴散部上,該第二擴散部圍繞第一擴散部排布。The light-emitting diode of claim 1, wherein the electrode layer is disposed at a center of the n-GaN layer and located on the first diffusion portion, and the second diffusion portion is disposed around the first diffusion portion. . 如申請專利範圍第1項所述之發光二極體,其中,該第一擴散部與第二擴散部分別包括間隔排布之擴散區域及非擴散區域,擴散區域之摻雜濃度相同,第一擴散部中之擴散區域與非擴散區域寬度之間之比值小於第二擴散部中之擴散區域與非擴散區域寬度之間之比值。The light-emitting diode according to the first aspect of the invention, wherein the first diffusion portion and the second diffusion portion respectively comprise a diffusion region and a non-diffusion region arranged at intervals, and the doping concentration of the diffusion region is the same, first The ratio between the width of the diffusion region and the width of the non-diffusion region in the diffusion portion is smaller than the ratio between the diffusion region and the width of the non-diffusion region in the second diffusion portion. 如申請專利範圍第1項所述之發光二極體,其中,該電極層為網狀電極,該網狀電極將n-GaN層分割複數個區域,該第二擴散部設置於每個區域之中心部位,第一擴散部設置於電極層與第二擴散部之間。The light-emitting diode according to claim 1, wherein the electrode layer is a mesh electrode, the mesh electrode divides the n-GaN layer into a plurality of regions, and the second diffusion portion is disposed in each region The central portion has a first diffusion portion disposed between the electrode layer and the second diffusion portion. 如申請專利範圍第1項至第4項之中任意一項所述之發光二極體,其中,該第一擴散部與第二擴散部之擴散深度小於n-GaN層之厚度。The light-emitting diode according to any one of claims 1 to 4, wherein the diffusion depth of the first diffusion portion and the second diffusion portion is smaller than the thickness of the n-GaN layer. 如申請專利範圍第1項至第4項之中任意一項所述之發光二極體,其特徵在於,該第一擴散部與第二擴散部之摻雜離子包括B、P、As三種元素中之一種或者幾種。The light-emitting diode according to any one of claims 1 to 4, wherein the doping ions of the first diffusion portion and the second diffusion portion comprise three elements of B, P, and As. One or several of them. 如申請專利範圍第1項至第4項之中任意一項所述之發光二極體,其特徵在於,該發光二極體進一步包括一鏡面反射層,該鏡面反射層設置於P-GaN層與基板之間。The light-emitting diode according to any one of claims 1 to 4, wherein the light-emitting diode further comprises a specular reflection layer disposed on the P-GaN layer Between the substrate and the substrate. 一種發光二極體之製作方法,其包括以下步驟:
提供一個基板;
在基板上依次形成P-GaN層、活性層及n-GaN層;
在n-GaN層表面形成第一擴散部及第二擴散部,在製作過程中,使第一擴散部之摻雜濃度小於第二擴散部之摻雜濃度;
在n-GaN層表面製作電極層。
A method for fabricating a light emitting diode, comprising the steps of:
Providing a substrate;
Forming a P-GaN layer, an active layer, and an n-GaN layer sequentially on the substrate;
Forming a first diffusion portion and a second diffusion portion on the surface of the n-GaN layer, wherein the doping concentration of the first diffusion portion is smaller than the doping concentration of the second diffusion portion during the manufacturing process;
An electrode layer is formed on the surface of the n-GaN layer.
如申請專利範圍第8項所述之發光二極體之製作方法,其中,該第一擴散部與該第二擴散部之製作過程包括以下步驟:
首先製作第二擴散部:
a.在n-GaN層表面沈積一層SiO2 阻擋層;
b.在SiO2 阻擋層表面塗覆一層感光層,對感光層進行曝光顯影,將第二擴散部區域之感光層去除;
c.對未被感光層覆蓋之SiO2 阻擋層之區域進行蝕刻,顯露出n-GaN層之表面,然後去除感光層,從而在SiO2 阻擋層形成第二擴散部之圖案;
d.將形成有SiO2 阻擋層圖案之發光二極體放至含有B、P、As之中一種或任意幾種原子之氣體或者蒸氣源之高溫爐中,藉由熱擴散之方法使上述原子擴散至第二擴散部中;
e.去除SiO2 阻擋層;
然後在製作好第二擴散部之發光二極體上製作第一擴散部:
f.在n-GaN層表面沈積一層SiO2 阻擋層;
g.在SiO2 阻擋層表面塗覆一層感光層,對感光層進行曝光顯影,將第一擴散部區域之感光層去除;
h.對未被感光層覆蓋之SiO2 阻擋層之區域進行蝕刻,顯露出n-GaN層之表面,然後去除感光層,從而在SiO2 阻擋層形成第一擴散部之圖案;
i.將形成有SiO2 阻擋層圖案之發光二極體放至含有B、P、As之中一種或任意幾種原子之氣體或者蒸氣源之高溫爐中,藉由熱擴散之方法使上述原子擴散至第一擴散部中;
j.去除SiO2 阻擋層。
The manufacturing method of the light-emitting diode according to the eighth aspect of the invention, wherein the manufacturing process of the first diffusion portion and the second diffusion portion comprises the following steps:
First make the second diffusion:
a. depositing a SiO 2 barrier layer on the surface of the n-GaN layer;
b. coating a surface of the SiO 2 barrier layer with a photosensitive layer, exposing and developing the photosensitive layer, and removing the photosensitive layer of the second diffusion portion;
c. etching a region of the SiO 2 barrier layer not covered by the photosensitive layer to expose the surface of the n-GaN layer, and then removing the photosensitive layer to form a pattern of the second diffusion portion in the SiO 2 barrier layer;
d. The light-emitting diode formed with the SiO 2 barrier layer pattern is placed in a high-temperature furnace containing a gas or a vapor source of one or any of B, P, As, and the atom is thermally diffused. Diffusion into the second diffusion portion;
e. removing the SiO 2 barrier layer;
Then, the first diffusion portion is formed on the light-emitting diode on which the second diffusion portion is formed:
f. depositing a SiO 2 barrier layer on the surface of the n-GaN layer;
g. coating a photosensitive layer on the surface of the SiO 2 barrier layer, exposing and developing the photosensitive layer, and removing the photosensitive layer in the first diffusion portion;
h. etching a region of the SiO 2 barrier layer not covered by the photosensitive layer to expose the surface of the n-GaN layer, and then removing the photosensitive layer, thereby forming a pattern of the first diffusion portion in the SiO 2 barrier layer;
i. placing the light-emitting diode formed with the SiO 2 barrier layer pattern into a high-temperature furnace containing a gas or a vapor source of one or any of B, P, As, and the above atom by thermal diffusion Diffusion into the first diffusion portion;
j. Remove the SiO 2 barrier layer.
如申請專利範圍第8項所述之發光二極體之製作方法,其中,該第一擴散部與該第二擴散部之製作過程包括以下步驟:
a.在n-GaN層表面沈積一層SiO2 阻擋層;
b.在SiO2 阻擋層表面塗覆一層感光層,對感光層進行曝光顯影,定義出第一擴散部與第二擴散部之位置,其中,該第一擴散部與第二擴散部分別包括擴散區域與非擴散區域,在第一擴散部中之擴散區域與非擴散區域寬度之間之比值小於在第二擴散部中之擴散區域與非擴散區域寬度之間之比值,然後將擴散區域之感光層去除;
c.對未被感光層覆蓋之SiO2 阻擋層之區域進行蝕刻,顯露出n-GaN層之表面,然後去除感光層,從而在SiO2 阻擋層形成擴散區域之圖案;
d.將具有SiO2 阻擋層圖案之發光二極體放至含有B、P、As之中一種或任意幾種原子之氣體或者蒸氣源之高溫爐中,藉由熱擴散之方法使上述原子擴散至擴散區域中;
e.去除SiO2 阻擋層。
The manufacturing method of the light-emitting diode according to the eighth aspect of the invention, wherein the manufacturing process of the first diffusion portion and the second diffusion portion comprises the following steps:
a. depositing a SiO 2 barrier layer on the surface of the n-GaN layer;
b. coating a surface of the SiO 2 barrier layer with a photosensitive layer, exposing and developing the photosensitive layer to define a position of the first diffusion portion and the second diffusion portion, wherein the first diffusion portion and the second diffusion portion respectively comprise diffusion In the region and the non-diffusion region, a ratio between a diffusion region and a non-diffusion region width in the first diffusion portion is smaller than a ratio between a diffusion region and a non-diffusion region width in the second diffusion portion, and then the diffusion region is exposed. Layer removal
c. etching a region of the SiO 2 barrier layer not covered by the photosensitive layer to expose the surface of the n-GaN layer, and then removing the photosensitive layer to form a pattern of the diffusion region in the SiO 2 barrier layer;
d. placing a light-emitting diode having a SiO 2 barrier layer pattern in a high-temperature furnace containing a gas or a vapor source of one or any of B, P, As, and diffusing the atom by thermal diffusion In the diffusion zone;
e. Remove the SiO 2 barrier layer.
TW098145726A 2009-12-30 2009-12-30 Light-emitting diode and method for making the same TWI463697B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098145726A TWI463697B (en) 2009-12-30 2009-12-30 Light-emitting diode and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098145726A TWI463697B (en) 2009-12-30 2009-12-30 Light-emitting diode and method for making the same

Publications (2)

Publication Number Publication Date
TW201123534A TW201123534A (en) 2011-07-01
TWI463697B true TWI463697B (en) 2014-12-01

Family

ID=45046714

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098145726A TWI463697B (en) 2009-12-30 2009-12-30 Light-emitting diode and method for making the same

Country Status (1)

Country Link
TW (1) TWI463697B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420732B1 (en) * 2000-06-26 2002-07-16 Luxnet Corporation Light emitting diode of improved current blocking and light extraction structure
TWI263364B (en) * 2004-09-29 2006-10-01 Sanken Electric Co Ltd Semiconductor light emitting element and fabrication method thereof
TW200828633A (en) * 2006-12-21 2008-07-01 Lg Electronics Inc Light emitting device package and method for manufacturing the same
TW200915612A (en) * 2007-09-29 2009-04-01 Epileds Technologies Inc LED having current diffusion layer and fabrication method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420732B1 (en) * 2000-06-26 2002-07-16 Luxnet Corporation Light emitting diode of improved current blocking and light extraction structure
TWI263364B (en) * 2004-09-29 2006-10-01 Sanken Electric Co Ltd Semiconductor light emitting element and fabrication method thereof
TW200828633A (en) * 2006-12-21 2008-07-01 Lg Electronics Inc Light emitting device package and method for manufacturing the same
TW200915612A (en) * 2007-09-29 2009-04-01 Epileds Technologies Inc LED having current diffusion layer and fabrication method thereof

Also Published As

Publication number Publication date
TW201123534A (en) 2011-07-01

Similar Documents

Publication Publication Date Title
CN102097559B (en) LED and manufacture method thereof
TWI528570B (en) Textured optoelectronic devices and associated methods of manufacture
US8183575B2 (en) Method and apparatus for providing a patterned electrically conductive and optically transparent or semi-transparent layer over a lighting semiconductor device
RU2552867C2 (en) High brightness led having roughened active layer and conformal coating
JP6161955B2 (en) Light emitting device having patterned interface and method for manufacturing the same
CN102231413A (en) LED (light-emitting diode) chip and manufacturing method thereof
TW201411875A (en) Method of growing a III-V group compound material on a substrate, and a semiconductor device and a lighting apparatus comprising the III-V group compound material
KR20130120876A (en) Light emitting diode and method for manufacturing the same
KR100691497B1 (en) Light-emitting device and Method of manufacturing the same
JP6262036B2 (en) Light emitting device
CN103811614B (en) Light emitting element with hetero-material structure and manufacturing method thereof
TWI453949B (en) Method for making light-emitting diodes
US8852974B2 (en) Semiconductor light-emitting device and method for manufacturing the same
TWI492416B (en) Light emitting diode chip and making method thereof
KR101239852B1 (en) GaN compound semiconductor light emitting element
TWI453968B (en) Semiconductor light-emitting structure
TWI469386B (en) Light emitting diode and method for making the same
TWI463697B (en) Light-emitting diode and method for making the same
US10283677B2 (en) LED structure and fabrication method
CN102201508A (en) Light emitting diode chip and fabrication method thereof
KR20060074387A (en) Luminescence device and method of manufacturing the same
KR100907524B1 (en) Light emitting diode device and manufacturing method thereof
TW201104921A (en) Method of manufacturing a vertical type light-emitting diode
TWI467808B (en) Light emitting device, method of manufacturing the same and light emitting apparatus
TWI423480B (en) Method of patterning transparent conductive layer of light emitting diode

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees