TWI463516B - Method of ion source cleaning in semiconductor processing systems - Google Patents

Method of ion source cleaning in semiconductor processing systems Download PDF

Info

Publication number
TWI463516B
TWI463516B TW098127518A TW98127518A TWI463516B TW I463516 B TWI463516 B TW I463516B TW 098127518 A TW098127518 A TW 098127518A TW 98127518 A TW98127518 A TW 98127518A TW I463516 B TWI463516 B TW I463516B
Authority
TW
Taiwan
Prior art keywords
cathode
cleaning
gas
xef
source
Prior art date
Application number
TW098127518A
Other languages
Chinese (zh)
Other versions
TW201030792A (en
Inventor
Joseph D Sweeney
Sharad N Yedave
Oleg Byl
Robert Kaim
David Eldridge
Lin Feng
Steven E Bishop
W Karl Olander
Ying Tang
Original Assignee
Advanced Tech Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2009/033754 external-priority patent/WO2009102762A2/en
Application filed by Advanced Tech Materials filed Critical Advanced Tech Materials
Publication of TW201030792A publication Critical patent/TW201030792A/en
Application granted granted Critical
Publication of TWI463516B publication Critical patent/TWI463516B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/08Ion sources; Ion guns using arc discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/16Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/18Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32862In situ cleaning of vessels and/or internal parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/0203Protection arrangements
    • H01J2237/0209Avoiding or diminishing effects of eddy currents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0815Methods of ionisation
    • H01J2237/082Electron beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/22Treatment of data

Description

在半導體處理系統中離子源之清洗之方法Method of cleaning an ion source in a semiconductor processing system

本發明係關於係關於半導體處理系統,特別是離子植入系統之部件上的材料沈積之監測、控制以及清洗。The present invention relates to the monitoring, control, and cleaning of materials deposited on components of semiconductor processing systems, particularly ion implantation systems.

離子植入被用於積體電路的製造以便精確地向半導體晶圓中引入受控制量的摻雜雜質並且是微電子/半導體生產中之重要製程。在此類植入系統中,一離子源使一所希望的摻雜元素氣體電離成離子並且該等離子以具有所希望能量的一離子束的形式從源中萃取。萃取係藉由施加一高的電壓跨過合適成型的萃取電極而實現,該等萃取電極將多個孔合併成了萃取束的通道。離子束然後在工件的表面,例如一半導體晶圓上進行定向,以便向該工件植入摻雜元素。該束中的離子穿透該工件的表面來形成具有所希望的導電率之區域。Ion implantation is used in the fabrication of integrated circuits to accurately introduce a controlled amount of dopant impurities into a semiconductor wafer and is an important process in microelectronic/semiconductor production. In such implant systems, an ion source ionizes a desired dopant element gas into an ion and the plasma is extracted from the source in the form of an ion beam having the desired energy. Extraction is achieved by applying a high voltage across a suitably shaped extraction electrode that combines the multiple wells into a channel for the extraction beam. The ion beam is then oriented on a surface of the workpiece, such as a semiconductor wafer, to implant a doping element into the workpiece. The ions in the beam penetrate the surface of the workpiece to form a region of the desired conductivity.

幾種類型的離子源一般用於商業的離子植入系統中,包括:使用熱電電極並且藉由一電弧供電之Freeman以及Bernas類型、使用一磁控管的微波型、間接加熱的陰極源、以及RF電漿源,所有該等離子源通常在一真空中運行。離子源藉由向填充了摻雜氣體(一般稱為「原料氣體」)的一真空室中引入電子來產生離子。電子與氣體中之摻雜原子及分子的碰撞引起了由正的及負的摻雜離子組成的電離電漿之產生。具有一負的或正的偏壓的萃取電極將分別允許該正的或負的離子作為一準直離子束通過孔並且從離子源中出來,該離子束向著工件被加速。原料氣體包括但不限於BF3 、B10 H14 、B18 H22 、PH3 、AsH3 、PF5 、AsF5 、H2 Se、N2 、Ar、GeF4 、SiF4 、O2 、H2 、以及GeH4Several types of ion sources are commonly used in commercial ion implantation systems, including: Freeman and Bernas types that use thermoelectric electrodes and are powered by an arc, microwave types that use a magnetron, indirectly heated cathode sources, and RF plasma source, all of which are typically operated in a vacuum. The ion source generates ions by introducing electrons into a vacuum chamber filled with a dopant gas (generally referred to as "feed gas"). The collision of electrons with dopant atoms and molecules in the gas causes the generation of ionized plasma consisting of positive and negative dopant ions. An extraction electrode having a negative or positive bias will respectively allow the positive or negative ions to pass through the aperture as a collimated ion beam and exit the ion source, which is accelerated toward the workpiece. The material gases include, but are not limited to, BF 3 , B 10 H 14 , B 18 H 22 , PH 3 , AsH 3 , PF 5 , AsF 5 , H 2 Se, N 2 , Ar, GeF 4 , SiF 4 , O 2 , H 2 , and GeH 4 .

目前,在現有技術之器件的製造中達10-15個植入步驟。增加晶圓大小、減小臨界尺寸、以及生長電路的複雜性正在提出對離子植入工具就更好的處理控制、低能高束電流的釋放、以及平均無故障時間(MTBF)減小而言更多的要求。Currently, there are 10-15 implant steps in the fabrication of prior art devices. Increasing wafer size, reducing critical dimensions, and increasing the complexity of the circuit are now being proposed for better processing control of ion implantation tools, release of low energy high beam currents, and reduction in mean time between failure (MTBF). More requirements.

最需要維護的離子植入機工具的部件包括:離子源,它必須在大約100到300小時的運行時間之後進行檢修(取決於其運行條件);萃取電極以及高電壓絕緣子,它們在運行幾百小時之後通常需要清洗;離子植入真空系統的前級管道以及真空泵,包括離子源渦輪泵及其關聯的前級管道。另外,離子源之各種部件(諸如絲極、陰極及其類似者)在運行後可能需要更換。The most demanding components of the ion implanter tool include: an ion source that must be serviced after approximately 100 to 300 hours of run time (depending on its operating conditions); extraction electrodes and high voltage insulators that are running hundreds of Cleaning is usually required after an hour; the front stage of the ion implantation vacuum system and the vacuum pump, including the ion source turbo pump and its associated foreline. In addition, various components of the ion source, such as filaments, cathodes, and the like, may need to be replaced after operation.

在理想的情況下,所有的原料分子均會被電離並且萃取,但是實際上會發生一定量的原料分解,這導致了在離子源區域上的沈積以及污染。舉例而言,磷的殘餘物(例如由使用諸如磷化氫之原料氣體得來)迅速地沈積在該離子源區域的表面上。該殘餘物可在離子源中之低電壓絕緣子上形成,引起電短路,這可能中斷產生熱電子所需要的電弧。這種現象通常稱為「源閃爍(glitching)」,並且它係離子束不穩定性的重要因素,並且可能最終引起該源的過早損壞。殘餘物還在離子植入機的高電壓部件(例如該源的絕緣子或萃取電極的表面)上形成,引起高能的高電壓發電花。此類電花係束流不穩定性的另一因素,並且由該等電花所釋放的能量可以損壞靈敏的電子部件,導致增加的裝備故障以及差的MTBF。Ideally, all of the feedstock molecules will be ionized and extracted, but in practice a certain amount of decomposition of the feedstock will occur, which results in deposition and contamination on the ion source region. For example, a residue of phosphorus (e.g., derived from the use of a source gas such as phosphine) is rapidly deposited on the surface of the ion source region. This residue can form on the low voltage insulator in the ion source, causing an electrical short, which can interrupt the arcing required to generate hot electrons. This phenomenon is commonly referred to as "glitching" and is an important factor in ion beam instability and may eventually cause premature failure of the source. The residue is also formed on the high voltage components of the ion implanter, such as the surface of the insulator or extraction electrode of the source, causing high energy, high voltage power generation. Such an electric flower is another factor in beam instability, and the energy released by such electro-sparks can damage sensitive electronic components, resulting in increased equipment failure and poor MTBF.

對於使用Sb2 O3 作為固體摻雜材料的銻(Sb+)的植入,會發生另一常見的問題,這可以藉由甚至僅在Sb+植入幾小時之後流入硼(B)而惡化。該硼束電流可以使該明顯受損的離子源的性能及壽命顯著地變壞。此類性能退化的原因歸因於在源的室及其部件上過度沈積的Sb。因為產量由於更頻繁的預防性維護或更少的束電流而降低了,所以離子源的故障顯著地降低了植入機的生產率。由於Sb的植入廣泛地用於類似的雙極器件中,並且還用作對於MOS(金屬氧化物半導體)器件的淺接面形成的n-型摻雜,因此本領域有發展一方法的需要,即當Sb+用作摻雜劑時,特別是Sb植入之後轉換成B時,該方法可以從源的腔室及其部件上移除沈積的Sb。For the implantation of bismuth (Sb+) using Sb 2 O 3 as a solid doping material, another common problem occurs, which can be deteriorated by flowing boron (B) even after only a few hours of Sb+ implantation. The boron beam current can significantly degrade the performance and lifetime of the significantly damaged ion source. The cause of such performance degradation is due to excessive deposition of Sb on the chamber of the source and its components. Since the yield is reduced due to more frequent preventive maintenance or less beam current, the failure of the ion source significantly reduces the productivity of the implanter. Since the implantation of Sb is widely used in similar bipolar devices and also serves as an n-type doping for shallow junction formation of MOS (Metal Oxide Semiconductor) devices, there is a need in the art to develop a method. That is, when Sb+ is used as a dopant, particularly when Sb is converted to B after implantation, the method can remove deposited Sb from the chamber of the source and its components.

此外,摻雜原子(例如B、Ge、Si、P及As)可沈積在離子源渦輪泵、其關聯的真空前級管道之下游,及位於前級管道下游之低真空泵中。經時間的推移,該等沈積物積累起來並且需要清洗,其中過去係手動完成的。但是有些沈積物(例如固體磷)係生火花的並且可能在手動維護的操作過程中著火。這不僅是火災危險,而且還可能釋放出有毒的化合物。因此在本領域存在著發展一改良的方法的需要,該方法可使用一氣體清洗劑來如願地原位清洗該等沈積物。In addition, dopant atoms (eg, B, Ge, Si, P, and As) may be deposited in the ion source turbo pump, downstream of its associated vacuum foreline, and in a low vacuum pump downstream of the foreline. Over time, the deposits accumulate and require cleaning, which was done manually in the past. However, some deposits (such as solid phosphorus) are sparking and may catch fire during manual maintenance operations. This is not only a fire hazard, but it can also release toxic compounds. There is therefore a need in the art to develop an improved process that can use a gas cleaning agent to wash the deposits in situ as desired.

在離子源故障的另一原因中,各種材料(例如鎢,W)可以在長期的離子植入過程中累積在陰極上。一旦該等材料累積達到一臨界程度,該陰極電源不再能保持足以滿足束電流設定點的溫度。這引起離子束電流的損失,需要更換離子源。所產生的離子源性能退化及壽命縮短降低了離子植入機系統的生產率。In another cause of ion source failure, various materials (eg, tungsten, W) can accumulate on the cathode during long-term ion implantation. Once the materials have accumulated to a critical level, the cathode power source can no longer maintain a temperature sufficient to meet the beam current set point. This causes a loss of ion beam current and requires replacement of the ion source. Degraded ion source performance and reduced lifetime shorten the productivity of the ion implanter system.

而離子源故障的另一原因係陰極材料的蝕刻(或濺鍍)。舉例而言,來自陰極的金屬材料(例如W、Mo等)被電弧室中電漿中的離子濺鍍。因為濺鍍受到電漿中的最重的離子的控制,所以隨著離子質量增加,濺鍍效果可能變壞。事實上,連續的材料的濺鍍使該陰極「變薄」,最後導致在陰極上形成一孔洞(「陰極穿通」)。結果係離子源的性能及壽命大大降低。因此本領域繼續尋求能保持材料在陰極上的累積及腐蝕之間的平衡的方法來延長離子源的壽命。Another cause of ion source failure is etching (or sputtering) of the cathode material. For example, a metal material (eg, W, Mo, etc.) from the cathode is sputtered by ions in the plasma in the arc chamber. Since sputtering is controlled by the heaviest ions in the plasma, the sputtering effect may deteriorate as the ion mass increases. In fact, the sputtering of a continuous material "thins" the cathode, which ultimately results in the formation of a hole in the cathode ("cathode through"). As a result, the performance and lifetime of the ion source are greatly reduced. Therefore, the art continues to seek ways to maintain the balance between the accumulation of material on the cathode and the corrosion to extend the life of the ion source.

其他殘餘物可能由該離子源材料與該離子植入系統的部件之間的反應產生,這取決於系統內的條件。此類反應可以導致殘餘物沈積在系統的額外部件上。舉例而言,鎢鬚晶可形成於電弧室萃取孔上,從而導致束不均勻性問題。Other residues may result from the reaction between the ion source material and the components of the ion implantation system, depending on the conditions within the system. Such reactions can result in deposits of residues on additional components of the system. For example, tungsten whiskers can be formed on the arc chamber extraction holes, resulting in beam non-uniformity problems.

沈積物在離子源的元件上很常見,例如絲極以及反射極電極。此類內部沈積物總體上是由電弧室材料構成的,並且最常見的是當具有一氟化物源的原料的高電漿電源與由鎢或鉬構成的一電弧室結合而操作時。儘管使用非含鹵化物源的材料的離子植入系統的離子源的預期壽命一般是大約100小時到300小時,而有些含鹵化物材料(例如GeF4 )由於在離子源操作中內部沈積物的有害影響,離子源的壽命可以低至10小時到50小時。Sediments are common on components of ion sources, such as filaments and reflector electrodes. Such internal deposits are generally composed of arc chamber materials, and the most common is when a high plasma power source of a feedstock having a fluoride source is operated in conjunction with an arc chamber of tungsten or molybdenum. Although the ion source of an ion implantation system using a material other than a halide source typically has an expected lifetime of about 100 hours to 300 hours, some halide containing materials (such as GeF 4 ) are internal deposits due to ion source operation. The harmful effects of the ion source can be as low as 10 hours to 50 hours.

除了由於在該離子植入機中的殘餘物引起的操作困難之外,由於為了清洗而移除部件時散發出有毒或腐蝕蒸氣,還存在重大的人員安全問題。安全問題會在殘餘物存在的任何地方發生,但特別受關注的是在離子源區域,因為離子源係離子植入機最經常維護的部件。為了最小化停機時間,經常在顯著地高於室溫的溫度下將受污染的離子源從植入機中移除,這增加了蒸氣的散發並且加深了安全問題。In addition to the operational difficulties caused by residues in the ion implanter, there are significant personnel safety issues due to the emission of toxic or corrosive vapors when components are removed for cleaning. Safety issues can occur anywhere in the residue, but are of particular concern in the ion source region because the ion source is the most frequently maintained component of the ion implanter. To minimize downtime, contaminated ion sources are often removed from the implanter at temperatures significantly above room temperature, which increases vapor emissions and deepens safety issues.

處理以上困難的已有方法已包括嘗試阻止沈積物的形成以及清洗在萃取電極及離子源上產生的沈積物(即,在該萃取電極上,如公布的美國專利申請2006/0272776、公布的美國專利申請2006/0272775以及公布的國際專利申請WO 2005/059942 A2中所討論)。然而,依然需要清洗離子植入系統的所有元素的額外過程。Existing methods of dealing with the above difficulties have included attempts to prevent the formation of deposits and to clean deposits produced on the extraction electrode and ion source (i.e., on the extraction electrode, as disclosed in U.S. Patent Application No. 2006/0272776, issued U.S. Patent application 2006/0272775 and the published international patent application WO 2005/059942 A2). However, there is still a need for additional processes to clean all elements of the ion implantation system.

因此在離子植入領域中希望提供具有一單獨的清洗台的一離位的清洗方法,由此可以安全地對已經從該植入機移除的受污染部件進行清理而沒有任何機械磨損,該機械磨損可能損害例如石墨電極之精細部件。因此提供一離線清洗台還將是在離子植入領域中的一顯著進步,它可以用來在部件從該植入系統移除之後選擇性並且非破壞地清洗它們,而停機時間最短。It is therefore desirable in the field of ion implantation to provide an off-site cleaning method with a separate cleaning station whereby the contaminated components that have been removed from the implanter can be safely cleaned without any mechanical wear, Mechanical wear can damage delicate components such as graphite electrodes. Therefore, providing an off-line cleaning station will also be a significant advancement in the field of ion implantation, which can be used to selectively and non-destructively clean components after they are removed from the implant system with minimal downtime.

提供一原位的清洗方法也將是離子植入領域中的一顯著進步,該方法用於在植入過程中有效地、選擇性地移除不必要的遍及該植入機(特別是該離子源區域)沈積的殘餘物。這種原位清洗會提高人員安全並且促進穩定的、不間斷的植入裝備的操作。Providing an in situ cleaning method would also be a significant advancement in the field of ion implantation for effectively and selectively removing unnecessary implants throughout the implantation process (especially the ion Source area) residue of deposition. This in-situ cleaning improves personnel safety and facilitates the operation of stable, uninterrupted implant equipment.

可以進行一原位清洗過程而不拆開該處理室。對於原位過程,將一氣體試劑從該處理室中流過以便以連續的、脈衝的或混合的連續-脈衝方式來移除累積的薄膜。取決於情況,一電漿可以在或不在這種清洗過程中產生。An in-situ cleaning process can be performed without disassembling the processing chamber. For the in-situ process, a gaseous reagent is passed from the processing chamber to remove the accumulated film in a continuous, pulsed or mixed continuous-pulse manner. Depending on the situation, a plasma may or may not be produced during such a cleaning process.

使用三氟化氯(ClF3 )以及其他的氟源的材料(例如,CF4 、NF3 、C2 F6 、C3 F8 、SF6 以及ClF3 )的無電漿的或乾燥清洗方法可用於從半導體處理室中移除固體殘餘物,例如藉由與固體殘餘物進行反應以形成藉由真空或其他的移除條件從該處理室中可移除的揮發性反應產物,並且在此類情況下,該等清洗試劑可能需要高溫的清洗條件。見Y. Saito等,「Plasmaless Cleaning Process of Silicon Surface Using Chlorine Trifluoride」,APPLIED PHYSICS LETTERS,第56(8)卷,第1119-1121頁(1990);還見D.E. Ibbotson等,「Plasmaless Dry Etching of Silicon with Fluorine-Containing Compounds」,JOURNAL OF APPLIED PHYSICS,第56(10)卷,第2939-2942頁(1984)。A plasmaless or dry cleaning method using materials containing chlorine trifluoride (ClF 3 ) and other fluorine sources (eg CF 4 , NF 3 , C 2 F 6 , C 3 F 8 , SF 6 and ClF 3 ) is available Removing solid residue from the semiconductor processing chamber, for example by reacting with a solid residue to form a volatile reaction product that is removable from the processing chamber by vacuum or other removal conditions, and in such a In this case, such cleaning reagents may require high temperature cleaning conditions. See Y. Saito et al., "Plasmaless Cleaning Process of Silicon Surface Using Chlorine Trifluoride", APPLIED PHYSICS LETTERS, Vol. 56(8), pp. 1119-1121 (1990); see also DE Ibbotson et al., "Plasmaless Dry Etching of Silicon" With Fluorine-Containing Compounds", JOURNAL OF APPLIED PHYSICS, Vol. 56 (10), pp. 2939-2942 (1984).

美國專利號4,498,953描述了一原位清洗方法,其中將一種鹵素間化合物(例如BrF5 、BrF3 、ClF3 、或IF5 )連續地流過該處理室,同時維持在該室內的一預定的壓力。在該處理結束時,終止該鹵素間化合物氣體的流動。此類方法可以產生含Cl、Br、或I的副產物,連同含氟的副產物,由此產生大量的需要處理或其他處置的危險廢料。此外,此類連續流動清洗在非常低的壓力條件下進行,在此壓力下清洗效率實質上降低了。U.S. Patent No. 4,498,953 describes an in-situ cleaning method, wherein one interhalogen compound (e.g. BrF 5, BrF 3, ClF 3 , or IF 5) flows continuously through the processing chamber while the chamber is maintained at a predetermined of pressure. At the end of the treatment, the flow of the inter-halogen compound gas is terminated. Such processes can produce by-products containing Cl, Br, or I, along with fluorine-containing by-products, thereby producing a large amount of hazardous waste requiring treatment or other disposal. In addition, such continuous flow cleaning is carried out under very low pressure conditions, at which the cleaning efficiency is substantially reduced.

在某些離子源應用中,已經進行了BF3 、PH3 、及/或AsH3 的策略性排序以便實現更長的離子源壽命。In certain applications, the ion source, has a BF 3, PH 3, and / or strategically ordered AsH 3 in order to achieve a longer life of the ion source.

氟基或含氟的鹵素間化合物用於清洗半導體處理裝備的應用有限制其商業活力的相關不足。氟基或含氟的鹵素間化合物(包括ClF3 )具有高度腐蝕的特點。此外,鹵素間化合物係對人類呼吸道的強烈刺激物。舉例而言,對於ClF3 蒸氣的臨限人體耐受水平可以低到100ppb,LC50為在300ppm下1小時的級別。The use of fluorine- or fluorine-containing interhalogen compounds for cleaning semiconductor processing equipment has associated deficiencies that limit its commercial viability. Fluorine- or fluorine-containing interhalogen compounds (including ClF 3 ) are highly corrosive. In addition, interhalogen compounds are strong irritants to the human respiratory tract. For example, a threshold human tolerance level for ClF 3 vapor can be as low as 100 ppb and an LC50 of 1 hour at 300 ppm.

本領域繼續尋求新的清洗試劑以及離位及原位系統與方法,以及相關的監測及控制裝置及方法。The art continues to seek new cleaning reagents as well as off-site and in-situ systems and methods, as well as related monitoring and control devices and methods.

本發明總體上係關於用於監測、控制以及清洗離子植入系統或其部件的裝置以及方法,也係關於有效地用於此種清洗的組合物。The present invention generally relates to apparatus and methods for monitoring, controlling, and cleaning ion implantation systems or components thereof, as well as compositions useful for such cleaning.

在一態樣本發明提供了在系統操作過程中監測一離子植入系統的絲極狀態之方法,該方法包含:(a)在一離子源的電弧室中使用足以在所述電弧室中產生一電漿的一初始電流向一絲極供電;(b)在連續電漿生成的一預定時間量測對該絲極的電流輸入以便保持該電弧室中的電漿;(c)將在該預定時間量測的電流輸入與該初始電流進行比較,並且(d)根據此類比較確定材料是否已經沈積到該絲極上或是否已經發生該絲極的蝕刻,其中,相對於該初始電流在該預定時間的一更大的電流表示材料在該絲極上的沈積,而相對於該初始電流在該預定時間的一更小的電流表示該絲極的蝕刻。The one-state sample invention provides a method of monitoring the filament state of an ion implantation system during system operation, the method comprising: (a) using in an arc chamber of an ion source sufficient to generate one in the arc chamber An initial current of the plasma is supplied to the one pole; (b) measuring the current input to the filament at a predetermined time of continuous plasma generation to maintain the plasma in the arc chamber; (c) will be at the predetermined time The measured current input is compared to the initial current, and (d) determining, based on such comparison, whether material has been deposited onto the filament or whether etching of the filament has occurred, wherein the predetermined current is at the predetermined time A larger current indicates deposition of material on the filament, and a smaller current at the predetermined time relative to the initial current indicates etching of the filament.

在另一態樣本發明提供了在該系統操作過程中控制一離子植入系統的一絲極的狀態之方法,包含:(a)在一離子源的電弧室中使用足以在所述電弧室中產生一電漿的一初始電流向一絲極供電;(b)在連續電漿生成的一預定時間量測對該絲極的電流輸入以便保持該電弧室中的電漿;(c)將在該預定時間量測的電流輸入與該初始電流進行比較,(d)根據此類比較確定材料是否已經沈積到該絲極上或是否已經發生該絲極的蝕刻,其中,相對於該初始電流在該預定時間的一更大的電流表示材料在該絲極上的沈積,而相對於該初始電流在該預定時間的一更小的電流表示該絲極的蝕刻,並且(e)回應於該確定,從該絲極移除沈積的材料或在該絲極上沈積附加的材料,至一程度,在該程度重新建立了該初始電流輸入、或在所述初始電流輸入的一預定範圍內的一電流輸入。在此態樣之另一實施方式中,步驟(a)至步驟(d)可在離子植入過程期間進行;步驟(e)可在離子植入過程之前、之後或之間進行。In another aspect, the invention provides a method of controlling the state of a filament of an ion implantation system during operation of the system, comprising: (a) using in an arc chamber of an ion source sufficient to produce in the arc chamber An initial current of a plasma is supplied to a filament; (b) measuring a current input to the filament at a predetermined time of continuous plasma generation to maintain plasma in the arc chamber; (c) at the predetermined The time measured current input is compared to the initial current, (d) determining whether the material has been deposited onto the filament or whether the filament has been etched based on such comparison, wherein the predetermined current is at the predetermined time relative to the initial current A larger current indicates deposition of the material on the filament, and a smaller current at the predetermined time relative to the initial current indicates etching of the filament, and (e) in response to the determination, from the filament The pole removes the deposited material or deposits additional material on the filament to a degree that reestablishes the initial current input or a current input within a predetermined range of the initial current input. In another embodiment of this aspect, steps (a) through (d) can be performed during the ion implantation process; step (e) can be performed before, after or between the ion implantation processes.

在另一態樣中,本發明提供了在系統操作期間控制一離子植入系統之一間接加熱的陰極(IHC)源之狀態的方法,其包含:(a)藉由在一預定時間量測陰極偏壓功率供應來確定間接加熱的陰極源之使用功率;(b)比較該預定時間之該使用功率與初始功率;及(c)回應於該比較採取校正動作(i)或(ii)以控制該間接加熱的陰極之狀態,藉此(i)若在該預定時間之該使用功率高於該初始功率,則蝕刻該間接加熱的陰極;或(ii)若在該預定時間之該使用功率低於該初始功率,則再生長該間接加熱的陰極。初始功率包括在一預定時間之量測之前的一時間的陰極偏壓功率之值,例如,其可為啟動時之功率,或正常操作條件下之功率,或任何其他預設定時間點或值。如熟習此項技術者將理解,陰極偏壓功率量測及初始功率值取決於植入過程或其他情況可呈一範圍或多個範圍之形式。該(c)(i)之蝕刻包括在足以蝕刻之低溫至中等溫度的條件下操作該間接加熱的陰極。在此方面之低溫至中等溫度經例示為自約室溫高達約2000℃。該(c)(ii)之再生長包括使一氟化氣體在一電漿狀況下在該間接加熱的陰極上流動,其中該氟化氣體包含以下中之一或多者:XeF2 、XeF4 、XeF6 、GeF4 、SiF4 、BF3 、AsF5 、AsF3 、PF5 、PF3 、F2 、TaF3 、TaF5 、WF6 、WF5 、WF4 、NF3 、IF5 、IF7 、KrF2 、SF6 、C2 F6 、CF4 、ClF3 、N2 F4 、N2 F2 、N3 F、NFH2 、NH2 F、BrF3 、C3 F8 、C4 F8 、C5 F8 、CHF3 、CH2 F2 、CH3 F、COF2 、HF、C2 HF5 、C2 H2 F4 、C2 H3 F3 、C2 H4 F2 、C2 H5 F、C3 F6 及MoF6 。該(c)(ii)之再生長包括在足以發生金屬沈積之高溫的狀況下操作該間接加熱的陰極。在此方面之高溫經例示為大於2000℃。校正步驟(c)可於離子植入過程之前、之後或之間進行。另外,針對再生長,若經植入之物質係選自上文直接描述之氟化氣體中之一者,則可在植入過程期間進行校正步驟。上文或本文其他處所論述之方法步驟可由適當控制裝置(諸如微控制器、控制器、微處理器等)及相關聯之電氣、電子及/或機電部件進行,該等控制裝置經適當程式化及/或經組態以進行離子源之部件(諸如絲極、反射極電極、陰極及反電極)的自動修復或清洗。In another aspect, the present invention provides a method of controlling the state of an indirectly heated cathode (IHC) source of an ion implantation system during system operation, comprising: (a) measuring by a predetermined time Cathode bias power supply to determine the power used by the indirectly heated cathode source; (b) comparing the used power to the initial power for the predetermined time; and (c) taking corrective action (i) or (ii) in response to the comparison Controlling the state of the indirectly heated cathode whereby (i) etching the indirectly heated cathode if the used power is higher than the initial power for the predetermined time; or (ii) using the power for the predetermined time Below this initial power, the indirectly heated cathode is regenerated. The initial power includes the value of the cathode bias power for a time prior to the measurement of a predetermined time, for example, it can be the power at startup, or the power under normal operating conditions, or any other predetermined time point or value. As will be understood by those skilled in the art, the cathode bias power measurement and initial power value may be in the form of a range or ranges depending on the implantation process or other conditions. The etching of (c)(i) includes operating the indirectly heated cathode at a low temperature to moderate temperature sufficient for etching. The low to medium temperatures in this regard are exemplified as being from about room temperature up to about 2000 °C. The regrowth of (c)(ii) includes flowing a fluorinated gas over the indirectly heated cathode under a plasma condition, wherein the fluorinated gas comprises one or more of the following: XeF 2 , XeF 4 , XeF 6 , GeF 4 , SiF 4 , BF 3 , AsF 5 , AsF 3 , PF 5 , PF 3 , F 2 , TaF 3 , TaF 5 , WF 6 , WF 5 , WF 4 , NF 3 , IF 5 , IF 7. KrF 2 , SF 6 , C 2 F 6 , CF 4 , ClF 3 , N 2 F 4 , N 2 F 2 , N 3 F, NFH 2 , NH 2 F, BrF 3 , C 3 F 8 , C 4 F 8 , C 5 F 8 , CHF 3 , CH 2 F 2 , CH 3 F, COF 2 , HF, C 2 HF 5 , C 2 H 2 F 4 , C 2 H 3 F 3 , C 2 H 4 F 2 , C 2 H 5 F, C 3 F 6 and MoF 6 . The regrowth of (c)(ii) includes operating the indirectly heated cathode at a temperature sufficient to cause metal deposition. The high temperatures in this regard are exemplified as greater than 2000 °C. The calibration step (c) can be performed before, after or between the ion implantation processes. Additionally, for regrowth, if the implanted material is selected from one of the fluorinated gases directly described above, the correcting step can be performed during the implantation process. The method steps discussed above or elsewhere herein may be performed by appropriate control devices (such as microcontrollers, controllers, microprocessors, etc.) and associated electrical, electronic, and/or electromechanical components, which are suitably programmed And/or automatic repair or cleaning of components of the ion source, such as filaments, reflector electrodes, cathodes, and counter electrodes.

在另一態樣中,本發明提供了操作在一離子源的電弧室中包括一絲極或陰極(或可經蝕刻或具有諸如但不限於反電極、反射極及其類似者之沈積物的離子源之其他部件)的離子植入系統之方法,來保持該離子源的操作效率,所述方法包含將該絲極或陰極或如前述之離子源的其他部件在以下條件下與一鎢試劑進行接觸,該等條件選自構成如下的組:In another aspect, the invention provides for operating an arc chamber of an ion source comprising a filament or cathode (or an ion that can be etched or have deposits such as, but not limited to, counter electrodes, reflectors, and the like) An ion implantation system of other components of the source to maintain the operational efficiency of the ion source, the method comprising performing the filament or cathode or other components of the ion source as described above with a tungsten reagent under the following conditions Contact, the conditions are selected from the group consisting of:

(a)實現鎢在該絲極上沈積的條件;以及(a) conditions for achieving deposition of tungsten on the filament;

(b)實現從該絲極上蝕刻所沈積材料的條件。(b) A condition for etching the deposited material from the filament.

在此方面之一實施方式中,(例如)陰極、反射極(其分別對應於陰極及絲極)或其類似者之其他離子源部件可具備適當加熱元件以調整部件之表面溫度,以選擇性地蝕刻來自其之材料或在其上沈積材料。In one embodiment of this aspect, other ion source components, such as cathodes, reflectors (which correspond to cathodes and filaments, respectively) or the like, may be provided with suitable heating elements to adjust the surface temperature of the components to select The material from it is etched or deposited thereon.

在另一實施方式中,間接加熱的陰極(IHC)離子源可包括兩個陰極(替代陰極及反電極)。在植入期間,一個陰極可作為反陰極來操作,且在修復或校正過程期間,兩個陰極之溫度可根據需要經控制以沈積或蝕刻材料。In another embodiment, the indirectly heated cathode (IHC) ion source can include two cathodes (instead of the cathode and counter electrode). During implantation, one cathode can operate as a counter cathode, and during the repair or calibration process, the temperature of the two cathodes can be controlled to deposit or etch materials as needed.

本發明係關於在另一態樣中係關於清洗一離子植入系統的一或多個部件之方法,用於從所述一或多個部件至少部分地移除與電離作用有關的沈積物,所述方法包含將一清洗氣在以下條件下流過該系統,該等條件選自構成如下的組:The present invention relates, in another aspect, to a method of cleaning one or more components of an ion implantation system for at least partially removing deposits associated with ionization from the one or more components, The method comprises flowing a purge gas through the system under conditions selected from the group consisting of:

(a)實現材料在該絲極、陰極或如前述之其他離子源部件上沈積的條件;以及(a) achieving conditions under which the material is deposited on the filament, cathode or other ion source component as described above;

(b)實現從該絲極、陰極或如前述之其他離子源部件上蝕刻所沈積材料的條件。(b) A condition for etching the deposited material from the filament, the cathode or other ion source components as described above.

本發明的另一態樣係關於係關於將在一電弧室中的離子源的一絲極保持一預定的電阻之方法,該方法包含將該絲極與取決於絲極的溫度相對於該電弧室壁的溫度有效地在該絲極上沈積材料或有效地從該絲極上蝕刻材料的一試劑進行接觸,並且控制該絲極之溫度及該電弧室壁中的溫度來有效地在該絲極上沈積或蝕刻材料,以保持所述預定的電阻。總體上,若在電弧室壁係低溫至中等溫度(小於絲極之溫度)時,絲極之溫度足夠高(例如大於2000℃),則發生絲極上材料之沈積。若不考慮電弧室壁之溫度(雖然電弧室壁之溫度小於或大於絲極之溫度為較佳的),絲極之溫度係低溫至中等溫度(例如,小於約1500℃至2000℃),則發生自絲極蝕刻材料。Another aspect of the invention relates to a method of maintaining a filament of a source of ions in an arc chamber with a predetermined electrical resistance, the method comprising comparing the filament to a temperature dependent on the filament relative to the arc chamber The temperature of the wall is effective to deposit material on the filament or to effectively contact a reagent that etches material from the filament, and to control the temperature of the filament and the temperature in the wall of the arc chamber to effectively deposit on the filament or The material is etched to maintain the predetermined resistance. In general, if the temperature of the filament is sufficiently high (e.g., greater than 2000 ° C) when the wall of the arc chamber is low to moderate (less than the temperature of the filament), deposition of material on the filament occurs. If the temperature of the arc chamber wall is not considered (although the temperature of the arc chamber wall is less than or greater than the temperature of the filament is preferred) and the temperature of the filament is from low to medium (for example, less than about 1500 ° C to 2000 ° C), then A self-filament etching material occurs.

在另一態樣中,本發明係關於係關於清洗一離子植入系統或其一或多個部件以便從中移除與電離作用有關的沈積物之方法,該方法包含將該離子植入系統或其一或多個部件在其中BrF3 與該等沈積物具有化學反應性的條件下與所述BrF3 接觸以便實現它們至少部分地移除。In another aspect, the present invention is directed to a method of cleaning an ion implantation system or one or more components thereof to remove deposits associated with ionization therefrom, the method comprising implanting the ion implantation system or One or more of its components are contacted with the BrF 3 under conditions in which BrF 3 is chemically reactive with the deposits to effect their at least partial removal.

在另一態樣中,本發明係關於係關於清洗一離子植入系統的一前級管道以便從中移除一與電離作用有關的沈積物之方法,該方法包含將一離子植入系統的前級管道與一清洗氣體在其中所述清洗氣體與該沈積物具有化學反應性的條件下進行接觸以便至少部分地移除它們。此方法可以改良一離子植入系統的性能並且延長其壽命。In another aspect, the present invention is directed to a method of cleaning a pre-stage conduit of an ion implantation system for removing a deposit associated with ionization therefrom, the method comprising implanting an ion into the front of the system The stage conduit is contacted with a purge gas under conditions in which the purge gas is chemically reactive with the deposit to at least partially remove them. This method can improve the performance of an ion implantation system and extend its life.

在另一態樣中,本發明係關於係關於改良一離子植入系統的性能並且延長其壽命之方法,該方法包含將該陰極與包含至少一種清洗氣體以及至少一種沈積氣體的一氣體混合物進行接觸,其中所述氣體混合物平衡了材料在陰極上的沈積以及該沈積材料或其他材料從該陰極上的腐蝕。In another aspect, the present invention is directed to a method for improving the performance and extending the life of an ion implantation system, the method comprising performing the cathode with a gas mixture comprising at least one cleaning gas and at least one deposition gas. Contact, wherein the gas mixture balances the deposition of material on the cathode and the corrosion of the deposited material or other material from the cathode.

本發明的其他態樣、特徵以及實施方式從隨後的揭示內容以及所附申請專利範圍將會更加明顯。Other aspects, features, and embodiments of the invention will be apparent from the appended claims and appended claims.

本發明係關於係關於用於監測、控制以及清洗半導體處理系統及/或其部件的裝置以及方法,並且係關於係關於用於此種清洗的組合物。This invention relates to apparatus and methods for monitoring, controlling, and cleaning semiconductor processing systems and/or components thereof, and to compositions for such cleaning.

在一態樣中,本發明係關於係關於從該半導體處理系統或半導體處理系統的部件中移除沈積物,其中將該系統或系統部件與包括一氣相反應性材料的一清洗組合物進行接觸。In one aspect, the invention relates to the removal of deposits from components of the semiconductor processing system or semiconductor processing system, wherein the system or system component is contacted with a cleaning composition comprising a gas phase reactive material .

如此處所使用,術語「氣相反應性材料」旨在寬泛地解釋為指以下材料,包含:一或多種鹵化物及/或錯合物(以氣態或蒸氣的形式),該一或多種化合物及/或錯合物的離子及電漿形式,以及從該一或多種化合物、一或多種錯合物以及離子及電漿形式衍生的元素以及離子。如在本發明的寬泛的操作中所使用的一氣相反應性材料還可以不同地是指(但不限於)一「氣相反應性組合物」、一「清洗劑」、一「清洗氣體」、一「蝕刻氣體」、一「氣態鹵化物」、一「氣態清洗劑」、一「反應性鹵化物」、一「清洗化合物」、一「清洗組合物」、一「清洗蒸氣」、一「蝕刻蒸氣」或此類術語的任何組合。As used herein, the term "gas phase reactive material" is intended to be broadly interpreted to mean a material comprising: one or more halides and/or complexes (in gaseous or vapor form), the one or more compounds and / or ion and plasma forms of the complex, as well as elements and ions derived from the one or more compounds, one or more complexes, and ion and plasma forms. A gas phase reactive material as used in the broad operation of the present invention may also refer to, but is not limited to, a "gas phase reactive composition", a "cleaning agent", a "cleaning gas", An "etching gas", a "gaseous halide", a "gaseous cleaning agent", a "reactive halide", a "cleaning compound", a "cleaning composition", a "cleaning vapor", and an "etching" Vapor" or any combination of such terms.

如此處所使用,就一離子植入機而言,「離子源區域」包括,但不限於真空室、源電弧室、源絕緣子、萃取電極、抑制電極、高電壓絕緣子、源套管、絲極、陰極以及反射極電極。如熟習此項技術者將理解,用語「離子源區域」以其最廣意義使用,例如,貝爾納(Bernas)或弗里曼(Freemen)離子源總成包括一絲極及反射極電極,且IHC源總成包括陰極及反陰極。As used herein, in the case of an ion implanter, the "ion source region" includes, but is not limited to, a vacuum chamber, a source arc chamber, a source insulator, an extraction electrode, a suppression electrode, a high voltage insulator, a source sleeve, a filament, Cathode and reflector electrode. As will be understood by those skilled in the art, the term "ion source region" is used in its broadest sense. For example, a Bernas or Freeman ion source assembly includes a filament and a reflector electrode, and IHC. The source assembly includes a cathode and a counter cathode.

本發明考慮了半導體處理系統及其部件的清洗,連同其他基板及裝置,該等基板及裝置在其正常處理操作中易受其上形成的沈積物影響。該操作包括,但不限於真空前級管道及低真空泵之清洗。鑒於此處之描述,如熟習此項技術者將理解,清洗氣體可能流經複數個口中之選定口以繞過植入機的某些區及/或目標特定區。舉例而言,XeF2 或其他清洗氣體可經遞送通過接近需要清洗之區的口。清洗效能亦可增強,只要大多數清洗氣體將沿流通路徑被引入目標區且不被與殘餘物進行之反應所耗盡(如在(例如)清洗氣體僅引入通過離子源室之情況下可能發生)。選定之口可預先存在或針對此目的而形成/產生。此技術可用於清洗(但非限制)植入機之離子源區域、磁性/分析器區域、真空系統、處理室等。清洗可藉由將清洗氣體連續流動通過及/或穿過植入機之所要區或區域歷經預定之時間量來實現。替代地,或與之組合,清洗氣體可經封閉於系統中歷經預定之時間量來允許清洗氣體擴散且與不需要之殘餘物及/或沈積物反應。The present invention contemplates cleaning of semiconductor processing systems and components thereof, as well as other substrates and devices that are susceptible to deposits formed thereon during their normal processing operations. This operation includes, but is not limited to, vacuum pre-stage piping and low vacuum pump cleaning. In view of the description herein, as will be understood by those skilled in the art, the purge gas may flow through selected ports of the plurality of ports to bypass certain zones of the implanter and/or target specific zones. For example, XeF 2 or other purge gas can be delivered through a port that is close to the zone in need of cleaning. Cleaning performance can also be enhanced as long as most of the purge gas will be introduced into the target zone along the flow path and will not be depleted by reaction with the residue (as may occur, for example, if the purge gas is only introduced through the ion source chamber) ). The selected port may be pre-existing or formed/produced for this purpose. This technique can be used to clean (but not limit) the ion source region of the implanter, the magnetic/analyzer region, the vacuum system, the processing chamber, and the like. Cleaning can be accomplished by continuously flowing a cleaning gas through and/or through a desired zone or region of the implanter for a predetermined amount of time. Alternatively, or in combination, the purge gas can be enclosed in the system for a predetermined amount of time to allow the purge gas to diffuse and react with unwanted residues and/or deposits.

本發明在不同的態樣提供了一離子植入系統,該系統具有以下能力:藉由適當地控制在電弧室中的溫度而生長/蝕刻在電弧室的離子源內的絲極以便實現所希望的絲極的生長或可替代的絲極的蝕刻。The present invention provides an ion implantation system in a different aspect, the system having the ability to grow/etch a filament within the ion source of the arc chamber by appropriately controlling the temperature in the arc chamber to achieve the desired The growth of the filaments or the etching of the alternative filaments.

本發明的額外態樣係關於係關於使用反應性的氣體例如WFx 、AsFx 、PFx 及TaFx (其中x具有一化學計量地適當的值或值的範圍)用於在原位或離位的清洗安排中在電漿或高溫條件下來清洗離子植入機的區域或離子植入機的部件。Additional aspects of the invention relate to the use of reactive gases such as WF x , AsF x , PF x and TaF x (where x has a stoichiometrically appropriate value or range of values) for in situ or separation In the cleaning arrangement of the bit, the area of the ion implanter or the components of the ion implanter are cleaned under plasma or high temperature conditions.

本發明的另一係關於態樣係關於BrF3 用於在原位或離位的清洗安排中在環境溫度、高溫或電漿的條件下來清洗離子植入系統或其一或多個部件的用途。Another aspect of the invention relates to the use of BrF 3 for cleaning an ion implantation system or one or more components thereof under ambient temperature, high temperature or plasma conditions in an in situ or off-site cleaning arrangement. .

一離子植入系統的操作導致在該系統或其部件中產生與電離作用有關的材料的沈積。本發明考慮了監測、控制及/或清洗該離子植入系統及/或其一或多個部件,以便從該系統及/或其部件上至少部分地移除此類與電離作用有關的沈積物。該清洗方法係關於將該系統及/或其部件與包含一氣相反應性材料的一清洗組合物在能夠使該氣相反應性材料與該沈積物進行反應的條件下進行接觸以實現它們至少部分的移除。The operation of an ion implantation system results in the deposition of materials associated with ionization in the system or its components. The present invention contemplates monitoring, controlling, and/or cleaning the ion implantation system and/or one or more components thereof to at least partially remove such ionization-related deposits from the system and/or components thereof. . The cleaning method relates to contacting the system and/or its components with a cleaning composition comprising a gas phase reactive material under conditions capable of reacting the gas phase reactive material with the deposit to achieve at least a portion thereof. Removal.

除了由原料氣體本身引起的與電離作用有關的沈積物之外,還已經發現了在一離子植入系統內形成的沈積物或殘餘物可能起因於原料氣體與構成該系統部件的材料的反應性。舉例而言,一離子植入系統的真空室可以使用不鏽鋼或鋁來構成。在該真空室內的系統部件可以使用石墨(例如,標準的或玻璃質的),絕緣材料(例如,氮化硼)及/或密封材料(例如Teflon、Kel-FTM 、PEEKTM 、DelrinTM 、VespelTM 、VitonTM 、Buna-N、矽等)來構造。可以在該離子植入系統中存在的並且對其中沈積物產生的化學反應易感的其他材料包括但不限於陶瓷、含氧化鉛的環氧組合物、氮化鋁、氧化鋁、二氧化矽以及氮化硼。In addition to deposits associated with ionization caused by the feed gas itself, it has been discovered that deposits or residues formed within an ion implantation system may result from reactivity of the feed gas with the materials that make up the components of the system. . For example, the vacuum chamber of an ion implantation system can be constructed using stainless steel or aluminum. System components in the vacuum chamber may use graphite (eg, standard or vitreous), insulating materials (eg, boron nitride), and/or sealing materials (eg, Teflon) , Kel-F TM, PEEK TM , Delrin TM, Vespel TM, Viton TM, Buna-N, Si, etc.) to construct. Other materials that may be present in the ion implantation system and that are susceptible to chemical reactions generated by the deposit include, but are not limited to, ceramics, lead oxide containing epoxy compositions, aluminum nitride, aluminum oxide, cerium oxide, and the like. Boron nitride.

該離子源本身可以是由鎢、石墨、鉬或鉭、有時有少量的銅及銀構成。該離子源電弧室通常由鎢或鉬構成、或一石墨體,該石墨體襯有鎢或鉬。在這種情況下,一種氟化物源的進料材料(例如BF3 、GeF4 、SiF4 、AsF5 、AsF3 、PF5 、及/或PF3 )在操作溫度下與電弧室的材料(例如來自電弧室或該室的襯裏的鎢或鉬)進行反應,以形成一中間副產物,該副產物進而可以在該系統中遷移並且分解以沈積鎢或鉬並釋放出氟。The ion source itself may be composed of tungsten, graphite, molybdenum or niobium, sometimes with a small amount of copper and silver. The ion source arc chamber is typically constructed of tungsten or molybdenum or a graphite body lined with tungsten or molybdenum. In this case, a fluoride source feed material (eg, BF 3 , GeF 4 , SiF 4 , AsF 5 , AsF 3 , PF 5 , and/or PF 3 ) is at the operating temperature and the material of the arc chamber ( For example, tungsten or molybdenum from the arc chamber or the lining of the chamber is reacted to form an intermediate by-product which in turn can migrate and decompose in the system to deposit tungsten or molybdenum and release fluorine.

舉例而言,一原料氣體例如GeF4 會在該離子源室中解離並且產生的游離的氟化物會蝕刻腐蝕該電弧室中的材料,例如鎢。在一更冷的表面上鎢將會發生此種反應,所以如果是在電漿經撞擊並且因此該絲極係熱的,則該氟化物會與鎢在電弧室的該等壁上進行反應,蝕刻該等壁並形成WF6 氣體。WF6 然後會在該熱的絲極上沈積鎢,引起其尺寸的增長。For example, a raw material gas such as GeF 4 and dissociates generated in the ion source chamber will be free fluoride material of the arc chamber in the etching corrosion, such as tungsten. This reaction will occur on a colder surface, so if the plasma strikes and therefore the filament is hot, the fluoride will react with the tungsten on the walls of the arc chamber. The walls are etched and a WF 6 gas is formed. WF 6 then deposits tungsten on the hot filament causing its size to grow.

當GeF4 產生大量游離的氟時,原料氣體例如BF3 或SiF4 產生更少量的游離氟以及相應地在絲極上更少程度的鎢沈積,它儘管少,但仍然很重要。When GeF 4 produces a large amount of free fluorine, the source gas such as BF 3 or SiF 4 produces a smaller amount of free fluorine and correspondingly a lesser degree of tungsten deposition on the filament, which, although small, is still important.

不含氟的原料氣體(例如PH3 及AsH3 )係有問題的,因為可能引起絲極上的金屬沈積到電弧室的壁上,而結果絲極變細。The fluorine source gas (e.g., PH 3 and AsH 3) based problematic, because it may cause deposition of the metal onto the walls of the arc chamber on the filament, the tapered filament results.

本發明因此考慮了清洗一離子植入系統或其一或多個部件,用於至少部分地移除與該電弧室的材料相同的與電離作用有關的沈積物。The present invention therefore contemplates cleaning an ion implantation system or one or more components thereof for at least partially removing the same ionization-related deposits as the material of the arc chamber.

根據本發明的清洗可以在一離子植入系統中進行,其中多種原料氣體同時引入該系統中。原料氣體還可以與一或多種氣相反應性材料同時使用,或可以與一或多種氣相反應性材料交替脈衝輸入到該系統中。The cleaning according to the present invention can be carried out in an ion implantation system in which a plurality of material gases are simultaneously introduced into the system. The feed gas may also be used in conjunction with one or more gas phase reactive materials, or may be alternately pulsed into the system with one or more gas phase reactive materials.

本發明之清洗方法所指的與電離作用有關的沈積物包括多種材料,該等材料可以例如藉由在離子源或其他電離過程的裝備中形成並且累積來干擾離子植入系統的正常操作。所沈積的材料可以不同地包含、由以下組成、或基本由以下組成:矽、硼、磷、鍺、砷、鎢、鉬、硒、銻、銦、碳、鋁及/或鉭。The ionization-related deposits referred to by the cleaning method of the present invention include a variety of materials that can interfere with the normal operation of the ion implantation system, for example, by being formed and accumulated in equipment of an ion source or other ionization process. The deposited material may comprise, consist of, or consist essentially of: bismuth, boron, phosphorus, antimony, arsenic, tungsten, molybdenum, selenium, tellurium, indium, carbon, aluminum, and/or antimony.

在離子源電弧室中以及萃取電極上的與電離作用有關的沈積物可以形成薄片並且形成小的顆粒。該等顆粒一旦形成,則能夠以一離子束傳送,例如植入到一晶圓中的一摻雜離子的束。如果此類的傳送顆粒到達該晶圓,則在該晶圓上產生的顆粒污染可能嚴重地降低可以在該晶圓上製造的有用器件的產率。本發明之清洗方法在此類與電離作用有關的沈積物能夠形成薄片以及顆粒之前將其移除,並且由此實現在產品晶圓上顆粒的減少並且提高半導體器件的產率。Deposits associated with ionization in the ion source arc chamber and on the extraction electrode can form flakes and form small particles. Once formed, the particles can be delivered by an ion beam, such as a beam of doped ions implanted into a wafer. If such transport particles reach the wafer, particle contamination generated on the wafer can severely reduce the yield of useful devices that can be fabricated on the wafer. The cleaning method of the present invention removes such deposits associated with ionization prior to their ability to form flakes and particles, and thereby achieves reduction in particles on the product wafer and increases the yield of the semiconductor device.

根據本發明用於清洗的氣相反應性材料或清洗氣體可以包括對至少部分地移除該離子植入系統中的與電離作用有關的沈積物有效的任何材料。The gas phase reactive material or purge gas for cleaning according to the present invention may comprise any material effective to at least partially remove the ionization-related deposits in the ion implantation system.

本發明還考慮了使用氣相反應性材料以藉由適當地控制反應而從不希望的位置移除與電離作用有關的沈積物,及/或在希望的位置沈積材料。在本發明的特別的實施方式中,鎢構成了作為不希望的沈積物經移除的材料,而在其他的實施方式中,鎢被期望地沈積在受益於其存在的表面上。因此,反應性地形成的氟化鎢中間產物的一氣體(例如XeF2 、GeF4 、SiF4 、BF3 、AsF5 、AsF3 、PF5 、及/或PF3 )可以用在本發明的控制以及清洗方法中。另外,多種鎢氟化物氣體例如WF6 、WF5 、及/或WF4 可以直接用於本發明的控制以及清洗方法中。因而,本發明的氣相反應性材料包括,但不限於XeF2 、GeF4 、SiF4 、BF3 、AsF5 、AsF3 、PF5 、PF3 、F2 、TaF3 、TaF5 、WF6 、WF5 、及/或WF4The present invention also contemplates the use of gas phase reactive materials to remove deposits associated with ionization from undesired locations by appropriate control of the reaction, and/or to deposit materials at desired locations. In a particular embodiment of the invention, tungsten constitutes a material that is removed as an undesired deposit, while in other embodiments, tungsten is desirably deposited on a surface that benefits from its presence. Therefore, a gas (for example, XeF 2 , GeF 4 , SiF 4 , BF 3 , AsF 5 , AsF 3 , PF 5 , and/or PF 3 ) of the formally formed tungsten fluoride intermediate can be used in the present invention. Control and cleaning methods. In addition, various tungsten fluoride gases such as WF 6 , WF 5 , and/or WF 4 can be directly used in the control and cleaning methods of the present invention. Thus, the gas phase reactive materials of the present invention include, but are not limited to, XeF 2 , GeF 4 , SiF 4 , BF 3 , AsF 5 , AsF 3 , PF 5 , PF 3 , F 2 , TaF 3 , TaF 5 , WF 6 , WF 5 , and / or WF 4 .

在不同的特別的實施方式中,該氣相反應性材料可以與增加該氣相反應性材料的揮發性的一「清洗增強劑」或「共反應劑」共同施用,導致比使用無清洗增強劑或共反應劑的氣相反應性材料更多的沈積物的移除。舉例而言,用XeF2 移除銥沈積物可以藉由路易士(Lewis)鹼以及電子回饋鍵種類的共同施用而增強。在特定的應用中,可以使用一氧化碳、三氟膦,以及三烷基膦類。In various particular embodiments, the gas phase reactive material can be co-administered with a "cleaning enhancer" or "co-reactant" that increases the volatility of the gas phase reactive material, resulting in a cleaner than the use of no cleaning enhancer. Or the removal of more deposits of the gas phase reactive material of the co-reactant. For example, removal of tantalum deposits with XeF 2 can be enhanced by the co-administration of Lewis bases and electronic feedback bond species. In certain applications, carbon monoxide, trifluorophosphine, and trialkylphosphines can be used.

作為一另外的實例,在一離子植入系統中,其中進料氣體在具有鎢壁的一電弧室中被電離成連續的電漿,在該等壁上,一邊安裝有一絲極而另一邊安裝有一反射極並且他們藉由陶瓷的絕緣子與該等壁分開,該電弧室的部件可能會被進料氣體的分解產物、電弧室的元素以及碳污染。As a further example, in an ion implantation system, wherein the feed gas is ionized into a continuous plasma in an arc chamber having a tungsten wall, on which one filament is mounted on one side and the other side is mounted There is a reflector and they are separated from the walls by ceramic insulators, which may be contaminated by decomposition products of the feed gas, elements of the arc chamber, and carbon.

在這種情況下,有用於移除形成揮發性的氟化物的金屬污染物(例如鎢)的一清洗劑(例如XeF2 )可以與一含氧添加劑進行組合,該含氧添加劑藉由將污染物碳轉變成CO、CO2 、及/或COF2 而有效地將其移除。有用於此目的的含氧添加劑組分在本發明的特別的實施方式中包括但不限於NO、N2 O、NO2 、CO2 及/或O2In this case, a cleaning agent (e.g., XeF 2 ) having a metal contaminant (e.g., tungsten) for removing volatile fluoride formation may be combined with an oxygen-containing additive by contaminating the oxygen-containing additive. The carbon is converted to CO, CO 2 , and/or COF 2 to effectively remove it. Oxygen-containing additive component is useful for this purpose in the particular embodiment of the present invention include, but are not limited to NO, N 2 O, NO 2 , CO 2 and /, or O 2.

因此本發明考慮了包括有效移除一金屬污染物(藉由反應形成此金屬的一揮發性(氣態)的氟化物化合物)的一清洗劑以及有效移除碳污染物(藉由由其形成一揮發性的氧化物或氟氧化物)的一清洗劑兩者的清洗組合物。該等清洗試劑可以同時地或順序地流入該電弧室中。The present invention therefore contemplates a cleaning agent comprising an effective removal of a metal contaminant (a volatile (gaseous) fluoride compound formed by the reaction to form a metal) and effective removal of carbon contaminants (by forming a A cleaning composition for both detergents of volatile oxides or oxyfluorides. The cleaning reagents can flow into the arc chamber simultaneously or sequentially.

在一實施方式中,該等試劑在電離作用的條件下同時流入該電弧室中,這樣該等清洗劑均進行了電離以便將金屬以及碳的污染物轉變成從該室中藉由將其機械抽吸而容易移除的揮發性化合物。In one embodiment, the reagents simultaneously flow into the arc chamber under ionization conditions such that the cleaning agents are ionized to convert metal and carbon contaminants from the chamber by mechanically A volatile compound that is easily removed by aspiration.

能夠使該氣相反應性材料與沈積物進行反應的條件可以包括任何適當的溫度、壓力、流速、組成等條件,在此等條件下,該氣相反應性材料與污染物進行接觸並且化學上相互作用以便從該基板中(例如受所沈積材料污染的植入機裝備的表面)移除此類材料。The conditions capable of reacting the gas phase reactive material with the deposit may include any suitable conditions of temperature, pressure, flow rate, composition, etc. under which the gas phase reactive material is contacted with the contaminant and chemically Interactions to remove such materials from the substrate, such as the surface of an implanted device that is contaminated with deposited material.

可以使用的不同條件的實例包括但不限於環境溫度、超過環境溫度的溫度、存在電漿、沒有電漿、低於大氣壓力、大氣壓力以及超級大氣壓。Examples of different conditions that may be used include, but are not limited to, ambient temperature, temperature above ambient temperature, presence of plasma, no plasma, subatmospheric pressure, atmospheric pressure, and superatmospheric pressure.

用於氣相反應性材料的接觸來移除沈積物的確切溫度在不同的實施方式中可以在從大約0℃到大約2000℃的範圍中。接觸可以包括該氣相反應性材料在一載氣中、或以一純的形式、或在與一另外的清洗劑、摻雜劑等的混合物中進行遞送。該氣相反應性材料可以進行加熱以便與在環境溫度下的沈積物進行化學反應,以提高反應動力學。The exact temperature at which the contact for the gas phase reactive material is removed to remove deposits can range from about 0 °C to about 2000 °C in various embodiments. Contacting can include the gas phase reactive material being delivered in a carrier gas, or in a pure form, or in a mixture with an additional cleaning agent, dopant, or the like. The gas phase reactive material can be heated to chemically react with deposits at ambient temperature to increase reaction kinetics.

該氣相反應性材料與污染物沈積物之間的反應可以基於改變清洗劑與污染物之間的反應特性進行監測及/或調節。此類反應特性可以包括壓力、時間、溫度、濃度、一具體物質的存在、壓力改變的速度、(一具體種類)濃度改變的速度、電流的改變等等。因此,向系統中引入該氣相反應性材料可以基於一預定的反應特性的實現而終止,例如在真空室中的一預定電壓、渡過了一預定的時間量、或一預定的溫度、在該系統中一具體元素的濃度、一具體副產物的存在、在該系統中的反應產物或其他的物質、或在該監測操作中一預定的電流條件的實現。The reaction between the gas phase reactive material and the contaminant deposit can be monitored and/or adjusted based on changing the reaction characteristics between the cleaning agent and the contaminant. Such reaction characteristics may include pressure, time, temperature, concentration, presence of a particular substance, rate of pressure change, rate of change of a particular species concentration, change in current, and the like. Thus, introduction of the gas phase reactive material into the system can be terminated based on the achievement of a predetermined reaction characteristic, such as a predetermined voltage in the vacuum chamber, a predetermined amount of time, or a predetermined temperature, at The concentration of a particular element in the system, the presence of a particular by-product, the reaction product or other species in the system, or the achievement of a predetermined current condition in the monitoring operation.

鎢沈積物可以由進料氣體與一植入機系統的電弧室的反應引起。用於清洗此類沈積物的方法可以取決於該系統的溫度梯度及/或流到以及經由絲極的電流、及/或有效地確定並且能夠監測的任何其他特性。The tungsten deposit can be caused by the reaction of the feed gas with the arc chamber of an implanter system. The method used to clean such deposits may depend on the temperature gradient of the system and/or the current flowing to and through the filaments, and/or any other characteristics that are effectively determined and can be monitored.

舉例而言,來自進料材料的氟可以與該電弧室在一第一溫度下進行反應,藉由以下反應(1)或(2)形成WF6For example, fluorine from the feed material can be reacted with the arc chamber at a first temperature to form WF 6 by the following reaction (1) or (2):

3F2 (g)+W(s)→WF6 (g) (1)3F 2 (g)+W(s)→WF 6 (g) (1)

6F(g)+W(s)→WF6 (g) (2)6F(g)+W(s)→WF 6 (g) (2)

還可以存在清洗氣體與該電弧室的鎢材料之間的反應,例如:There may also be a reaction between the purge gas and the tungsten material of the arc chamber, for example:

3XeF2 +W 3Xe+WF6  (3)3XeF 2 +W 3Xe+WF 6 (3)

替代地,WF6 (或WF5 或WF4 )可以直接地提供給該系統。Alternatively, WF 6 (or WF 5 or WF 4 ) can be provided directly to the system.

在該系統中曾經形成或者以其他方式存在的鎢氟化物然後可以遷移到該系統的另一位置。取決於其他位置的溫度,該鎢氟化物會在該位置蝕刻或沈積鎢。在該絲極上,溫度將主要取決於通過它的實際電流通量。在該電弧室的其他位置的溫度可以變化,這取決於具體的位置以及電弧室的設計、絲極電流、連同其他非絲極電流。The tungsten fluoride that was formed or otherwise present in the system can then migrate to another location in the system. Depending on the temperature at other locations, the tungsten fluoride will etch or deposit tungsten at this location. At this filament, the temperature will primarily depend on the actual current flux through it. The temperature at other locations of the arc chamber can vary depending on the particular location and design of the arc chamber, filament current, along with other non-filament currents.

如果第二位置係在高溫,則鎢氟化物分解,鎢被沈積而氟被釋放,只要鎢氟化物繼續存在,鎢沈積物的尺寸就會生長。沈積反應可以包括以下的反應(4)、(5)及/或(6):If the second position is at a high temperature, the tungsten fluoride decomposes, tungsten is deposited and fluorine is released, and as long as the tungsten fluoride continues to exist, the size of the tungsten deposit grows. The deposition reaction may include the following reactions (4), (5), and/or (6):

WF6 →W+3F2  (4)WF 6 →W+3F 2 (4)

2WF5 →2W+5F2  (5)2WF 5 →2W+5F 2 (5)

WF4 →W+2F2  (6)WF 4 →W+2F 2 (6)

相反,如果第二位置係在中等溫度,鎢氟化物可以蝕刻該位置,移除鎢並且在反應產物中保留氟,這樣蝕刻的位置隨著蝕刻的進行而縮小。此蝕刻反應可以包括以下反應(7)、(8)及/或(9):Conversely, if the second location is at a moderate temperature, the tungsten fluoride can etch the location, remove the tungsten and retain fluorine in the reaction product such that the etched position shrinks as the etch proceeds. This etching reaction may include the following reactions (7), (8), and/or (9):

WF6 (g)+2W(s)→3WF2 (g) (7)WF 6 (g)+2W(s)→3WF 2 (g) (7)

2WF6 (g)+W(s)→3WF4 (g) (8)2WF 6 (g)+W(s)→3WF 4 (g) (8)

5WF6 (g)+W(s)→6WF5 (g) (9)5WF 6 (g)+W(s)→6WF 5 (g) (9)

因此,對於鎢沈積物的移除,可以選擇帶有沈積物的部件的溫度以使移除的速度及範圍最大化。Thus, for the removal of tungsten deposits, the temperature of the component with the deposit can be selected to maximize the speed and extent of removal.

在本發明的其他實施方式中,在電弧室中硼及/或鉬沈積物以一相應的方式移除。In other embodiments of the invention, the boron and/or molybdenum deposits are removed in a corresponding manner in the arc chamber.

在本發明之方法中清洗劑與處理裝備的接觸可以藉由監測在接觸過程中壓力的變化而進行,當壓力變化為零時,則接觸終止。In the method of the present invention, the contact of the cleaning agent with the processing equipment can be performed by monitoring the change in pressure during the contact, and when the pressure changes to zero, the contact is terminated.

替代地,該接觸可以藉由監測該氣相反應性材料或由此得到的反應物,或在該接觸中產生的反應產物的分壓而進行,當該分壓達到一預定的值,即,一終點時,該接觸終止。例如,此種終點監測可以使用一合適的終點監測器進行,例如在美國專利號6,534,007以及美國專利申請號:10/273,036、10/784,606、10/784,750、及10/758,825中所更全面描述的一類型的終點監測器,或一熱電堆紅外(TPIR)或其他紅外探測器。Alternatively, the contacting can be carried out by monitoring the gas phase reactive material or the reactant obtained thereby, or the partial pressure of the reaction product produced in the contact, when the partial pressure reaches a predetermined value, ie, At the end of the journey, the contact is terminated. For example, such an end point monitoring can be performed using a suitable end point monitor, such as described in more detail in U.S. Patent No. 6,534,007, and U.S. Patent Application Serial Nos. 10/273,036, 10/784,606, 10/784,750, and 10/758,825. One type of endpoint monitor, or a thermopile infrared (TPIR) or other infrared detector.

在另一實施方式中,該接觸可以使用該處理裝備系統的部件藉由氣相反應性材料的受控制的流動而進行,該等部件允許調節氣相反應性材料的分壓並且因此控制反應速率。In another embodiment, the contacting can be performed using controlled flow of the gas phase reactive material using the components of the processing equipment system, the components permitting adjustment of the partial pressure of the gas phase reactive material and thus controlling the reaction rate .

在又一實施方式中,使用一預定流速的氣體反應性材料的連續流來進行該清洗操作。In yet another embodiment, the cleaning operation is performed using a continuous flow of a gas reactive material at a predetermined flow rate.

如在上文中關於反應(1)-(9)所討論的,與電離作用有關的鎢的沈積物可以在非常高的溫度下進行沈積並且在低溫至中等溫度下進行蝕刻。在此方面,與電離作用有關的沈積物意謂歸因於電漿但未必歸因於離子之操作而形成的沈積物。因此,只要仍然存在足夠熱的表面,鎢之沈積亦可於沒有電漿(例如,不存在離子)之情況下發生。在沈積或蝕刻的位置係植入機系統的絲極的情況下,溫度及電流通量係彼此直接相關的。當該絲極經蝕刻時,絲極會變細而對電流的阻力會隨著該絲極的截面的減小而增加,這樣通過該絲極的電流流量會減小。如果該絲極的條件促進了在其之上的沈積,則對電流的阻力會隨著不斷地沈積而減小,因為該絲極的截面增加並且絲極變粗,相應地其中通過的電流流量也有了增加。As discussed above with respect to reactions (1)-(9), deposits of tungsten associated with ionization can be deposited at very high temperatures and etched at low to moderate temperatures. In this regard, deposits associated with ionization mean deposits that are attributed to the plasma but are not necessarily due to the operation of the ions. Thus, as long as there is still a sufficiently hot surface, the deposition of tungsten can also occur without plasma (eg, the absence of ions). In the case where the deposited or etched location is the filament of the implant system, the temperature and current flux are directly related to each other. When the filament is etched, the filament will become thinner and the resistance to current will increase as the cross section of the filament decreases, so that the current flow through the filament will decrease. If the condition of the filament promotes deposition above it, the resistance to current will decrease with constant deposition as the cross section of the filament increases and the filament becomes thicker, correspondingly the current flow therethrough There has also been an increase.

在另一態樣,本發明係關於係關於監測在源絲極上的沈積以及所致的絲極生長之方法,係關於監測通過該絲極的電流流量。因為,由於沈積,絲極的截面增大了,所以對電流的阻力會減小並且電流會增大以便保持該絲極處於支持在電弧室中的電漿所需要的溫度。因此電流的一監測到的增大可以用來表示對絲極清洗的一需要。In another aspect, the present invention is directed to a method of monitoring deposition on a source filament and resulting filament growth for monitoring current flow through the filament. Because, due to the deposition, the cross section of the filament is increased, the resistance to the current is reduced and the current is increased to maintain the filament at the temperature required to support the plasma in the arc chamber. Thus a monitored increase in current can be used to indicate a need for filament cleaning.

在另外一態樣,本發明係關於係關於藉由監測通過絲極的電流流量來監測該絲極的蝕刻或清洗蝕刻之方法。因為,由於蝕刻、濺鍍或蒸發,絲極截面減小,對電流的阻力會增大並且電流會減小以便保持該絲極處於支持在電弧室中的電漿所需要的溫度。因此此電流的一監測到的減小可以用來表示將附加的材料沈積到一受蝕刻的絲極上的一需要,或終止一清洗或電離過程的需要。In another aspect, the present invention is directed to a method of etching or cleaning an etch of the filament by monitoring the flow of current through the filament. Because, due to etching, sputtering or evaporation, the filament cross section is reduced, the resistance to current is increased and the current is reduced to maintain the filament at the temperature required to support the plasma in the arc chamber. Thus a monitored reduction in this current can be used to indicate the need to deposit additional material onto an etched filament or to terminate a cleaning or ionization process.

本發明的另一實施方式包括基於如以上所詳述的監測流過該絲極的電流來控制該絲極的狀態之方法。Another embodiment of the invention includes a method of controlling the state of the filament based on monitoring the current flowing through the filament as detailed above.

在一實施方式中,受監測的絲極電流的減小提供了絲極接近斷裂的一指示,作為回應,一氣相反應性材料流入該系統中(例如當在撞擊電漿時,或者可替代地,使電漿關閉但是絲極仍然是熱的(例如,~2000℃)),以誘發產生金屬在該絲極上的沈積的反應,例如,來自該電弧室壁的鎢。此反應可以允許進行到直至該電流在有效操作該離子植入系統的一預定範圍內,指示該絲極已經「再生長」到一令人滿意的程度。In one embodiment, the decrease in the monitored filament current provides an indication that the filament is near the fracture, in response, a gas phase reactive material flows into the system (eg, when striking the plasma, or alternatively The plasma is turned off but the filament is still hot (e.g., ~2000 °C)) to induce a reaction that produces a deposit of metal on the filament, such as tungsten from the wall of the arc chamber. This reaction may be allowed to proceed until the current is within a predetermined range of effective operation of the ion implantation system indicating that the filament has "regenerated" to a satisfactory extent.

在另一實施方式中,所監測的絲極電流的增大提供了一指示,即:由於材料的沈積絲極正在生長。作為回應,允許該絲極冷卻一段預定的時間後,或到一預定的溫度(它可以是在例如從室溫到高達約2000℃的一範圍內)之後,該氣相反應性材料流入該系統,這樣,絲極被冷卻到足以允許蝕刻該絲極。此後,由該氣相反應性材料作為媒體的隨後的蝕刻反應其後可以允許進行到直至電流在有效操作該離子植入系統的一預定範圍內,指示該絲極已經變細至一適當的程度。In another embodiment, the increase in the monitored filament current provides an indication that the filament is being grown due to the deposition of the material. In response, the gas phase reactive material flows into the system after allowing the filament to cool for a predetermined period of time, or to a predetermined temperature (which may be, for example, from room temperature to up to about 2000 ° C). Thus, the filament is cooled enough to allow etching of the filament. Thereafter, the subsequent etching reaction of the gas phase reactive material as a medium can thereafter be allowed to proceed until the current is within a predetermined range of effective operation of the ion implantation system, indicating that the filament has been tapered to an appropriate extent .

因此本發明之方法可以藉由將一基板與一氣相反應性材料接觸足以至少部分地從該基板移除沈積物的時間來從該基板移除一沈積物,該沈積物包括硼、矽、砷、磷、鍺、鎢、鉬、硒、銻、銦、鉭以及碳的至少之一。用於此目的的氣相反應性材料可以包括一或多種以下物質:XeF2 、XeF4 、XeF6 、GeF4 、SiF4 、BF3 、AsF5 、AsF3 、PF5 、PF3 、F2 、TaF3 、TaF5 、WF6 、WF5 、WF4 、NF3 、IF5 、IF7 、KrF2 、SF6 、C2 F6 、CF4 、Cl2 、HCl、ClF3 、ClO2 、N2 F4 、N2 F2 、N3 F、NFH2 、NH2 F、HOBr、Br2 、BrF3 、C3 F8 、C4 F8 、C5 F8 、CHF3 、CH2 F2 、CH3 F、COF2 、HF、C2 HF5 、C2 H2 F4 、C2 H3 F3 、C2 H4 F2 、C2 H5 F、C3 F6 、COCl2 、CCl4 、CHCl3 、CH2 Cl2 、以及CH3 Cl。Thus, the method of the present invention can remove a deposit from the substrate by contacting a substrate with a gas phase reactive material sufficient to at least partially remove deposits from the substrate, the deposit comprising boron, antimony, arsenic. At least one of phosphorus, antimony, tungsten, molybdenum, selenium, tellurium, indium, antimony, and carbon. The gas phase reactive material used for this purpose may include one or more of the following materials: XeF 2 , XeF 4 , XeF 6 , GeF 4 , SiF 4 , BF 3 , AsF 5 , AsF 3 , PF 5 , PF 3 , F 2 , TaF 3 , TaF 5 , WF 6 , WF 5 , WF 4 , NF 3 , IF 5 , IF 7 , KrF 2 , SF 6 , C 2 F 6 , CF 4 , Cl 2 , HCl, ClF 3 , ClO 2 , N 2 F 4 , N 2 F 2 , N 3 F, NFH 2 , NH 2 F, HOBr, Br 2 , BrF 3 , C 3 F 8 , C 4 F 8 , C 5 F 8 , CHF 3 , CH 2 F 2 , CH 3 F, COF 2 , HF, C 2 HF 5 , C 2 H 2 F 4 , C 2 H 3 F 3 , C 2 H 4 F 2 , C 2 H 5 F, C 3 F 6 , COCl 2 , CCl 4 , CHCl 3 , CH 2 Cl 2 , and CH 3 Cl.

在本發明的操作中,氟化的氙化合物可以用作清洗劑以及電漿源試劑,並且可以包括任何合適數目的氟原子。相對於更低的F/Xe化合物,F與Xe的一更高的比值使之能夠相對更快並且更有效地進行清洗。更高的蒸氣壓力提高了清洗劑的遞送速率並且使之能夠遞送更多的材料。In the practice of the present invention, the fluorinated ruthenium compound can be used as a cleaning agent as well as a plasma source reagent, and can include any suitable number of fluorine atoms. A higher ratio of F to Xe allows for relatively faster and more efficient cleaning than lower F/Xe compounds. Higher vapor pressures increase the delivery rate of the cleaning agent and enable it to deliver more material.

在本發明的一實施方式中,六氟化氙被用作一清洗劑或電漿源試劑。儘管XeF6 的蒸氣壓力在室溫下比XeF2 的蒸氣壓力大約高七倍,XeF6 ,以及XeF4 ,係與水非常易反應的。XeF6 最有利地是在不係關於水、烴類、氫或還原劑的存在或生成的清洗環境中使用。然而,當使用具有更低蒸氣壓力的清洗化合物時,可能需要調整流通線路以便避免在流通路徑中不適當的壓降並且保持清洗劑的適當高的遞送速率。In one embodiment of the invention, antimony hexafluoride is used as a cleaning or plasma source reagent. Although the vapor pressure of XeF 6 is about seven times higher than the vapor pressure of XeF 2 at room temperature, XeF 6 and XeF 4 are very reactive with water. XeF 6 is most advantageously used in a cleaning environment that is not related to the presence or formation of water, hydrocarbons, hydrogen or reducing agents. However, when using a cleaning compound having a lower vapor pressure, it may be necessary to adjust the flow line to avoid undue pressure drop in the flow path and maintain a suitably high delivery rate of the cleaning agent.

實施本發明之方法的裝置能以任何適當的方式構成並安排,以便向該清洗提供氣相反應性材料。The apparatus for carrying out the method of the present invention can be constructed and arranged in any suitable manner to provide a gas phase reactive material to the cleaning.

在一實施方式中,本發明提供了一離子植入以及清洗總成,包含:(i)一離子植入系統,該系統包括一或多個部件,在該系統的離子植入處理的過程中在該等部件上累積有與電離作用有關的沈積物,(ii)一清洗總成,包括含一清洗組合物的一清洗組合物源,該清洗組合物包括一氣相反應性材料,例如一種鹵化物化合物,該鹵化物化合物與沈積物呈反應性以便實現在清洗條件下從一或多個部件至少部分地移除沈積物,該清洗條件包括該清洗組合物與沈積物的接觸,(iii)流通線路,它適合於將清洗組合物從清洗組合物源傳送到一或多個用來與它在清洗條件下進行接觸的部件,以及(iv)流通部件,它適合於控制在清洗狀態的過程中清洗組合物流動通過該流通線路,以便實現從一或多個部件上至少部分地移除沈積物。In one embodiment, the present invention provides an ion implantation and cleaning assembly comprising: (i) an ion implantation system comprising one or more components during ion implantation processing of the system Deposits associated with ionization are accumulated on the components, (ii) a cleaning assembly comprising a source of cleaning composition comprising a cleaning composition comprising a gas phase reactive material, such as a halogenation a compound that is reactive with the deposit to effect at least partial removal of deposits from one or more components under cleaning conditions, the cleaning conditions comprising contact of the cleaning composition with the deposit, (iii) a flow line adapted to transfer the cleaning composition from the source of the cleaning composition to one or more components for contacting it under cleaning conditions, and (iv) a flow-through member adapted to control the process in the cleaning state The intermediate cleaning composition flows through the flow line to effect at least partial removal of deposits from one or more components.

上述總成中的流通部件可以是任何合適的類型,包括例如閥、閥致動器、限流器、調節器、泵、質量流量控制器、壓力計、殘餘氣體分析器、中央處理單元、隔膜、等等。此類流通部件係適配的以便在所使用的具體的清洗條件下工作。The flow-through components in the above assemblies may be of any suitable type including, for example, valves, valve actuators, flow restrictors, regulators, pumps, mass flow controllers, pressure gauges, residual gas analyzers, central processing units, diaphragms ,and many more. Such flow-through components are adapted to operate under the specific cleaning conditions employed.

在植入機裝置中的一或多個部件(該等部件在該系統中的離子植入處理過程中在其上累積有與電離作用有關的沈積物)可以是任何合適的類型,例如,真空室、電弧室、電極、絲極、高壓套管、電磁波導、晶圓處理部件、夾環、輪、盤、等等。在一實施方式中,該部件係一真空室或含在其中的一部件。One or more components in the implanter device (on which the components accumulate deposits associated with ionization during the ion implantation process in the system) may be of any suitable type, for example, vacuum Chambers, arc chambers, electrodes, filaments, high voltage bushings, electromagnetic waveguides, wafer processing components, clamp rings, wheels, discs, and the like. In one embodiment, the component is a vacuum chamber or a component contained therein.

清洗組合物源可以包含含有該清洗組合物的一材料存儲及分配套件。該材料存儲及分配套件包括一容器,該容器可以是,例如,限定了其內體積的總體上為圓柱形的容器。在一特別的實施方式中,該清洗組合物在環境溫度的條件下可以為固體並且此清洗組合物可以在該容器內的一增強的表面區域上受到支持。此增強的表面區域可以包括其中的結構體,例如托盤、如在美國專利號6,921,062中所描述,或多孔惰性泡沫體,例如受過陽極化處理的鋁、不鏽鋼、鎳、青銅等等,以提供該清洗材料的一個一致的蒸發速率並且進而提供足以進行相關的清洗過程的分配以及電離步驟的蒸氣壓力。在利用托盤的情況下,在分配操作中,清洗組合物可以受到一些托盤表面的支持,該等托盤具有與其相關的流動通道管,用於蒸氣在該容器中向上流入其分配口。The cleaning composition source can comprise a material storage and dispensing kit containing the cleaning composition. The material storage and dispensing kit includes a container that can be, for example, a generally cylindrical container defining an inner volume thereof. In a particular embodiment, the cleaning composition can be solid at ambient temperature and the cleaning composition can be supported on a reinforced surface area within the container. The reinforced surface area can include a structure therein, such as a tray, as described in U.S. Patent No. 6,921,062, or a porous inert foam, such as anodized aluminum, stainless steel, nickel, bronze, etc. to provide the A consistent evaporation rate of the cleaning material and, in turn, a vapor pressure sufficient to effect the dispensing of the associated cleaning process and the ionization step. In the case of a tray, in a dispensing operation, the cleaning composition can be supported by a number of tray surfaces having flow channel tubes associated therewith for vapor to flow upwardly into the dispensing opening in the container.

在上述裝備安排中的流通線路適配於將該清洗組合物在清洗條件下從該清洗組合物源傳送到電弧室中。此適配可以是基於清洗組合物的不同特性。例如當該清洗組合物具有一低的蒸氣壓力時,可以使用高的傳導來避免在流通路徑中的不必要的壓降。最大化流導以及最小化流通壓縮的方法在本領域係眾所周知的。The flow line in the above-described equipment arrangement is adapted to transfer the cleaning composition from the source of the cleaning composition to the arc chamber under cleaning conditions. This adaptation can be based on different characteristics of the cleaning composition. For example, when the cleaning composition has a low vapor pressure, high conductivity can be used to avoid unnecessary pressure drops in the flow path. Methods for maximizing conductance and minimizing flow compression are well known in the art.

在本發明的所有清洗方法中,可以任選地用另外的方法以及裝置進行清洗從而延長離子植入系統(特別是離子源)的壽命。此類延長壽命的方法可以包括改變一離子植入系統以便適應具體的基板、沈積的材料及/或氣相反應性材料。系統裝置的改變可以包括但不限於提供以下各項:具有主動熱控制系統的萃取電極;降低放電的頻率/發生的主動加熱的萃取電極(actively heated extraction electrode);包含金屬優選鋁、鉬或氧化鋁(Al2 O3 )的萃取電極;遠程電漿源;萃取電極與加熱器的關聯;萃取電極與冷卻器件的關聯;光滑的無特徵的(featureless)萃取電極;電漿室,該等電漿室經安排為接收多種源氣體,該等源氣體能夠被電漿分解以產生通過該室的出口以及導管的反應性氣體的流束,以便將該反應性的氣體輸送至電離作用室;溫度探測器,該等溫度探測器經設計為探測反應性的氣體與在處理系統的表面上的污染的放熱反應的實質上的結束;在該處理裝備中的易受氣相反應性材料的損害之部件的保護(例如,在對氣相反應性材料易感的部件的周圍提供了對抗此類材料的擋護物);及/或包含鋁或氧化鋁的系統部件的使用。In all of the cleaning methods of the present invention, cleaning may optionally be performed by additional methods and apparatus to extend the life of the ion implantation system, particularly the ion source. Such methods of extending life may include altering an ion implantation system to accommodate a particular substrate, deposited material, and/or gas phase reactive material. Variations in system equipment may include, but are not limited to, providing the following: an extraction electrode with an active thermal control system; a frequency of reduced discharge/actively heated extraction electrode; a metal comprising preferably aluminum, molybdenum or oxidation Aluminum (Al 2 O 3 ) extraction electrode; remote plasma source; extraction electrode and heater association; extraction electrode and cooling device correlation; smooth featureless extraction electrode; plasma chamber, the same The slurry chamber is arranged to receive a plurality of source gases that are capable of being decomposed by the plasma to produce a stream of reactive gases passing through the outlet of the chamber and the conduit to deliver the reactive gas to the ionization chamber; Detectors, the temperature detectors being designed to detect the substantial end of the exothermic reaction of the reactive gas with the contamination on the surface of the processing system; components of the processing equipment susceptible to damage by the gas phase reactive material Protection (for example, providing a shield against such materials around parts susceptible to gas-phase reactive materials); and/or containing aluminum Alumina parts of the system.

延長處理裝備的壽命的方法可以包括但不限於:對萃取電極進行主動加熱以降低放電的頻率以及發生;在高於遞送至離子源的源材料的冷凝溫度之上加熱萃取電極;主動地控制適合於所使用的具體類型的離子源的萃取電極的溫度(例如與一加熱或冷卻的離子源進行組合加熱或冷卻該電極);及/或在萃取過程中保持該萃取電極處於高溫下。此類附加的裝置的改變以及方法在美國專利申請公布號2006/0272776及2006/0272775以及國際專利公布號WO 05/059942中進行了更全面的描述,將其全文以引用的方式併入本文。Methods of extending the life of the processing equipment may include, but are not limited to, actively heating the extraction electrode to reduce the frequency and occurrence of the discharge; heating the extraction electrode above the condensation temperature of the source material delivered to the ion source; actively controlling the fit The temperature of the extraction electrode of the particular type of ion source used (eg, in combination with a heated or cooled ion source to heat or cool the electrode); and/or to maintain the extraction electrode at elevated temperatures during the extraction process. The alterations and methods of such additional devices are more fully described in U.S. Patent Application Publication Nos. 2006/0272776 and 2006/0272775, and International Patent Publication No. WO 05/059942, which is incorporated herein in its entirety by reference.

在一特別的實施方式中,該離子植入系統包括一電弧室以及一摻雜劑源,其中該摻雜劑源可以包括例如BF3 、XeF2 、AsH3 、PH3 、GeF4 、SiF4 、H2 Se、AsF5 、AsF3 、PF5 、PF3 或其他硼、矽、砷、磷或含鍺的摻雜劑源。In a particular embodiment, the ion implantation system includes an arc chamber and a dopant source, wherein the dopant source can include, for example, BF 3 , XeF 2 , AsH 3 , PH 3 , GeF 4 , SiF 4 , H 2 Se, AsF 5 , AsF 3 , PF 5 , PF 3 or other dopant sources of boron, antimony, arsenic, phosphorus or antimony.

在另一實施方式中,本發明係關於係關於一離子植入的方法,該方法包括在一離子植入系統的電弧室中由一摻雜劑源氣體產生一電漿,該摻雜劑源氣體流動通過該電弧室以形成用於植入的摻雜劑源離子,其中在該摻雜劑源氣體流動通過該電弧室的過程中的至少一部分時間的過程中,氣相反應性材料與摻雜劑源氣體並行地流動通過該電弧室,以便實現在該離子植入系統中的清洗。In another embodiment, the present invention is directed to a method for ion implantation, the method comprising: generating a plasma from a dopant source gas in an arc chamber of an ion implantation system, the dopant source Gas flows through the arc chamber to form dopant source ions for implantation, wherein the gas phase reactive material is doped during at least a portion of the time during which the dopant source gas flows through the arc chamber The dopant source gas flows in parallel through the arc chamber to effect cleaning in the ion implantation system.

總體上,儘管摻雜劑源氣體與氣相反應性材料可以進行並行的流動以便實現原位清洗,但是典型地是優選以一相繼的方式進行清洗操作,例如當該離子源從一第一摻雜劑源產生一第一電漿,並且隨後該離子源從一第二摻雜劑源產生一第二電漿時,使用一介入的清洗步驟,其中氣相反應性材料流動通過該離子源,有或沒有電漿生成。In general, although the dopant source gas and the gas phase reactive material can be flowed in parallel for in situ cleaning, it is typically preferred to perform the cleaning operation in a sequential manner, such as when the ion source is from a first blend The dopant source generates a first plasma, and then the ion source generates a second plasma from a second dopant source, using an intervening cleaning step, wherein the gas phase reactive material flows through the ion source, With or without plasma generation.

在一實施方式中,本發明提供了形成一摻雜的矽基板之方法,該方法包含將Xe+ 離子植入一矽基板中,並且在這之後在該矽基板中植入摻雜劑離子。在此過程中,植入Xe+ 離子用於無定形化(amorphize)該基板的晶體結構。In one embodiment, the present invention provides a method of forming a doped germanium substrate, the method comprising implanting Xe + ions into a germanium substrate, and thereafter implanting dopant ions in the germanium substrate. In this process, Xe + ions are implanted for amorphizing the crystal structure of the substrate.

在用於清洗的氟化的氙電漿(例如XeF2 電漿)的生成中,Xe+ 離子可以進行一些源本身的低能濺鍍清洗。萃取之後,Xe+ 離子可以進行離子源下游部件,例如真空壁、離子光學部件、晶圓盤以及晶圓支架的一些高能濺鍍。In the formation of fluorinated tantalum plasma (eg, XeF 2 plasma) for cleaning, the Xe + ions can be subjected to low energy sputtering cleaning of some of the sources themselves. After extraction, Xe + ions can perform some high-energy sputtering of downstream components of the ion source, such as vacuum walls, ion optics, wafer pads, and wafer holders.

類似地,在使用鎢氟化物種類,例如WF6 、WF5 、及/或WF4 的情況下,游離的氟化物可以濺鍍潔淨的、不同的離子源部件及/或鎢可以沈積在離子源的不同部件上。在清洗以及沈積之間發生的行為取決於在系統中各個部件的溫度。Similarly, in the case of tungsten fluoride species, such as WF 6 , WF 5 , and/or WF 4 , free fluoride can be sputtered with clean, different ion source components and/or tungsten can be deposited on the ion source. On different parts. The behavior that occurs between cleaning and deposition depends on the temperature of the various components in the system.

本發明在不同的態樣係關於係關於在一微電子裝置的製造中所使用的清洗一離子植入系統的離子源區域之方法及裝置。該離子源區域可以包括例如一間接加熱的陰極源,一弗里曼(Freeman)源或一貝爾納(Bernas)源。The present invention is directed to a method and apparatus for cleaning an ion source region of an ion implantation system for use in the fabrication of a microelectronic device. The ion source region can include, for example, an indirectly heated cathode source, a Freeman source or a Bernas source.

本發明在一實施方式中係關於係關於從離子植入機以及其中所含的部件藉由將該真空室及/或部件與一氣相反應性鹵化物組合物在足夠的時間以及足夠條件下進行接觸而原位移除殘餘物以便至少部分地從該真空室及/或部件中移除殘餘物,並且係關於係關於藉由這樣一方式來完成,即,當殘餘物與構成真空室及/或部件的材料不同時,該氣相反應性材料與殘餘物選擇性地進行反應並且與構成離子植入機的真空室及/或部件的材料最低限度地進行反應(例如基本上不反應,並且優選完全不反應);而當殘餘物與構成真空室及/或部件的材料相同時,則氣相反應性材料可以是與殘餘物以及真空室及/或部件均呈反應性的。In one embodiment, the present invention relates to the use of the vacuum chamber and/or component and a gas phase reactive halide composition from the ion implanter and the components contained therein in sufficient time and under sufficient conditions. Contacting to remove residue in situ to at least partially remove residue from the vacuum chamber and/or component, and relating to the completion by such a manner that when the residue and the vacuum chamber are constructed and/or When the materials of the components are different, the gas phase reactive material selectively reacts with the residue and reacts minimally with the material of the vacuum chamber and/or component constituting the ion implanter (eg, substantially non-reactive, and Preferably, the reaction is completely non-reactive; and when the residue is the same as the material constituting the vacuum chamber and/or the component, the gas phase reactive material may be reactive with the residue and the vacuum chamber and/or the component.

如此處所使用,應用於該氣相反應性鹵化物與一殘餘物的反應性的術語「選擇性地」係用於描述在該氣相反應性鹵化物與一殘餘物之間的一優先的反應。儘管與構成離子植入機的真空室及/或部件的材料保持實質上不反應,如果該真空室及/或部件包含與那些殘餘物本身相同或相似的元素,氣相反應性鹵化物可以與構成離子植入機的真空室及/或部件的某些材料進行反應。例如,當與來自一部件的鎢沈積物選擇性地反應並且將其移除時,該氣相反應性材料可能也與在部件本身中的鎢反應。對於此共反應的發生,殘餘物以及部件不必精確地是相同的材料,但是會包含一些共同的材料。As used herein, the term "selectively" applied to the reactivity of the gas phase reactive halide with a residue is used to describe a preferential reaction between the gas phase reactive halide and a residue. . Although substantially non-reactive with the material of the vacuum chamber and/or component that constitutes the ion implanter, if the vacuum chamber and/or component contains the same or similar elements as those residues, the gas phase reactive halide can Certain materials that make up the vacuum chamber and/or components of the ion implanter react. For example, when selectively reacting with tungsten deposits from a component and removing them, the gas phase reactive material may also react with tungsten in the component itself. For this co-reaction to occur, the residue and components need not be exactly the same material, but will contain some common materials.

在另一實施方式中,離子植入機部件在一單獨的專門的室(部件從一離子植入機中移入其中)中離位地進行清洗。In another embodiment, the ion implanter components are cleaned off-position in a separate specialized chamber into which the components are moved from an ion implanter.

進一步詳細地考慮原位清洗,此種清洗主要取決於以下三個因素:清洗前體的反應性的性質,清洗反應副產物的揮發性,以及在化學清洗中所使用的反應條件。該清洗組合物必須移除不必要的殘餘物同時最小化構成離子植入機的材料的磨損。藉由清洗反應所產生的副產物必須是足夠揮發性的以便藉由離子植入機的真空系統或其他的抽吸裝置方便它們的移除。Further consideration is given in situ to cleaning, which depends primarily on three factors: the nature of the reactivity of the cleaning precursor, the volatility of the by-products of the cleaning reaction, and the reaction conditions used in the chemical cleaning. The cleaning composition must remove unnecessary residue while minimizing wear of the materials that make up the ion implanter. The by-products produced by the cleaning reaction must be sufficiently volatile to facilitate their removal by the vacuum system of the ion implanter or other suction means.

對於與離子植入機的一或多個部件相同的材料形成的殘餘物的清洗會導致部件本身的一些磨損。確切地說,使用XeF2 作為一清洗劑從一利用鎢電弧室的系統中移除鎢沈積物會導致來自電弧室的內部的某些鎢的移除。然而,為了使系統效率最大化,從系統性能降低的角度來看(如果該系統不進行清洗並且允許鎢沈積物累積在該系統中)電弧室的某些內部材料的損失不是很要緊的。Cleaning of the residue formed from the same material as one or more components of the ion implanter can result in some wear of the component itself. Specifically, the removal of tungsten deposits from a system utilizing a tungsten arc chamber using XeF 2 as a cleaning agent results in the removal of certain tungsten from the interior of the arc chamber. However, in order to maximize system efficiency, the loss of certain internal materials of the arc chamber is not critical from the standpoint of system performance degradation (if the system is not cleaned and tungsten deposits are allowed to accumulate in the system).

該氣相反應性材料可以包括例如一種氟化的氙化合物蒸氣,例如XeF2 蒸氣。XeF2 係一優選的反應性鹵化物氣體,並且在室溫下會昇華,但是可以使用一加熱器進行加熱以增加昇華速率。已知XeF2 係一有效的矽蝕刻劑並且已經在微電子機械系統(MEMS)器件處理中用作一矽選擇性蝕刻劑。確切地說,XeF2 與矽根據以下反應進行反應。The gas phase reactive material may comprise, for example, a fluorinated hydrazine compound vapor, such as XeF 2 vapor. XeF 2 is a preferred reactive halide gas and will sublime at room temperature, but can be heated using a heater to increase the rate of sublimation. XeF 2 is known to be an effective tantalum etchant and has been used as a selective etchant in microelectromechanical systems (MEMS) device processing. Specifically, XeF 2 reacts with hydrazine according to the following reaction.

2 XeF2 (g)+Si(s)→2 Xe(g)+SiF4 (g) (10)2 XeF 2 (g)+Si(s)→2 Xe(g)+SiF 4 (g) (10)

該矽/XeF2 反應可以不用活化而發生,即,不用電漿或熱致加熱。XeF2 與Si的反應速率遠高於XeF2 與SiO2 的反應速率,使得XeF2 選擇性地與Si反應。The 矽/XeF 2 reaction can occur without activation, i.e., without plasma or heat. The reaction rate of XeF 2 with Si is much higher than the reaction rate of XeF 2 with SiO 2 such that XeF 2 selectively reacts with Si.

XeF2 或其他氟化的氙化合物作為用於金屬硼的一蝕刻劑有用地用於本發明的操作。儘管不希望受理論的束縛,但是認為硼根據以下反應(11)被蝕刻:XeF 2 or other fluorinated ruthenium compounds are usefully useful in the practice of the present invention as an etchant for metal boron. Although not wishing to be bound by theory, it is believed that boron is etched according to the following reaction (11):

3 XeF2 (g)+2 B(s)→3 Xe(g)+2 BF3 (g) (11)3 XeF 2 (g)+2 B(s)→3 Xe(g)+2 BF 3 (g) (11)

本發明考慮使用XeF2 作為用於砷、磷以及鍺的一蝕刻劑,並且可以係關於以下的反應:The present invention contemplates the use of XeF 2 as an etchant for arsenic, phosphorus, and antimony, and may be related to the following reactions:

5 XeF2 (g)+2 As(s)→5 Xe(g)+2 AsF5 (g) (12)5 XeF 2 (g)+2 As(s)→5 Xe(g)+2 AsF 5 (g) (12)

5 XeF2 (g)+2 P(s)→5 Xe(g)+2 PF5 (g) (13)5 XeF 2 (g)+2 P(s)→5 Xe(g)+2 PF 5 (g) (13)

2 XeF2 (g)+Ge(s)→2 Xe(g)+GeF4 (g) (14)2 XeF 2 (g)+Ge(s)→2 Xe(g)+GeF 4 (g) (14)

此類反應可以使用或不使用高能活化而進行。Such reactions can be carried out with or without high energy activation.

當殘餘物材料與那些材料不同時,本發明之方法及裝置用於至少部分地從離子植入機的部件中移除殘餘物,例如,移除至少25%,更優選至少50%並且最優選至少75%的此種殘餘物,並且藉由這樣一方式來完成:就構成離子植入機部件的材料而言,例如鋁、鎢、鉬、石墨、絕緣材料、密封劑材料等,對殘餘物進行選擇性地移除。When the residue material is different from those materials, the method and apparatus of the present invention are used to at least partially remove residue from the components of the ion implanter, for example, removing at least 25%, more preferably at least 50% and most preferably At least 75% of such residue, and is accomplished by means of materials constituting the components of the ion implanter, such as aluminum, tungsten, molybdenum, graphite, insulating materials, sealant materials, etc., on residues Perform selective removal.

當殘餘物與構成部件的材料係相同的材料時,希望有相似程度的殘餘物移除,同時保持材料從部件中的移除處於低的程度,例如在微米或數十微米的範圍內,以便不顯著地影響部件的性能。此外,由於沈積物一般沒有均勻的厚度或沈積,它們在清洗過程中可以比部件本身的材料更具反應性,這樣該氣相反應性材料組合物比與部件部分的反應更選擇性地與該殘餘物進行反應。When the residue is the same material as the material constituting the component, it is desirable to have a similar degree of residue removal while maintaining the removal of the material from the component to a low extent, such as in the range of microns or tens of microns, so that Does not significantly affect the performance of the part. In addition, since the deposits generally do not have a uniform thickness or deposition, they may be more reactive during the cleaning process than the material of the component itself, such that the gas phase reactive material composition more selectively reacts with the component portion. The residue is reacted.

可以採用幾種形式將氣相反應性材料組合物遞送到可能進行原位清洗的離子源區域,包括一不流動的方式、一連續的方式、以及一直接引入的方式。此類清洗方式更全面地描述於國際公布WO 07/127865中,連同在本發明的操作中有效使用的裝置以及方法學。國際公布WO 07/127865的披露內容藉由引用作為整體結合在此。儘管結合本發明的不同實施方式在此描述了使用XeF2 作為一清洗組合物,但應理解的是,可以使用其他氟化的化合物,例如WF6 、WF5 、及/或WF4 ,替代或結合XeF2 ,或可以使用其他的以及額外的氟化的化合物。例如可以使用BrF3 來蝕刻鎢而不需要電漿。在另一態樣,本發明係關於係關於改良使用固體摻雜材料的一離子植入系統的性能以及延長其壽命之方法,該方法包含使用XeF2 或N2 F4 作為所述固體摻雜材料的一載氣。該固體摻雜材料包括,但不限於元素砷、磷、硒、銻、SbF3 、InCl、SeO2 、Sb2 O3 及InCl3 。如本發明所考慮的,使用XeF2 或N2 F4 作為Sb2 O3 、InCl3 或其他固體摻雜材料的一載氣移除了該源室以及其部件上所沈積的Sb、In以及其他摻雜劑。該暫態方法即使在Sb植入之後切換為硼也具有效用。藉由本方法所得的優點至少是兩重的:首先,它提供了即時的源清洗來防止或減少摻雜劑累積到該離子源室及其部件上,因此改良了離子源性能同時延長離子源的壽命;第二,它增強及/或穩定了電漿及/或束電流。The gas phase reactive material composition can be delivered in several forms to the ion source region where in situ cleaning is possible, including a non-flowing manner, a continuous manner, and a direct introduction. Such cleaning methods are more fully described in International Publication WO 07/127865, along with apparatus and methodology that are effectively used in the operation of the present invention. The disclosure of International Publication No. WO 07/127865 is incorporated herein by reference in its entirety. Although the use of XeF 2 as a cleaning composition is described herein in connection with various embodiments of the present invention, it is to be understood that other fluorinated compounds such as WF 6 , WF 5 , and/or WF 4 may be used instead or In combination with XeF 2 , other and additional fluorinated compounds may be used. For example, BrF 3 can be used to etch tungsten without the need for plasma. In another aspect, the present invention is directed to a method for improving the performance and extending the lifetime of an ion implantation system using a solid doped material, the method comprising using XeF 2 or N 2 F 4 as the solid doping A carrier gas of the material. The solid doping materials include, but are not limited to, the elements arsenic, phosphorus, selenium, tellurium, SbF 3 , InCl, SeO 2 , Sb 2 O 3 , and InCl 3 . As contemplated by the present invention, a carrier gas using XeF 2 or N 2 F 4 as Sb 2 O 3 , InCl 3 or other solid doping material removes Sb, In deposited on the source chamber and its components, and Other dopants. This transient method has utility even if it is switched to boron after Sb implantation. The advantages obtained by this method are at least twofold: first, it provides an immediate source cleaning to prevent or reduce dopant buildup onto the ion source chamber and its components, thereby improving ion source performance while extending the ion source. Lifetime; second, it enhances and/or stabilizes the plasma and/or beam current.

在另一態樣,本發明係關於係關於改良使用氣態摻雜材料的一離子植入系統的性能並且延長其壽命之方法,該方法包含用XeF2 或N2 F4 作為與所述氣體摻雜材料的一併流氣體。該氣態摻雜材料包括,但不限於GeH4 及BF3 。如本發明所考慮的,使用XeF2 或N2 F4 作為與GeH4 或其他氣態摻雜材料的一併流氣體移除了沈積在源室以及其部件上的Ge或其他的摻雜劑。藉由本發明的這種操作所獲得的優點至少是兩重的:首先,它提供了即時的源清洗來阻止或減少摻雜劑累積到該離子源室及其部件上,因此改良了離子源性能並且延長了離子源壽命;第二,它增強及/或穩定了電漿及/或束電流。In another aspect, the present invention is directed to a method for improving the performance and extending the life of an ion implantation system using a gaseous dopant material, the method comprising using XeF 2 or N 2 F 4 as a gas blending with the gas A mixture of miscellaneous materials. The gaseous dopant materials include, but are not limited to, GeH 4 and BF 3 . As contemplated by the present invention, the use of XeF 2 or N 2 F 4 as a co-current gas with GeH 4 or other gaseous dopant material removes Ge or other dopants deposited on the source chamber and its components. The advantages obtained by this operation of the present invention are at least twofold: first, it provides immediate source cleaning to prevent or reduce dopant buildup onto the ion source chamber and its components, thereby improving ion source performance. And extend the life of the ion source; second, it enhances and/or stabilizes the plasma and/or beam current.

在另一態樣,本發明係關於係關於清洗一離子植入系統的一前級管道以便移除此處與電離作用有關的沈積物之方法,包含將一離子植入系統的前級管道與一清洗氣體在以下反應條件下進行接觸,其中所述清洗氣體與該沈積物具有化學反應性以實現其中至少部分地移除。沈積物包括,但不限於包括B、Ge、Si、P及As,或它們的混合物的那些物質。該清洗氣體包括但不限於XeF2 、N2 F4 、F2 以及與前述構成的一沈積物呈反應性的其他氟化的物質。如熟習該項技術者所理解,所需要的清洗氣體的量取決於存在的沈積物的量。類似地,在清洗氣體與沈積物反應的過程中釋放出的熱的量取決於清洗氣體的流速。從清洗過程中產生的副產物種類的識別以及濃度取決於清洗氣體的流速、沈積物的組合性構成、以及泵吹掃流速。僅用於非限制性說明的目的,以下對使用XeF2 從一前級管道中清洗磷的一實例進行說明:用於確定在清洗過程中所需要的XeF2 量的化學反應係:5 XeF2 (g)+2 P(s)→5 Xe(g)+2 PF5 (g)。形成焓(以kJ/mol)係取自Lange's Handbook of Chemistry(14th ed)並且在此列出用於確定在反應過程中所釋放的熱:XeF2 (-164);Xe(0);P(0);以及PF5 (-1594.4)。XeF2 的流速決定了清洗過程所需要時間的長度連同所釋放的熱。沒有提供加熱XeF2 氣瓶的手段,最大的持續流速係大約50sccm,假定有足夠的遞送管道傳導率。如果藉由使用一加熱夾套保持該氣瓶在室溫下,則流速可以增加到100sccm或更大。清洗磷沈積物所需的XeF2 的量在表1中示出,且在該清洗反應過程中釋放的熱的量在表2中示出。In another aspect, the present invention is directed to a method of cleaning a pre-stage conduit of an ion implantation system for removing deposits associated with ionization herein, comprising implanting a pre-stage of an ion implantation system with A purge gas is contacted under reaction conditions wherein the purge gas is chemically reactive with the deposit to effect at least partial removal therein. Deposits include, but are not limited to, those including B, Ge, Si, P, and As, or mixtures thereof. The purge gas includes, but is not limited to, XeF 2 , N 2 F 4 , F 2 , and other fluorinated materials that are reactive with a deposit of the foregoing composition. As will be understood by those skilled in the art, the amount of cleaning gas required will depend on the amount of deposit present. Similarly, the amount of heat released during the reaction of the purge gas with the deposit depends on the flow rate of the purge gas. The identification and concentration of by-product species generated from the cleaning process depends on the flow rate of the purge gas, the combined composition of the deposits, and the pump purge flow rate. For purposes of non-limiting illustration only, an example of the cleaning of phosphorus from a pre-stage pipe using XeF 2 is illustrated below: a chemical reaction system for determining the amount of XeF 2 required during the cleaning process: 5 XeF 2 (g) +2 P(s) → 5 Xe(g) + 2 PF 5 (g). The formation enthalpy (in kJ / mol) is derived from Lange's Handbook of Chemistry (14 th ed) and are listed here for determining the heat released during the reaction: XeF 2 (-164); Xe (0); P (0); and PF 5 (-1594.4). The flow rate of XeF 2 determines the length of time required for the cleaning process along with the heat released. There is no means of heating the XeF 2 cylinder, the maximum sustained flow rate is about 50 sccm, assuming sufficient delivery duct conductivity. If the cylinder is kept at room temperature by using a heating jacket, the flow rate can be increased to 100 sccm or more. The amount of XeF 2 required to clean the phosphorus deposit is shown in Table 1, and the amount of heat released during the cleaning reaction is shown in Table 2.

來自上述的清洗反應中的不同副產物的最大產生速率在表3中示出。The maximum production rates of the different by-products from the above cleaning reactions are shown in Table 3.

如熟習該項技術者所理解,由於殘餘物的組成可能不同,因此在表3中示出的資料係基於以下假設:副產物的量係確定為對於每種元素假定100%係那種元素的組成性構成。此外,該等物質的最大濃度取決於在排氣系統中的稀釋流速。例如,如果低真空泵具有一10slpm的氮氣清洗,則就在該泵的下游,PF3 的最大穩定態濃度係3330ppm。如果XeF2 的流速大於50sccm,則該值可以增加。As will be understood by those skilled in the art, since the composition of the residues may vary, the data shown in Table 3 is based on the assumption that the amount of by-products is determined to assume 100% of that element for each element. Constitutive composition. In addition, the maximum concentration of such materials depends on the dilution flow rate in the exhaust system. For example, if the low vacuum pump has a 10 slpm nitrogen purge, then downstream of the pump, the maximum steady state concentration of PF 3 is 3330 ppm. This value can be increased if the flow rate of XeF 2 is greater than 50 sccm.

在上述方法的一實施方式中,該清洗氣體流入該植入源室,渦輪泵關閉而低真空泵打開。此操作增強了經過前級管道的沈積物上方的清洗氣體的流速,因此提供了一更快的清洗過程。清洗氣體流的速率可以進一步藉由對在其中使該清洗氣體存儲在室溫或室溫以上的該氣瓶進行加熱。優選在此操作中對從氣瓶到離子植入機的遞送管線類似地進行加熱。In an embodiment of the above method, the purge gas flows into the implant source chamber, the turbo pump is turned off and the low vacuum pump is turned on. This operation enhances the flow rate of the purge gas over the deposits of the foreline, thus providing a faster cleaning process. The rate of purge gas flow can be further heated by heating the gas cylinder in which the purge gas is stored at or above room temperature. Preferably, the delivery line from the gas cylinder to the ion implanter is similarly heated in this operation.

在上述方法的另一實施方式中,該清洗氣體以一脈衝流方式流入該植入源室中,其中將該植入源室、該泵以及前級管道充到某一壓力並且然後抽到更低的壓力。重複此過程直至移除離子植入系統的前級管道上的沈積物。此操作優選使用在該低真空泵的進口上的一隔離閥。In another embodiment of the above method, the cleaning gas flows into the implant source chamber in a pulsed manner, wherein the implant source chamber, the pump, and the pre-stage tube are charged to a certain pressure and then pumped to a more Low pressure. This process is repeated until the deposit on the foreline of the ion implantation system is removed. This operation preferably uses an isolation valve on the inlet of the low vacuum pump.

在一優選的操作中,上述實施方式進一步包含對在其中使該清洗氣體存儲在室溫或室溫以上的該氣瓶進行加熱。In a preferred operation, the above embodiment further comprises heating the gas cylinder in which the cleaning gas is stored at room temperature or above.

對於所有實施方式,該方法優選進一步包含在該低真空泵出口上的一氣體洗滌器以便從清洗過程中移除所產生的揮發性副產物。For all embodiments, the method preferably further comprises a gas scrubber on the outlet of the low vacuum pump to remove the volatile byproducts produced from the cleaning process.

每個實施方式優選進一步包含如從Air Products and Chemicals,Inc.(PA,USA)可商購的一Xe回收系統,並且描述於http://www.fabtech.org/product_briefings/_a/new_product_air_products_offers_on_site_xenon_recovery.,中,其併入本文中。Each embodiment preferably further comprises a Xe recovery system as commercially available from Air Products and Chemicals, Inc. (PA, USA) and is described at http://www.fabtech.org/product_briefings/_a/new_product_air_products_offers_on_site_xenon_recovery. It is incorporated herein.

清洗一離子植入系統的一前級管道的方法的另一實施方式包含在一渦輪泵下游提供該清洗氣體並且將所述清洗氣體連續地流過該離子植入系統的前級管道。所述清洗氣體之連續流動可直接進入源殼、源殼與源渦輪泵之間的區域,或源渦輪泵之下游。此操作優選清洗前級管道上的沈積物(即使當該植入過程進行時),由此減小離子植入操作的中斷。Another embodiment of a method of cleaning a pre-stage conduit of an ion implantation system includes providing the purge gas downstream of a turbo pump and continuously flowing the purge gas through a pre-stage conduit of the ion implantation system. The continuous flow of purge gas can be directed to the source shell, the region between the source shell and the source turbine pump, or downstream of the source turbine pump. This operation preferably cleans deposits on the foreline tube (even when the implantation process is performed), thereby reducing disruption of the ion implantation operation.

在上述的實施方式中,該清洗氣優選存儲在一氣瓶中;該方法優選進一步包含對在其中使該清洗氣體存儲在室溫或室溫以上的該氣瓶進行加熱。In the above embodiment, the purge gas is preferably stored in a gas cylinder; the method preferably further comprises heating the gas cylinder in which the purge gas is stored at or above room temperature.

上述的實施方式優選進一步包含在該低真空泵的出口提供一氣體洗滌器以便從該清洗過程中移除所產生的揮發性副產物。The above embodiments preferably further comprise providing a gas scrubber at the outlet of the low vacuum pump to remove volatile by-products produced from the cleaning process.

上述的實施方式進一步包含提供一如從Air Products and Chemicals,Inc.(PA,USA)可商購的Xe回收系統,並且描述於http://www.fabtech.org/product_briefings/_a/new_product_air_products_offers_on_site_xenon_recovery.,中,其併入本文中。The above embodiments further comprise providing a Xe recovery system as commercially available from Air Products and Chemicals, Inc. (PA, USA) and described at http://www.fabtech.org/product_briefings/_a/new_product_air_products_offers_on_site_xenon_recovery. It is incorporated herein.

在另一態樣,本發明係關於係關於改良具有一陰極的一離子植入系統的性能並且延長其壽命之方法,該方法包含將該陰極與由至少一種清洗氣體以及至少一種沈積氣體構成的一氣體混合物進行接觸,其中所述氣體混合物平衡了材料在該陰極上的沈積與該材料或其他材料從該陰極上的剝離。氣體混合物的清洗氣體移除了沈積在該陰極上的摻雜劑材料以及陰極的材料,而氣體混合物的沈積氣體直接或間接地引起摻雜劑材料沈積在該陰極上。此氣體混合物保持了在該陰極上摻雜材料的累積以及它或其他材料的剝離之間的一平衡,並且因此延長了離子源的壽命。將理解不僅摻雜劑材料可經沈積或蝕刻,而且電弧室壁之材料(例如,W或Mo)可經沈積或蝕刻。清洗氣體直接地(經由濺鍍或化學蝕刻)或間接地(經由氟化鎢/氟化鉬之化學除氣)防止沈積或降低沈積速率。沈積氣體經由鹵素循環(來自氣體之氟蝕刻來自冷卻壁的W或Mo,且接著將W或Mo分解至非常熱的陰極上),或藉由在陰極上實際地沈積摻雜劑分子/原子(例如,來自BF3 之B)而造成陰極上之沈積,且一類似機制應用於貝爾納離子源之絲極。對於絕緣體或電弧室之其他靈敏部件上之摻雜劑沈積的狀況,清洗氣體傾向於化學蝕刻經形成之摻雜劑沈積物,或清洗氣體可在摻雜劑沈積之前首先與沈積氣體反應以阻止或最小化沈積。以實例說明在第一情況中清洗氣體可如何阻止沈積:沈積氣體GeH4 可使Ge沈積物形成於陰極、絕緣體或其他部件上。若清洗氣體為XeF2 ,則其可與GeH4 反應以形成比Ge更具揮發性的至少一些量之GeF2 及/或GeF4 ,且因此可經由抽吸從源區域移除。此外,沈積氣體及清洗氣體之任一者或兩者亦可係摻雜劑氣體。該氣體混合物在離子源植入機中的存儲及分配可以藉由使用以下各項來完成:一吸附-解吸裝置(被稱為SDS-安全遞送源),它描述於美國專利號5,518,528中,並且其內容藉由引用併入本文;一包含用於保持一流體在所希望的一壓力下的容器的流體存儲及分配系統(被稱為VAC真空致動氣瓶)描述於美國專利號6,101,816中,並且其內容藉由引用併入本文;或一SDS與VAC的混合流體存儲及分配系統(被稱為VAC-Sorb),它描述於美國專利號6,089,027中並且其內容藉由引用併入本文。該等流體存儲及分配系統提供了氣體在低於大氣壓下的遞送,並且由此比高壓流體存儲及分配系統更安全並且更有效。此外,該氣體混合物中的一些氣體可以一起在SDS、VAC或VAC-Sorb系統中存儲及分配,該等氣體在高壓流體存儲及分配系統中的共存係不相容的。In another aspect, the invention relates to a method for improving the performance and extending the life of an ion implantation system having a cathode, the method comprising the cathode and the at least one cleaning gas and the at least one deposition gas A gas mixture is contacted, wherein the gas mixture balances the deposition of material on the cathode from the stripping of the material or other material from the cathode. The purge gas of the gas mixture removes the dopant material deposited on the cathode and the material of the cathode, and the deposition gas of the gas mixture causes the dopant material to deposit directly or indirectly on the cathode. This gas mixture maintains a balance between the accumulation of dopant material on the cathode and the stripping of it or other materials, and thus extends the life of the ion source. It will be appreciated that not only can the dopant material be deposited or etched, but the material of the arc chamber wall (eg, W or Mo) can be deposited or etched. The purge gas prevents deposition or reduces the deposition rate either directly (via sputtering or chemical etching) or indirectly (via chemical degassing of tungsten fluoride/molybdenum fluoride). The deposition gas is circulated through the halogen (the fluorine from the gas etches W or Mo from the stave, and then the W or Mo is decomposed onto the very hot cathode), or by actually depositing dopant molecules/atoms on the cathode ( For example, B) from BF 3 causes deposition on the cathode, and a similar mechanism is applied to the filament of the Bernard ion source. For dopant deposition conditions on insulators or other sensitive components of the arc chamber, the purge gas tends to chemically etch the formed dopant deposits, or the purge gas can first react with the deposition gas before the dopant is deposited to prevent Or minimize deposition. By way of example, how the cleaning gas can prevent deposition in the first case: the deposition gas GeH 4 can form Ge deposits on the cathode, insulator or other components. If the purge gas is XeF 2 , it can react with GeH 4 to form at least some amount of GeF 2 and/or GeF 4 that is more volatile than Ge, and thus can be removed from the source region via aspiration. Further, either or both of the deposition gas and the cleaning gas may be a dopant gas. The storage and distribution of the gas mixture in the ion source implanter can be accomplished by using an adsorption-desorption device (referred to as an SDS-safe delivery source) as described in U.S. Patent No. 5,518,528, The contents of which are incorporated herein by reference; a fluid storage and dispensing system (referred to as a VAC vacuum actuated gas cylinder) containing a container for maintaining a fluid at a desired pressure is described in U.S. Patent No. 6,101,816, and The contents of which are incorporated herein by reference; or a mixed fluid storage and distribution system of SDS and VAC (referred to as VAC-Sorb), which is described in U.S. Patent No. 6,089,027, the disclosure of which is incorporated herein by reference. Such fluid storage and distribution systems provide for delivery of gases at sub-atmospheric pressures and are thus safer and more efficient than high pressure fluid storage and distribution systems. In addition, some of the gases in the gas mixture can be stored and distributed together in an SDS, VAC, or VAC-Sorb system that is incompatible in the coexistence of high pressure fluid storage and distribution systems.

在以上方法的一實施方式中,氣體混合物的多種氣體同時地流動以便接觸該陰極或易受沈積影響之其他靈敏部件。In one embodiment of the above method, the plurality of gases of the gas mixture flow simultaneously to contact the cathode or other sensitive components susceptible to deposition.

在以上方法的另一實施方式中,氣體混合物的多種氣體順序地流動以便接觸該陰極或易受沈積影響之其他靈敏部件。In another embodiment of the above method, the plurality of gases of the gas mixture sequentially flow to contact the cathode or other sensitive components susceptible to deposition.

在以上方法的另一實施方式中,氣體混合物包含至少一種含氫氣體與至少一種含氟氣體的一組合,其中該含氫氣體作為清洗氣體而該含氟氣體作為沈積氣體。In another embodiment of the above method, the gas mixture comprises a combination of at least one hydrogen-containing gas and at least one fluorine-containing gas, wherein the hydrogen-containing gas acts as a purge gas and the fluorine-containing gas acts as a deposition gas.

在以上方法的另一實施方式中,該氣體混合物包含至少一種非摻雜氣體(即不含As、P、Ge、B、Si、或C的氣體)與至少一種摻雜氣體的一組合,其中該非摻雜氣體作為清洗氣體而該摻雜氣體作為沈積氣體。In another embodiment of the above method, the gas mixture comprises a combination of at least one non-doped gas (ie, a gas free of As, P, Ge, B, Si, or C) and at least one dopant gas, wherein The non-doped gas acts as a purge gas and the dopant gas acts as a deposition gas.

清洗氣體的實例係但不限於Xe/H2 、Ar/H2 、Ne/H2 、Xe/NH3 、Ar/NH3 、Ne/NH3 、Ar/Xe、及Ar/Xe/H2Examples of the cleaning gas are, but not limited to, Xe/H 2 , Ar/H 2 , Ne/H 2 , Xe/NH 3 , Ar/NH 3 , Ne/NH 3 , Ar/Xe, and Ar/Xe/H 2 .

沈積氣體的實例係(但不限於):F2 、N2 F4 、ClF3 、WF6 、MoF6 、GeF4 及NF3Examples of deposition gases are, but are not limited to, F 2 , N 2 F 4 , ClF 3 , WF 6 , MoF 6 , GeF 4 , and NF 3 .

氣體混合物的實例係(但不限於):AsH3 /AsF3 、AsH3 /AsF5 、PH3 /PF3 、PH3 /PF5 、SiH4 /SiF4 、H2 /Xe/SiF4 、GeH4 /GeF4 、H2 /Xe/GeF4 、H2 /GeF4 、B2 H6 /BF3 、H2 /BF3 、F2 /BF3 、CO2 /F2 、CO2 /CF4 、CO/F2 、CO/CF4 、COF2 /F2 、COF2 /CH4 、COF2 /H2Examples of gas mixtures are, but are not limited to, AsH 3 /AsF 3 , AsH 3 /AsF 5 , PH 3 /PF 3 , PH 3 /PF 5 , SiH 4 /SiF 4 , H 2 /Xe/SiF 4 , GeH 4 /GeF 4 , H 2 /Xe/GeF 4 , H 2 /GeF 4 , B 2 H 6 /BF 3 , H 2 /BF 3 , F 2 /BF 3 , CO 2 /F 2 ,CO 2 /CF 4 , CO/F 2 , CO/CF 4 , COF 2 /F 2 , COF 2 /CH 4 , COF 2 /H 2 .

本發明的特點及優點藉由以下非限制性的實例更全面地示出。The features and advantages of the present invention are more fully shown by the following non-limiting examples.

實例1Example 1

此實例示出了在離子源壽命上的改良以及植入機的利用,這藉由使用一化學清洗劑來移除沈積物可以實現。優選地,以有規律的間隔移除沈積物以便阻止植入機中的污染物薄片及傳導膜的積累。This example shows an improvement in ion source lifetime and utilization of the implanter, which can be achieved by using a chemical cleaner to remove deposits. Preferably, the deposits are removed at regular intervals to prevent accumulation of contaminant sheets and conductive membranes in the implanter.

原位清洗係藉由以有規律的間隔自位於離子植入機的氣體箱中的XeF2 的供給容器0入XeF2 來進行,其中XeF2 清洗蒸氣以每日兩次每次10-15分鐘引入該離子源中。使用一高電流植入機來試驗以評估該清洗試劑的流動動力學。確定了XeF2 清洗特性並且證實了該清洗劑對植入機的束流管道部件沒有不利的影響。於是,使用XeF2 試劑的清洗過程對於在一中度電流植入機裝置中使用係合格的。In-situ cleaning system 0 by supply container at regular intervals from the ion implanter is located in the gas tank of the XeF 2 to XeF 2, XeF 2 wherein the vapor is washed twice for 10-15 min daily Introduced into the ion source. A high current implanter was used to test to assess the flow kinetics of the cleaning reagent. The XeF 2 cleaning characteristics were determined and confirmed that the cleaning agent did not adversely affect the beam conduit components of the implanter. Thus, the cleaning process using the XeF 2 reagent is acceptable for use in a moderate current implanter device.

圖1係由此類中度電流植入機在原位清洗過程的實施之前及之後所彙編的離子源壽命資料的一圖表。該等資料係對於包括砷化氫以及磷化氫的一摻雜組合物來開發的。在清洗之前,受兩種常見的故障模式的限制,該離子源具有大約250±90小時的平均操作壽命。Figure 1 is a graph of ion source lifetime data compiled by such a moderate current implanter before and after the in-situ cleaning process. These materials were developed for a doped composition comprising arsine and phosphine. Prior to cleaning, the ion source has an average operating life of approximately 250 ± 90 hours, limited by two common failure modes.

主要的故障模式係從一抑制器電壓電源的過度洩露。為了成功萃取一穩定離子束,將抑制器電壓施加到定位於該電弧室外部的一電極上。該電極藉由多個小的絕緣體進行電隔離,並且在該等絕緣體中的一或多個上的一傳導膜的積累可能引起過度的抑制器洩露。The main failure mode is an excessive leakage from a suppressor voltage supply. In order to successfully extract a stable ion beam, a suppressor voltage is applied to an electrode positioned outside the arc chamber. The electrodes are electrically isolated by a plurality of small insulators, and accumulation of a conductive film on one or more of the insulators may cause excessive suppressor leakage.

故障的一第二模式係可歸因於所沈積材料的薄片的電弧室中部件的短路。A second mode of failure is attributable to a short circuit of components in the arc chamber of the sheet of deposited material.

發現,該等故障模式可藉由原位的化學清洗過程而最小化。定期每日兩次清洗增加了生產中源的壽命。It was found that these failure modes can be minimized by a chemical cleaning process in situ. Regular daily cleaning twice increases the life of the source in production.

XeF2 對抑制器的洩露電流的影響在圖2中進一步示出,圖2係對於中度電流工具在引入原位清洗操作之前以及之後的洩露電流的一圖表。每個數據點表示在需要植入一晶圓批次的時間的過程中的一平均抑制器電流,並且該等點已經隨著幾個離子源的壽命標繪出。洩露的大小取決於從上一次預防性維護的絕緣體的更換開始的實耗時間。該等資料示出定期原位清洗大大降低了洩露電流,這樣它從不達到1.5mA的上控制限,在該點需要一未經排程的源維護。The effect of XeF 2 on the leakage current of the suppressor is further illustrated in Figure 2, which is a graph of the leakage current for the medium current tool before and after the introduction of the in-situ cleaning operation. Each data point represents an average suppressor current during the time required to implant a wafer batch, and these points have been plotted along with the life of several ion sources. The amount of leakage depends on the elapsed time from the replacement of the last preventive maintenance insulator. These data show that periodic in-situ cleaning greatly reduces the leakage current so that it never reaches the upper control limit of 1.5 mA, at which point an unscheduled source maintenance is required.

還使用包括BF3 及PH3 的一植入摻雜混合評估了原位清洗的效果。該源在該等條件下操作了497小時並且在一電弧限制條件下(係關於絲極上的鎢或硼沈積物)發生了故障,這可歸因於BF3 的化學性質。操作係關於在試驗系統中497小時的單個源壽命與在相同系統中長期的歷史平均值299小時相比是有利的。這係一單個的資料點,但是它適合所建立的模型。在這種情況下,源壽命的改良看上去是由於在該源電弧室中用XeF2 蝕刻了鎢沈積物。The effect of in-situ cleaning was also evaluated using an implant doping mixture including BF 3 and PH 3 . The source is operated under such condition and a failure has occurred 497 hours in an arc constraints (based on tungsten or boron deposit on filament), which is attributable to the chemical properties of BF 3. The operating system is advantageous with respect to a single source life of 497 hours in the test system compared to a long-term historical average of 299 hours in the same system. This is a single data point, but it fits the model built. In this case, the improvement in source life appears to be due to the etching of tungsten deposits with XeF 2 in the source arc chamber.

圖3A及3B的照片提供了清洗劑效果的另外的證據。在兩幅照片中,示出了在每種情況下大約生產98天之後,移去週期性預防性維護的離子源總成之後離子源殼的外觀。對於圖3A中的照片,每天進行兩次原位清洗,而對於圖3B中的照片,沒有進行清洗。The photographs of Figures 3A and 3B provide additional evidence of the effectiveness of the cleaning agent. In both photographs, the appearance of the ion source shell after removal of the periodically preventatively maintained ion source assembly after approximately 98 days of production in each case is shown. For the photograph in Figure 3A, in-situ cleaning was performed twice daily, while for the photograph in Figure 3B, no cleaning was performed.

在沒有清洗時,存在實質量的沈積的材料,其中有些已經開始層離及片落。在定期維護活動中,使用手動擦洗來從殼的內表面移除沈積的材料。用原位清洗該殼看上去更乾淨,無需花較少時間或不花時間進行手動清洗。沈積物藉由未反應的XeF2 流出該電弧室並且傳到真空室的壁上進行移除,而摻雜劑以及其他沈積物藉由化學反應移除。In the absence of cleaning, there is a substantial amount of deposited material, some of which have begun to delaminate and flake. Manual scrubbing is used to remove deposited material from the inner surface of the shell during regular maintenance activities. Cleaning the shell in situ looks cleaner and does not require less time or time for manual cleaning. The deposit exits the arc chamber by unreacted XeF 2 and passes to the wall of the vacuum chamber for removal, while dopants and other deposits are removed by chemical reaction.

在該離子源之中以及周圍的沈積物產生所謂的「植入機記憶效應」。當從一摻雜劑源氣體改變成另一種時,在該第一摻雜氣體流入終止之後很長時間,來自該第一摻雜劑元素的離子繼續從該離子源電漿中萃取。此效應在有些情況下引起所希望的離子束流的嚴重污染並且導致植入過程的惡化。Deposits in and around the ion source produce a so-called "implanter memory effect." When changing from one dopant source gas to another, ions from the first dopant element continue to be extracted from the ion source plasma long after the first dopant gas inflow ceases. This effect in some cases causes a serious contamination of the desired ion beam current and leads to a deterioration of the implantation process.

該植入機記憶效應的一實例係在一BF2 植入中的P污染。這種污染對工藝產量的後果係如此嚴重,以致於眾多的半導體生產設施都在避免將磷及硼的植入排程到相同工具上。這係在排程植入操作時的一實質性障礙。P/BF2 污染起因於使用PH3 的植入的源中的磷沈積物。當對於BF2 + 植入更換成BF3 氣體時,一些氟反應形成了31 P19 F+31 P19 F+ 的質量係50。這非常足以接近對於11 B19 F2 所希望的49的質量,這樣PF+ 與BF2 + 離子共植入。結果係,BF2 + 植入受到了在特定質量-能量範圍具有最低限度的質量解析能力的某些高電流系統的限制。An example of the memory effect of the implanter is P contamination in a BF 2 implant. The consequences of this pollution on process yields are so severe that many semiconductor manufacturing facilities are avoiding the implantation of phosphorus and boron onto the same tool. This is a substantial obstacle in scheduling implant operations. P / BF 2 sediment pollution sources due to the phosphorus implanted in the PH 3. When the BF 2 + implant was replaced with BF 3 gas, some of the fluorine reacted to form 31 P 19 F + . The mass of 31 P 19 F + is 50. This is very close enough to the mass of 49 desired for 11 B 19 F 2 such that PF + is co-implanted with BF 2 + ions. Results based, BF 2 + implantation in a specific mass by - an energy range having a certain high limiting current system mass resolving power of the minimum.

用來自PH3 摻雜氣體的P+ 離子束使用一高電流植入機在模擬生產中操作大約200小時對XeF2 清洗進行評估,以確定它對該植入機記憶效應的影響。該系統切換成BF3 氣體並且使用一高劑量(5×1015 ions/cm2 )的BF2 + 直接植入一裸露的矽監視器晶圓。在BF2 + 植入的過程中,系統的分析磁體的解析孔比通常更大地打開以確保污染效應對使用二次離子質譜(SIMS)分析的常規量測足夠大。The XeF 2 wash was evaluated using a P + ion beam from a PH 3 doping gas using a high current implanter operating in simulated production for approximately 200 hours to determine its effect on the memory effect of the implanter. The system switches to BF 3 gas and is implanted directly into a bare 矽 monitor wafer using a high dose (5 × 10 15 ions/cm 2 ) of BF 2 + . In the BF 2 + implantation process, resolving aperture analyzing magnet system is more open than usual to ensure that contamination effects on conventional measurement using secondary ion mass spectrometry (SIMS) analysis of sufficiently large.

BF3 、氬以及XeF2 的清洗效果係藉由操作這3種氣體中的每一種並且然後藉由用BF2 + 植入監視器晶圓週期地監測剩餘污染物的量來進行比較。與BF2 共植入的P的量藉由SIMS進行量測。在圖4A中示出所植入的磷的一典型的SIMS譜,其中在磷譜中的峰對應於從該離子源萃取的PF+ 離子的植入深度,並且該劑量對應於在BF2 中大約3% PF的一污染程度。The cleaning effect of BF 3 , argon, and XeF 2 was compared by operating each of the three gases and then periodically monitoring the amount of remaining contaminants by implanting the monitor wafer with BF 2 + . The amount of P co-implanted with BF 2 was measured by SIMS. Shows the implanted phosphorus SIMS spectrum of a typical Figure 4A, wherein the peak in the spectrum corresponding to the phosphorus extracted from the ion source PF + implantation depth of the ions, and the dose corresponds to approximately in BF 2 A degree of contamination of 3% PF.

圖4B係使用BF3 或XeF2 污染程度作為清洗時間的一函數的圖,其中該圖在從PH3 轉變成到BF3 之後立即歸一化(normalize)到污染程度。當操作BF3 電漿時即使2小時之後對PF污染也幾乎無影響。當使用氬電漿時,獲得了類似的結果(未示出)。藉由比較,PF污染在用XeF2 原位清洗僅15分鐘之後減少了兩倍,而在用XeF2 原位清洗30分鐘之後減少了幾乎5倍。FIG. 4B system using XeF 2 or BF 3 as a view of a function of the degree of contamination of the cleaning time, wherein the transition from FIG PH 3 into the BF 3 immediately after the normalization (the normalize) the degree of contamination. When the BF 3 plasma was operated, there was almost no effect on PF contamination even after 2 hours. Similar results were obtained when argon plasma was used (not shown). By comparison, PF contamination was reduced by a factor of two after in-situ washing with XeF 2 for only 15 minutes, and by a factor of five after in-situ washing with XeF 2 for 30 minutes.

使用原位清洗之前,該中等電流植入機單元每月每工具係平均3.3次源更換,其中平均的源更換過程以及隨後的合格試驗需要大約5小時,相當於每工具每年的生產時間損失近200小時。源壽命藉由原位清洗有效地加倍了,對於每個中等電流工具產生了約100小時的額外的生產時間。試驗晶圓產生的節省,連同生產時間以及合格晶圓的後處理所需的度量衡工具的節省(對於每個中等電流植入機每年進行高達40次合格試驗),證明了原位清洗的有效性。Prior to in-situ cleaning, the medium-current implanter unit averaged 3.3 source changes per tool per month, with an average source replacement process and subsequent qualifying tests requiring approximately 5 hours, equivalent to nearly a loss of production time per tool per year. 200 hours. The source life is effectively doubled by in-situ cleaning, resulting in an additional production time of approximately 100 hours for each medium current tool. The savings from test wafers, along with the savings in metrology tools required for production time and post-processing of qualified wafers (up to 40 qualification tests per year for each medium current implanter), demonstrate the effectiveness of in-situ cleaning .

實例2Example 2

此實例證明了在一說明性的離子植入機系統的離子源中絲極生長的控制。This example demonstrates the control of filament growth in an ion source of an illustrative ion implanter system.

圖5A係示出了就增加的絲極電流及重量而言XeF2 流以及電弧功率變化的效應的一圖表。該圖示出了絲極重量(以克計)作為植入機系統的操作實耗時間(以小時計)的函數的圖。該圖中較高的線代表以每分鐘2.2標準立方厘米(sccm)的XeF2 流量以及100伏特/0.05安培的電弧功率操作,對此,在3小時操作之後確定了一319毫克/小時的絲極重量增加。該圖中較低的線反映了0.5sccm的XeF2 流量以及40伏特/0.05安培電弧功率,這在3小時的持續執行時間中產生了63毫克/小時的絲極重量增加。Figure 5A is a graph showing the effect of XeF 2 flow and arc power variation with respect to increased filament current and weight. The graph shows a graph of filament weight (in grams) as a function of the elapsed time (in hours) of the implant system operation. The higher line in the figure represents a XeF 2 flow of 2.2 standard cubic centimeters per minute (sccm) and an arc power of 100 volts / 0.05 amps, for which a 319 mg/hr wire was determined after 3 hours of operation. Extreme weight increases. The lower line in the figure reflects a 0.5 sccm XeF 2 flow and a 40 volt/0.05 amp arc power which produces a filament weight gain of 63 mg/hr over a 3 hour continuous run time.

圖5B示出了就絲極電流而言XeF2 流量以及電弧功率變化的效應的一圖表。該圖示出了絲極電流(以安培計)作為植入機系統的執行時間的一函數的圖。該圖中較高的線代表以每分鐘2.2標準立方厘米(sccm)的XeF2 流量以及100伏特/0.05安培的電弧功率操作,對此,在確定了16安培/小時的絲極電流增加。圖中較低的線反映了0.5sccm的XeF2 流量以及40伏特/0.05安培的電弧功率,這在3小時的持續執行時間中產生了2.3安培/小時的絲極電流增加。Figure 5B shows a graph of the effect of XeF 2 flow and arc power changes in terms of filament current. The figure shows a plot of filament current (in amperes) as a function of the execution time of the implanter system. The higher line in the figure represents a XeF 2 flow rate of 2.2 standard cubic centimeters per minute (sccm) and an arc power of 100 volts / 0.05 amps, for which an increase in filament current of 16 amps/hour is determined. The lower line in the figure reflects a XscF 2 flow of 0.5 sccm and an arc power of 40 volts/0.05 amps, which produces a filament current increase of 2.3 amps/hour over a 3 hour continuous execution time.

圖6係絲極重量變化(以毫克每小時計)作為平均絲極電流(以安培計)的一函數的一圖表。該圖用對於低流量及高流量的熱絲極條件以及對於低流量以及高流量的電漿條件下的資料示出了熱流量(無電漿)以及電漿條件對於鎢傳送的效應。該等資料示出,鎢在系統中的傳送可以藉由選擇適當的處理條件選擇性地進行調整以便實現材料在絲極上的沈積或可替代的蝕刻。Figure 6 is a graph of filament weight change (in milligrams per hour) as a function of average filament current (in amperes). The graph shows the effect of heat flow (no plasma) and plasma conditions on tungsten transport for hot wire conditions for low flow and high flow rates and for low flow and high flow plasma conditions. These materials show that the transport of tungsten in the system can be selectively adjusted by selecting appropriate processing conditions to achieve deposition of the material on the filament or alternative etching.

實例3Example 3

此實例顯示出可藉由監測陰極偏壓功率供應來實現的在離子源壽命以及植入機利用上的改良。This example shows an improvement in ion source lifetime and implanter utilization that can be achieved by monitoring the cathode bias power supply.

圖7係顯示了陰極偏壓功率之變化作為時間及氣體類型之一函數的圖表。確切地說,當GeF4 流動時,鹵素循環使W沈積於陰極上,其引起偏壓功率增加(以便保持設定離子束電流)。當PH3 流動時,磷離子濺鍍陰極,導致陰極偏壓功率之下降。在此實例中,PH3 與GeF4 之比率係使得偏壓功率最終在大約76小時之後到達其最大輸出。以此方式監測該偏壓功率,且採取適當動作將能夠改良離子源壽命。Figure 7 is a graph showing changes in cathode bias power as a function of time and gas type. Specifically, when the flow GeF 4, so that the halogen cycle W is deposited on the cathode, which causes increase in the bias power (ion beam current to maintain the settings). When PH 3 flows, the phosphorus ions sputter the cathode, causing a drop in the cathode bias power. In this example, PH 3 and GeF 4 ratio of the bias power lines such that the final output reaches its maximum after about 76 hours. Monitoring the bias power in this manner, and taking appropriate action will improve the ion source lifetime.

圖8係顯示了陰極W重量變化作為偏壓功率之一函數的圖表。確切地說,使用XeF2 作為源氣體,鎢(W)可藉由簡單改變陰極偏壓功率而從陰極被蝕刻或沈積於陰極上。高偏壓功率將陰極之溫度增加至有利於W沈積反應之一程度,而低偏壓功率至中等偏壓功率將溫度降低至有利於W蝕刻反應之條件。取決於陰極之狀態,可選擇偏壓功率以從陰極蝕刻不需要之沈積物,或將需要之W沈積回至陰極上,且因此能夠改良離子源壽命。Figure 8 is a graph showing the change in cathode W weight as a function of bias power. Specifically, using XeF 2 as the source gas, tungsten (W) can be etched or deposited on the cathode from the cathode by simply changing the cathode bias power. The high bias power increases the temperature of the cathode to a degree that favors the W deposition reaction, while the low bias power to the medium bias power lowers the temperature to a condition that favors the W etch reaction. Depending on the state of the cathode, the bias power can be selected to etch unwanted deposits from the cathode, or to deposit the W back onto the cathode, and thus can improve ion source lifetime.

儘管已經參照不同的特別的實施方式對本發明進行了描述,應理解的是本發明並非因此受到限制,而且延伸到並涵蓋如熟習該項技術者所理解的不同的其他變更及實施方式。因此,本發明旨在根據所附的申請專利範圍來進行寬泛地解釋及詮釋。Although the present invention has been described with reference to various specific embodiments thereof, it should be understood that the invention is not limited thereto, and is intended to cover various other modifications and embodiments as would be understood by those skilled in the art. Therefore, the invention is intended to be broadly construed and construed in accordance with the appended claims.

圖1係在引入原位清洗過程之前及之後的源壽命資料的一圖表,示出了由於該過程而帶來的壽命的延長。Figure 1 is a graph of source life data before and after introduction of the in-situ cleaning process, showing the prolongation of life due to the process.

圖2係圖表顯示了XeF2 對抑制器的洩漏電流的影響的一圖表,如在實例1中所詳述。Figure 2 is a graph showing the effect of XeF 2 on the leakage current of the suppressor, as detailed in Example 1.

圖3A及3B係示出了證明原位清洗的清洗效果的照片,如在實例1中所詳述。Figures 3A and 3B show photographs demonstrating the cleaning effect of in-situ cleaning, as detailed in Example 1.

圖4A及4B示出了原位清洗的清洗效果,如在實例5中所詳述。Figures 4A and 4B show the cleaning effect of in-situ cleaning as detailed in Example 5.

圖5A及5B係用XeF2 流經過一實耗時間段的增加的絲極重量(圖5A)以及絲極電流(圖5B)的圖表。5A and 5B XeF lines were increased after an elapsed time period filament weight (FIG. 5A) and a second flow chart filament current (Fig. 5B).

圖6係對於用XeF2 流在該系統內的鎢傳送,絲極重量變化作為絲極電流的一函數的一圖表。Figure 6 is a graph of filament weight change as a function of filament current for tungsten transport in a system with XeF 2 flow.

圖7係顯示了陰極偏壓功率之變化作為時間及氣體類型之一函數的圖表。Figure 7 is a graph showing changes in cathode bias power as a function of time and gas type.

圖8係顯示了陰極W重量變化作為偏壓功率之一函數的圖表。Figure 8 is a graph showing the change in cathode W weight as a function of bias power.

Claims (8)

一種控制一離子植入系統中一間接加熱的陰極源之狀態的方法,該方法包含:a)藉由在一預定時間量測陰極偏壓功率來確定該間接加熱的陰極源之使用功率;b)比較該預定時間之該使用功率與初始功率;及c)回應於該比較採取校正動作(i)或(ii)以控制該間接加熱的陰極之該狀態,藉此(i)若該預定時間之該使用功率高於該初始功率,則蝕刻該間接加熱的陰極;或(ii)若該預定時間之該使用功率低於該初始功率,則再生長該間接加熱的陰極。 A method of controlling the state of an indirectly heated cathode source in an ion implantation system, the method comprising: a) determining a power consumption of the indirectly heated cathode source by measuring a cathode bias power for a predetermined time; Comparing the used power with the initial power for the predetermined time; and c) taking a corrective action (i) or (ii) in response to the comparison to control the state of the indirectly heated cathode, whereby (i) the predetermined time The indirectly heated cathode is etched when the used power is higher than the initial power; or (ii) the indirectly heated cathode is regenerated if the used power is lower than the initial power for the predetermined time. 如請求項1之方法,其中該(c)(i)之蝕刻包括在足以蝕刻之低溫至中等溫度的條件下操作該間接加熱的陰極。 The method of claim 1, wherein the etching of (c)(i) comprises operating the indirectly heated cathode at a low to moderate temperature sufficient for etching. 如請求項1之方法,其中該(c)(ii)之再生長包括使一氟化氣體在一電漿條件下在該間接加熱的陰極上流動。 The method of claim 1, wherein the regrowth of (c)(ii) comprises flowing a fluorinated gas over the indirectly heated cathode under a plasma condition. 如請求項3之方法,其中該氟化氣體包含以下中之一或多者:XeF2 、XeF4 、XeF6 、GeF4 、SiF4 、BF3 、AsF5 、AsF3 、PF5 、PF3 、F2 、TaF3 、TaF5 、WF6 、WF5 、WF4 、NF3 、IF5 、IF7 、KrF2 、SF6 、C2 F6 、CF4 、ClF3 、N2 F4 、N2 F2 、N3 F、NFH2 、NH2 F、BrF3 、C3 F8 、C4 F8 、C5 F8 、CHF3 、CH2 F2 、CH3 F、COF2 、HF、C2 HF5 、C2 H2 F4 、C2 H3 F3 、C2 H4 F2 、C2 H5 F、C3 F6 及MoF6The method of claim 3, wherein the fluorinated gas comprises one or more of the following: XeF 2 , XeF 4 , XeF 6 , GeF 4 , SiF 4 , BF 3 , AsF 5 , AsF 3 , PF 5 , PF 3 , F 2 , TaF 3 , TaF 5 , WF 6 , WF 5 , WF 4 , NF 3 , IF 5 , IF 7 , KrF 2 , SF 6 , C 2 F 6 , CF 4 , ClF 3 , N 2 F 4 , N 2 F 2 , N 3 F, NFH 2 , NH 2 F, BrF 3 , C 3 F 8 , C 4 F 8 , C 5 F 8 , CHF 3 , CH 2 F 2 , CH 3 F, COF 2 , HF C 2 HF 5 , C 2 H 2 F 4 , C 2 H 3 F 3 , C 2 H 4 F 2 , C 2 H 5 F, C 3 F 6 and MoF 6 . 如請求項1之方法,其中該(c)(ii)之再生長包括在足以發 生金屬沈積之高溫條件下操作該間接加熱的陰極。 The method of claim 1, wherein the regrowth of (c)(ii) is sufficient to The indirectly heated cathode is operated under high temperature conditions of green metal deposition. 如請求項4之方法,其中該氟化氣體包含XeF2 及N2 F4 中之一或多者。The method of claim 4, wherein the fluorinated gas comprises one or more of XeF 2 and N 2 F 4 . 一種操作一離子植入系統之方法,該離子植入系統在一離子源之一電弧室中包括一陰極,為保持該離子源的操作效率,所述方法包含將該陰極在以下條件下與一鎢試劑進行接觸,該等條件係選自以下構成的群組:(a)實現鎢在該陰極上沈積的條件;以及(b)實現自該陰極上蝕刻所沈積材料的條件,且根據一排程以進行該接觸,該排程係以包括至少預定電阻之預定限制來維持該陰極使用功率、及控制該陰極之溫度及該電弧室壁中的溫度來有效地於該陰極沈積或蝕刻材料以保持該預定電阻。 A method of operating an ion implantation system, the ion implantation system including a cathode in an arc chamber of an ion source, in order to maintain operational efficiency of the ion source, the method comprising the cathode under the following conditions The tungsten reagent is contacted, the conditions being selected from the group consisting of: (a) conditions for achieving deposition of tungsten on the cathode; and (b) conditions for effecting etching of the deposited material from the cathode, and according to a row The contacting is performed to maintain the cathode power by a predetermined limit including at least a predetermined resistance, and to control the temperature of the cathode and the temperature in the arc chamber wall to effectively deposit or etch material to the cathode. The predetermined resistance is maintained. 一種清洗一離子植入系統的一或多個部件之方法,用於自該一或多個部件至少部分地移除與電離作用有關的沈積物,所述方法包含將一清洗氣體在以下條件下流過該系統,該等條件係選自以下構成的群組:(a)實現材料在該陰極上沈積的條件;以及(b)實現自該陰極上蝕刻所沈積材料的條件,其中該清洗氣體包含XeF2 ,且該清洗氣體於足夠時間間隔流過該系統以在該系統之操作低於一預定限制時保持洩漏電流。A method of cleaning one or more components of an ion implantation system for at least partially removing deposits associated with ionization from the one or more components, the method comprising flowing a purge gas under the following conditions Through the system, the conditions are selected from the group consisting of: (a) achieving conditions under which the material is deposited on the cathode; and (b) achieving conditions for etching the deposited material from the cathode, wherein the cleaning gas comprises XeF 2 and the purge gas flows through the system at sufficient time intervals to maintain leakage current when the operation of the system is below a predetermined limit.
TW098127518A 2009-02-11 2009-08-13 Method of ion source cleaning in semiconductor processing systems TWI463516B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2009/033754 WO2009102762A2 (en) 2008-02-11 2009-02-11 Ion source cleaning in semiconductor processing systems

Publications (2)

Publication Number Publication Date
TW201030792A TW201030792A (en) 2010-08-16
TWI463516B true TWI463516B (en) 2014-12-01

Family

ID=42562402

Family Applications (2)

Application Number Title Priority Date Filing Date
TW098127518A TWI463516B (en) 2009-02-11 2009-08-13 Method of ion source cleaning in semiconductor processing systems
TW103120759A TWI567775B (en) 2009-02-11 2009-08-13 Ion implantation system and method of operating the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW103120759A TWI567775B (en) 2009-02-11 2009-08-13 Ion implantation system and method of operating the same

Country Status (6)

Country Link
EP (1) EP2396809A1 (en)
KR (1) KR101658975B1 (en)
CN (2) CN104217981B (en)
SG (1) SG173621A1 (en)
TW (2) TWI463516B (en)
WO (1) WO2010093380A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2617050A2 (en) * 2010-09-15 2013-07-24 Praxair Technology, Inc. Method for extending lifetime of an ion source
US9093372B2 (en) * 2012-03-30 2015-07-28 Varian Semiconductor Equipment Associates, Inc. Technique for processing a substrate
US9396902B2 (en) * 2012-05-22 2016-07-19 Varian Semiconductor Equipment Associates, Inc. Gallium ION source and materials therefore
JP6201496B2 (en) * 2013-08-02 2017-09-27 セントラル硝子株式会社 IF7-derived iodine fluoride compound recovery method and recovery device
US10170286B2 (en) 2016-09-30 2019-01-01 Axcelis Technologies, Inc. In-situ cleaning using hydrogen peroxide as co-gas to primary dopant or purge gas for minimizing carbon deposits in an ion source
JP6529000B2 (en) * 2017-09-27 2019-06-12 日新イオン機器株式会社 Ion source, operating method of ion source
US10700207B2 (en) 2017-11-30 2020-06-30 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device integrating backside power grid and related integrated circuit and fabrication method
CN112105757A (en) * 2018-05-17 2020-12-18 恩特格里斯公司 Germanium tetrafluoride and hydrogen mixture for ion implantation systems
US10784079B2 (en) 2018-09-26 2020-09-22 Taiwan Semiconductor Manufacturing Co., Ltd. Ion implantation system and source bushing thereof
US11791141B2 (en) 2020-07-29 2023-10-17 Taiwan Semiconductor Manufacturing Co., Ltd. System and method for residual gas analysis
US11664183B2 (en) * 2021-05-05 2023-05-30 Applied Materials, Inc. Extended cathode and repeller life by active management of halogen cycle
WO2022256295A1 (en) * 2021-06-01 2022-12-08 Inficon, Inc. Method of detecting radicals using mass spectrometry

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5370568A (en) * 1993-03-12 1994-12-06 Harris Corporation Curing of a tungsten filament in an ion implanter
US5943594A (en) * 1997-04-30 1999-08-24 International Business Machines Corporation Method for extended ion implanter source lifetime with control mechanism
US20050016838A1 (en) * 2003-06-06 2005-01-27 Hirohiko Murata Ion source apparatus and cleaning optimized method thereof
TW200624585A (en) * 2004-10-26 2006-07-16 Advanced Tech Materials Novel methods for cleaning ion implanter components

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497006A (en) * 1994-11-15 1996-03-05 Eaton Corporation Ion generating source for use in an ion implanter
JP3836991B2 (en) * 1999-02-02 2006-10-25 三菱化学株式会社 Film forming method and magnetic recording medium manufacturing method
EP1695369A4 (en) * 2003-12-12 2009-11-04 Semequip Inc Method and apparatus for extending equipment uptime in ion implantation
US8603252B2 (en) * 2006-04-26 2013-12-10 Advanced Technology Materials, Inc. Cleaning of semiconductor processing systems
US7853364B2 (en) * 2006-11-30 2010-12-14 Veeco Instruments, Inc. Adaptive controller for ion source
TW200839829A (en) * 2007-03-21 2008-10-01 Advanced Micro Fab Equip Inc Capacitance-coupled plasma chamber, structure and manufacturing method of gas distribution head, refurbishment and reuse method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5370568A (en) * 1993-03-12 1994-12-06 Harris Corporation Curing of a tungsten filament in an ion implanter
US5943594A (en) * 1997-04-30 1999-08-24 International Business Machines Corporation Method for extended ion implanter source lifetime with control mechanism
US20050016838A1 (en) * 2003-06-06 2005-01-27 Hirohiko Murata Ion source apparatus and cleaning optimized method thereof
TW200624585A (en) * 2004-10-26 2006-07-16 Advanced Tech Materials Novel methods for cleaning ion implanter components

Also Published As

Publication number Publication date
TW201438052A (en) 2014-10-01
KR20110128848A (en) 2011-11-30
CN102396048A (en) 2012-03-28
CN104217981A (en) 2014-12-17
CN104217981B (en) 2018-01-09
KR101658975B1 (en) 2016-09-23
TWI567775B (en) 2017-01-21
EP2396809A1 (en) 2011-12-21
SG173621A1 (en) 2011-09-29
TW201030792A (en) 2010-08-16
CN102396048B (en) 2014-08-27
WO2010093380A1 (en) 2010-08-19

Similar Documents

Publication Publication Date Title
TWI494975B (en) Ion source cleaning in semiconductor processing systems
TWI463516B (en) Method of ion source cleaning in semiconductor processing systems
TWI473149B (en) Cleaning of semiconductor processing systems
TWI412620B (en) Methods and apparatus for cleaning semiconductor manufacturing tool