TWI458409B - Micro-electromechanical device and method manufacturing the same - Google Patents

Micro-electromechanical device and method manufacturing the same Download PDF

Info

Publication number
TWI458409B
TWI458409B TW100121655A TW100121655A TWI458409B TW I458409 B TWI458409 B TW I458409B TW 100121655 A TW100121655 A TW 100121655A TW 100121655 A TW100121655 A TW 100121655A TW I458409 B TWI458409 B TW I458409B
Authority
TW
Taiwan
Prior art keywords
substrate
recess
microstructure
circuit layer
layer
Prior art date
Application number
TW100121655A
Other languages
Chinese (zh)
Other versions
TW201301975A (en
Inventor
Siewseong Tan
Shengchieh Chang
Original Assignee
Memsor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Memsor Corp filed Critical Memsor Corp
Priority to TW100121655A priority Critical patent/TWI458409B/en
Publication of TW201301975A publication Critical patent/TW201301975A/en
Application granted granted Critical
Publication of TWI458409B publication Critical patent/TWI458409B/en

Links

Landscapes

  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Description

微機電裝置及其製造方法Microelectromechanical device and method of manufacturing same

本發明是有關於一種製造微機電裝置的方法以及一種微機電裝置。The present invention relates to a method of fabricating a microelectromechanical device and a microelectromechanical device.

隨著半導體製程技術的進步,已推動微機電系統(MEMS)的蓬勃發展。在傳統微機械系統的製造方法中,主動元件製程與微機電製程是分開進行,在分別完成主動元件電路與微機電裝置後,再將兩者整合在同一基材上而完成微機電系統。上述的製造方法又稱為「System In Package」(SIP)。With the advancement of semiconductor process technology, the development of microelectromechanical systems (MEMS) has been promoted. In the manufacturing method of the conventional micromechanical system, the active component process and the microelectromechanical process are performed separately, and after the active component circuit and the microelectromechanical device are respectively completed, the two are integrated on the same substrate to complete the MEMS system. The above manufacturing method is also called "System In Package" (SIP).

另一種習知的製造方式是在形成主動元件電路中諸如金屬氧化物半導體元件(MOS)及雙載子接面電晶體(BJT)等半導體元件後,再進行形成微機電結構的製程,然後再進行主動元件電路的金屬化製程而完成晶圓層級(wafer level)的微機電系統。隨後將晶圓切割成晶片(Die),最後再進行晶片的封裝。Another conventional manufacturing method is to form a microelectromechanical structure after forming semiconductor elements such as a metal oxide semiconductor device (MOS) and a bipolar junction transistor (BJT) in an active device circuit, and then A wafer level MEMS is completed by performing a metallization process of the active device circuit. The wafer is then diced into wafers (Die) and finally wafer packaged.

無論是上述何種製造方式,在微機電裝置的製造過程中,通常採用諸如反應性離子蝕刻(RIE)之電漿蝕刻方式來形成微機電裝置中可移動的構件或部分。但是,以上述方式所形成的微機電裝置的輪廓(profile)並不理想。因此,目前亟需一種新的製造方法,期能改善上述問題。Regardless of the manufacturing method described above, in the manufacturing process of a microelectromechanical device, a plasma etching method such as reactive ion etching (RIE) is generally employed to form a movable member or portion of the microelectromechanical device. However, the profile of the microelectromechanical device formed in the above manner is not ideal. Therefore, there is a need for a new manufacturing method that will improve the above problems.

本發明之一目的係提供一種製造微機電裝置的方法,俾能在微機電結構中形成理想的蝕刻輪廓。本發明之另一目的係提供一種改良的微機電裝置。It is an object of the present invention to provide a method of fabricating a microelectromechanical device that can form a desired etch profile in a microelectromechanical structure. Another object of the present invention is to provide an improved microelectromechanical device.

本發明一態樣係提供一種製造微機電裝置的方法。此方法包含以下步驟:(a)形成一電路層以及一微結構於一基材之一上表面,其中電路層包含一主動元件,且微結構電性連接主動元件;(b)形成一第一凹槽貫穿電路層並深入基材,使第一凹槽之一底部低於基材之上表面,其中第一凹槽圍繞微結構之周邊的一部分;(c)配置一上蓋體於電路層上方,以覆蓋微結構及第一凹槽;(d)由基材之一下表面側,移除位於第一凹槽及微結構下方之基材的一部分,以形成一第二凹槽,使第二凹槽之一底部與第一凹槽之底部間形成一基材殘留部;以及(e)移除基材殘留部,以釋放微結構。One aspect of the present invention provides a method of fabricating a microelectromechanical device. The method comprises the steps of: (a) forming a circuit layer and a microstructure on an upper surface of a substrate, wherein the circuit layer comprises an active component, and the microstructure is electrically connected to the active component; (b) forming a first The recess penetrates the circuit layer and penetrates into the substrate such that one of the bottoms of the first recess is lower than the upper surface of the substrate, wherein the first recess surrounds a portion of the periphery of the microstructure; (c) an upper cover is disposed above the circuit layer And covering the microstructure and the first groove; (d) removing a portion of the substrate located under the first groove and the microstructure from a lower surface side of the substrate to form a second groove, so that the second Forming a substrate residue between the bottom of one of the grooves and the bottom of the first groove; and (e) removing the residual portion of the substrate to release the microstructure.

根據本發明一實施方式,於步驟(e)後更包含配置一下蓋體於基材下方,使下蓋體以及上蓋體形成一封閉空間圍繞微結構。According to an embodiment of the present invention, after the step (e), the cover body is disposed under the substrate, so that the lower cover body and the upper cover body form a closed space surrounding the microstructure.

根據本發明一實施方式,其中步驟(a)之電路層更包括一連接墊以及一保護層,其中連接墊電性連接主動元件,且保護層覆蓋連接墊。According to an embodiment of the invention, the circuit layer of step (a) further comprises a connection pad and a protective layer, wherein the connection pad is electrically connected to the active component, and the protective layer covers the connection pad.

根據本發明一實施方式,於步驟(e)後更包括移除上蓋體之部分,以露出保護層之一部分,且露出部分係與連接墊重疊;以及移除保護層之露出部分,以露出連接墊。According to an embodiment of the present invention, after step (e), the method further includes removing a portion of the upper cover to expose a portion of the protective layer, and the exposed portion is overlapped with the connection pad; and removing the exposed portion of the protective layer to expose the connection pad.

根據本發明一實施方式,其中步驟(a)之主動元件為一互補式金屬氧化物半導體元件或雙極互補式金屬氧化物半導體元件。According to an embodiment of the invention, the active component of step (a) is a complementary metal oxide semiconductor component or a bipolar complementary metal oxide semiconductor component.

根據本發明一實施方式,其中步驟(b)之第一凹槽之底部與上表面間之一垂直距離為約5 μm至約100 μm。According to an embodiment of the invention, wherein the vertical distance between the bottom of the first groove of step (b) and the upper surface is from about 5 μm to about 100 μm.

根據本發明一實施方式,其中步驟(c)之上蓋體包含一定位標記。According to an embodiment of the invention, the cover body in step (c) comprises a positioning mark.

根據本發明一實施方式,其中步驟(d)包含研磨基材之下表面;形成一圖案化之光阻層於基材之研磨表面;以及以深式反應離子蝕刻法,移除露出之基材的部分,以形成第二凹槽。According to an embodiment of the present invention, wherein the step (d) comprises grinding a lower surface of the substrate; forming a patterned photoresist layer on the polished surface of the substrate; and removing the exposed substrate by deep reactive ion etching Part to form a second groove.

根據本發明一實施方式,其中步驟(d)之基材殘留部具有一厚度為約10 μm至約150 μm。According to an embodiment of the invention, the substrate residue of step (d) has a thickness of from about 10 μm to about 150 μm.

根據本發明一實施方式,其中步驟(e)包含整面性蝕刻基材之下表面,以移除基材殘留部。In accordance with an embodiment of the present invention, step (e) includes planarly etching the underlying surface of the substrate to remove residual portions of the substrate.

本發明另一態樣係提供一種製造微機電裝置的方法。此方法包含以下步驟:形成一電路層以及一微結構於一基材之一上表面,此電路層包含一特徵結構圍繞微結構之周邊的一部分,且特徵結構並貫穿電路層,其中特徵結構包含一介電結構以及一金屬結構;介電結構貫穿電路層;金屬結構貫穿電路層並環繞介電結構。移除特徵結構,以露出上表面,其中移除特徵結構包含依序以乾式蝕刻移除介電結構以及濕式蝕刻移除金屬結構。移除曝露出之基材的一部分,以形成一第一凹槽,其中第一凹槽具有一底部低於上表面。配置一上蓋體於電路層上方,以覆蓋微結構及第一凹槽。由基材之一下表面側,移除位於第一凹槽及微結構下方之基材的一部份,以形成一第二凹槽,使第二凹槽之一底部與第一凹槽之底部間形成一基材殘留部。然後,移除基材殘留部,以釋放微結構。Another aspect of the invention provides a method of making a microelectromechanical device. The method comprises the steps of: forming a circuit layer and a microstructure on an upper surface of a substrate, the circuit layer comprising a feature structure surrounding a portion of the periphery of the microstructure, and the feature structure extending through the circuit layer, wherein the feature structure comprises a dielectric structure and a metal structure; the dielectric structure extends through the circuit layer; the metal structure extends through the circuit layer and surrounds the dielectric structure. The feature structure is removed to expose the upper surface, wherein removing the feature comprises sequentially removing the dielectric structure by dry etching and wet etching to remove the metal structure. A portion of the exposed substrate is removed to form a first recess, wherein the first recess has a bottom that is lower than the upper surface. An upper cover body is disposed above the circuit layer to cover the microstructure and the first recess. Removing a portion of the substrate below the first recess and the microstructure from a lower surface side of the substrate to form a second recess such that one of the bottom of the second recess and the bottom of the first recess A substrate residue is formed between the substrates. The substrate residue is then removed to release the microstructure.

本發明再一態樣係提供一種微機電裝置,此裝置包括一基材、一電路層、一貫穿空間、一可動微結構以及一彈性支撐件。電路層形成於基材之一表面,且電路層包含一主動元件。貫穿空間貫穿電路層及基材,以分別在電路層以及基材形成一上開口及一下開口,其中下開口之一截面積大於上開口之一截面積。可動微結構容置於貫穿空間中,且與電路層形成一電容,可動微結構經由電容電性連接主動元件。彈性支撐件實體連接可動微結構與電路層。According to still another aspect of the present invention, a microelectromechanical device includes a substrate, a circuit layer, a through space, a movable microstructure, and an elastic support member. The circuit layer is formed on one surface of the substrate, and the circuit layer includes an active component. The through-space penetrates the circuit layer and the substrate to form an upper opening and a lower opening respectively in the circuit layer and the substrate, wherein a cross-sectional area of one of the lower openings is larger than a cross-sectional area of the upper opening. The movable microstructure is accommodated in the through space, and forms a capacitor with the circuit layer, and the movable microstructure is electrically connected to the active component via the capacitor. The resilient support physically connects the movable microstructure to the circuit layer.

根據本發明一實施方式,其中可動微結構包含至少一第一電極延伸至貫穿空間,且電路層包含至少一第二電極延伸至貫穿空間,第一電極與第二電極形成電容。According to an embodiment of the invention, the movable microstructure includes at least one first electrode extending into the through space, and the circuit layer includes at least one second electrode extending to the through space, and the first electrode and the second electrode form a capacitance.

請參照第1圖,其為本發明一實施方式之微機電裝置的上視示意圖。微機電裝置可應用在例如加速度偵測器(accelerometer)或陀螺儀(gyroscope)等之微機電慣性感測裝置。第1圖係繪示一微機電加速度偵測器,但本發明以下所揭露的製造方法可適用在其他的微機電裝置中,並不限於微機電加速度偵測器。Please refer to FIG. 1 , which is a top view of a microelectromechanical device according to an embodiment of the present invention. The microelectromechanical device can be applied to a microelectromechanical inertial sensing device such as an accelerometer or a gyroscope. FIG. 1 illustrates a microelectromechanical acceleration detector, but the manufacturing method disclosed in the present invention is applicable to other microelectromechanical devices, and is not limited to a microelectromechanical acceleration detector.

如第1圖所示,微機電加速度偵測器100主要包括可動的微結構110、半導體電路120、複數個連接墊130以及電路層140。半導體電路120大致配置在可動的微結構110之外圍。連接墊130通常可配置在半導體電路120的外圍。As shown in FIG. 1 , the MEMS acceleration detector 100 mainly includes a movable microstructure 110 , a semiconductor circuit 120 , a plurality of connection pads 130 , and a circuit layer 140 . The semiconductor circuit 120 is disposed substantially at the periphery of the movable microstructures 110. The connection pads 130 are typically configurable on the periphery of the semiconductor circuit 120.

微結構110容置在電路層140的貫穿空間142中,且微結構包括中心部112、至少一彈性支撐件114以及至少一第一電極116。彈性支撐件114連接中心部112與電路層140,且使中心部112呈現可移動狀態。當一外力作用在中心部112時,中心部112可產生位移;當外力消失時,中心部112可以回到原來的位置。彈性支撐件114的寬度可例如為約0.5μm至約10μm。第一電極116由中心部112向外延伸至貫穿空間142中。第一電極116的寬度可例如為約0.1μm至約10μm。The microstructure 110 is received in the through space 142 of the circuit layer 140 , and the microstructure includes a central portion 112 , at least one elastic support 114 , and at least one first electrode 116 . The elastic support member 114 connects the central portion 112 with the circuit layer 140 and causes the central portion 112 to assume a movable state. When an external force acts on the center portion 112, the center portion 112 can be displaced; when the external force disappears, the center portion 112 can return to the original position. The width of the elastic support 114 can be, for example, from about 0.5 μm to about 10 μm. The first electrode 116 extends outwardly from the central portion 112 into the through space 142. The width of the first electrode 116 may be, for example, from about 0.1 μm to about 10 μm.

電路層140包含有一第二電極144,第二電極144向貫穿空間142延伸,並與第一電極116形成一電容。The circuit layer 140 includes a second electrode 144 extending toward the through space 142 and forming a capacitance with the first electrode 116.

半導體電路120電性連接第二電極144及第一電極116,以量測兩電極116、144之間的電容值,並將所量測的電容訊號轉變為一電壓或電流訊號。半導體電路120可包括一互補式金屬氧化物半導體裝置。半導體電路120可經由連接墊130而電性連接一外部電路(未繪示)。The semiconductor circuit 120 is electrically connected to the second electrode 144 and the first electrode 116 to measure the capacitance between the two electrodes 116 and 144 and convert the measured capacitance signal into a voltage or current signal. Semiconductor circuit 120 can include a complementary metal oxide semiconductor device. The semiconductor circuit 120 can be electrically connected to an external circuit (not shown) via the connection pad 130.

在操作時,當微機電加速度偵測器100受到一加速度時,第二電極144與第一電極116之間的距離改變,使其間的電容值發生變化。半導體電路120量測上述電容值或電容值的變化量,而得以估算微機電加速度偵測器100所受到的加速度。In operation, when the MEMS acceleration detector 100 is subjected to an acceleration, the distance between the second electrode 144 and the first electrode 116 changes, and the capacitance value therebetween changes. The semiconductor circuit 120 measures the amount of change in the capacitance value or the capacitance value to estimate the acceleration received by the MEMS acceleration detector 100.

上述微機電加速度偵測器100僅為示範性例子,以易於瞭解本發明下文揭露的製造方法,本發明下文揭露的製造方法可用以製造其他的微機電裝置。再者,以下所揭露的各實施例,在有益的情形下可相互組合或取代,也可在一實施例中附加其他的實施例,而無須進一步的記載或說明。The above described microelectromechanical acceleration detector 100 is merely an illustrative example to facilitate an understanding of the manufacturing methods disclosed herein, and the manufacturing methods disclosed herein may be used to fabricate other microelectromechanical devices. Furthermore, the embodiments disclosed in the following may be combined or substituted with each other in an advantageous manner, and other embodiments may be added to an embodiment without further description or description.

第2圖為本發明一實施方式之製造微機電裝置之方法200的流程圖。第3A至10圖係繪示本發明一實施方式之製造方法中各製程階段的剖面示意圖,其大致為第1圖中線段3-3’的剖面示意圖。2 is a flow chart of a method 200 of fabricating a microelectromechanical device in accordance with an embodiment of the present invention. 3A to 10 are schematic cross-sectional views showing respective stages of the process in the manufacturing method of the embodiment of the present invention, which is roughly a schematic cross-sectional view of the line segment 3-3' in Fig. 1.

在步驟210中,形成電路層320以及微結構330於基材310的上表面。基材310可例如為矽晶圓或其他適合用以製造半導體元件的基材。在一實施方式中,如第3A圖所示,電路層320形成在微結構330的周圍。電路層320包含主動元件322、連接墊324以及保護層326。微結構330可經由電路層中的適當路徑電性連接主動元件322。主動元件322可例如為互補式金屬氧化物半導體元件(CMOS)或雙極互補式金屬氧化物半導體元件(BiCMOS)。連接墊324用以連接至一外部電路,且連接墊324電性連接主動元件322。保護層326覆蓋連接墊324,保護層326的材料可例如為氧化矽。在一實施例中,形成電路層320的步驟包含形成第一電極116以及第二電極144,且第一及第二電極116、144形成一電容結構,如第1圖所示。In step 210, circuit layer 320 and microstructures 330 are formed on the upper surface of substrate 310. Substrate 310 can be, for example, a germanium wafer or other substrate suitable for use in fabricating semiconductor components. In one embodiment, as shown in FIG. 3A, circuit layer 320 is formed around microstructures 330. The circuit layer 320 includes an active component 322, a connection pad 324, and a protective layer 326. The microstructures 330 can be electrically connected to the active components 322 via appropriate paths in the circuit layers. The active component 322 can be, for example, a complementary metal oxide semiconductor device (CMOS) or a bipolar complementary metal oxide semiconductor device (BiCMOS). The connection pad 324 is for connecting to an external circuit, and the connection pad 324 is electrically connected to the active element 322. The protective layer 326 covers the connection pads 324, and the material of the protective layer 326 may be, for example, ruthenium oxide. In one embodiment, the step of forming the circuit layer 320 includes forming the first electrode 116 and the second electrode 144, and the first and second electrodes 116, 144 form a capacitor structure, as shown in FIG.

在另一實施方式中,如第3B圖所示,電路層320更包含特徵結構340填充於區域A中。特徵結構340圍繞微結構330之周邊的一部分,並貫穿電路層320。在後續的步驟中,特徵結構340將會被移除而形成第1圖繪示的貫穿空間142的一部分。換言之,特徵結構340預先填充在後續欲移除的區域A中。In another embodiment, as shown in FIG. 3B, circuit layer 320 further includes feature structure 340 filled in region A. Feature structure 340 surrounds a portion of the perimeter of microstructure 330 and extends through circuit layer 320. In a subsequent step, feature structure 340 will be removed to form a portion of through space 142 depicted in FIG. In other words, the feature structure 340 is pre-filled in the area A to be subsequently removed.

特徵結構340包含介電結構342以及金屬結構344。介電結構342貫穿電路層320,並接觸下方的基材310。介電結構342可例如為氧化矽或氮化矽,或由氧化矽及氮化矽堆疊而構成。金屬結構344也同樣貫穿電路層320,並且環繞介電結構342。換言之,金屬結構344形成在特徵結構340的外緣。更詳細而言,金屬結構344可包含344a及344b兩部分。金屬結構的344a部分位於介電結構342與主動元件322之間;金屬結構的344b部分實體連接微結構330與介電結構342。Feature structure 340 includes a dielectric structure 342 and a metal structure 344. Dielectric structure 342 extends through circuit layer 320 and contacts underlying substrate 310. The dielectric structure 342 can be, for example, tantalum oxide or tantalum nitride, or a stack of tantalum oxide and tantalum nitride. Metal structure 344 also extends through circuit layer 320 and surrounds dielectric structure 342. In other words, the metal structure 344 is formed on the outer edge of the feature 340. In more detail, the metal structure 344 can comprise two portions 344a and 344b. A portion 344a of the metal structure is between the dielectric structure 342 and the active element 322; a portion 344b of the metal structure physically connects the microstructure 330 to the dielectric structure 342.

在上述電路層320包含有特徵結構340的實施方式中,形成電路層320的步驟包括形成CMOS或BiCMOS的製程步驟。在CMOS元件的標準製程中,可包括4道的金屬化製程以及2道的多晶矽化製程(2P4M製程),亦可包括5道的金屬化製程以及1道的多晶矽化製程(5M1P製程)。因此,在一實施例中,當形成CMOS元件322時,可藉由適當的光罩設計,同時形成特徵結構340。舉例而言,當形成CMOS元件322中的介電層時,可同時形成特徵結構340的介電結構342。當形成CMOS元件322的金屬層時,可同時形成特徵結構340中金屬結構344的部分。當填充金屬於CMOS元件的連接孔(via)時,可同時形成金屬結構344的另一部分。因此,能夠在形成CMOS元件322的同時,逐步形成特徵結構340。在一實施例中,填充在CMOS元件通孔的金屬為鎢,CMOS元件322的金屬層為鋁。因此,金屬結構344可由鋁層345及鎢層346堆疊而成。亦即,在本實施例中,金屬結構344為多層結構,且至少由兩種金屬材料所構成。In embodiments in which the circuit layer 320 described above includes features 340, the step of forming the circuit layer 320 includes the steps of forming a CMOS or BiCMOS process. In the standard process of CMOS components, it can include four metallization processes and two polysiliconization processes (2P4M process), and can also include five metallization processes and one polysiliconization process (5M1P process). Thus, in an embodiment, when CMOS component 322 is formed, feature 340 can be formed simultaneously by a suitable reticle design. For example, when forming a dielectric layer in CMOS device 322, dielectric structure 342 of feature structure 340 can be formed simultaneously. When the metal layer of CMOS element 322 is formed, portions of metal structure 344 in feature structure 340 can be formed simultaneously. When the metal is filled in the via of the CMOS element, another portion of the metal structure 344 can be formed simultaneously. Therefore, the feature structure 340 can be formed step by step while forming the CMOS element 322. In one embodiment, the metal filled in the via of the CMOS device is tungsten, and the metal layer of the CMOS device 322 is aluminum. Therefore, the metal structure 344 may be formed by stacking an aluminum layer 345 and a tungsten layer 346. That is, in the present embodiment, the metal structure 344 is a multilayer structure and is composed of at least two metal materials.

在步驟220中,形成第一凹槽312貫穿電路層320並深入基材310,如第4圖所示。第一凹槽312的底部312b低於基材之上表面310a,且第一凹槽312圍繞微結構330之周邊的一部分。在後續步驟中,第一凹槽312將形成第1圖繪示的貫穿空間142。以下將示例性地敘述兩種形成第一凹槽312的實施方式。In step 220, a first recess 312 is formed through the circuit layer 320 and deep into the substrate 310, as shown in FIG. The bottom 312b of the first recess 312 is lower than the upper surface 310a of the substrate, and the first recess 312 surrounds a portion of the perimeter of the microstructure 330. In a subsequent step, the first groove 312 will form a through space 142 as shown in FIG. Two embodiments for forming the first groove 312 will be exemplarily described below.

在第3A圖繪示的實施方式中,可先形成一光阻層350於電路層320上,再利用曝光、顯影製程於光阻層350中形成開口352。隨後,再以反應離子蝕刻(Reactive Ion Etching,RIE)移除電路層320中的介電材料,而在電路層320中形成第4A圖繪示的開口B,並露出開口B中的基材310。接著,再藉由例如深式反應離子蝕刻(Deep Reactive Ion Etching,DRIE)移除露出的基材310的一部分,而形成第4圖繪示的第一凹槽312。In the embodiment shown in FIG. 3A, a photoresist layer 350 may be formed on the circuit layer 320, and an opening 352 is formed in the photoresist layer 350 by an exposure and development process. Subsequently, the dielectric material in the circuit layer 320 is removed by reactive ion etching (RIE), and the opening B shown in FIG. 4A is formed in the circuit layer 320, and the substrate 310 in the opening B is exposed. . Then, a portion of the exposed substrate 310 is removed by, for example, Deep Reactive Ion Etching (DRIE) to form a first recess 312 as shown in FIG.

在一實施例中,上述第一凹槽312的底部312b與基材310的上表面310a之間的垂直距離d為約5 μm至約100 μm,如第4圖所示。In one embodiment, the vertical distance d between the bottom 312b of the first recess 312 and the upper surface 310a of the substrate 310 is from about 5 μm to about 100 μm, as shown in FIG.

在第3B圖繪示的實施方式中,可先形成一光阻層350於電路層320上。光阻層350具有開口352,以露出特徵結構340。In the embodiment illustrated in FIG. 3B, a photoresist layer 350 may be formed on the circuit layer 320. The photoresist layer 350 has an opening 352 to expose the features 340.

接著,以諸如反應性離子蝕刻(reactive ion etching,RIE)之乾式蝕刻法移除介電結構342,如第4B圖所示。反應性離子蝕刻僅會蝕刻諸如氧化矽及氮化矽等之介電材料,不會蝕刻金屬材料。在進行反應性離子蝕刻的過程中,由於微結構330的側壁以及電路層320的側壁被金屬結構344覆蓋,所以反應性離子蝕刻不會傷害或蝕刻微結構330及電路層320側壁,而使微結構330及電路層320的側壁得以保持原本的輪廓外觀。Next, the dielectric structure 342 is removed by a dry etching method such as reactive ion etching (RIE) as shown in FIG. 4B. Reactive ion etching only etches dielectric materials such as hafnium oxide and tantalum nitride without etching the metal material. During the reactive ion etching process, since the sidewalls of the microstructure 330 and the sidewalls of the circuit layer 320 are covered by the metal structure 344, the reactive ion etching does not damage or etch the sidewalls of the microstructure 330 and the circuit layer 320, thereby making micro The sidewalls of structure 330 and circuit layer 320 are maintained in their original contoured appearance.

隨後,再以濕式蝕刻移除金屬結構344。移除金屬結構344後,在電路層320中形成如第4A圖繪示的結構。濕式蝕刻採用的蝕刻劑對於金屬材料與氧化物材料(或氮化物)具有高的蝕刻選擇比,例如高於15:1或高於20:1或高於30:1或更高。因此,在移除金屬結構344時,幾乎不會損害微結構330及電路層320區域A周圍的側壁。在一實施例中,蝕刻劑中可包含硫酸和過氧化氫,硫酸與過氧化氫的重量比為約2:1。當然其他商品化的金屬蝕刻劑也可適用於本發明中。Subsequently, the metal structure 344 is removed by wet etching. After the metal structure 344 is removed, a structure as shown in FIG. 4A is formed in the circuit layer 320. The etchant employed in the wet etching has a high etching selectivity for the metal material and the oxide material (or nitride), for example, higher than 15:1 or higher than 20:1 or higher than 30:1 or higher. Therefore, when the metal structure 344 is removed, the sidewalls around the microstructure 330 and the region A of the circuit layer 320 are hardly damaged. In one embodiment, the etchant may comprise sulfuric acid and hydrogen peroxide in a weight ratio of sulfuric acid to hydrogen peroxide of about 2:1. Of course, other commercially available metal etchants are also suitable for use in the present invention.

然後,在藉由例如深式反應離子蝕刻(Deep Reactive Ion Etching,DRIE)移除露出的基材310的一部分,而形成第4圖繪示的第一凹槽312。上述實施方式中,可使微結構330的側壁與基材310上表面之間的夾角θ為約85度至約95度。此外,微結構330側壁及電路層320側壁的表面平整。因此,有助於提升微機電裝置的性能以及品質穩定性。Then, a portion of the exposed substrate 310 is removed by, for example, Deep Reactive Ion Etching (DRIE) to form a first recess 312 as shown in FIG. In the above embodiment, the angle θ between the sidewall of the microstructure 330 and the upper surface of the substrate 310 may be from about 85 degrees to about 95 degrees. In addition, the sidewalls of the microstructures 330 and the sidewalls of the circuit layer 320 are flat. Therefore, it helps to improve the performance and quality stability of the micro-electromechanical device.

在步驟230中,配置上蓋體370於電路層320上方,以覆蓋微結構330及第一凹槽312,如第5圖所示。上蓋體370可防止在後續製程中,環境中的微粒或污染物掉落在第一凹槽312內,而導致最終的微機電裝置失效。此外,上蓋體370可保護最終形成的微機電裝置,免於來自外界的機械性撞擊。上蓋體370可例如為玻璃或矽基板所製成。In step 230, the upper cover 370 is disposed above the circuit layer 320 to cover the microstructures 330 and the first recesses 312, as shown in FIG. The upper cover 370 prevents particles or contaminants in the environment from falling into the first recess 312 during subsequent processes, resulting in failure of the final micro-electromechanical device. In addition, the upper cover 370 can protect the finally formed microelectromechanical device from mechanical impact from the outside. The upper cover 370 can be made, for example, of a glass or a ruthenium substrate.

在一實施方式中,上蓋體370可非必要性地包含定位標記374,用以提供後續製程所須的定位或對位。可藉由以下步驟實現本實施方式。首先,提供上蓋體370,並於上蓋體370之表面370a形成一組定位槽371,如第5A圖所示。在一實施例中,藉由雷射切割來形成定位槽371,定位槽371不貫穿上蓋體370,且定位槽371之深度為約5 μm至約300 μm。隨後,在表面370a上形成黏著層372,如第5B圖所示。上述形成黏著層372及定位槽371之順序並無限制,例如可以先形成黏著層372後,再形成定位槽371。接著,將形成有定位槽371及黏著層372的上蓋體370黏貼至電路層320上,如第5C圖所示。此時,形成有定位槽371及黏著層372的表面370a位於靠近電路層320的一側。然後,再由表面370a的相反側表面370b移除上蓋體370的一部份,以露出定位槽371,而形成定位標記374。例如,可藉由研磨上蓋體370的表面370b,而露出定位槽371。In an embodiment, the upper cover 370 may optionally include a positioning mark 374 for providing the positioning or alignment required for subsequent processes. The present embodiment can be realized by the following steps. First, the upper cover 370 is provided, and a set of positioning grooves 371 are formed on the surface 370a of the upper cover 370 as shown in Fig. 5A. In one embodiment, the positioning groove 371 is formed by laser cutting, the positioning groove 371 does not penetrate the upper cover 370, and the positioning groove 371 has a depth of about 5 μm to about 300 μm. Subsequently, an adhesive layer 372 is formed on the surface 370a as shown in Fig. 5B. The order in which the adhesive layer 372 and the positioning groove 371 are formed is not limited. For example, the adhesive layer 372 may be formed first, and then the positioning groove 371 may be formed. Next, the upper cover 370 on which the positioning groove 371 and the adhesive layer 372 are formed is adhered to the circuit layer 320 as shown in FIG. 5C. At this time, the surface 370a on which the positioning groove 371 and the adhesive layer 372 are formed is located on the side close to the circuit layer 320. Then, a portion of the upper cover 370 is removed from the opposite side surface 370b of the surface 370a to expose the positioning groove 371 to form the positioning mark 374. For example, the positioning groove 371 can be exposed by grinding the surface 370b of the upper cover 370.

在上述形成定位標記374的實施方式中,所形成的定位槽371也可以直接貫穿上蓋體370,而讓影像定位裝置可以由表面370b的一側觀察到定位槽371的輪廓。換言之,定位槽371即為定位標記。In the above embodiment in which the positioning mark 374 is formed, the formed positioning groove 371 can also directly penetrate the upper cover 370, so that the image positioning device can observe the outline of the positioning groove 371 from one side of the surface 370b. In other words, the positioning groove 371 is a positioning mark.

在步驟240中,由基材310的下表面310b之一側,移除位於第一凹槽312及微結構330下方之基材的一部份,以形成第二凹槽314,使第二凹槽314之底部314b與第一凹槽312之底部312b間形成一基材殘留部316。換言之,在此步驟中,所形成的第二凹槽314不會與第一凹槽312連通。此時微結構330藉由基材殘留部316連接於周圍的電路層320。In step 240, a portion of the substrate under the first recess 312 and the microstructure 330 is removed from one side of the lower surface 310b of the substrate 310 to form a second recess 314 for the second recess. A base residue 316 is formed between the bottom 314b of the groove 314 and the bottom 312b of the first groove 312. In other words, in this step, the formed second groove 314 does not communicate with the first groove 312. At this time, the microstructures 330 are connected to the surrounding circuit layer 320 by the substrate residual portion 316.

在一實施方式中,基材310為一晶圓,可先進行研磨製程以減少基材310的厚度,如第6A圖所示。一般晶圓的厚度約為720 μm,可藉由研磨製程將其厚度減少至約200 μm。任何習知的適當研磨製程都可適用於本發明。In one embodiment, the substrate 310 is a wafer that can be first subjected to a polishing process to reduce the thickness of the substrate 310, as shown in FIG. 6A. Generally, the thickness of the wafer is about 720 μm, and the thickness can be reduced to about 200 μm by a grinding process. Any conventional suitable grinding process can be applied to the present invention.

然後,在經過研磨的下表面310b上形成圖案化的光阻層318,如第6B圖所示。光阻層318暴露出位於第一凹槽312及微結構330下方之基材310。在此步驟中,露出光阻層318的基材部分的面積可大於第一凹槽312及微結構330的底面積。在一實施例中,形成圖案化的光阻層318是藉由上蓋體370的定位標記374進行定位,因此可更精確地控制所形成的光阻圖案與基板310的相對位置。Then, a patterned photoresist layer 318 is formed on the grounded lower surface 310b as shown in FIG. 6B. The photoresist layer 318 exposes the substrate 310 under the first recess 312 and the microstructures 330. In this step, the area of the substrate portion exposing the photoresist layer 318 may be larger than the bottom areas of the first recess 312 and the microstructures 330. In one embodiment, the patterned photoresist layer 318 is positioned by the alignment marks 374 of the upper cover 370, so that the relative position of the formed photoresist pattern to the substrate 310 can be more precisely controlled.

接著,以深式反應離子蝕刻法來移除露出之基材310的部分,以形成第二凹槽314及基材殘留部316,如第6C圖所示。在一實施例中,深式反應離子蝕刻法所形成的第二凹槽314的深度為約10 μm至約150 μm。在另一實施例中,基材殘留部316的厚度H為約10 μm至約150 μm。在形成第二凹槽314及基材殘留部316後,移除光阻層318,而形成第6圖繪示的結構。Next, the exposed portion of the substrate 310 is removed by deep reactive ion etching to form the second recess 314 and the substrate residue 316 as shown in FIG. 6C. In one embodiment, the second recess 314 formed by the deep reactive ion etching has a depth of from about 10 μm to about 150 μm. In another embodiment, the substrate residue 316 has a thickness H of from about 10 μm to about 150 μm. After the second recess 314 and the substrate residual portion 316 are formed, the photoresist layer 318 is removed to form the structure shown in FIG.

上述形成第二凹槽314及基材殘留部316的實施方式,僅為示例性質之說明,本發明並不限於此。其他可得相同或相似結構之製程步驟或方法,亦可適用於本發明中。例如,上述研磨製程有可能省略。上述光阻層318有可能以諸如硬遮罩(hard mask)或其是適當的遮罩替代。上述深式反應離子蝕刻法有可能以其他蝕刻方式取替。The above-described embodiment in which the second recess 314 and the substrate residual portion 316 are formed is merely illustrative, and the present invention is not limited thereto. Other process steps or methods which may have the same or similar structure may also be suitable for use in the present invention. For example, the above polishing process may be omitted. It is possible that the photoresist layer 318 described above is replaced with, for example, a hard mask or a suitable mask. The above deep reactive ion etching method may be replaced by other etching methods.

上述形成第二凹槽314及基材殘留部316的步驟,對於維持或保持微結構330的側壁輪廓極具助益。舉例而言,若以深式反應離子蝕刻法進行蝕刻來形成第二凹槽314,在接近蝕刻終點時,由於深式反應離子蝕刻法的特性,會在蝕刻部位的附近累積熱量,導致深式反應離子蝕刻在此局部區域轉變為接近等向性蝕刻。因此,無法得到良好的蝕刻輪廓。所以,如果在此蝕刻步驟中,讓第二凹槽314與第一凹槽312連通,將造成微結構330的側壁輪廓不佳。所以,根據本發明之實施方式,在形成第二凹槽314的步驟中,讓第二凹槽314之底部314b與第一凹槽312之底部312b之間形成基材殘留部316,可避免上述問題。The step of forming the second recess 314 and the substrate residue 316 described above is highly beneficial for maintaining or maintaining the sidewall profile of the microstructure 330. For example, if the second recess 314 is formed by etching by deep reactive ion etching, the heat is accumulated near the etching site due to the characteristics of the deep reactive ion etching method, which leads to a deep reaction. The ion etch is transformed into a near isotropic etch in this localized region. Therefore, a good etching profile cannot be obtained. Therefore, if the second recess 314 is in communication with the first recess 312 during this etching step, the sidewall profile of the microstructure 330 will be poor. Therefore, according to the embodiment of the present invention, in the step of forming the second recess 314, the substrate residual portion 316 is formed between the bottom portion 314b of the second recess 314 and the bottom portion 312b of the first recess 312, thereby avoiding the above problem.

除此之外,在形成第二凹槽314時,第一凹槽312被上蓋體370及黏著層372密封而處於密封狀態。因此,在進行移除光阻層318的步驟時,所使用的去光阻劑(stripper)不會滲透進入第一凹槽312內。反之,如果在形成第二凹槽314時讓第二凹槽314與第一凹槽312連通,在移除光阻層318時,去光阻劑無可不免會進入第一凹槽312內。然而,在第一凹槽312內的空隙或寬度通常很小,例如為約2 μm至約30 μm。因此,上述形成第二凹槽314及基材殘留部316的步驟,亦有助於改善產品可靠度。In addition, when the second recess 314 is formed, the first recess 312 is sealed by the upper cover 370 and the adhesive layer 372 to be in a sealed state. Therefore, when the step of removing the photoresist layer 318 is performed, the stripper used does not penetrate into the first recess 312. On the other hand, if the second recess 314 is in communication with the first recess 312 when the second recess 314 is formed, the photoresist will inevitably enter the first recess 312 when the photoresist layer 318 is removed. However, the voids or widths within the first recess 312 are typically small, such as from about 2 μm to about 30 μm. Therefore, the above steps of forming the second recess 314 and the substrate residual portion 316 also contribute to improvement in product reliability.

在步驟250中,移除基材殘留部316,以釋放微結構330,如第7圖所示。本文中,「釋放微結構」係指使微機電裝置產生具有可相對移動的構造或部件。具體而言,移除基材殘留部316後,微結構330可相對其周邊的電路層320產生位移。詳言之,在移除基材殘留部316後,第二凹槽314與第一凹槽連通,而形成第1圖繪示的貫穿空間142。此時,微結構330藉由第1圖繪示的彈性支撐件114而「懸掛」在貫穿空間142中。在一實施方式中,可藉由對基材310的下表面310b進行整面性蝕刻,而移除基材殘留部316。所謂「整面性蝕刻」是指對基材的下表面的全部進行蝕刻,而非對基材的特定部分進行蝕刻。因此,進行整面性蝕刻時,並不使用光阻。舉例而言,整面性蝕刻可藉由RIE、DRIE或其他適當的方式進行。In step 250, the substrate residue 316 is removed to release the microstructures 330, as shown in FIG. As used herein, "releasing microstructure" means causing a microelectromechanical device to produce a structure or component that is relatively movable. Specifically, after the substrate residue 316 is removed, the microstructures 330 can be displaced relative to the circuit layer 320 at its periphery. In detail, after the substrate remaining portion 316 is removed, the second groove 314 communicates with the first groove to form a through space 142 as shown in FIG. At this time, the microstructures 330 are "suspended" in the through space 142 by the elastic support members 114 shown in FIG. In one embodiment, the substrate residue 316 can be removed by a full-surface etching of the lower surface 310b of the substrate 310. By "whole-sided etching", it is meant that all of the lower surface of the substrate is etched instead of etching a specific portion of the substrate. Therefore, when performing a full-surface etching, no photoresist is used. For example, full-surface etching can be performed by RIE, DRIE, or other suitable means.

在步驟250之後,可非必要性地進行以下步驟。After step 250, the following steps may be performed non-essentially.

在步驟260中,配置一下蓋體380於基材310下方,使下蓋體380以及上蓋體370形成一封閉空間C圍繞微結構330,如第8圖所示。微結構330可在封閉空間C中移動,而使微機電裝置產生預定的功能。上蓋體370及下蓋體380用以保護微結構330,同時可防止污染物進入封閉空間C中。下蓋體380的材料可與上蓋體370相同或不同。在一實施例中,下蓋體380可藉由一黏著層382而固定於基材310的下方。In step 260, the cover 380 is disposed under the substrate 310 such that the lower cover 380 and the upper cover 370 form a closed space C surrounding the microstructure 330, as shown in FIG. The microstructures 330 can be moved in the enclosed space C to cause the microelectromechanical device to produce a predetermined function. The upper cover 370 and the lower cover 380 serve to protect the microstructures 330 while preventing contaminants from entering the enclosed space C. The material of the lower cover 380 may be the same as or different from the upper cover 370. In an embodiment, the lower cover 380 can be fixed under the substrate 310 by an adhesive layer 382.

在步驟270中,移除部分的上蓋體370,以露出保護層326的一部分,如第9圖所示。此露出部分的保護層326與連接墊324重疊。在一實施方式中,如第9A圖所示,先形成一圖案化之光阻層376於上蓋體370之外側表面,然後再藉由諸如深式反應離子蝕刻法來移除暴露出的上蓋體370,而使其下方的保護層326暴露出。或者,可藉由雷射切割或機械式切割來完成此步驟。In step 270, a portion of the upper cover 370 is removed to expose a portion of the protective layer 326, as shown in FIG. The exposed portion of the protective layer 326 overlaps the connection pads 324. In one embodiment, as shown in FIG. 9A, a patterned photoresist layer 376 is formed on the outer surface of the upper cover 370, and then the exposed upper cover is removed by, for example, deep reactive ion etching. 370, while the underlying protective layer 326 is exposed. Alternatively, this step can be accomplished by laser cutting or mechanical cutting.

在步驟280中,移除曝露出之保護層326的部分,以露出其下的連接墊324,然後再移除光阻層376,如第10圖所示。例如,可藉由RIE製程來移除露出部分的保護層326,而讓保護層326下方的連接墊324露出,此暴露出的連接墊324可作為微機電裝置與外部電路的連接點。然後再利用去光阻製程移除光阻層376。In step 280, portions of the exposed protective layer 326 are removed to expose the underlying connection pads 324, and then the photoresist layer 376 is removed, as shown in FIG. For example, the exposed portion of the protective layer 326 can be removed by the RIE process, and the connection pads 324 under the protective layer 326 can be exposed. The exposed connection pads 324 can serve as a connection point for the microelectromechanical device to external circuitry. The photoresist layer 376 is then removed using a photoresist removal process.

根據本發明之另一態樣,係提供一種微機電裝置,如第1圖及第10圖所示。微機電裝置300包括基材310、電路層320、貫穿空間142、可動的微結構330以及彈性支撐件114(繪示於第1圖)。電路層320形成在基材310的表面上,電路層包含一主動元件322。貫穿空間142貫穿電路層320及基材310,以分別在電路層320以及基材310形成一上開口391以及一下開口392。下開口入口處之截面積大於上開口入口處之截面積。微結構330容置於貫穿空間142中。微結構330與電路層320之間可形成一電容結構。微結構330可經由電容結構電性連接主動元件322。彈性支撐件114實體連接微結構330與電路層320。According to another aspect of the present invention, a microelectromechanical device is provided as shown in Figures 1 and 10. The microelectromechanical device 300 includes a substrate 310, a circuit layer 320, a through space 142, a movable microstructure 330, and an elastic support 114 (shown in FIG. 1). Circuit layer 320 is formed on the surface of substrate 310, which includes an active component 322. The through space 142 extends through the circuit layer 320 and the substrate 310 to form an upper opening 391 and a lower opening 392 in the circuit layer 320 and the substrate 310, respectively. The cross-sectional area at the entrance of the lower opening is larger than the cross-sectional area at the entrance of the upper opening. The microstructures 330 are housed in the through space 142. A capacitor structure can be formed between the microstructures 330 and the circuit layer 320. The microstructures 330 can be electrically connected to the active components 322 via a capacitive structure. The resilient support 114 physically connects the microstructure 330 to the circuit layer 320.

在一實施方式中,微結構330包含至少一第一電極116(繪示於第1圖),且電路層320包含至少一第二電極144。第一電極116以及第二電極144延伸至貫穿空間142中,而形成上述電容結構。In one embodiment, the microstructures 330 include at least one first electrode 116 (shown in FIG. 1 ), and the circuit layer 320 includes at least one second electrode 144 . The first electrode 116 and the second electrode 144 extend into the through space 142 to form the above-described capacitor structure.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

100...微機電加速度偵測器100. . . MEMS acceleration detector

110...微結構110. . . microstructure

112...中心部112. . . Central department

114...彈性支撐件114. . . Elastic support

116...第一電極116. . . First electrode

120...半導體電路120. . . Semiconductor circuit

130...連接墊130. . . Connection pad

140...基材140. . . Substrate

142...貫穿空間142. . . Through space

144...第二電極144. . . Second electrode

200...方法200. . . method

210、220、230、240、250、260、270、280...步驟210, 220, 230, 240, 250, 260, 270, 280. . . step

300...微機電裝置300. . . Microelectromechanical device

310...基材310. . . Substrate

310a...上表面310a. . . Upper surface

310b...下表面310b. . . lower surface

312...第一凹槽312. . . First groove

312b...底部312b. . . bottom

314...第二凹槽314. . . Second groove

314b...底部314b. . . bottom

316...基材殘留部316. . . Residual substrate

318...光阻層318. . . Photoresist layer

320...電路層320. . . Circuit layer

322...主動元件322. . . Active component

324...連接墊324. . . Connection pad

326...保護層326. . . The protective layer

330...微結構330. . . microstructure

340...特徵結構340. . . Feature structure

342...介電結構342. . . Dielectric structure

344、344a、344b...金屬結構344, 344a, 344b. . . Metal structure

350...光阻層350. . . Photoresist layer

352...開口352. . . Opening

370...上蓋體370. . . Upper cover

370a、370b...表面370a, 370b. . . surface

372...黏著層372. . . Adhesive layer

374...定位標記374. . . Positioning mark

376...光阻層376. . . Photoresist layer

380...下蓋體380. . . Lower cover

382...黏著層382. . . Adhesive layer

391...上開口391. . . Upper opening

392...下開口392. . . Lower opening

A...區域A. . . region

B...開口B. . . Opening

C...封閉空間C. . . Closed space

d...距離d. . . distance

H...厚度H. . . thickness

θ...夾角θ. . . Angle

第1圖係繪示本發明一實施方式之微機電裝置的上視圖。1 is a top view of a microelectromechanical device according to an embodiment of the present invention.

第2圖係繪示本發明一實施方式之製造微機電裝置之方法的流程圖。2 is a flow chart showing a method of manufacturing a microelectromechanical device according to an embodiment of the present invention.

第3A至10圖係繪示本發明之製造微機電裝置的方法中各製程階段的剖面示意圖。3A to 10 are schematic cross-sectional views showing respective process stages in the method of fabricating a microelectromechanical device of the present invention.

200...方法200. . . method

210、220、230、240、250、260、270、280...步驟210, 220, 230, 240, 250, 260, 270, 280. . . step

Claims (11)

一種製造微機電裝置之方法,包括:(a)形成一電路層以及一微結構於一基材之一上表面,其中該電路層包含一主動元件,且該微結構電性連接該主動元件;(b)形成一第一凹槽貫穿該電路層並深入該基材,使該第一凹槽之一底部低於該基材之上表面,其中該第一凹槽圍繞該微結構之周邊的一部分;(c)配置一上蓋體於該電路層上方,以覆蓋該微結構及該第一凹槽;(d)由該基材之一下表面側,移除位於該第一凹槽及該微結構下方之該基材的一部分,以形成一第二凹槽,使該第二凹槽之一底部與該第一凹槽之該底部間形成一基材殘留部;以及(e)移除該基材殘留部,以釋放該微結構。 A method of fabricating a microelectromechanical device, comprising: (a) forming a circuit layer and a microstructure on an upper surface of a substrate, wherein the circuit layer comprises an active component, and the microstructure is electrically connected to the active component; (b) forming a first recess penetrating the circuit layer and deep into the substrate such that a bottom of the first recess is lower than an upper surface of the substrate, wherein the first recess surrounds the periphery of the microstructure a portion (c) configured with an upper cover over the circuit layer to cover the microstructure and the first recess; (d) from a lower surface side of the substrate, removed in the first recess and the micro a portion of the substrate under the structure to form a second recess such that a bottom portion of the second recess forms a substrate residue with the bottom portion of the first recess; and (e) removing the substrate A residual portion of the substrate to release the microstructure. 如請求項1所述之方法,於步驟(e)後更包含;配置一下蓋體於該基材下方,使該下蓋體以及該上蓋體形成一封閉空間圍繞該微結構。 The method of claim 1, further comprising after the step (e); disposing the cover body under the substrate, so that the lower cover body and the upper cover body form a closed space surrounding the microstructure. 如請求項1所述之方法,其中步驟(a)之該電路層更包括一連接墊以及一保護層,其中該連接墊電性連接該主動元件,且該保護層覆蓋該連接墊。 The method of claim 1, wherein the circuit layer of the step (a) further comprises a connection pad and a protective layer, wherein the connection pad is electrically connected to the active component, and the protective layer covers the connection pad. 如請求項3所述之方法,於步驟(e)後更包括:移除該上蓋體之部分,以露出該保護層之一部分,且該露出部分係與該連接墊重疊;以及移除該保護層之該露出部分,以露出該連接墊。 The method of claim 3, after the step (e), further comprising: removing a portion of the upper cover to expose a portion of the protective layer, and the exposed portion is overlapped with the connection pad; and removing the protection The exposed portion of the layer exposes the connection pad. 如請求項1所述之方法,其中步驟(a)之該主動元件為一互補式金屬氧化物半導體元件或雙極互補式金屬氧化物半導體元件。 The method of claim 1, wherein the active component of step (a) is a complementary metal oxide semiconductor device or a bipolar complementary metal oxide semiconductor device. 如請求項1所述之方法,其中步驟(b)之該第一凹槽之底部與該上表面間之一垂直距離為約5μm至約100μm。 The method of claim 1, wherein a vertical distance between a bottom of the first groove of the step (b) and the upper surface is from about 5 μm to about 100 μm. 如請求項1所述之方法,其中步驟(c)之該上蓋體包含一定位標記。 The method of claim 1, wherein the upper cover of step (c) comprises a positioning mark. 如請求項1所述之方法,其中步驟(d)包含:研磨該基材之下表面;形成一圖案化之光阻層於該基材之該研磨表面;以及以深式反應離子蝕刻法,移除露出之該基材的部分,以形成該第二凹槽。 The method of claim 1, wherein the step (d) comprises: grinding a lower surface of the substrate; forming a patterned photoresist layer on the polished surface of the substrate; and moving by deep reactive ion etching A portion of the substrate is exposed to form the second recess. 如請求項1所述之方法,其中步驟(d)之該基材殘留部具有一厚度為約10μm至約150μm。 The method of claim 1, wherein the substrate residue of the step (d) has a thickness of from about 10 μm to about 150 μm. 如請求項1所述之方法,其中步驟(e)包含:整面性蝕刻該基材之該下表面,以移除該基材殘留部。 The method of claim 1, wherein the step (e) comprises: etching the lower surface of the substrate in a planar manner to remove the substrate residue. 一種製造微機電裝置之方法,包括:形成一電路層以及一微結構於一基材之一上表面,該電路層包含一特徵結構圍繞該微結構之周邊的一部分,且該特徵結構並貫穿該電路層,其中該特徵結構包含:一介電結構,貫穿該電路層;以及一金屬結構,貫穿該電路層並環繞該介電結構;移除該特徵結構,以露出該上表面,其中移除該特徵結構包含依序以乾式蝕刻移除該介電結構以及濕式蝕刻移除該金屬結構;移除曝露出之該基材的一部分,以形成一第一凹槽,其中該第一凹槽具有一底部低於該上表面;配置一上蓋體於該電路層上方,以覆蓋該微結構及該第一凹槽;由該基材之一下表面側,移除位於該第一凹槽及該微結構下方之該基材的一部份,以形成一第二凹槽,使該第二凹槽之一底部與該第一凹槽之底部間形成一基材殘留部;以及移除該基材殘留部,以釋放該微結構。A method of fabricating a microelectromechanical device, comprising: forming a circuit layer and a microstructure on an upper surface of a substrate, the circuit layer including a feature structure surrounding a portion of a periphery of the microstructure, and the feature structure a circuit layer, wherein the feature structure comprises: a dielectric structure extending through the circuit layer; and a metal structure extending through the circuit layer and surrounding the dielectric structure; removing the feature structure to expose the upper surface, wherein removing The feature includes sequentially removing the dielectric structure by dry etching and removing the metal structure by wet etching; removing a portion of the exposed substrate to form a first recess, wherein the first recess Having a bottom portion lower than the upper surface; an upper cover body disposed above the circuit layer to cover the microstructure and the first recess; and a lower surface side of the substrate, removed in the first recess and the a portion of the substrate under the microstructure to form a second recess such that a bottom portion of the second recess forms a substrate residue with the bottom of the first recess; and the base is removed Residue, Release of the microstructure.
TW100121655A 2011-06-21 2011-06-21 Micro-electromechanical device and method manufacturing the same TWI458409B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100121655A TWI458409B (en) 2011-06-21 2011-06-21 Micro-electromechanical device and method manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100121655A TWI458409B (en) 2011-06-21 2011-06-21 Micro-electromechanical device and method manufacturing the same

Publications (2)

Publication Number Publication Date
TW201301975A TW201301975A (en) 2013-01-01
TWI458409B true TWI458409B (en) 2014-10-21

Family

ID=48137718

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100121655A TWI458409B (en) 2011-06-21 2011-06-21 Micro-electromechanical device and method manufacturing the same

Country Status (1)

Country Link
TW (1) TWI458409B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200919593A (en) * 2007-10-18 2009-05-01 Asia Pacific Microsystems Inc Elements and modules with micro caps and wafer level packaging method thereof
TW201038464A (en) * 2009-04-27 2010-11-01 United Microelectronics Corp Multifunction MENS system element and integrated method for making multifunction MENS system and MOS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200919593A (en) * 2007-10-18 2009-05-01 Asia Pacific Microsystems Inc Elements and modules with micro caps and wafer level packaging method thereof
TW201038464A (en) * 2009-04-27 2010-11-01 United Microelectronics Corp Multifunction MENS system element and integrated method for making multifunction MENS system and MOS

Also Published As

Publication number Publication date
TW201301975A (en) 2013-01-01

Similar Documents

Publication Publication Date Title
US9511997B2 (en) MEMS device with a capping substrate
US9604843B2 (en) MEMS devices and methods for forming same
CN103569937B (en) MEMS and MEMS formation method
TWI395707B (en) Method for manufacturing a micro-electromechanical structure
TWI495049B (en) Method for manufacturing microelectronic device and integrated circuit to prevent metal pad damage in wafer level package
US11167979B2 (en) Microelectromechanical systems (MEMS) structure to prevent stiction after a wet cleaning process
US8802473B1 (en) MEMS integrated pressure sensor devices having isotropic cavities and methods of forming same
US8952465B2 (en) MEMS devices, packaged MEMS devices, and methods of manufacture thereof
KR102202821B1 (en) Method for forming multi-depth mems package
US8129805B2 (en) Microelectromechanical system (MEMS) device and methods for fabricating the same
TWI418002B (en) Chip package and fabrication method thereof
JP6147689B2 (en) MEMS equipment
TWI458409B (en) Micro-electromechanical device and method manufacturing the same
US20220185656A1 (en) Manufacturing method of semiconductor structure
TWI419317B (en) Manufacturing method for light-sensing structure
TWI419263B (en) A micro-electromechanical device and method for manufacturing the same
TWI477436B (en) Method for manufacturing a micro-electromechanical device
TWI445132B (en) Method for forming a penetrating space in a circuitry layer and method for manufacturing a micro-electromechanical device
TWI483892B (en) Micro-electromechanical device and method for manufacturing micro-electromechanical device
TWI623733B (en) Pressure sensor and manufacture method thereof
TWI445131B (en) Method for manufacturing a micro-electromechanical structure
CN102234098B (en) Manufacturing method of micro electromechanical structure
KR101154187B1 (en) Fabrication method for vertical axis inertial sensor having difference in hight at upper side

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees