TWI458236B - Single-input multiple-output dc/dc converter - Google Patents

Single-input multiple-output dc/dc converter Download PDF

Info

Publication number
TWI458236B
TWI458236B TW101115364A TW101115364A TWI458236B TW I458236 B TWI458236 B TW I458236B TW 101115364 A TW101115364 A TW 101115364A TW 101115364 A TW101115364 A TW 101115364A TW I458236 B TWI458236 B TW I458236B
Authority
TW
Taiwan
Prior art keywords
circuit
output
diode
coupled
voltage
Prior art date
Application number
TW101115364A
Other languages
Chinese (zh)
Other versions
TW201345121A (en
Inventor
Jung Tzung Wei
Kun Huai Jheng
Original Assignee
Univ Yuan Ze
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Yuan Ze filed Critical Univ Yuan Ze
Priority to TW101115364A priority Critical patent/TWI458236B/en
Publication of TW201345121A publication Critical patent/TW201345121A/en
Application granted granted Critical
Publication of TWI458236B publication Critical patent/TWI458236B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)

Description

單輸入多輸出直流/直流轉換器Single Input Multiple Output DC/DC Converter

本發明是有關於一種直流/直流轉換電路,且特別是有關於一種單輸入多輸出直流/直流轉換電路。The present invention relates to a DC/DC conversion circuit, and more particularly to a single input multiple output DC/DC conversion circuit.

近年來,由於能源危機與二氧化碳排放議題倍受全球所關切,使得許多國家不斷地尋找新的替代綠能,在面對現今越趨嚴格的廢氣排放管制、石油漸漸枯竭以及溫室氣體可能引發的全球暖化災變下,汽車業界與各國政府紛紛投入具潔淨效果的燃料電池動力技術之開發,期望能取代傳統的內燃機引擎。In recent years, due to the global concern about the energy crisis and carbon dioxide emissions, many countries are constantly looking for new alternatives to green energy, in the face of today's increasingly stringent emissions control, oil depletion and global greenhouse gas emissions Under the catastrophe of warming, the automotive industry and governments have invested in the development of fuel cell power technology with clean effects, hoping to replace the traditional internal combustion engine.

因此,若欲使用燃料電池作為移動載具(例如電動車)之馬達的動力,則需另外搭配一套平衡控制系統(balance of plant,BOP),藉由監控燃料電池電壓與溫度以判斷是否啟動或停止燃料電池系統。當燃料電池工作溫度過高時,則開啟燃料電池啟週邊設備的水冷系統與風扇,使燃料電池不會因溫度過高而強制關閉系統。Therefore, if you want to use the fuel cell as the power of the motor of a mobile vehicle (such as an electric vehicle), you need to use a balance of plant (BOP) to monitor the fuel cell voltage and temperature to determine whether to start. Or stop the fuel cell system. When the operating temperature of the fuel cell is too high, the water-cooling system and the fan of the peripheral device of the fuel cell are turned on, so that the fuel cell does not forcibly shut down the system due to excessive temperature.

傳統上,為了維持平衡控制系統與燃料電池週邊設備的正常運作,會在燃料電池供電系統上使用輔助電池(例如為一般電池或蓄電池),以提供平衡控制系統與燃料電池週邊設備的工作電壓位準。另外,燃料電池供電系統的初始啟動亦需要輔助電池來驅動,才可產生足以驅動移動載具的工作電壓位準。Traditionally, in order to maintain the proper operation of the balance control system and fuel cell peripherals, auxiliary batteries (such as general batteries or batteries) are used on the fuel cell power supply system to provide operating voltage levels for the balance control system and fuel cell peripherals. quasi. In addition, the initial startup of the fuel cell power system also requires an auxiliary battery to drive to generate an operating voltage level sufficient to drive the mobile carrier.

然而,於傳統的燃料電池供電系統的設計上,並未考慮到輔助電池的再利用性,使得當輔助電池於電量耗盡時,平衡控制系統與燃料電池週邊設備在沒有輔助電池所提供的維持工作電壓的情況下,造成燃料電池供電系統的不穩定,進而導致強制關閉或損壞。因此,當輔助電池於電量耗盡時,需重新更換新的輔助電池或原輔助電池進行離線充電動作方可正常運作燃料電池供電系統,但是如此一來,反而會造成燃料電池供電系統在使用上的不方便。However, in the design of the traditional fuel cell power supply system, the reuse of the auxiliary battery is not taken into consideration, so that when the auxiliary battery is exhausted, the balance control system and the fuel cell peripheral device are maintained without the auxiliary battery. In the case of operating voltage, the fuel cell power supply system is unstable, resulting in forced shutdown or damage. Therefore, when the auxiliary battery is exhausted, it is necessary to replace the new auxiliary battery or the original auxiliary battery for offline charging operation to operate the fuel cell power supply system normally, but this will cause the fuel cell power supply system to be used. Inconvenient.

除燃料電池應用外,其他再生能源(例如太陽能光電系統)也都有多組電壓位準輸出需求,因為一般電路控制板或周邊附屬系統需於能源穩定供應前就需要先作動以調制電力輸出,因此單輸入多輸出直流/直流轉換電路為其不可或缺裝置之一。In addition to fuel cell applications, other renewable energy sources (such as solar photovoltaic systems) also have multiple sets of voltage level output requirements, because the general circuit control board or peripheral accessory system needs to be activated to modulate the power output before the energy supply is stable. Therefore, single-input multi-output DC/DC conversion circuits are one of the indispensable devices.

本發明實施例提供一種單輸入多輸出直流/直流轉換器,使得輔助電池可以為一種具有重複充放電能力的蓄電池,並且此單輸入多輸出直流/直流轉換器僅需一個切換開關,即能輸出多個不同電壓位準。如此一來,燃料電池供電系統可以在驅動移動載具的馬達時,亦同時對輔助電池進行充電,除了省去了需要經常更換輔助電池或離線充電的不方便外,更加延長了輔助電池的使用週期,進而降低了燃料電池供電系統在使用與製造時所需花費的成本。The embodiment of the invention provides a single-input multi-output DC/DC converter, so that the auxiliary battery can be a battery with repeated charge and discharge capability, and the single-input multi-output DC/DC converter requires only one switch, that is, can output Multiple different voltage levels. In this way, the fuel cell power supply system can simultaneously charge the auxiliary battery when driving the motor of the mobile vehicle, and the use of the auxiliary battery is further extended, in addition to the inconvenience of requiring frequent replacement of the auxiliary battery or offline charging. The cycle, in turn, reduces the cost of using and manufacturing the fuel cell power system.

本發明實施例提供一種單輸入多輸出直流/直流轉換器,且此單輸入多輸出直流/直流轉換器包括低壓電路、輔助電路、中壓電路以及高壓電路,低壓電路耦接輔助電路,另外,低壓電路透過中壓電路耦接高壓電路。低壓電路具有一次側繞組與開關元件。開關元件耦接於一次側繞組與接地端之間,且受控於控制信號而導通。於開關元件導通時,一次側繞組將能量儲存於第一磁場中。於開關元件截止時,一次側繞組釋放儲存於第一磁場中所儲存的能量。輔助電路中的輔助電感於開關元件截止時,用以儲存一次側繞組所釋放的能量,並依據一次側繞組和輔助電感釋放的能量輸出第一輸出電壓。中壓電路具有二次側繞組與中壓電容,且二次側繞組透過與一次側繞組互感產生電勢差。於開關元件導通時,二次側繞組儲存電勢差於中壓電容。於開關元件截止時,二次側繞組續流電勢差至中壓電容。高壓電路用以接收中壓電容中的能量,據以輸出第二輸出電壓。Embodiments of the present invention provide a single input multiple output DC/DC converter, and the single input multiple output DC/DC converter includes a low voltage circuit, an auxiliary circuit, a medium voltage circuit, and a high voltage circuit, and the low voltage circuit is coupled to the auxiliary circuit, and The low voltage circuit is coupled to the high voltage circuit through the medium voltage circuit. The low voltage circuit has a primary side winding and a switching element. The switching element is coupled between the primary side winding and the ground end and is controlled to be turned on by the control signal. When the switching element is turned on, the primary side winding stores energy in the first magnetic field. When the switching element is turned off, the primary side winding releases the energy stored in the first magnetic field. The auxiliary inductor in the auxiliary circuit stores the energy released by the primary winding when the switching element is turned off, and outputs the first output voltage according to the energy released by the primary winding and the auxiliary inductor. The medium voltage circuit has a secondary side winding and a medium voltage capacitor, and the secondary side winding generates a potential difference through mutual inductance with the primary side winding. When the switching element is turned on, the secondary winding stores a potential difference from the medium voltage capacitor. When the switching element is turned off, the secondary side winding has a freewheeling potential difference to the medium voltage capacitor. The high voltage circuit is configured to receive energy in the medium voltage capacitor to output a second output voltage.

於本發明實施例中,單輸入多輸出直流/直流轉換器更包括箝制電路,且此箝制電路耦接於低壓電路與中壓電路之間。箝制電路具有箝制電容。此箝制電容用以儲存開關元件瞬間截止時的一次側繞組之漏感能量,並且於一次側繞組的漏感能量續流完畢後,釋放所儲存的能量至該中壓電路。In the embodiment of the present invention, the single-input multi-output DC/DC converter further includes a clamp circuit, and the clamp circuit is coupled between the low voltage circuit and the medium voltage circuit. The clamp circuit has a clamp capacitor. The clamp capacitor is used to store the leakage inductance energy of the primary winding when the switching element is instantaneously turned off, and releases the stored energy to the intermediate voltage circuit after the leakage current of the primary winding is freewheeled.

綜上所述,本發明實施例提供一種單輸入多輸出直流/直流轉換器,透過輔助電路與箝制電路之設置,以及運用耦合電感的漏感特性,使得單輸入多輸出直流/直流轉換器具有低昇壓比的輸出電壓源與高昇壓比的輸出電壓源。此外,耦合電感的漏感特性更能使開關元件達到零電流切換的效果,進而減少了切換損失以及降低二極體之逆向恢復電流以降低電路中電磁干擾問題。另外,本發明實施例之單輸入多輸出直流/直流轉換器僅需使用一組開關元件,即可使單輸入多輸出直流/直流轉換器輸出多組不同電壓位準的電壓源,不僅降低了電路設計的成本,更增加了實際應用上的實用性。一般文獻中所述及單輸入多輸出直流/直流轉換器大都應用於市電整流分別供應不同等級直流電壓,以利控制板晶片所使用,係屬於降壓型直流轉換器,本發明所研發直流轉換器係屬於升壓形式,特別適合應用於低電壓再生能源發電之中。In summary, the embodiment of the present invention provides a single-input multi-output DC/DC converter, which has a single-input multi-output DC/DC converter through the setting of an auxiliary circuit and a clamp circuit, and the leakage inductance characteristic of the coupled inductor. Low step-up ratio output voltage source with high step-up ratio output voltage source. In addition, the leakage inductance of the coupled inductor enables the switching element to achieve zero current switching, thereby reducing switching losses and reducing the reverse recovery current of the diode to reduce electromagnetic interference in the circuit. In addition, the single-input multi-output DC/DC converter of the embodiment of the present invention only needs to use one set of switching elements, so that the single-input multi-output DC/DC converter can output multiple sets of voltage sources with different voltage levels, which not only reduces the voltage source. The cost of circuit design increases the practicality of practical applications. The single-input multi-output DC/DC converters described in the general literature are mostly applied to the mains rectification to supply different levels of DC voltage for use in the control board chip, which belongs to the step-down DC converter, and the DC conversion developed by the present invention The device is a booster type and is particularly suitable for use in low-voltage renewable energy generation.

為使能更進一步瞭解本發明之特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,但是此等說明與所附圖式僅係用來說明本發明,而非對本發明的權利範圍作任何的限制。The detailed description of the present invention and the accompanying drawings are to be understood by the claims The scope is subject to any restrictions.

[單輸入多輸出直流/直流轉換器之實施例][Example of Single Input Multiple Output DC/DC Converter]

請參照圖1,圖1係繪示依據本發明之一實施例之單輸入多輸出直流/直流轉換器之功能方塊圖。如圖1所示,單輸入多輸出直流/直流轉換器10包括低壓電路100、控制電路101、輔助電路102、箝制電路104、中壓電路106以及高壓電路108。其中,低壓電路100分別耦接控制電路101、輔助電路102以及箝制電路104,箝制電路104則是與中壓電路106的一端形成耦接,而中壓電路106的另一端則是耦接高壓電路108。Please refer to FIG. 1. FIG. 1 is a functional block diagram of a single input multi-output DC/DC converter according to an embodiment of the present invention. As shown in FIG. 1, the single-input multiple-output DC/DC converter 10 includes a low voltage circuit 100, a control circuit 101, an auxiliary circuit 102, a clamp circuit 104, a medium voltage circuit 106, and a high voltage circuit 108. The low voltage circuit 100 is coupled to the control circuit 101, the auxiliary circuit 102, and the clamp circuit 104. The clamp circuit 104 is coupled to one end of the medium voltage circuit 106, and the other end of the medium voltage circuit 106 is coupled. High voltage circuit 108.

因此,單輸入多輸出直流/直流轉換器10主要可分為兩區塊電路,分別為由低壓電路100、控制電路101以及輔助電路102所構成的第一電路11,以及由低壓電路100、控制電路101、箝制電路104、中壓電路106與高壓電路108所構成的第二電路12。以下分別就單輸入多輸出直流/直流轉換器10的各部元件作詳細的說明。Therefore, the single-input multi-output DC/DC converter 10 can be mainly divided into two block circuits, which are respectively the first circuit 11 composed of the low-voltage circuit 100, the control circuit 101, and the auxiliary circuit 102, and are controlled by the low-voltage circuit 100. The circuit 101, the clamp circuit 104, the intermediate voltage circuit 106, and the second circuit 12 of the high voltage circuit 108. The components of the single-input multi-output DC/DC converter 10 will be described in detail below.

請參照圖2,圖2係繪示依據本發明之一實施例之單輸入多輸出直流/直流轉換器之電路示意圖。低壓電路100包括直流輸入電源VFC 、一次側繞組LP 、開關元件S1 。直流輸入電源VFC 用以提供單輸入多輸出直流/直流轉換器10的輸入電壓源,因此低壓電路100為第一電路11與第二電路12的共用電路,以達到單輸入多輸出之目的。Please refer to FIG. 2. FIG. 2 is a schematic circuit diagram of a single input multi-output DC/DC converter according to an embodiment of the present invention. The low voltage circuit 100 includes a DC input power source V FC , a primary side winding L P , and a switching element S 1 . The DC input power source V FC is used to provide an input voltage source of the single-input multi-output DC/DC converter 10. Therefore, the low-voltage circuit 100 is a common circuit of the first circuit 11 and the second circuit 12 for the purpose of single input and multiple output.

一次側繞組(primary winding)LP 為具高激磁電流之變壓器的導電體(亦稱耦合電感),其一次側繞組LP 的第一端耦接直流輸入電源VFC 的陽極端,而一次側繞組LP 的第二端則是耦接開關元件S1 。一般來說,一次側繞組LP 會因通過的電流改變而產生第一磁場,並因為電磁感應(electromagnetic induction)產生第一電動勢,同時將第一電動勢以能量的形式儲存在第一磁場中,據以抵抗電流的變化。The primary winding L P is a conductor (also referred to as a coupled inductor) of a transformer having a high excitation current, and the first end of the primary winding L P is coupled to the anode terminal of the DC input power source V FC , and the primary side The second end of the winding L P is coupled to the switching element S 1 . In general, the primary side winding L P generates a first magnetic field due to a change in current passing, and generates a first electromotive force due to electromagnetic induction while storing the first electromotive force in the first magnetic field in the form of energy. According to the change in resistance to current.

開關元件S1 具有第一端、第二端以及控制端三個端點,其開關元件S1 的第一端耦接一次側繞組LP 的第二端,開關元件S1 的第二端耦接在接地端,而開關元件S1 的控制端耦接控制電路101。開關元件S1 受控於控制電路101所產生的控制信號,並藉由控制信號而導通開關元件S1 。換句話說,控制電路101透過所產生的控制信號,來控制開關元件S1 的責任週期(duty cycle)。於實務上,開關元件S1 係為一個反並接二極體之金氧半場效電晶體(MOSFET),而控制信號為反並接二極體之金氧半場效電晶體的閘極信號。The switching element S 1 has three ends of a first end, a second end and a control end, the first end of the switching element S 1 is coupled to the second end of the primary side winding L P , and the second end of the switching element S 1 is coupled Connected to the ground terminal, and the control terminal of the switching element S 1 is coupled to the control circuit 101. The switching element S 1 is controlled by a control signal generated by the control circuit 101, and turns on the switching element S 1 by a control signal. In other words, the control circuit 101 through the generated control signal to control the duty cycle of the switching element S 1 (duty cycle). In practice, the switching element S 1 is a gold-oxygen half field effect transistor (MOSFET) that is anti-parallel diode, and the control signal is the gate signal of the gold-oxygen half field effect transistor of the anti-parallel diode.

以實際操作上的例子來說,低壓電路100的開關元件S1 接收到來自控制電路101的控制信號而導通時,即代表開關元件S1 的導通提供了一次側繞組LP 連接到接地端的電流路徑,使得直流輸入電源VFC 流經一次側繞組LP 之電流會誘發電磁感應而產生第一電動勢,並將第一電動勢以能量的形式儲存在一次側繞組LP 的第一磁場中。於開關元件S1 截止時,一次側繞組LP 的第一磁場即釋放所儲存的能量,以抵抗電流的變化。另外,低壓電路100的直流輸入電源VFC 端更可並接一個濾波電容CFC ,以濾除直流輸入電源VFC 之雜訊,使得低壓電路100所輸出的直流電壓更加地穩定與平滑,但本發明在此不加以限制是否需要使用濾波電容CFCIn practical example, when the switching element S 1 of the low voltage circuit 100 receives the control signal from the control circuit 101 and is turned on, that is, the conduction of the switching element S 1 provides the current of the primary side winding L P connected to the ground terminal. The path causes the current of the DC input power source V FC to flow through the primary side winding L P to induce electromagnetic induction to generate a first electromotive force, and store the first electromotive force in the form of energy in the first magnetic field of the primary side winding L P . When the switching element S 1 is turned off, the first magnetic field of the primary side winding L P releases the stored energy to resist the change in current. In addition, the VFC terminal of the DC input power supply of the low voltage circuit 100 can be further connected with a filter capacitor C FC to filter out the noise of the DC input power source V FC , so that the DC voltage outputted by the low voltage circuit 100 is more stable and smooth, but The invention is not limited here to whether it is necessary to use a filter capacitor C FC .

輔助電路102包括輔助電感Laux 、二極體D1 (第一二極體)、濾波電容CO1 以及第一輸出負載RO1 。輔助電感Laux 的第一端耦接於一次側繞組LP 的第二端與開關元件S1 第一端的接點上,其輔助電感Laux 的第二端耦接二極體D1 的陽極端。而二極體D1 的陰極端則是耦接並聯的濾波電容CO1 以及第一輸出負載RO1The auxiliary circuit 102 includes an auxiliary inductor L aux , a diode D 1 (first diode), a filter capacitor C O1 , and a first output load R O1 . The first end of the auxiliary inductor L aux is coupled to the junction of the second end of the primary winding L P and the first end of the switching element S 1 , and the second end of the auxiliary inductor L aux is coupled to the diode D 1 Anode end. The cathode end of the diode D 1 is coupled to the parallel filter capacitor C O1 and the first output load R O1 .

輔助電感Laux 用以暫時地儲存第一磁場所釋放的能量。當輔助電感Laux 與第一輸出負載RO1 之間的跨壓大於二極體D1 的導通電壓時,則順向導通二極體D1 ,據以輸出第一輸出電流i O1 至第一輸出負載RO1 (例如為蓄電池),使得第一輸出負載RO1 承載第一輸出電壓VO1 ;當輔助電感Laux 與第一輸出負載RO1 之間的跨壓小於二極體D1 的導通電壓時,則截止二極體D1 ,使得第一輸出電流i O1 轉變為零。另外,濾波電容CO1 用以提供第一輸出負載RO1 較平穩的電壓源。The auxiliary inductance L aux is used to temporarily store the energy released by the first magnetic field. When the auxiliary inductance L aux between the first voltage across the output load R O1 is greater than the diode D 1 ON voltage, the forward conducting diode D 1, according to output a first output to a first current i O1 The output load R O1 (for example, a battery) is such that the first output load R O1 carries the first output voltage V O1 ; the voltage across the auxiliary inductor L aux and the first output load R O1 is less than the conduction of the diode D 1 At voltage, the diode D 1 is turned off, causing the first output current i O1 to transition to zero. In addition, the filter capacitor C O1 is used to provide a relatively stable voltage source of the first output load R O1 .

以實際操作上的例子來說,當開關元件S1 截止時,低壓電路100以及輔助電路102會形成一個封閉迴路,使得一次側繞組LP 開始釋放原先儲存於第一磁場中的能量,其中所釋放的部分能量會暫時地儲存於輔助電感Laux 中,其餘的能量會藉由導通的二極體D1 ,據以輸出第一輸出電壓VO1 ,並使用此第一輸出電壓VO1 對蓄電池進行充電。當開關元件S1 導通時,使得一次側繞組LP 開始儲存能量於第一磁場,而輔助電感Laux 為了抵抗電流的變化,會開始釋放輔助電感Laux 內所暫存的殘餘能量,並透過導通的二極體D1 ,輸出第一輸出電壓VO1 以對蓄電池進行充電。另外,於輔助電感Laux 釋放能量完畢後,輔助電路102會停止整個運作,直到開關元件S1 下一次截止。In a practical example, when the switching element S 1 is turned off, the low voltage circuit 100 and the auxiliary circuit 102 form a closed loop, so that the primary winding L P starts to release the energy originally stored in the first magnetic field. Part of the energy released is temporarily stored in the auxiliary inductor L aux , and the remaining energy is outputted by the diode D 1 , thereby outputting the first output voltage V O1 , and using the first output voltage V O1 to the battery Charge it. When the switching element S 1 is turned on, so that the primary winding L P begins to store energy in the first magnetic field, and the auxiliary inductance L aux in order to resist change in current will begin to release energy remaining in the auxiliary inductance L aux temporarily stored, and through The turned-on diode D 1 outputs a first output voltage V O1 to charge the battery. In addition, after the auxiliary inductor L aux releases energy, the auxiliary circuit 102 stops the entire operation until the switching element S 1 is turned off next time.

箝制電路104包括箝制電容C1 與二極體D2 (第二二極體)。箝制電容C1 與二極體D2 的陽極端分別耦接一次側繞組LP 的第一端與第二端,而二極體D2 的陰極端與箝制電容C1 的另一端的接點耦接中壓電路106。箝制電容C1 用以儲存開關元件S1 截止瞬間的一次側繞組LP 的漏感(leakage inductance)能量,以避免開關元件S1 的損壞。The clamping circuit 104 includes a clamping capacitor C 1 and a diode D 2 (second diode). The anode ends of the clamp capacitor C 1 and the diode D 2 are respectively coupled to the first end and the second end of the primary side winding L P , and the cathode end of the diode D 2 is connected to the other end of the clamp capacitor C 1 . The medium voltage circuit 106 is coupled. The clamp capacitor C 1 is used to store the leakage inductance energy of the primary side winding L P at the moment when the switching element S 1 is turned off to avoid damage of the switching element S 1 .

以實際操作上的例子來說,當開關元件S1 截止的瞬間,一次側繞組LP 的漏感能量需要續流,藉由二極體D2 的順向導通,使得一次側繞組LP 的漏感能量可以儲存至箝制電容C1 。於一次側繞組LP 的漏感能量續流完畢後,二極體D2 會逆向截止,使得箝制電容C1 釋放所儲存的能量至中壓電路106。In an actual operation example, when the switching element S 1 is turned off, the leakage inductance energy of the primary side winding L P needs to be freewheeled, and the primary side winding L P is made by the forward conduction of the diode D 2 . The leakage inductance energy can be stored to the clamp capacitor C 1 . After the leakage current of the primary side winding L P is freewheeled, the diode D 2 is reversely turned off, so that the clamped capacitor C 1 releases the stored energy to the intermediate voltage circuit 106.

中壓電路106包括二次側繞組LS 、中壓電容C2 以及二極體D3 (第三二極體)。二次側繞組LS 為具高激磁電流之變壓器的另一導電體(亦稱耦合電感),其二次側繞組LS 的第一端耦接於二極體D2 的陰極端與二極體D3 的陽極端的接點,而二次側繞組LS 的第二端則是耦接中壓電容C2 的其中一端。中壓電容C2 的另一端耦接於二極體D3 的陰極端與高壓電路108的接點。The medium voltage circuit 106 includes a secondary side winding L S , a medium voltage capacitor C 2 , and a diode D 3 (third diode). The secondary winding L S is another conductor (also referred to as a coupled inductor) of the transformer with high excitation current, and the first end of the secondary winding L S is coupled to the cathode end and the diode of the diode D 2 The junction of the anode end of the body D 3 and the second end of the secondary winding L S are coupled to one end of the medium voltage capacitor C 2 . The other end of the medium voltage capacitor C 2 is coupled to the junction of the cathode end of the diode D 3 and the high voltage circuit 108.

二次側繞組LS 透過與一次側繞組LP 互感,據以產生第二電動勢以及感應電流。另外,第二電動勢正比於二次側繞組LS 與一次側繞組LP 的繞組圈數比值,亦即當二次側繞組LS 與一次側繞組LP 的繞組圈數比值越大時,其透過互感所產生的第二電動勢會越大,二次側繞組LS 兩端的電壓位準v LS 也會越高。The secondary side winding L S is transmitted through mutual inductance with the primary side winding L P to generate a second electromotive force and an induced current. Further, the second electromotive force is proportional to the secondary winding L S and the primary winding turns ratio of the primary winding L P, i.e. when the ratio of the larger number of turns of winding and the secondary winding L S L P of the primary winding, which The larger the second electromotive force generated by the mutual inductance, the higher the voltage level v LS across the secondary side winding L S .

以實際操作上的例子來說,當開關元件S1 導通時,二次側繞組LS 因為與一次側繞組LP 互感而產生第二電動勢,透過順向導通的二極體D3 ,使得中壓電容C2 可以儲存二次側繞組LS 的能量;當開關元件S1 截止時,二次側繞組LS 因為需要釋放剩餘的漏感能量至中壓電容C2 ,故二極體D3 仍會持續地導通,直到剩餘的二次側漏感能量續流完畢後,二極體D3 才逆向截止。In a practical example, when the switching element S 1 is turned on, the secondary winding L S generates a second electromotive force due to mutual inductance with the primary side winding L P , and transmits the diode D 3 through the forward conduction diode. The piezoelectric capacitor C 2 can store the energy of the secondary winding L S ; when the switching element S 1 is turned off, the secondary winding L S needs to release the remaining leakage inductance energy to the medium voltage capacitor C 2 , so the diode D 3 will continue to conduct continuously until the remaining secondary side leakage energy continues to flow, and the diode D 3 is reversed.

高壓電路108包括二極體D4 (第四二極體)、濾波電容CO2 以及第二輸出負載RO2 。其中,高壓電路108的二極體D4 的陽極端耦接於二極體D3 的陰極端與中壓電容C2 的接點,而二極體D4 的陰極端分別耦接並聯的濾波電容CO2 以及第二輸出負載RO2The high voltage circuit 108 includes a diode D 4 (fourth diode), a filter capacitor C O2 , and a second output load R O2 . The anode end of the diode D 4 of the high voltage circuit 108 is coupled to the junction of the cathode end of the diode D 3 and the medium voltage capacitor C 2 , and the cathode ends of the diode D 4 are respectively coupled in parallel. Filter capacitor C O2 and second output load R O2 .

高壓電路108用以接收二次側繞組LS 續流完畢後中壓電容C2 所釋放的電能,使得高壓電路108輸出第二輸出電流i O2 ,使得第二輸出負載RO2 (例如為移動載具的馬達)承載第二輸出電壓VO2 。濾波電容CO2 用以提供第二輸出負載RO2 較平穩的電壓源。The high voltage circuit 108 is configured to receive the electrical energy released by the medium voltage capacitor C 2 after the secondary winding L S is freewheeled, so that the high voltage circuit 108 outputs the second output current i O2 such that the second output load R O2 (for example, moving) The motor of the carrier carries a second output voltage V O2 . The filter capacitor C O2 is used to provide a smoother voltage source for the second output load R O2 .

以實際操作上的例子來說,當開關元件S1 截止且二次側繞組LS 續流完殘餘的漏感能量時,二極體D3 會截止,而二極體D4 會順向導通,使得高壓電路108輸出第二輸出電壓VO2 以驅動馬達。另外,由於高激磁電流之變壓器(亦稱耦合電感)具有昇壓的功用,且中壓電容C2 具有儲存二次側繞組LS 能量的功用,使得第二電路12的第二輸出電壓VO2 高於第一電路11的第一輸出電壓VO1In the practical example, when the switching element S 1 is turned off and the secondary side winding L S continues to flow residual residual energy, the diode D 3 is turned off, and the diode D 4 is turned on. The high voltage circuit 108 is caused to output a second output voltage V O2 to drive the motor. In addition, since the transformer of high excitation current (also referred to as coupled inductor) has the function of boosting, and the medium voltage capacitor C 2 has the function of storing the energy of the secondary side winding L S , the second output voltage V of the second circuit 12 O2 is higher than the first output voltage V O1 of the first circuit 11.

[單輸入多輸出直流/直流轉換器之操作模式實施例][Example of operation mode of single-input multi-output DC/DC converter]

為更加清楚地說明,單輸入多輸出直流/直流轉換器10於各操作模式之動作,請參照圖3,圖3係繪示依據本發明之一實施例之單輸入多輸出直流/直流轉換器之等效電路圖。如圖3所示,為簡化單輸入多輸出直流/直流轉換器10之分析,在此假設箝制電容C1 與中壓電容C2 的電容值極大,並分別等效為定壓電源VC1 與VC2 。耦合電感Tr 可等效為一次側繞組LP 、一次側激磁電感Lmp 、一次側漏電感Lkp 以及二次側繞組LS 。其中,二次側繞組LS 亦具有漏電感,但為了簡化電路分析與說明,將二次側繞組LS 的漏電感視為耦合至一次側漏電感Lkp 上,故未繪示於圖3中。另外,控制電路101亦未繪示於圖3,但不代表不需設置控制電路101。For a more clear description of the operation of the single-input multi-output DC/DC converter 10 in each operation mode, please refer to FIG. 3. FIG. 3 illustrates a single-input multi-output DC/DC converter according to an embodiment of the present invention. The equivalent circuit diagram. 3, to simplify the single input multiple output DC / DC converter 10 of the analysis, a capacitance C is assumed here that the clamp. 1 and maximum capacitance value of the capacitance C MV 2, and are equivalent to the power supply V C1 at constant pressure With V C2 . The coupled inductor T r can be equivalent to the primary side winding L P , the primary side magnetizing inductance L mp , the primary side leakage inductance L kp , and the secondary side winding L S . The secondary side winding L S also has a leakage inductance, but in order to simplify the circuit analysis and description, the leakage inductance of the secondary side winding L S is considered to be coupled to the primary side leakage inductance L kp , so it is not shown in FIG. 3 . in. In addition, the control circuit 101 is also not shown in FIG. 3, but does not mean that the control circuit 101 is not required to be provided.

接著,請一併參照圖4-1、圖4-2與圖5,圖4-1係繪示依據本發明之一實施例之單輸入多輸出直流/直流轉換器之電流時序波形圖。圖4-2係繪示依據本發明之一實施例之單輸入多輸出直流/直流轉換器之電壓時序波形圖。圖5A至5F係繪示依據本發明之一實施例之單輸入多輸出直流/直流轉換器之電路操作模式示意圖。在依據開關元件S1 與二極體D1 、D2 、D3 與D4 導通狀態的情況下,單輸入多輸出直流/直流轉換器10的電路操作可細分為六個操作模式。另外,在此定義開關元件S1 的切換週期為TS 、責任週期為d1 。因此,依據圖4-1與圖4-2的電流電壓時序波形圖與圖5的電路操作模式示意圖,以下分別就本發明實施例於各個操作模式下的實際運作做詳細的說明。Next, please refer to FIG. 4-1, FIG. 4-2 and FIG. 5 together. FIG. 4-1 is a diagram showing current timing waveforms of a single-input multi-output DC/DC converter according to an embodiment of the present invention. 4-2 is a diagram showing voltage timing waveforms of a single-input multiple-output DC/DC converter according to an embodiment of the present invention. 5A to 5F are schematic diagrams showing circuit operation modes of a single-input multi-output DC/DC converter according to an embodiment of the present invention. The circuit operation of the single-input multiple-output DC/DC converter 10 can be subdivided into six operational modes in accordance with the conduction state of the switching element S 1 and the diodes D 1 , D 2 , D 3 and D 4 . In addition, the switching period of the switching element S 1 is defined as T S and the duty cycle is d 1 . Therefore, according to the current voltage timing waveform diagrams of FIGS. 4-1 and 4-2 and the circuit operation mode diagram of FIG. 5, the actual operation of the embodiment of the present invention in each operation mode will be described in detail below.

如圖5A所示,在第一操作模式中(t 0tt 1 ),開關元件S1 已導通,使得直流輸入電源VFC 對一次側漏電感Lkp 、一次側繞組LP 以及一次側激磁電感Lmp 作激磁充電,並依繞組圈數比值(亦稱為匝數比)產生感應電壓v Ls 至二次側繞組LS 。此時,由於第二輸出負載RO2 承載的第二輸出電壓VO2 大於直流輸入電源VFC 、箝制電容C1 、二次側繞組LS 與中壓電容C2 的跨壓,故二極體D4 不導通,而使得一次側繞組LP 與二次側繞組LS 的極性點為正極性,並同時順向導通二極體D3As shown in FIG. 5A, in the first operation mode ( t 0t < t 1 ), the switching element S 1 is turned on, so that the DC input power source V FC has a primary side leakage inductance L kp , a primary side winding L P , and once The side magnetizing inductance L mp is used for excitation charging, and the induced voltage v Ls is generated to the secondary side winding L S according to the winding turns ratio (also referred to as the turns ratio). At this time, since the second output voltage V O2 of the second output load carrying R O2 is greater than the DC input power V FC, clamp capacitor C 1, and the secondary winding L S MV voltage across capacitor C 2, so diode The body D 4 is not turned on, so that the polarity points of the primary side winding L P and the secondary side winding L S are positive, and at the same time, the diode D 3 is passed through.

承接上述,藉由二極體D3 的順向導通,使得二次側繞組Ls 的感應電壓v Ls 可經由二極體D3 對中壓電容C2 進行充電。同時,輔助電感Laux 正在釋放所儲存的殘餘能量至第一輸出負載RO1 ,換句話說,即為產生第一輸出電壓VO1 以對蓄電池進行充電。In response to the above, the induced voltage v Ls of the secondary winding L s can charge the medium voltage capacitor C 2 via the diode D 3 by the forward conduction of the diode D 3 . At the same time, the auxiliary inductor L aux is releasing the stored residual energy to the first output load R O1 , in other words, generating the first output voltage V O1 to charge the battery.

如圖5B所示,在第二操作模式中(t 1tt 2 ),開關元件S1 已經導通了一段時間,當輔助電感Laux 釋放能量完畢後,二極體D1 逆向截止,使得輔助電路102之運作整個停止。此時,直流輸入電源VFC 仍持續對一次側漏電感Lkp 、一次側繞組LP 以及一次側激磁電感Lmp 作激磁充電,並依繞組圈數比值產生感應電壓v Ls 至二次側繞組Ls ,使得感應電壓v Ls 可透過導通的二極體D3 對中壓電容C2 進行持續的充電動作。As shown in FIG. 5B, in the second mode of operation ( t 1t < t 2 ), the switching element S 1 has been turned on for a period of time, and after the auxiliary inductor L aux releases the energy, the diode D 1 is turned off in reverse. The operation of the auxiliary circuit 102 is stopped entirely. At this time, the DC input power source V FC continues to charge the primary side leakage inductance L kp , the primary side winding L P and the primary side excitation inductance L mp , and generates an induced voltage v Ls according to the winding turns ratio to the secondary winding. L s , so that the induced voltage v Ls can continuously charge the medium voltage capacitor C 2 through the turned-on diode D 3 .

接著,如圖5C所示,在第三操作模式中(t 2tt 3 ),開關元件S1 轉為截止的瞬間,由於一次側漏電感Lkp 需要進行續流,使得一次側漏電感Lkp 先對開關元件S1 內部設置的的寄生電容(與開關元件S1 內部設置的反並接二極體並聯,在此未繪示於圖上)進行充電。當開關元件S1 的跨壓v S1 大於直流輸入電源VFC 與箝制電容C1 的跨壓時,切斷開關元件S1 的整個導通路徑並順向導通二極體D2Next, as shown in FIG. 5C, in the third operation mode ( t 2t < t 3 ), the switching element S 1 is turned off, and the primary side leakage inductance L kp needs to be freewheeling, so that the primary side leakage L kp parasitic capacitance to sense the internal switching element S 1 is provided (the switching element S 1 and the counter provided inside of and connected parallel diodes, not shown in this figure) for charging. When the voltage across the switching element S v S1 1 is greater than the DC input power V FC clamp capacitor C 1 and the voltage across, the switching element S cut the entire conduction path and a forward conducting diode D 2.

承接上述,藉由導通的二極體D2 ,將一次側漏電感Lkp 與一次側繞組LP 的能量續流至箝制電容C1 ,亦即是對箝制電容C1 進行充電。如此一來,藉由箝制電路104之設置,可以解決開關元件S1 在切換時所產生的突波(surge)問題。另外,一次側繞組LP 所釋放的部分能量會對輔助電感Laux 進行充磁,同時亦透過二極體D1 的導通,輸出第一輸出電壓VO1 ,以對蓄電池進行充電。同一時間,二次側繞組Ls 需要續流所殘餘的二次側漏感能量,藉由導通的二極體D3 ,使得電流i Ls 仍可以持續地對中壓電容C2 進行充電。In response to the above, the primary side leakage inductance L kp and the energy of the primary side winding L P are continued to the clamp capacitor C 1 by the turned-on diode D 2 , that is, the clamp capacitor C 1 is charged. Thus, by clamping circuit 104 is provided, it can be solved surge (surge) switching element S 1 when switching problems arising. In addition, part of the energy released by the primary winding L P charges the auxiliary inductor L aux , and also passes through the conduction of the diode D 1 , and outputs a first output voltage V O1 to charge the battery. At the same time, the secondary side winding L s needs to renew the residual secondary side leakage inductance energy, and the conduction current diode D 3 enables the current i Ls to continuously charge the medium voltage capacitor C 2 .

當二次側繞組Ls 的二次側漏感能量續流完畢後,如圖5D所示,在第四操作模式中(t 3t <t 4 ),開關元件S1 仍持續截止,但是因為二次側漏感能量已經續流完畢,使得二極體D3 逆向截止而二極體D4 順向導通,如此一來,使得一次側繞組LP 與二次側繞組Ls 的極性點改變為負極性。此時,一次側激磁電感Lmp 會經由一次側繞組LP 傳送能量至二次側繞組LS 。因此,藉由二極體D4 的順向導通,建構出箝制電容C1 、二次側繞組LS 以及中壓電容C2 之電流路徑,使得高壓電路108得以輸出能夠驅動馬達的第二輸出電壓VO2 。值得注意的是,此時一次側漏電感Lkp 的電流i Lkp 仍持續地對輔助電感Laux 進行充磁的儲能動作,並同時將其餘未儲存的能量輸出為第一輸出電壓VO1 ,使得第一輸出電壓VO1 可以對蓄電池進行充電。After the secondary side leakage inductance energy of the secondary side winding L s is freewheeled, as shown in FIG. 5D, in the fourth operation mode ( t 3t < t 4 ), the switching element S 1 continues to be turned off, but Since the secondary side leakage sensation energy has been continuously flowed, the diode D 3 is reversely turned off and the diode D 4 is turned on, so that the polarity points of the primary side winding L P and the secondary side winding L s are made. Change to negative polarity. At this time, the primary side magnetizing inductance L mp transmits energy to the secondary side winding L S via the primary side winding L P . Therefore, the current path of the clamp capacitor C 1 , the secondary winding L S and the medium voltage capacitor C 2 is constructed by the forward conduction of the diode D 4 , so that the high voltage circuit 108 can output the second motor capable of driving the motor. Output voltage V O2 . It is worth noting that the current i Lkp of the primary side leakage inductance L kp still continuously charges the auxiliary inductor L aux , and simultaneously outputs the remaining unstored energy as the first output voltage V O1 . The first output voltage V O1 is caused to charge the battery.

接著,如圖5E所示,在第五操作模式中(t 4t <t 5 ),開關元件S1 仍持續截止,此時,由於一次側漏電感Lkp 的漏感能量續流至箝制電容C1 已經結束,使得二極體D2 逆向截止。因此,此時單輸入多輸出直流/直流轉換器10可視為兩個供電迴路,分別為由直流輸入電源VFC 串聯一次側繞組LP (包括一次側漏電感Lkp 、一次側繞組LP 以及一次側激磁電感Lmp )與輔助電感Laux ,並透過順向導通的二極體D1 ,對蓄電池進行充電之第一 電路11的供電迴路,以及由直流輸入電源VFC 串聯箝制電容C1 、二次側繞組LS 與中壓電容C2 ,並透過順向導通的二極體D4 ,輸出能夠驅動馬達的第二輸出電壓VO2 之第二電路12的供電迴路。Next, as shown in FIG. 5E, in the fifth mode of operation ( t 4t < t 5 ), the switching element S 1 continues to be turned off. At this time, the leakage inductance energy of the primary side leakage inductance L kp continues to be clamped. Capacitor C 1 has ended, causing diode D 2 to turn off in reverse. Therefore, at this time, the single-input multi-output DC/DC converter 10 can be regarded as two power supply circuits, which are respectively connected to the primary side winding L P by the DC input power source V FC (including the primary side leakage inductance L kp , the primary side winding L P , and The primary side magnetizing inductance L mp ) and the auxiliary inductor L aux , and through the forward-conducting diode D 1 , the power supply circuit of the first circuit 11 for charging the battery, and the capacitor C 1 in series by the DC input power source V FC The secondary winding L S and the medium voltage capacitor C 2 are transmitted through the forward-conducting diode D 4 to output a power supply circuit of the second circuit 12 capable of driving the second output voltage V O2 of the motor.

值得注意的是,在第五操作模式中(t 4t <t 5 )中,輔助電感Laux 雖然已開始進行能量的釋放,但是輔助電感Laux 同時又因為直流輸入電源VFC 仍持續對輔助電感Laux 進行充磁,使得流經輔助電感Laux 的電流i Laux 曲線並無明顯的變化。如圖4-1所示,在時間區間[t 4t <t 5 ]中,輔助電感Laux 之電流i Laux 大約為持平狀態。此時,輔助電感Laux 之電流i Laux 強度約等於一次側漏電感Lkp 之電流i Lkp 強度。It is worth noting that in the fifth mode of operation ( t 4t < t 5 ), although the auxiliary inductor L aux has started to release energy, the auxiliary inductor L aux is still continuously due to the DC input power source V FC. The auxiliary inductor L aux is magnetized so that the current i Laux curve flowing through the auxiliary inductor L aux does not change significantly. As shown in Figure 4-1, in the time interval [ t 4t < t 5 ], the current i Laux of the auxiliary inductor L aux is approximately flat. At this time, the current i Laux intensity of the auxiliary inductance L aux is approximately equal to the current i Lkp intensity of the primary side leakage inductance L kp .

最後,如圖5F所示,在第六操作模式中(t 5t <t 6 ),開關元件S1 接收到控制信號而導通的瞬間,使得一次側漏電感Lkp 之電流i Lkp 大部分流向了接地端,此時一次側漏電感Lkp 之電流i Lkp 強度不等於輔助電感Laux 之電流i Laux 強度。如此一來,輔助電感Laux 會持續釋放所儲存的殘餘能量以輸出第一輸出電壓VO1 ,使得蓄電池得以進行充電。另外,因為一次側漏電感Lkp 之電流i Lkp 大部分流向了接地端,使得圖4-1所示的時間區間[t 5t <t 6 ]中,輔助電感Laux 之電流i Laux 曲線開始呈現線性下滑趨勢。Finally, as shown in FIG. 5F, in the sixth mode of operation ( t 5t < t 6 ), the switching element S 1 receives the control signal and is turned on, so that the current i Lkp of the primary side leakage inductance L kp is mostly Flowing to the ground terminal, the current i Lkp intensity of the primary side leakage inductance L kp is not equal to the current i Laux intensity of the auxiliary inductance L aux . In this way, the auxiliary inductor L aux will continuously release the stored residual energy to output the first output voltage V O1 , so that the battery can be charged. In addition, since the current i Lkp of the primary side leakage inductance L kp mostly flows to the ground terminal, the current i Laux curve of the auxiliary inductance L aux is in the time interval [ t 5t < t 6 ] shown in FIG. 4-1. It began to show a linear downward trend.

承接上述,此時,由於二次側繞組LS 的二次側漏感能量需要續流,可透過仍導通的二極體D4 ,對第二輸出負載RO2 (例如為馬達)供應第二輸出電壓VO2 ,直到二次側漏感續流完畢,使得第二輸出電壓VO2 大於直流輸入電源VFC 、箝制電容C1 、二次側繞組LS 與中壓電容C2 的跨壓,而截止二極體D4 ,其單輸入多輸出直流/直流轉換器10的操作狀態再度回到第一操作模式,如此即完成一次切換週期(switching cycle)。According to the above, at this time, since the secondary side leakage inductance energy of the secondary side winding L S needs to be freewheeling, the second output load R O2 (for example, a motor) can be supplied through the still-on diode D 4 . The output voltage V O2 is completed until the secondary side leakage inductance is completed, so that the second output voltage V O2 is greater than the voltage across the DC input power source V FC , the clamp capacitor C 1 , the secondary side winding L S and the medium voltage capacitor C 2 . And the cut-off diode D 4 , the operation state of the single-input multi-output DC/DC converter 10 returns to the first operation mode again, thus completing a switching cycle.

值得注意的是,由於在開關元件S1 導通的瞬間,二極體D2 並無反向恢復電流且一次側繞組LP 之漏電感Lkp 限制住電流i Lkp 的上升率,使得開關元件S1 無法從任何路徑中獲得電流,而形成零電流切換(zero current switching,ZCS),進而減少了切換損失,如圖4-1與圖4-2所示的時間區間[t 5tt 6 ]中,v S1 以及i S1 曲線可觀察出此結果。另外,由於箝制電路104之設置,使得開關元件S1 可選擇低電壓位準的場效電晶體,並因為場效電晶體的低內阻特性,亦同時減少了導通損失的問題。It is worth noting that since the diode D 2 has no reverse recovery current at the moment when the switching element S 1 is turned on, and the leakage inductance L kp of the primary side winding L P limits the rising rate of the current i Lkp , so that the switching element S 1 The current cannot be obtained from any path, and zero current switching (ZCS) is formed, which reduces the switching loss, as shown in the time interval shown in Figure 4-1 and Figure 4-2 [ t 5t < t In 6 ], v S1 and i S1 curves can observe this result. In addition, due to the setting of the clamping circuit 104, the switching element S 1 can select a field effect transistor of a low voltage level, and at the same time, the problem of conduction loss is reduced because of the low internal resistance characteristic of the field effect transistor.

於實際的應用上,直流輸入電源VFC 為燃料電池所能輸出之電壓位準,第一輸出電壓VO1 為提供輔助電池浮充的電壓位準,而第二輸出電壓VO2 為提供移動載具之馬達驅動的工作電壓位準。如此一來,在燃料電池驅動移動載具時,亦同時對輔助電池進行充電,使得平衡控制系統與燃料電池週邊設備可以正常運作。In practical applications, the DC input power source V FC is a voltage level that can be output by the fuel cell, the first output voltage V O1 is a voltage level for providing auxiliary battery floating charge, and the second output voltage V O2 is for providing a mobile load. Motor-operated operating voltage level. In this way, when the fuel cell drives the mobile carrier, the auxiliary battery is also charged at the same time, so that the balance control system and the fuel cell peripheral device can operate normally.

一般來說,直流輸入電源VFC 為12伏特,透過預先設定的繞組圈數比值與輔助電感Laux 的電感值,使得第一輸出電壓VO1 與第二輸出電壓VO2 分別為24~28伏特與200伏特,但本發明不以此為限。其中,輔助電池之浮充電壓範圍為24~28伏特,在此電壓範圍,可保持輔助電池的最大使用壽命。此外,由於低壓電路100至輔助電路102的昇壓比值約為2.33,而低壓電路100至高壓電路108的昇壓比值約為16.67,使得單輸入多輸出直流/直流轉換器10具有高昇壓比的特性。經實驗證明,其單輸入多輸出直流/直流轉換器10的平均轉換效率(conversion efficiency)可達到91%,且最高轉換效率高於95%。Generally, the DC input power source V FC is 12 volts, and the first output voltage V O1 and the second output voltage V O2 are 24 to 28 volts respectively through a preset ratio of the number of winding turns and the inductance of the auxiliary inductor L aux . With 200 volts, the invention is not limited thereto. Among them, the auxiliary battery's floating charging voltage range is 24~28 volts, in which the maximum service life of the auxiliary battery can be maintained. In addition, since the boost ratio of the low voltage circuit 100 to the auxiliary circuit 102 is about 2.33, and the boost ratio of the low voltage circuit 100 to the high voltage circuit 108 is about 16.67, the single input multiple output DC/DC converter 10 has a high step-up ratio. characteristic. It has been experimentally proved that the average conversion efficiency of the single-input multi-output DC/DC converter 10 can reach 91%, and the highest conversion efficiency is higher than 95%.

[單輸入多輸出直流/直流轉換器之另一實施例][Another Embodiment of Single Input Multiple Output DC/DC Converter]

請參照圖6,圖6係繪示依據本發明之另一實施例之單輸入多輸出直流/直流轉換器之電路示意圖。如圖6所示,單輸入多輸出直流/直流轉換器10’包括低壓電路100、控制電路101、輔助電路102、輔助子電路102’、箝制電路104、中壓電路106以及高壓電路108,其低壓電路100、控制電路101、輔助電路102、箝制電路104、中壓電路106以及高壓電路108之各部元件的耦接關係與實際操作相同於前一實施例所述,故不再贅述。Please refer to FIG. 6. FIG. 6 is a schematic circuit diagram of a single input multi-output DC/DC converter according to another embodiment of the present invention. As shown in FIG. 6, the single-input multiple-output DC/DC converter 10' includes a low-voltage circuit 100, a control circuit 101, an auxiliary circuit 102, an auxiliary sub-circuit 102', a clamp circuit 104, a medium voltage circuit 106, and a high-voltage circuit 108. The coupling relationship between the components of the low-voltage circuit 100, the control circuit 101, the auxiliary circuit 102, the clamp circuit 104, the intermediate voltage circuit 106, and the high-voltage circuit 108 is the same as that of the previous embodiment, and therefore will not be described again.

唯一不同的是,單輸入多輸出直流/直流轉換器10’更設計有輔助子電路102’,此輔助子電路102’包括輔助子電感L aux 、二極體D 1 (第五二極體)、濾波電容C’O1 以及第三輸出負載R O1 。其中,輔助子電路102’的輔助子電感L aux 的第一端耦接於一次側繞組LP 的第二端、開關元件S1 第一端以及輔助電感Laux 第一端的接點上。除此之外,輔助子電路102’中的其餘各個電子元件之耦接關係相同於輔助電路102,故不再贅述。換句話說,輔助子電路102’除了耦接低壓電路100外,更與輔助電路102並聯。The only difference is that a single input multiple output DC / DC converter 10 'is designed with further auxiliary sub-circuit 102', the auxiliary sub-circuit 102 'includes an auxiliary sub inductance L' aux, diode D '1 (a fifth diode Body), filter capacitor C' O1 and third output load R ' O1 . The first end of the auxiliary sub-inductor L ' aux of the auxiliary sub-circuit 102' is coupled to the second end of the primary side winding L P , the first end of the switching element S 1 , and the contact of the first end of the auxiliary inductor L aux . . In addition, the coupling relationship of the remaining electronic components in the auxiliary sub-circuit 102' is the same as that of the auxiliary circuit 102, and therefore will not be described again. In other words, the auxiliary sub-circuit 102' is connected in parallel with the auxiliary circuit 102 in addition to the low voltage circuit 100.

值得注意的是,輔助子電感L aux 亦是用以暫時地儲存第一磁場所釋放的能量。因此,當輔助子電感L aux 與第三輸出負載R O1 之間的跨壓大於二極體D 1 的導通電壓時,則輸出輔助子電流i O1 至第三輸出負載R O1 ,使得第三輸出負載R O1 承載輔助子電壓V O1 。當輔助子電感L aux 與第三輸出負載R O1 之間的跨壓小於二極體D 1 的導通電壓時,則輔助子電流i O1 將會因為二極體D 1 的截止而轉變為零。另外,由於此輔助子電路102’其電路詳細的運作模式相同於先前輔助電路102所述,故此單輸入多輸出直流/直流轉換器10’於各階段的操作模式在此便不再贅述。It is worth noting that the auxiliary inductor L ' aux is also used to temporarily store the energy released by the first magnetic field. Thus, when the pressure is greater than across the diode D between the helper inductance L 'aux third output load R' O1 'when an ON voltage, the output current of the auxiliary sub-i' O1 to the third output load R 'O1 So that the third output load R ' O1 carries the auxiliary sub-voltage V ' O1 . When helper inductance L 'aux third output load R' is smaller than the cross voltage between O1 diode D 'when a turn-on voltage, the helper current I' as will O1 'off diode D 1 And the transition to zero. In addition, since the auxiliary sub-circuit 102' has a detailed operation mode of the circuit as described in the previous auxiliary circuit 102, the operation mode of the single-input multi-output DC/DC converter 10' at each stage will not be described herein.

由於,輔助子電路102’可以對另一個輔助電源充電。因此,於實務上,第三輸出負載R O1 可以為另一個蓄電池,若此蓄電池的浮充電壓範圍為12~14伏特,透過設計輔助子電感L aux 的電感值,使得第三輸出負載R O1 所承載的輔助子電壓V O1 為12~14伏特,進而對此蓄電池進行充電,但本發明不以此為限。Because the auxiliary sub-circuit 102' can charge another auxiliary power source. Thus, in practice, the third output load R 'O1 battery may be another, if this battery float voltage range of 12 to 14 volts, by designing helper inductance L' aux inductance value such that the third output load The auxiliary sub-voltage V ' O1 carried by R ' O1 is 12-14 volts, and the battery is charged, but the invention is not limited thereto.

如此一來,在直流輸入電源VFC 對第一輸出負載RO1 (例如為蓄電池)充電的當下,亦同時對第三輸出負載RO1 (例如為另一個蓄電池)進行充電,並且此單輸入多輸出直流/直流轉換器10’可藉由繞組圈數比值,據以輸出較高的電壓位準的第二輸出電壓VO2 至第二輸出負載RO2 (例如為移動載具的馬達)。In this way, when the DC input power source V FC charges the first output load R O1 (for example, the battery), the third output load R O1 (for example, another battery) is simultaneously charged, and the single input is more The output DC/DC converter 10' can output a second voltage output V O2 of a higher voltage level to a second output load R O2 (eg, a motor that moves the carrier) by a winding turns ratio.

另外,雖然本發明實施例之單輸入多輸出直流/直流轉換器10’僅設置一個輔助子電路102’,然而此輔助子電路102’並不限定為一個,於所屬技術領域具通常知識者可以視情況需求,將複數個輔助子電路耦接於低壓電路100、輔助電路102以及輔助子電路102’的接點上,如此一來,即可對複數個不同負載提供複數個輔助子電壓。因此由上述可知,此單輸入多輸出直流/直流轉換器10’具有可擴充性。In addition, although the single-input multi-output DC/DC converter 10' of the embodiment of the present invention is provided with only one auxiliary sub-circuit 102', the auxiliary sub-circuit 102' is not limited to one, and those skilled in the art may Depending on the situation, a plurality of auxiliary sub-circuits are coupled to the contacts of the low voltage circuit 100, the auxiliary circuit 102, and the auxiliary sub-circuit 102', so that a plurality of auxiliary sub-voltages can be provided for a plurality of different loads. Therefore, as can be seen from the above, the single-input multi-output DC/DC converter 10' has scalability.

[實施例的可能功效][Possible efficacy of the embodiment]

綜上所述,本發明實施例提供一種單輸入多輸出直流/直流轉換器,透過輔助電路與箝制電路之設置,以及運用耦合電感的漏感特性,使得單輸入多輸出直流/直流轉換器具有低昇壓比的輸出電壓源與高昇壓比的輸出電壓源。此外,耦合電感的漏感特性更能使開關元件達到零電流切換的效果,進而減少了切換損失以及降低二極體之逆向恢復電流以降低電路中電磁干擾(electromagnetic interference,EMI)問題。另外,本發明實施例之單輸入多輸出直流/直流轉換器僅需使用一組開關元件,即可使單輸入多輸出直流/直流轉換器輸出多組不同電壓位準的電壓源,不僅降低了電路設計的成本,更增加了實際應用上的實用性。In summary, the embodiment of the present invention provides a single-input multi-output DC/DC converter, which has a single-input multi-output DC/DC converter through the setting of an auxiliary circuit and a clamp circuit, and the leakage inductance characteristic of the coupled inductor. Low step-up ratio output voltage source with high step-up ratio output voltage source. In addition, the leakage inductance of the coupled inductor enables the switching element to achieve zero current switching, thereby reducing switching losses and reducing the reverse recovery current of the diode to reduce electromagnetic interference (EMI) in the circuit. In addition, the single-input multi-output DC/DC converter of the embodiment of the present invention only needs to use one set of switching elements, so that the single-input multi-output DC/DC converter can output multiple sets of voltage sources with different voltage levels, which not only reduces the voltage source. The cost of circuit design increases the practicality of practical applications.

以上所述僅為本發明之實施例,其並非用以侷限本發明之專利範圍。The above description is only an embodiment of the present invention, and is not intended to limit the scope of the invention.

10、10’‧‧‧單輸入多輸出直流/直流轉換器10, 10'‧‧‧ Single Input Multiple Output DC/DC Converter

11‧‧‧第一電路11‧‧‧First circuit

12‧‧‧第二電路12‧‧‧Second circuit

100‧‧‧低壓電路100‧‧‧Low voltage circuit

101‧‧‧控制電路101‧‧‧Control circuit

102‧‧‧輔助電路102‧‧‧Auxiliary circuit

102’‧‧‧輔助子電路102'‧‧‧Auxiliary Subcircuit

104‧‧‧箝制電路104‧‧‧Clamping circuit

106‧‧‧中壓電路106‧‧‧ medium voltage circuit

108‧‧‧高壓電路108‧‧‧High voltage circuit

VFC ‧‧‧直流輸入電源V FC ‧‧‧DC input power supply

S1 ‧‧‧開關元件S 1 ‧‧‧Switching elements

LP ‧‧‧一次側繞組L P ‧‧‧ primary winding

Lmp ‧‧‧一次側激磁電感L mp ‧‧‧primary side magnetizing inductance

Lkp ‧‧‧一次側漏電感L kp ‧‧‧Side side leakage inductance

LS ‧‧‧二次側繞組L S ‧‧‧ secondary winding

Laux ‧‧‧輔助電感L aux ‧‧‧Auxiliary inductance

L aux ‧‧‧輔助子電感L ' aux ‧‧‧Auxiliary inductor

D1 ~D4 、D 1 ‧‧‧二極體D 1 ~ D 4 , D ' 1 ‧ ‧ diode

CFC 、CO1 、CO2 、C O1 ‧‧‧濾波電容C FC , C O1 , C O2 , C ' O1 ‧‧‧ Filter Capacitor

C1 ‧‧‧箝制電容C 1 ‧‧‧Clamping capacitor

C2 ‧‧‧中壓電容C 2 ‧‧‧ medium voltage capacitor

i O1i O2i FCi C1i Lpi Lmpi Lkpi Lsi S1i D2i D3i D4i Lauxi O1 ‧‧‧電流 i O1 , i O2 , i FC , i C1 , i Lp , i Lmp , i Lkp , i Ls , i S1 , i D2 , i D3 , i D4 , i Laux , i ' O1 ‧‧‧ Current

VO1 、VO2 、VFC 、VC1 、VC2v Lpv Lmpv Lkpv Lsv S1v D1v D2v D3v D4v Laux 、V O1 ‧‧‧電壓V O1 , V O2 , V FC , V C1 , V C2 , v Lp , v Lmp , v Lkp , v Ls , v S1 , v D1 , v D2 , v D3 , v D4 , v Laux , V ' O1 ‧ ‧Voltage

RO1 、RO2 、R O1 ‧‧‧負載R O1 , R O2 , R ' O1 ‧‧‧ load

TS ‧‧‧切換週期T S ‧‧‧Switching cycle

d1 ‧‧‧責任週期d 1 ‧‧ ‧Liability cycle

t 0 ~t 6 ‧‧‧時間區間 t 0 ~ t 6 ‧‧‧ time interval

圖1係繪示依據本發明之一實施例之單輸入多輸出直流/直流轉換器之功能方塊圖。1 is a functional block diagram of a single input multiple output DC/DC converter in accordance with an embodiment of the present invention.

圖2係繪示依據本發明之一實施例之單輸入多輸出直流/直流轉換器之電路示意圖。2 is a circuit diagram of a single-input multiple-output DC/DC converter according to an embodiment of the present invention.

圖3係繪示依據本發明之一實施例之單輸入多輸出直流/直流轉換器之等效電路圖。3 is an equivalent circuit diagram of a single-input multiple-output DC/DC converter according to an embodiment of the present invention.

圖4-1係繪示依據本發明之一實施例之單輸入多輸出直流/直流轉換器之電流時序波形圖。4-1 is a diagram showing current timing waveforms of a single-input multiple-output DC/DC converter according to an embodiment of the present invention.

圖4-2係繪示依據本發明之一實施例之單輸入多輸出直流/直流轉換器之電壓時序波形圖。4-2 is a diagram showing voltage timing waveforms of a single-input multiple-output DC/DC converter according to an embodiment of the present invention.

圖5A至5F係繪示依據本發明之一實施例之單輸入多輸出直流/直流轉換器之電路操作模式示意圖。5A to 5F are schematic diagrams showing circuit operation modes of a single-input multi-output DC/DC converter according to an embodiment of the present invention.

圖6係繪示依據本發明之另一實施例之單輸入多輸出直流/直流轉換器之電路示意圖。6 is a circuit diagram of a single-input multiple-output DC/DC converter according to another embodiment of the present invention.

10...單輸入多輸出直流/直流轉換器10. . . Single Input Multiple Output DC/DC Converter

100...低壓電路100. . . Low voltage circuit

101...控制電路101. . . Control circuit

102...輔助電路102. . . Auxiliary circuit

104...箝制電路104. . . Clamp circuit

106...中壓電路106. . . Medium voltage circuit

108...高壓電路108. . . High voltage circuit

VFC ...直流輸入電源V FC . . . DC input power

S1 ...開關元件S 1 . . . Switching element

LP ...一次側繞組L P . . . Primary winding

LS ...二次側繞組L S . . . Secondary winding

Laux ...輔助電感L aux . . . Auxiliary inductance

D1 ~D4 ...二極體D 1 ~ D 4 . . . Dipole

CFC 、CO1 、CO2 ...濾波電容C FC , C O1 , C O2 . . . Filter capacitor

C1 ...箝制電容C 1 . . . Clamping capacitor

C2 ...中壓電容C 2 . . . Medium voltage capacitor

i O1i O2i FC ...電流 i O1 , i O2 , i FC . . . Current

VO1 、VO2 ...電壓V O1 , V O2 . . . Voltage

RO1 、RO2 ...負載R O1 , R O2 . . . load

Claims (9)

一種單輸入多輸出直流/直流轉換器,包括:一低壓電路,具有一一次側繞組與一開關元件,該開關元件耦接於該一次側繞組與一接地端之間,且受控於一控制信號而導通,於該開關元件導通時,該一次側繞組將能量儲存於一第一磁場中,於該開關元件截止時,該一次側繞組釋放儲存於該第一磁場中所儲存的能量;一控制電路,耦接該開關元件,該控制電路透過輸出該控制信號,據以控制該開關元件的責任週期;一輔助電路,耦接該低壓電路,該輔助電路具有一輔助電感,於該開關元件截止時儲存該一次側繞組所釋放的能量,並依據該一次側繞組和該輔助電感釋放的能量輸出一第一輸出電壓;一中壓電路,耦接該低壓電路,具有一二次側繞組與一中壓電容,該二次側繞組透過與該一次側繞組互感產生一電勢差,於該開關元件導通時,該二次側繞組儲存該電勢差於該中壓電容,於該開關元件截止時,該二次側繞組續流該電勢差至該中壓電容;以及一高壓電路,耦接該中壓電路,用以接收該中壓電容中的能量,據以輸出一第二輸出電壓;其中,該第二輸出電壓大於該第一輸出電壓。A single-input multi-output DC/DC converter includes: a low-voltage circuit having a primary side winding and a switching element coupled between the primary side winding and a ground, and controlled by a The control signal is turned on. When the switching element is turned on, the primary side winding stores energy in a first magnetic field, and when the switching element is turned off, the primary side winding releases energy stored in the first magnetic field; a control circuit coupled to the switching element, the control circuit is configured to control a duty cycle of the switching element by outputting the control signal; an auxiliary circuit coupled to the low voltage circuit, the auxiliary circuit having an auxiliary inductor, the switch The energy released by the primary winding is stored when the component is turned off, and a first output voltage is output according to the energy released by the primary winding and the auxiliary inductor; a medium voltage circuit coupled to the low voltage circuit has a secondary side a winding and a medium voltage capacitor, the secondary side winding generates a potential difference through mutual inductance with the primary side winding, and the secondary side winding is stored when the switching element is turned on And storing the potential difference in the medium voltage capacitor, wherein the secondary side winding continues to flow the potential difference to the medium voltage capacitor when the switching element is turned off; and a high voltage circuit coupled to the medium voltage circuit for receiving the The energy in the medium voltage capacitor outputs a second output voltage; wherein the second output voltage is greater than the first output voltage. 如申請專利範圍第1項所述之單輸入多輸出直流/直流轉換器,其中該輔助電路更包括一第一二極體,該第一二極體的陽極端耦接該輔助電感,藉由該第一二極體的順向導通使該該輔助電路輸出該第一輸出電壓。The single-input multi-output DC/DC converter according to claim 1, wherein the auxiliary circuit further includes a first diode, and the anode end of the first diode is coupled to the auxiliary inductor. The forward conduction of the first diode causes the auxiliary circuit to output the first output voltage. 如申請專利範圍第1項所述之單輸入多輸出直流/直流轉換器,其中所述之單輸入多輸出直流/直流轉換器更包括:一箝制電路,耦接於該低壓電路與該中壓電路之間,具有一箝制電容,該箝制電容儲存該開關元件瞬間截止時的該一次側繞組之漏感能量,並於該一次側繞組之漏感能量續流完畢後,該箝制電容釋放所儲存的能量至該中壓電路。The single-input multi-output DC/DC converter according to claim 1, wherein the single-input multi-output DC/DC converter further includes: a clamping circuit coupled to the low voltage circuit and the medium voltage Between the circuits, there is a clamp capacitor that stores the leakage inductance energy of the primary side winding when the switching element is momentarily turned off, and the clamp capacitor discharges after the leakage current of the primary side winding is freewheeled. Store the energy to the medium voltage circuit. 如申請專利範圍第3項所述之單輸入多輸出直流/直流轉換器,其中該箝制電路更包括一第二二極體,該箝制電容與該第二二極體的陽極端分別耦接於該一次側繞組的第一端與第二端,而該第二二極體的陰極端耦接該箝制電容,於該開關元件截止的瞬間順向導通該第二二極體,使該一次側繞組之漏感能量儲存至該箝制電容,於該一次側繞組之漏感能量續流完畢時,截止該第二二極體。The single-input multi-output DC/DC converter of claim 3, wherein the clamping circuit further includes a second diode coupled to the anode end of the second diode a first end and a second end of the primary winding, and a cathode end of the second diode is coupled to the clamping capacitor, and the second diode is turned on at the moment when the switching element is turned off, so that the primary side The leakage inductance energy of the winding is stored to the clamp capacitor, and the second diode is cut off when the leakage inductance energy of the primary side winding is completed. 如申請專利範圍第4項所述之單輸入多輸出直流/直流轉換器,其中該二次側繞組的第一端耦接該第二二極體與該箝制電容的接點,該二次側繞組的第二端耦接該中壓電容,且該中壓電路的一第三二極體的陽極端耦接該二次側繞組的第一端,該第三二極體的陰極端耦接該中壓電容與該高壓電路的接點,藉由該二次側繞組所產生的該電勢差,順向導通該第三二極體。The single-input multi-output DC/DC converter according to claim 4, wherein the first end of the secondary winding is coupled to the junction of the second diode and the clamp capacitor, the secondary side The second end of the winding is coupled to the medium voltage capacitor, and the anode end of a third diode of the medium voltage circuit is coupled to the first end of the secondary winding, and the cathode end of the third diode The junction of the medium voltage capacitor and the high voltage circuit is coupled to the third diode by the potential difference generated by the secondary winding. 如申請專利範圍第5項所述之單輸入多輸出直流/直流轉換器,其中高壓電路包括一第四二極體,該第四二極體的陽極端耦接該第三二極體的陰極端與該中壓電容的接點,於該二次側繞組續流完畢時,截止該第三二極體並順向導通該第四二極體。The single-input multi-output DC/DC converter according to claim 5, wherein the high voltage circuit comprises a fourth diode, and the anode end of the fourth diode is coupled to the cathode of the third diode The contact with the intermediate voltage capacitor is extreme, and when the secondary winding is freewheeled, the third diode is turned off and the fourth diode is turned on. 如申請專利範圍第1項所述之單輸入多輸出直流/直流轉換器,其中該低壓電路耦接該輔助電路的交接處具有一接點,至少一輔助子電路耦接該接點,且每一該輔助子電路具有一輔助子電感,於該開關元件截止時,該至少一輔助子電感儲存該一次側繞組所釋放的能量,並依據該一次側繞組和該至少一輔助子電感釋放的能量輸出至少一輔助子電壓。The single-input multi-output DC/DC converter according to claim 1, wherein the interface of the low-voltage circuit coupled to the auxiliary circuit has a contact, and at least one auxiliary sub-circuit is coupled to the contact, and each The auxiliary sub-circuit has an auxiliary sub-inductor. When the switching element is turned off, the at least one auxiliary sub-inductor stores the energy released by the primary-side winding, and the energy released according to the primary-side winding and the at least one auxiliary inductor At least one auxiliary sub-voltage is output. 如申請專利範圍第7項所述之單輸入多輸出直流/直流轉換器,其中每一該輔助子電路更包括一第五二極體,每一該第五二極體的陽極端耦接每一該輔助子電感,藉由每一該第五二極體的順向導通使該至少一輔助子電路輸出該至少一輔助子電壓。The single-input multi-output DC/DC converter according to claim 7, wherein each of the auxiliary sub-circuits further includes a fifth diode, and the anode end of each of the fifth diodes is coupled to each And the auxiliary sub-inductor outputs the at least one auxiliary sub-voltage by the at least one auxiliary sub-circuit by the forward conduction of each of the fifth diodes. 如申請專利範圍第1項所述之單輸入多輸出直流/直流轉換器,其中該開關元件係為一反並接二極體之金氧半場效電晶體(MOSFET),該開關元件的汲極耦接該一次側繞組,該開關元件的源極耦接該接地端,該開關元件的閘極耦接該控制電路。The single-input multi-output DC/DC converter according to claim 1, wherein the switching element is a reverse-parallel diode-shaped metal oxide half field effect transistor (MOSFET), and the switching element has a drain The primary side winding is coupled, the source of the switching element is coupled to the ground, and the gate of the switching element is coupled to the control circuit.
TW101115364A 2012-04-30 2012-04-30 Single-input multiple-output dc/dc converter TWI458236B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101115364A TWI458236B (en) 2012-04-30 2012-04-30 Single-input multiple-output dc/dc converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101115364A TWI458236B (en) 2012-04-30 2012-04-30 Single-input multiple-output dc/dc converter

Publications (2)

Publication Number Publication Date
TW201345121A TW201345121A (en) 2013-11-01
TWI458236B true TWI458236B (en) 2014-10-21

Family

ID=49990373

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101115364A TWI458236B (en) 2012-04-30 2012-04-30 Single-input multiple-output dc/dc converter

Country Status (1)

Country Link
TW (1) TWI458236B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI572132B (en) * 2016-02-17 2017-02-21 國立勤益科技大學 Dual-output power converter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200713677A (en) * 2005-09-27 2007-04-01 Ching-Hsiung Liu A voltage supplying apparatus using a fuel cell
TW201019586A (en) * 2008-11-14 2010-05-16 Univ Hungkuang High-efficiency boost power converter
TW201023487A (en) * 2008-12-02 2010-06-16 Delta Electronics Inc Multi-output power converting circuit
TW201101664A (en) * 2009-06-30 2011-01-01 Niko Semiconductor Co Ltd Secondary side post regulator of flyback power converter with multiple outputs
CN102224665A (en) * 2009-02-02 2011-10-19 三垦电气株式会社 Switching power supply device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200713677A (en) * 2005-09-27 2007-04-01 Ching-Hsiung Liu A voltage supplying apparatus using a fuel cell
TW201019586A (en) * 2008-11-14 2010-05-16 Univ Hungkuang High-efficiency boost power converter
TW201023487A (en) * 2008-12-02 2010-06-16 Delta Electronics Inc Multi-output power converting circuit
CN102224665A (en) * 2009-02-02 2011-10-19 三垦电气株式会社 Switching power supply device
TW201101664A (en) * 2009-06-30 2011-01-01 Niko Semiconductor Co Ltd Secondary side post regulator of flyback power converter with multiple outputs

Also Published As

Publication number Publication date
TW201345121A (en) 2013-11-01

Similar Documents

Publication Publication Date Title
Gu et al. High boost ratio hybrid transformer DC–DC converter for photovoltaic module applications
Hsieh et al. High-conversion-ratio bidirectional DC–DC converter with coupled inductor
US7768807B2 (en) Bidirectional no load control with overshoot protection
Hu et al. A three-state switching boost converter mixed with magnetic coupling and voltage multiplier techniques for high gain conversion
CN104716841A (en) Multiple-output dc/dc converter and power supply having the same
KR101734210B1 (en) Bidirectional dc-dc converter
CN107919797B (en) Wide input range interleaving parallel connection type high-efficiency boost direct-current converter for fuel cell
CN113394975B (en) High-voltage gain DC-DC direct current converter
Patel et al. Bi-directional DC-DC converter for battery charging—Discharging applications using buck-boost switch
KR20150040115A (en) Motor driving apparatus
TWI418130B (en) Step-up conversion circuit
TWM447043U (en) High efficient high step-up dc converter with interleaved soft switching mechanism
US9356527B2 (en) Multi-mode active clamping power converter
Huynh et al. Three-port converter with leakage inductance energy recycling for high step-down applications
Liang et al. High step-up three-port converter for renewable energy systems
TWI458236B (en) Single-input multiple-output dc/dc converter
KR20120010636A (en) Boost converter
Malek et al. A novel coupled-inductor soft-switching bidirectional dc-dc converter with high voltage conversion ratio
KR101734211B1 (en) Bidirectional harge/discharge circuit of battery
Hwu et al. An isolated high step-up converter with continuous input current and LC snubber
TWI477047B (en) High boost power conversion device
Chen et al. A isolated bidirectional interleaved flyback converter for battery backup system application
TWI581552B (en) Boost converter
CN106787721B (en) Three-level Buck converter of zero-voltage switch and control method thereof
TW201703414A (en) Direct current power converter

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees