TWI581552B - Boost converter - Google Patents
Boost converter Download PDFInfo
- Publication number
- TWI581552B TWI581552B TW104139629A TW104139629A TWI581552B TW I581552 B TWI581552 B TW I581552B TW 104139629 A TW104139629 A TW 104139629A TW 104139629 A TW104139629 A TW 104139629A TW I581552 B TWI581552 B TW I581552B
- Authority
- TW
- Taiwan
- Prior art keywords
- coupled inductor
- inductor
- energy storage
- storage unit
- coupled
- Prior art date
Links
Landscapes
- Dc-Dc Converters (AREA)
Description
本發明有關於一種升壓轉換裝置,且特別是有關於電性連接直流電源之升壓轉換裝置。 The present invention relates to a boost converter, and more particularly to a boost converter for electrically connecting a DC power source.
在許多發電系統,如風力發電、太陽能發電、燃料電池及複合動力車等,皆需使用具有高電壓轉換比(或稱高升壓比)的升壓轉換器,來提升前級發電端的輸出電壓至較高電壓以提供給後級負載端用電。除了在上述的電源系統外,具有高電壓轉換比之升壓轉換器亦常應用在如不斷電系統(UPS)、車用之氣體放電式頭燈(HID)等其它場合。 In many power generation systems, such as wind power, solar power, fuel cells, and hybrid vehicles, boost converters with high voltage conversion ratios (or high boost ratios) are needed to boost the output voltage of the front-end power generation terminals. To a higher voltage to provide power to the downstream load. In addition to the power supply system described above, boost converters with high voltage conversion ratios are also commonly used in other applications such as uninterruptible power systems (UPS), gas discharge headlamps (HID) for vehicles.
有鑑於此,許多學者提出了許多新型的高升壓型轉換器,例如:使用耦合電感之匝數比來提升電壓增益比;或是將耦合電感搭配倍壓電路,或搭配切換式電容來進行電壓疊加以更進一步地提高電壓轉換比。但以上所提之提高電壓轉換比之方法皆各有其缺點,包括:有的技術採用的電路元件過多致使設計複雜造成電路成本提高、有的技術採用的是浮接式開關而必須隔離驅動;有的技術需額外增加開關來實現主動箝位電路,導致電路分析不易。藉此於使用上升壓轉換裝置往往會造成不便性。 In view of this, many scholars have proposed many new high-boost converters, such as using the turns ratio of the coupled inductor to increase the voltage-gain ratio; or using the coupled inductor with a voltage doubler circuit, or with a switched capacitor. Voltage superposition is performed to further increase the voltage conversion ratio. However, the methods for improving the voltage conversion ratio mentioned above have their own shortcomings, including: some technologies use too many circuit components to cause complicated design, resulting in increased circuit cost, and some technologies use floating-type switches and must be isolated and driven; Some technologies require additional switches to implement active clamping circuits, which makes circuit analysis difficult. This inconvenience is often caused by the use of the upper boost converter.
本發明在於提供一種升壓轉換裝置,透過兩組耦合電感的二次側採用倍壓電路之設計,致使該些儲能單元疊加以達成高昇壓比,並提升升壓轉換裝置的使用方便性。 The invention provides a boost converter device, which adopts a design of a double voltage circuit through a secondary side of two sets of coupled inductors, so that the energy storage units are superimposed to achieve a high boost ratio, and the use efficiency of the boost converter is improved. .
本發明提出一種升壓轉換裝置,電性連接一直流電源。升壓 轉換裝置包括一第一耦合電感、一第二耦合電感、一第三耦合電感、一第四耦合電感、一開關模組、一第一儲能單元、一第二儲能單元、一第三儲能單元、一第四儲能單元及一第五儲能單元。第一耦合電感經由一第一漏電感電性連接直流電源,用以與一第二耦合電感電性耦合,且第一耦合電感與一第一電感並聯。第三耦合電感電性連接直流電源,用以與一第四耦合電感電性耦合,且第三耦合電感與一第二電感並聯。開關模組電性連接第一耦合電感及第三耦合電感。第一儲能單元經由一第一單向導通單元而電性連接第二耦合電感。第二儲能單元經由一第二單向導通單元而電性連接第二耦合電感。第三儲能單元經由一第二漏電感電性連接第三耦合電感,並經由一第三單向導通單元而電性連接第一耦合電感。第四儲能單元經由一第四單向導通單元而電性連接第四耦合電感。第五儲能單元經由一第五單向導通單元而電性連接第四耦合電感。其中,第一儲能單元、第二儲能單元、第三儲能單元、第四儲能單元及第五儲能單元串聯,而串聯的該些儲能單元與一負載並聯。 The invention provides a boost converter device electrically connected to a DC power source. Boost The conversion device includes a first coupled inductor, a second coupled inductor, a third coupled inductor, a fourth coupled inductor, a switch module, a first energy storage unit, a second energy storage unit, and a third storage The energy unit, a fourth energy storage unit and a fifth energy storage unit. The first coupled inductor is electrically connected to the DC power supply via a first leakage inductance for electrically coupling with a second coupled inductor, and the first coupled inductor is coupled in parallel with a first inductor. The third coupled inductor is electrically connected to the DC power source for electrically coupling with a fourth coupled inductor, and the third coupled inductor is coupled in parallel with a second inductor. The switch module is electrically connected to the first coupled inductor and the third coupled inductor. The first energy storage unit is electrically connected to the second coupled inductor via a first one-way communication unit. The second energy storage unit is electrically connected to the second coupled inductor via a second one-way communication unit. The third energy storage unit is electrically connected to the third coupled inductor via a second leakage inductance, and is electrically connected to the first coupled inductor via a third one-way conduction unit. The fourth energy storage unit is electrically connected to the fourth coupled inductor via a fourth one-way conduction unit. The fifth energy storage unit is electrically connected to the fourth coupled inductor via a fifth one-way conduction unit. The first energy storage unit, the second energy storage unit, the third energy storage unit, the fourth energy storage unit, and the fifth energy storage unit are connected in series, and the energy storage units connected in series are connected in parallel with a load.
本發明的具體手段為利用一種升壓轉換裝置,透過開關模組以切換升壓轉換裝置內迴路的充、放電運作,並於兩組耦合電感的二次側採用倍壓電路之設計,致使該些儲能單元疊加以達成高昇壓比。另外,在開關模組截止時,本實施例利用第三儲能單元回收第一及第二漏電感的能量,藉此能有效地箝制開關模組之開關上的電壓。如此一來,本實施例確實適合應用於高升壓的應用並提升升壓轉換裝置的使用方便性。 The specific method of the present invention is to use a boost converter to pass the switching module to switch the charging and discharging operations of the inner loop of the boost converter, and to design the voltage doubler circuit on the secondary side of the two sets of coupled inductors. The energy storage units are superimposed to achieve a high boost ratio. In addition, when the switch module is turned off, the third energy storage unit recovers the energy of the first and second leakage inductors, thereby effectively clamping the voltage on the switch of the switch module. As such, the present embodiment is indeed suitable for application in high boost applications and improves the usability of the boost converter.
以上之概述與接下來的實施例,皆是為了進一步說明本發明之技術手段與達成功效,然所敘述之實施例與圖式僅提供參考說明用,並非用來對本發明加以限制者。 The above summary and the following examples are intended to be illustrative of the invention and the embodiments of the invention.
1‧‧‧升壓轉換裝置 1‧‧‧Boost converter
L1‧‧‧第一耦合電感 L1‧‧‧First coupled inductor
L2‧‧‧第二耦合電感 L2‧‧‧Second coupled inductor
L3‧‧‧第三耦合電感 L3‧‧‧ Third coupled inductor
L4‧‧‧第四耦合電感 L4‧‧‧4th coupled inductor
LF‧‧‧第一電感 LF‧‧‧first inductance
LS‧‧‧第二電感 LS‧‧‧second inductance
Lk1‧‧‧第一漏電感 Lk1‧‧‧First Leakage Inductance
Lk2‧‧‧第二漏電感 Lk2‧‧‧Second leakage inductance
DS‧‧‧直流電源 DS‧‧‧DC power supply
SM‧‧‧開關模組 SM‧‧‧ switch module
S1‧‧‧第一開關 S1‧‧‧ first switch
S2‧‧‧第二開關 S2‧‧‧ second switch
C1~C5‧‧‧儲能單元、電容 C1~C5‧‧‧ energy storage unit, capacitor
D1~D5‧‧‧單向導通單元、二極體 D1~D5‧‧‧One-way unit, diode
RL‧‧‧負載 RL‧‧ load
VGS1、VGS2、VDS1、VDS2、Vo‧‧‧電壓 VGS1, VGS2, VDS1, VDS2, Vo‧‧‧ voltage
IL1、IL2、ILF、ILS、ID1、ID2、ID3、ID4、ID5、IN1、IN2、Ii、Io‧‧‧電流 IL1, IL2, ILF, ILS, ID1, ID2, ID3, ID4, ID5, IN1, IN2, Ii, Io‧‧‧ Current
T、Ton‧‧‧區間 T, Ton‧‧‧
t0、t1、t2、t3‧‧‧時間 T0, t1, t2, t3‧‧‧ time
圖1為本發明一實施例之升壓轉換裝置之功能方塊示意圖。 1 is a functional block diagram of a boost converter device according to an embodiment of the present invention.
圖2為根據圖1之本發明另一實施例之升壓轉換裝置之電路圖。 2 is a circuit diagram of a boost converter device according to another embodiment of the present invention.
圖3為根據圖2之本發明另一實施例之升壓轉換裝置之開關模組處於導通狀態之操作示意圖。 FIG. 3 is a schematic diagram of the operation of the switch module of the boost converter according to another embodiment of the present invention in an on state.
圖4為根據圖2之本發明另一實施例之升壓轉換裝置之開關模組處於截止狀態之操作示意圖。 4 is a schematic diagram of the operation of the switch module of the boost converter according to another embodiment of the present invention in an off state.
圖5為根據圖2之本發明另一實施例之升壓轉換裝置之開關模組處於截止狀態之操作示意圖。 FIG. 5 is a schematic diagram of the operation of the switch module of the boost converter according to another embodiment of the present invention in an off state.
圖6為根據圖2之本發明另一實施例之升壓轉換裝置的電壓及電流波形圖。 Figure 6 is a diagram showing voltage and current waveforms of a boost converter according to another embodiment of the present invention.
圖7為本發明另一實施例之升壓轉換裝置比較習知升壓轉換電路之輸出電壓-責任週期之關係曲線圖。 FIG. 7 is a graph showing a relationship between an output voltage and a duty cycle of a conventional boost converter circuit according to another embodiment of the present invention.
圖1為本發明一實施例之升壓轉換裝置之功能方塊示意圖。請參閱圖1。一種升壓轉換裝置1,電性連接一直流電源DS。升壓轉換裝置1包括一第一耦合電感L1、一第二耦合電感L2、一第三耦合電感L3、一第四耦合電感L4、一開關模組SM、一第一儲能單元C1、一第二儲能單元C2、一第三儲能單元C3、一第四儲能單元C4、一第五儲能單元C5及一控制模組(未繪示)。在實務上,升壓轉換裝置1例如為升壓轉換電路(boost circuit)、直流-直流升壓轉換電路、或是具倍壓電路之切換耦合電感式升壓電路,用以將低電壓轉換為高電壓輸出。本實施例不限制升壓轉換裝置1的態樣。 1 is a functional block diagram of a boost converter device according to an embodiment of the present invention. Please refer to Figure 1. A boost converter device 1 is electrically connected to a DC power source DS. The boost converter device 1 includes a first coupled inductor L1, a second coupled inductor L2, a third coupled inductor L3, a fourth coupled inductor L4, a switch module SM, a first energy storage unit C1, and a first The second energy storage unit C2, a third energy storage unit C3, a fourth energy storage unit C4, a fifth energy storage unit C5, and a control module (not shown). In practice, the boost converter 1 is, for example, a boost circuit, a DC-DC boost converter circuit, or a switched-coupled inductive boost circuit with a voltage doubler circuit for converting a low voltage. For high voltage output. This embodiment does not limit the aspect of the boost converter device 1.
直流電源DS例如為低電壓的直流電,例如透過太陽能板光伏發電、風力、水力或自然能源發電、蓄電池或其他發電之直流電源。另直流電源DS經由本實施例之升壓轉換裝置1升壓轉換後, 以輸出高電壓給負載RL。本實施例不限制直流電源DS的態樣。 The DC power source DS is, for example, a low-voltage DC power source, such as a photovoltaic power source through solar panels, wind power, water or natural energy power generation, a battery or other power source. After the DC power source DS is boosted and converted by the boost converter device 1 of the embodiment, The output voltage is applied to the load RL. This embodiment does not limit the aspect of the DC power source DS.
詳細來說,第一耦合電感L1經由一第一漏電感Lk1電性連接直流電源DS,用以與一第二耦合電感L2電性耦合,且第一耦合電感L1與一第一電感LF並聯。另外,第三耦合電感L3電性連接直流電源DS,用以與一第四耦合電感L4電性耦合,且第三耦合電感L3與一第二電感LS並聯。其中,第一電感LF及第二電感LS例如為變壓器內的激磁電感。本實施例不限制第一電感LF及第二電感LS的態樣。 In detail, the first coupled inductor L1 is electrically coupled to the DC power source DS via a first leakage inductor Lk1 for electrically coupling with a second coupled inductor L2, and the first coupled inductor L1 is coupled in parallel with a first inductor LF. In addition, the third coupled inductor L3 is electrically connected to the DC power source DS for electrically coupling with a fourth coupled inductor L4, and the third coupled inductor L3 is coupled in parallel with a second inductor LS. The first inductor LF and the second inductor LS are, for example, magnetizing inductances in the transformer. This embodiment does not limit the aspects of the first inductor LF and the second inductor LS.
在實務上,第一耦合電感L1及第二耦合電感L2例如為第一組變壓器。第三耦合電感L3及第四耦合電感L4例如為第二組變壓器。其中,第一耦合電感L1及第二耦合電感L2例如分別配置於第一組變壓器的一次側繞組及二次側繞組。第三耦合電感L3及第四耦合電感L4例如分別配置於第二組變壓器的一次側繞組及二次側繞組。本實施例不限制第一、第二、第三及第四耦合電感L1、L2、L3、L4的態樣。 In practice, the first coupled inductor L1 and the second coupled inductor L2 are, for example, a first set of transformers. The third coupled inductor L3 and the fourth coupled inductor L4 are, for example, a second set of transformers. The first coupled inductor L1 and the second coupled inductor L2 are respectively disposed, for example, in the primary side winding and the secondary side winding of the first group of transformers. The third coupled inductor L3 and the fourth coupled inductor L4 are respectively disposed, for example, in the primary side winding and the secondary side winding of the second group of transformers. This embodiment does not limit the aspects of the first, second, third, and fourth coupled inductors L1, L2, L3, and L4.
值得一提的是,第一耦合電感L1與第二耦合電感L2的匝數比為1比N,第三耦合電感L3與第四耦合電感L4的匝數比為1比N,N為大於零的數值。也就是說,這兩組變壓器的匝數比係為一次側繞組的匝數等於或小於二次側繞組的匝數,例如為1:1、1:2、1:3或1:N。舉例來說,N例如為2。其中,第一與第二耦合電感L1、L2的匝數比相同於第三與第四耦合電感L3、L4的匝數比,匝數比均為1:2。 It is worth mentioning that the turns ratio of the first coupled inductor L1 and the second coupled inductor L2 is 1 to N, and the turns ratio of the third coupled inductor L3 to the fourth coupled inductor L4 is 1 to N, and N is greater than zero. The value. That is to say, the turns ratio of the two sets of transformers is such that the number of turns of the primary side winding is equal to or smaller than the number of turns of the secondary side winding, for example, 1:1, 1:2, 1:3 or 1:N. For example, N is for example 2. The turns ratio of the first and second coupled inductors L1 and L2 is the same as the turns ratio of the third and fourth coupled inductors L3 and L4, and the turns ratio is 1:2.
在實務上,變壓器具有對應磁性耦合之一次側繞組及二次側繞組。其中,一次側繞組例如為第一或第三耦合電感L1、L3。二次側繞組例如為第二或第四耦合電感L2、L4。變壓器透過磁性耦合之一次側繞組及二次側繞組來傳遞或轉換能量,例如二次側繞組的線圈匝數多於一次側繞組的線圈匝數,藉此變壓器調升電壓,例如將15伏特的電壓調升為400V伏特的電壓。當然,一次 側繞組的線圈匝數可以等於二次側繞組的線圈匝數,藉此變壓器傳遞能量。 In practice, the transformer has a primary side winding and a secondary side winding corresponding to magnetic coupling. The primary side winding is, for example, the first or third coupled inductor L1, L3. The secondary side winding is, for example, a second or fourth coupled inductor L2, L4. The transformer transmits or converts energy through the magnetically coupled primary side winding and the secondary side winding, for example, the number of turns of the secondary side winding is greater than the number of turns of the primary side winding, whereby the transformer raises the voltage, for example, 15 volts. The voltage is regulated to a voltage of 400V volts. Of course, once The number of turns of the side windings can be equal to the number of turns of the secondary windings, whereby the transformer transfers energy.
此外,第一漏電感Lk1電性連接第一耦合電感L1。第二漏電感Lk2電性連接第三耦合電感L3。其中,第一漏電感Lk1所儲存的電能並無法傳遞至第二耦合電感L2。第二漏電感Lk2所儲存的電能並無法傳遞至第四耦合電感L4。因此,第一及第二漏電感Lk1、Lk2所儲存的電能係用以導通或截止第三導向導通單元。例如,第一及第二漏電感Lk1、Lk2所儲存的電能達到一可導通二極體之電壓,藉此導通第三導向導通單元。反之,第一及第二漏電感Lk1、Lk2所儲存的電能被釋放完後,藉此截止第三單向導通單元D3。其中,第三單向導通單元D3例如為飛輪二極體。 In addition, the first leakage inductance Lk1 is electrically connected to the first coupled inductor L1. The second leakage inductance Lk2 is electrically connected to the third coupled inductor L3. The electric energy stored by the first leakage inductance Lk1 cannot be transmitted to the second coupled inductor L2. The electric energy stored in the second leakage inductance Lk2 cannot be transmitted to the fourth coupled inductor L4. Therefore, the electrical energy stored by the first and second leakage inductances Lk1, Lk2 is used to turn on or off the third conduction conducting unit. For example, the electrical energy stored by the first and second leakage inductances Lk1, Lk2 reaches a voltage of a conductive diode, thereby turning on the third conduction conducting unit. On the contrary, after the electric energy stored in the first and second leakage inductances Lk1, Lk2 is released, the third unidirectional conduction unit D3 is turned off. The third unidirectional conduction unit D3 is, for example, a flywheel diode.
開關模組SM電性連接第一耦合電感L1、第三耦合電感L3、第一漏電感Lk1及第二漏電感Lk2。在實務上,開關模組SM例如透過複數個以上的功率電晶體、閘極電晶體或場效電晶體來實現。其中,開關模組SM受控於控制模組所輸出的控制訊號、脈衝寬度調變訊號或同步訊號。本實施例不限制開關模組SM的態樣。 The switch module SM is electrically connected to the first coupled inductor L1, the third coupled inductor L3, the first leakage inductor Lk1, and the second leakage inductor Lk2. In practice, the switch module SM is implemented, for example, by a plurality of power transistors, gate transistors, or field effect transistors. The switch module SM is controlled by the control signal, the pulse width modulation signal or the synchronization signal output by the control module. This embodiment does not limit the aspect of the switch module SM.
值得一提的是,控制模組電性連接開關模組SM。在實務上,控制模組例如為中央處理單元(CPU)、微處理單元(MCU)、數位訊號處理器(Digital Signal Processor)或控制晶片,用以執行升壓轉換裝置1內的訊號運算、處理與控制開關切換作業。本實施例不限制控制模組的態樣。 It is worth mentioning that the control module is electrically connected to the switch module SM. In practice, the control module is, for example, a central processing unit (CPU), a micro processing unit (MCU), a digital signal processor (Digital Signal Processor), or a control chip for performing signal calculation and processing in the boost converter device 1. Switch the job with the control switch. This embodiment does not limit the aspect of the control module.
進一步來說,控制模組透過同步訊號以控制開關模組SM中的複數個以上的開關的同步導通或同步截止。其中,同步訊號例如包括複數個以上相同的脈衝寬度調變訊號。也就是說,開關模組SM中的這些開關根據同步訊號將同時導通或同時截止。 Further, the control module controls the synchronous conduction or the synchronous cutoff of the plurality of switches in the switch module SM through the synchronization signal. The synchronization signal includes, for example, a plurality of identical pulse width modulation signals. That is to say, the switches in the switch module SM will be turned on or off simultaneously according to the synchronization signal.
一第一儲能單元C1經由一第一單向導通單元D1而電性連接第二耦合電感L2。一第二儲能單元C2經由一第二單向導通單元 D2而電性連接第二耦合電感L2。一第三儲能單元C3經由一第二漏電感Lk2電性連接第三耦合電感L3,並經由一第三單向導通單元D3而電性連接第一耦合電感L1。一第四儲能單元C4經由一第四單向導通單元D4而電性連接第四耦合電感L4。一第五儲能單元C5經由一第五單向導通單元D5而電性連接第四耦合電感L4。 A first energy storage unit C1 is electrically connected to the second coupled inductor L2 via a first one-way conduction unit D1. a second energy storage unit C2 via a second one-way unit D2 is electrically connected to the second coupled inductor L2. A third energy storage unit C3 is electrically connected to the third coupled inductor L3 via a second leakage inductance Lk2, and is electrically connected to the first coupled inductor L1 via a third one-way conduction unit D3. A fourth energy storage unit C4 is electrically connected to the fourth coupled inductor L4 via a fourth unidirectional conduction unit D4. A fifth energy storage unit C5 is electrically connected to the fourth coupled inductor L4 via a fifth one-way conduction unit D5.
在實務上,第一、第二、第三、第四及第五儲能單元C1、C2、C3、C4、C5例如分別透過電容或電解電容來實現。本實施例不限制第一、第二、第三、第四及第五儲能單元C1、C2、C3、C4、C5的態樣。其中,第一儲能單元C1、第二儲能單元C2、第三儲能單元C3、第四儲能單元C4及第五儲能單元C5串聯,而串聯的該些儲能單元C1、C2、C3、C4、C5與一負載RL並聯。也就是說,本實施例可提供較高的輸出電壓給負載RL。 In practice, the first, second, third, fourth, and fifth energy storage units C1, C2, C3, C4, and C5 are respectively realized by a capacitor or an electrolytic capacitor. This embodiment does not limit the aspects of the first, second, third, fourth, and fifth energy storage units C1, C2, C3, C4, and C5. The first energy storage unit C1, the second energy storage unit C2, the third energy storage unit C3, the fourth energy storage unit C4, and the fifth energy storage unit C5 are connected in series, and the energy storage units C1 and C2 are connected in series. C3, C4, C5 are connected in parallel with a load RL. That is, this embodiment can provide a higher output voltage to the load RL.
另外,第一、第二、第三、第四及第五單向導通單元D1、D2、D3、D4、D5例如分別透過二極體來實現。其中,該些單向導通單元D1、D2、D3、D4、D5例如為升壓轉換電路中的單向導通的元件,藉此限制電流於升壓轉換電路中的流向。本實施例不限制第一、第二、第三、第四及第五單向導通單元D1、D2、D3、D4、D5的態樣。 In addition, the first, second, third, fourth, and fifth unidirectional conduction units D1, D2, D3, D4, and D5 are respectively realized by a diode. The one-way conduction units D1, D2, D3, D4, and D5 are, for example, unidirectional components in the boost converter circuit, thereby limiting the flow of current in the boost converter circuit. This embodiment does not limit the aspects of the first, second, third, fourth, and fifth unidirectional conduction units D1, D2, D3, D4, and D5.
值得一提的是,第一及第二單向導通單元D1、D2、第一及第二儲能單元C1、C2係為一全橋式倍壓電路。而第四及第五單向導通單元D4、D5、第四及第五儲能單元C4、C5係為另一全橋式倍壓電路。也就是說,本實施例係具有兩組倍壓電路。其中,全橋式倍壓電路於本實施例之升壓轉換裝置1的運作說明如下:舉例來說,開關模組SM處於導通狀態時,第一耦合電感L1與第三耦合電感L3、第一漏電感Lk1、第二漏電感Lk2、第一電感LF及第二電感LS分別處於充電狀態。其中,第一耦合電感L1將電能傳遞至第二耦合電感L2,藉此導通第一單向導通單元D1以對第一儲能單元C1充電。同理可知,第三耦合電感L3將電能 傳遞至第四耦合電感L4,藉此導通第四單向導通單元D4以對第四儲能單元C4充電。而第二、第三及第五儲能單元C2、C3、C5係處於放電狀態,藉此供電給負載RL。也就是說,第一及第四儲能單元C1、C4係處於充電狀態。而第二、第三及第五儲能單元C2、C3、C5係處於放電狀態,藉此供電給負載RL。 It is worth mentioning that the first and second one-way conduction units D1, D2, the first and second energy storage units C1, C2 are a full bridge type voltage doubler circuit. The fourth and fifth one-way conduction units D4, D5, the fourth and fifth energy storage units C4, C5 are another full bridge type voltage doubler circuit. That is to say, this embodiment has two sets of voltage doubler circuits. The operation of the boost converter device 1 of the present embodiment is as follows: for example, when the switch module SM is in an on state, the first coupled inductor L1 and the third coupled inductor L3, A leakage inductance Lk1, a second leakage inductance Lk2, a first inductance LF, and a second inductance LS are respectively in a charged state. The first coupled inductor L1 transfers the electrical energy to the second coupled inductor L2, thereby turning on the first unidirectional conduction unit D1 to charge the first energy storage unit C1. Similarly, the third coupled inductor L3 will be electric energy. It is passed to the fourth coupled inductor L4, thereby turning on the fourth unidirectional conduction unit D4 to charge the fourth energy storage unit C4. The second, third, and fifth energy storage units C2, C3, and C5 are in a discharged state, thereby supplying power to the load RL. That is, the first and fourth energy storage units C1, C4 are in a state of charge. The second, third, and fifth energy storage units C2, C3, and C5 are in a discharged state, thereby supplying power to the load RL.
反之,開關模組SM處於截止狀態時,第一及第二漏電感Lk1、Lk2釋放電能,藉此導通第三單向導通單元D3。其中,第一及第二漏電感Lk1、Lk2所釋放的電能將對第三儲能單元C3充電,藉此電能得以回收以及避免電能累積在開關模組SM上,因此達到有效箝制開關模組SM上的電壓。 On the other hand, when the switch module SM is in the off state, the first and second leakage inductances Lk1, Lk2 release electric energy, thereby turning on the third one-way conduction unit D3. The electric energy released by the first and second leakage inductances Lk1 and Lk2 charges the third energy storage unit C3, whereby the electric energy is recovered and the electric energy is accumulated on the switch module SM, thereby achieving the effective clamp switch module SM. The voltage on it.
另外,第一電感LF的一部分電能透過第三單向導通單元D3以對第三儲能單元C3充電。第一電感LF的另一部分電能以及直流電源DS的電能將透過第一耦合電感L1轉換至第二耦合電感L2,藉此導通第二單向導通單元D2以對第二儲能單元C2充電。同理可知,第二電感LS的一部分電能透過第三單向導通單元D3以對第三儲能單元C3充電。第二電感LS的另一部分電能以及直流電源DS的電能將透過第三耦合電感L3轉換至第四耦合電感L4,藉此導通第五單向導通單元D5以對第五儲能單元C5充電。也就是說,第二、第三及第五儲能單元C2、C3、C5係處於充電狀態,而第一及第四儲能單元C1、C4係處於放電狀態,以供電給負載RL。 In addition, a part of the electric energy of the first inductance LF is transmitted through the third one-way conduction unit D3 to charge the third energy storage unit C3. Another portion of the electrical energy of the first inductance LF and the electrical energy of the direct current power supply DS will be converted to the second coupled inductor L2 through the first coupled inductor L1, thereby turning on the second unidirectional conduction unit D2 to charge the second energy storage unit C2. Similarly, a part of the electric energy of the second inductor LS passes through the third one-way conduction unit D3 to charge the third energy storage unit C3. Another portion of the electrical energy of the second inductor LS and the electrical energy of the direct current power source DS are converted to the fourth coupled inductor L4 through the third coupled inductor L3, thereby turning on the fifth unidirectional conduction unit D5 to charge the fifth energy storage unit C5. That is to say, the second, third and fifth energy storage units C2, C3, C5 are in a charging state, and the first and fourth energy storage units C1, C4 are in a discharging state to supply power to the load RL.
之後,開關模組SM仍處於截止狀態時,第一及第二漏電感Lk1、Lk2的電能釋放完畢,第三單向導通單元D3截止。第一電感LF所儲存的電能全部透過第一耦合電感L1轉換至第二耦合電感L2,藉此導通第二單向導通單元D2以對第二儲能單元C2充電。同理可知,第二電感LS所儲存的電能全部透過第三耦合電感L3轉換至第四耦合電感L4,藉此導通第五單向導通單元D5以對第五儲能單元C5充電。也就是說,第二及第五儲能單元C2、C5 係處於充電狀態,而第一、第三及第四儲能單元C1、C3、C4係處於放電狀態,以供電給負載RL。 Thereafter, when the switch module SM is still in the off state, the power of the first and second leakage inductances Lk1, Lk2 is released, and the third one-way conduction unit D3 is turned off. The electric energy stored in the first inductor LF is all converted to the second coupled inductor L2 through the first coupled inductor L1, thereby turning on the second unidirectional conduction unit D2 to charge the second energy storage unit C2. Similarly, the electrical energy stored in the second inductor LS is all converted to the fourth coupled inductor L4 through the third coupled inductor L3, thereby turning on the fifth unidirectional conduction unit D5 to charge the fifth energy storage unit C5. In other words, the second and fifth energy storage units C2, C5 The system is in a state of charge, and the first, third, and fourth energy storage units C1, C3, and C4 are in a discharged state to supply power to the load RL.
基於上述,本實施例利用切換電感式升壓型轉換器為架構,並配合於變壓器的二次側採用倍壓電路,致使該些儲能單元C1、C2、C3、C4、C5疊加來達成高昇壓比。其中,切換電感式升壓型轉換器的架構例如包括開關模組SM、第一耦合電感L1、第一漏電感Lk1、第一電感LF、第三單向導通單元D3、第三儲能單元C3、第三耦合電感L3、第二漏電感Lk2及第二電感LS。另外,在開關模組SM截止時,本實施例利用第三儲能單元C3回收第一及第二漏電感Lk1、Lk2的能量,藉此能有效地箝制開關模組SM的功率開關上的電壓。且由於其輸出負載端上的電壓是透過該些.儲能單元C1、C2、C3、C4、C5疊加,可達到有效減少各儲能單元C1、C2、C3、C4、C5上耐壓的問題,如此可以減小各儲能單元C1、C2、C3、C4、C5的體積,並可使的在挑選各儲能單元C1、C2、C3、C4、C5上有更大的餘裕。 Based on the above, the embodiment uses a switched inductive boost converter as a structure, and a double voltage circuit is used on the secondary side of the transformer, so that the energy storage units C1, C2, C3, C4, and C5 are superimposed to achieve High boost ratio. The architecture of the switched inductive boost converter includes, for example, a switch module SM, a first coupled inductor L1, a first leakage inductance Lk1, a first inductor LF, a third one-way conduction unit D3, and a third energy storage unit C3. The third coupled inductor L3, the second leakage inductor Lk2, and the second inductor LS. In addition, when the switch module SM is turned off, the energy of the first and second leakage inductances Lk1 and Lk2 is recovered by the third energy storage unit C3, thereby effectively clamping the voltage on the power switch of the switch module SM. . And because the voltage on the output load end is superimposed through the energy storage units C1, C2, C3, C4, and C5, the problem of effectively reducing the withstand voltage of each of the energy storage units C1, C2, C3, C4, and C5 can be achieved. In this way, the volume of each of the energy storage units C1, C2, C3, C4, and C5 can be reduced, and a larger margin can be obtained in selecting each of the energy storage units C1, C2, C3, C4, and C5.
此外,傳統升壓型電源轉換器因操作於高昇壓比時,因電路中寄生元件的影響下,在工作週期過大時將造成很大的導通損失;因此傳統升壓型電源轉換器之開關模組之工作週期受到限制,使傳統升壓型電源轉換器無法達到更高昇壓比的問題。再者,因為開關模組上所承受的電壓應力等於輸出負載端上的輸出電壓,故須選用較高電壓應力的但導通電阻較大的開關,如此將會增加開關上導通的損失,故不適合應用在高昇壓的應用。然而,本實施例可克服上述傳統升壓型電源轉換器所產生的問題。 In addition, when the conventional step-up power converter operates at a high step-up ratio, due to the parasitic components in the circuit, it will cause a large conduction loss when the duty cycle is too large; therefore, the switching mode of the conventional step-up power converter The duty cycle of the group is limited, making the conventional step-up power converter unable to achieve the higher boost ratio. Furthermore, since the voltage stress on the switch module is equal to the output voltage on the output load terminal, it is necessary to use a switch with a higher voltage stress but a higher on-resistance, which will increase the conduction loss on the switch, so it is not suitable. Applied in high boost applications. However, this embodiment can overcome the problems caused by the conventional boost type power converter described above.
圖2為根據圖1之本發明另一實施例之升壓轉換裝置之電路圖。請參閱圖2。為了方便說明,本實施例之開關模組SM係包括二個開關S1、S2來說明。開關模組SM包括一第一開關S1及一第二開關S2。為了方便說明,耦合電感L1、L2、L3、L4的第一 端例如為電流輸入端,以及耦合電感L1、L2、L3、L4的第二端例如為電流輸出端來說明。 2 is a circuit diagram of a boost converter device according to another embodiment of the present invention. Please refer to Figure 2. For convenience of description, the switch module SM of the present embodiment includes two switches S1 and S2 for explanation. The switch module SM includes a first switch S1 and a second switch S2. For convenience of explanation, the first of the coupled inductors L1, L2, L3, L4 The terminal is, for example, a current input terminal, and the second terminal of the coupling inductors L1, L2, L3, L4 is, for example, a current output terminal.
圖2所繪示之第一、第二、第三、第四及第五單向導通單元分別為一二極體D1、D2、D3、D4、D5。第一、第二、第三、第四及第五儲能單元分別為一電容C1、C2、C3、C4、C5。第一開關S1及第二開關S2分別為一閘極電晶體。其中,第一開關S1的汲極電性連接第一漏電感Lk1。第一漏電感Lk1電性連接第一耦合電感L1的第一端。第一開關S1的源極電性連接第二漏電感Lk2。第二漏電感Lk2電性連接第三耦合電感L3的第一端。第二開關S2的汲極電性連接第一耦合電感L1的第二端。第二開關S2的源極電性連接第三耦合電感L3的第二端。 The first, second, third, fourth and fifth unidirectional conduction units shown in FIG. 2 are respectively a diode D1, D2, D3, D4, D5. The first, second, third, fourth and fifth energy storage units are respectively a capacitor C1, C2, C3, C4, C5. The first switch S1 and the second switch S2 are respectively a gate transistor. The drain of the first switch S1 is electrically connected to the first leakage inductance Lk1. The first leakage inductance Lk1 is electrically connected to the first end of the first coupled inductor L1. The source of the first switch S1 is electrically connected to the second leakage inductance Lk2. The second leakage inductance Lk2 is electrically connected to the first end of the third coupled inductor L3. The drain of the second switch S2 is electrically connected to the second end of the first coupled inductor L1. The source of the second switch S2 is electrically connected to the second end of the third coupled inductor L3.
本實施例之第一及第二電感LF、LS係操作於連續導通模式(CCM)。第一及第二電感LF、LS的電感值相同。輸出電容C1、C2、C3、C4、C5的電容值很大,可視為定電壓源。第一與第二耦合電感L1、L2的匝數比為1比N,第三與第四耦合電感L3、L4的匝數比為1比N,N為大於零的數值。其中,第一與第二耦合電感L1、L2的匝數比相同於第三與第四耦合電感L3、L4的匝數比。 The first and second inductors LF, LS of the present embodiment operate in a continuous conduction mode (CCM). The inductance values of the first and second inductors LF and LS are the same. The output capacitors C1, C2, C3, C4, and C5 have large capacitance values and can be regarded as constant voltage sources. The turns ratio of the first and second coupled inductors L1, L2 is 1 to N, and the turns ratio of the third and fourth coupled inductors L3, L4 is 1 to N, and N is a value greater than zero. The turns ratio of the first and second coupled inductors L1, L2 is the same as the turns ratio of the third and fourth coupled inductors L3, L4.
其中,控制模組輸出一同步訊號給開關模組SM的第一開關S1及第二開關S2,以控制第一開關S1及第二開關S2的同步導通或同步截止。也就是說,控制模組控制第一開關S1的導通或截止之脈衝寬度調變訊號,與控制第二開關S2的導通或截止之脈衝寬度調變訊號同步。 The control module outputs a synchronization signal to the first switch S1 and the second switch S2 of the switch module SM to control the synchronous conduction or synchronous cutoff of the first switch S1 and the second switch S2. That is to say, the control module controls the on/off pulse width modulation signal of the first switch S1 to be synchronized with the pulse width modulation signal that controls the on or off of the second switch S2.
第一耦合電感L1的第一端經由一第一漏電感Lk1而電性連接直流電源DS的陽極及開關模組SM的第一開關S1。第一耦合電感L1的第二端電性連接二極體D3的第一極及開關模組SM的第二開關S2。而第二耦合電感L2的第一端電性連接二極體D1及二極體D2之間。第二耦合電感L2的第二端電性連接電容C1及電 容C2之間。而第四耦合電感L4的第一端電性連接二極體D4及二極體D5之間。第四耦合電感L4的第二端電性連接電容C4及電容C5之間。 The first end of the first coupled inductor L1 is electrically connected to the anode of the DC power source DS and the first switch S1 of the switch module SM via a first leakage inductance Lk1. The second end of the first coupled inductor L1 is electrically connected to the first pole of the diode D3 and the second switch S2 of the switch module SM. The first end of the second coupled inductor L2 is electrically connected between the diode D1 and the diode D2. The second end of the second coupled inductor L2 is electrically connected to the capacitor C1 and the electric Between C2. The first end of the fourth coupled inductor L4 is electrically connected between the diode D4 and the diode D5. The second end of the fourth coupled inductor L4 is electrically connected between the capacitor C4 and the capacitor C5.
第三耦合電感L3的第一端經由一第二漏電感Lk2而電性連接開關模組SM的第一開關S1及電容C3。第三耦合電感L3的第二端電性連接直流電源DS的陰極及開關模組SM的第二開關S2。 The first end of the third coupled inductor L3 is electrically connected to the first switch S1 and the capacitor C3 of the switch module SM via a second leakage inductance Lk2. The second end of the third coupled inductor L3 is electrically connected to the cathode of the DC power source DS and the second switch S2 of the switch module SM.
舉例來說,第一及第二開關S1、S2處於導通狀態時,直流電源DS充電給第一耦合電感L1、第三耦合電感L3、第一漏電感Lk1、第二漏電感Lk2、第一電感LF與第二電感LS。其中,第一耦合電感L1轉換電能至第二耦合電感L2,電能流經二極體D1以對電容C1充電。同理,第三耦合電感L3轉換電能至第四耦合電感L4,電能流經二極體D4以對電容C4充電。也就是說,電容C1、C4係處於充電狀態。而電容C2、C3、C5係處於放電狀態,藉此供電給負載RL。 For example, when the first and second switches S1 and S2 are in an on state, the DC power source DS is charged to the first coupled inductor L1, the third coupled inductor L3, the first leakage inductor Lk1, the second leakage inductor Lk2, and the first inductor. LF and second inductor LS. The first coupled inductor L1 converts electrical energy to the second coupled inductor L2, and the electrical energy flows through the diode D1 to charge the capacitor C1. Similarly, the third coupled inductor L3 converts electrical energy to the fourth coupled inductor L4, and the electrical energy flows through the diode D4 to charge the capacitor C4. That is to say, the capacitors C1 and C4 are in a charged state. The capacitors C2, C3, and C5 are in a discharged state, thereby supplying power to the load RL.
第一及第二開關S1、S2處於截止狀態時,第一及第二漏電感Lk1、Lk2所儲存的電能將被釋放以導通二極體D3。第一電感LF的一部分電能以及直流電源DS的電能將對電容C3充電。其中,第一耦合電感L1轉換電能至第二耦合電感L2,電能流經二極體D2以對電容C2充電。同理,第三耦合電感L3轉換電能至第四耦合電感L4,電能流經二極體D5以對電容C5充電。也就是說,電容C2、C3、C5係處於充電狀態。而電容C1、C4係處於放電狀態,藉此供電給負載RL。 When the first and second switches S1, S2 are in the off state, the electrical energy stored by the first and second leakage inductances Lk1, Lk2 will be released to turn on the diode D3. A portion of the electrical energy of the first inductance LF and the electrical energy of the direct current power supply DS will charge the capacitor C3. The first coupled inductor L1 converts electrical energy to the second coupled inductor L2, and the electrical energy flows through the diode D2 to charge the capacitor C2. Similarly, the third coupled inductor L3 converts electrical energy to the fourth coupled inductor L4, and the electrical energy flows through the diode D5 to charge the capacitor C5. That is to say, the capacitors C2, C3, and C5 are in a charged state. The capacitors C1 and C4 are in a discharged state, thereby supplying power to the load RL.
接著,第一及第二漏電感Lk1、Lk2所儲存的電能被釋放完後,二極體D3截止。第一電感LF放電給第一耦合電感L1,第一耦合電感L1轉換電能至第二耦合電感L2,電能經二極體D2以對電容C2充電。同理,第二電感LS放電給第三耦合電感L3,第三耦合電感L3轉換電能至第四耦合電感L4,電能經二極體D5以對電容C5充電。也就是說,電容C2、C5係處於充電狀態。而電容 C1、C3、C4係處於放電狀態,藉此供電給負載RL。 Then, after the electric energy stored in the first and second leakage inductances Lk1, Lk2 is released, the diode D3 is turned off. The first inductor LF is discharged to the first coupled inductor L1, and the first coupled inductor L1 converts the electrical energy to the second coupled inductor L2, and the electrical energy is passed through the diode D2 to charge the capacitor C2. Similarly, the second inductor LS is discharged to the third coupled inductor L3, and the third coupled inductor L3 converts the electric energy to the fourth coupled inductor L4, and the electric energy is charged to the capacitor C5 via the diode D5. That is to say, the capacitors C2 and C5 are in a charged state. Capacitance C1, C3, and C4 are in a discharged state, thereby supplying power to the load RL.
接下來,進一步說明升壓轉換裝置1的細部運作情形。 Next, the detailed operation of the boost converter device 1 will be further explained.
圖3為根據圖2之本發明另一實施例之升壓轉換裝置之開關模組處於導通狀態之操作示意圖。請參閱圖3。並請配合圖6之電壓及電流波形之時序圖。 FIG. 3 is a schematic diagram of the operation of the switch module of the boost converter according to another embodiment of the present invention in an on state. Please refer to Figure 3. Please also cooperate with the timing diagram of the voltage and current waveforms in Figure 6.
於區間一(t0~t1),t0≦時間t<t1。當時間t=t0時,第一開關S1和第二開關S2同時導通,二極體D2、D3、D5逆向偏壓截止。輸入電壓跨於一次側繞組之第一及第三耦合電感L1、L3上,能量以磁能的方式儲存在第一和第二電感LF、LS。同時一次側繞組之能量將傳遞至二次側繞組之第二及第四耦合電感L2、L4上,並分別透過二極體D1、D4分別對輸出電容C1、C4充電,並對負載RL提供能量。第一電感LF和第二電感LS上的電流ILF和ILS波形呈線性上升波形,二次側繞組之第二及第四耦合電感L2、L4之電流IN1、IN2波形亦呈線性上升波形,如圖6所繪示。 In interval one (t0~t1), t0≦ time t<t1. When the time t=t0, the first switch S1 and the second switch S2 are simultaneously turned on, and the diodes D2, D3, and D5 are reverse biased off. The input voltage is across the first and third coupled inductors L1, L3 of the primary winding, and the energy is stored in magnetic energy at the first and second inductances LF, LS. At the same time, the energy of the primary winding is transmitted to the second and fourth coupled inductors L2 and L4 of the secondary winding, and respectively charges the output capacitors C1 and C4 through the diodes D1 and D4, respectively, and supplies energy to the load RL. . The currents ILF and ILS on the first inductor LF and the second inductor LS have a linear rising waveform, and the waveforms of the currents IN1 and IN2 of the second and fourth coupled inductors L2 and L4 of the secondary winding also have a linear rising waveform, as shown in the figure. 6 is drawn.
圖4為根據圖2之本發明另一實施例之升壓轉換裝置之開關模組處於截止狀態之操作示意圖。請參閱圖4。並請配合圖6之電壓及電流波形之時序圖。 4 is a schematic diagram of the operation of the switch module of the boost converter according to another embodiment of the present invention in an off state. Please refer to Figure 4. Please also cooperate with the timing diagram of the voltage and current waveforms in Figure 6.
於區間二(t1~t2),t1≦時間t<t2。當時間t=t1時,第一及第二開關S1、S2同時截止,二極體D1和D4逆向偏壓截止。因第一和第二漏電感Lk1、Lk2釋放能量而迫使二極體D3導通。由於第一和第二漏電感Lk1、Lk2之能量會釋放到輸出電容C3上,能量得以回收,不致累積在第一及第二開關S1、S2上,因而能夠有效地箝制第一及第二開關S1、S2上的電壓。而第一電感LF及第二電感LS的一部份能量透過二極體D3對輸出電容C3充電,同時將另一部份的能量與輸入電壓所提供的能量傳遞給二次側繞組之第二和第四耦合電感L2、L4,透過二極體D2和D5對輸出電容C2和C5充電,並對負載RL提供能量。 In interval two (t1~t2), t1≦ time t<t2. When the time t=t1, the first and second switches S1 and S2 are simultaneously turned off, and the diodes D1 and D4 are reverse biased off. The diode D3 is forced to conduct due to the release of energy by the first and second leakage inductances Lk1, Lk2. Since the energy of the first and second leakage inductances Lk1, Lk2 is released to the output capacitor C3, the energy is recovered and does not accumulate on the first and second switches S1, S2, thereby effectively clamping the first and second switches The voltage on S1 and S2. A part of the energy of the first inductor LF and the second inductor LS charges the output capacitor C3 through the diode D3, and transmits the energy of the other part and the energy provided by the input voltage to the second winding of the secondary side. And the fourth coupled inductors L2, L4, the output capacitors C2 and C5 are charged through the diodes D2 and D5, and the load RL is energized.
此時電流ILF、ILS波形呈線性下降波形。二次側繞組之第二和第四耦合電感L2、L4的電流IN1、IN2波形分別會呈線性上升波形。這是因為第一電感LF上的電流ILF會等於第一漏電感Lk1上的電流IL1加上一次側繞組之第一耦合電感L1上的電流。又因為第一電感LF電流ILF下降之斜率小於第一漏電感Lk1上的電流IL1下降的斜率,故二次側繞組之第二耦合電感L2電流波形會呈線性上升波形,並映射回一次側繞組之第一耦合電感L1。 At this time, the current ILF and ILS waveforms are linearly falling. The waveforms of the currents IN1, IN2 of the second and fourth coupled inductors L2, L4 of the secondary winding respectively have a linear rising waveform. This is because the current ILF on the first inductance LF is equal to the current IL1 on the first leakage inductance Lk1 plus the current on the first coupling inductance L1 of the primary side winding. Moreover, since the slope of the first inductor LF current ILF decreases is smaller than the slope of the current IL1 drop of the first leakage inductor Lk1, the second coupled inductor L2 current waveform of the secondary winding has a linear rising waveform and is mapped back to the primary winding. The first coupled inductor L1.
同理可知,第二電感LS上的電流ILS會等於第二漏電感Lk2上的電流IL2加上一次側繞組之第三耦合電感L3上的電流。又因為第二電感LS電流ILS下降之斜率小於第二漏電感Lk2上的電流IL2下降的斜率,故二次側繞組之第四耦合電感L4電流波形會呈線性上升波形,並映射回一次側繞組之第三耦合電感L3,如圖6所繪示。 Similarly, the current ILS on the second inductor LS is equal to the current IL2 on the second leakage inductance Lk2 plus the current on the third coupled inductor L3 of the primary winding. Because the slope of the second inductor LS current ILS decreases is smaller than the slope of the current IL2 drop of the second leakage inductor Lk2, the fourth coupled inductor L4 current waveform of the secondary winding has a linear rising waveform and is mapped back to the primary winding. The third coupled inductor L3 is as shown in FIG.
圖5為根據圖2之本發明另一實施例之升壓轉換裝置之開關模組處於截止狀態之操作示意圖。請參閱圖5。並請配合圖6之電壓及電流波形之時序圖。 FIG. 5 is a schematic diagram of the operation of the switch module of the boost converter according to another embodiment of the present invention in an off state. Please refer to Figure 5. Please also cooperate with the timing diagram of the voltage and current waveforms in Figure 6.
於區間三(t2~t3),t2≦時間t<t3。第一和第二開關S1、S2保持截止狀態,二極體D1、D3、D4保持逆向偏壓截止。此時第一和第二漏電感Lk1、Lk2上儲存的能量釋放完,二極體D3上的電流降至零而截止。第一及第二電感LF、LS上的能量將全部透過一次側繞組之第一及第三耦合電感L1、L3傳遞至二次側繞組之第二及第四耦合電感L2、L4,以提供輸出負載RL能量。第一及第二電感LF、LS之電流ILF和ILS波形分別呈線性下降波形。二次側繞組的第二及第四耦合電感L2、L4的電流IN1和IN2波形呈線性下降波形,如圖6所繪示。 In interval three (t2~t3), t2≦ time t<t3. The first and second switches S1, S2 remain in an off state, and the diodes D1, D3, D4 remain reverse biased off. At this time, the energy stored on the first and second leakage inductances Lk1, Lk2 is released, and the current on the diode D3 falls to zero and is turned off. The energy on the first and second inductors LF, LS is transmitted through the first and third coupled inductors L1, L3 of the primary winding to the second and fourth coupled inductors L2, L4 of the secondary winding to provide an output. Load RL energy. The current ILF and ILS waveforms of the first and second inductors LF, LS have linearly falling waveforms, respectively. The waveforms of the currents IN1 and IN2 of the second and fourth coupled inductors L2, L4 of the secondary winding have a linear decreasing waveform, as shown in FIG.
當此區間三結束時,電路動作重回區間一,進入下一個切換週期。本實施例不限制升壓轉換裝置1的運作態樣。 When the interval three ends, the circuit action returns to the interval one and enters the next switching cycle. This embodiment does not limit the operational aspect of the boost converter device 1.
圖6為根據圖2之本發明另一實施例之升壓轉換裝置1的電 壓及電流波形圖。請參閱圖6。圖6所繪示兩條電壓波形圖及六條電流波形圖,包括一開關S1、S2的閘極電壓VGS1、VGS2波形;一開關S1、S2的汲極及源極之間的電壓VDS1、VDS2波形;一第一及第二漏電感Lk1、Lk2的電流IL1、IL2波形;一第一及第二電感LF、LS的電流ILF、ILS波形;一二極體D3的電流ID3波形;一二極體D1、D4的電流ID1、ID4波形;一二極體D2、D5的電流ID2、ID5波形;以及一第二及第四耦合電感L2、L4的電流IN1、IN2波形。其中,區間Ton為導通開關模組SM的導通時間。區間T為一開關模組SM之責任週期。本實施例不限制升壓轉換裝置1的電壓及電流波形的態樣。 Figure 6 is a diagram showing the power of the boost converter 1 according to another embodiment of the present invention Pressure and current waveforms. Please refer to Figure 6. Figure 6 shows two voltage waveform diagrams and six current waveform diagrams, including the gate voltages VGS1, VGS2 of a switch S1, S2; the voltages VDS1, VDS2 between the drain and the source of a switch S1, S2 Waveform; current IL1, IL2 waveforms of first and second leakage inductances Lk1, Lk2; current ILF, ILS waveforms of first and second inductances LF, LS; current ID3 waveform of one diode D3; The currents ID1 and ID4 waveforms of the bodies D1 and D4; the current ID2 and ID5 waveforms of the diodes D2 and D5; and the currents IN1 and IN2 of the second and fourth coupled inductors L2 and L4. The interval Ton is the conduction time of the conduction switch module SM. The interval T is the duty cycle of a switch module SM. This embodiment does not limit the state of the voltage and current waveforms of the boost converter device 1.
圖7為本發明另一實施例之升壓轉換裝置比較習知升壓轉換電路之輸出電壓-責任週期之關係曲線圖。請參閱圖7。圖7所繪示六條輸出電壓-責任週期之曲線,包括一本實施例之升壓轉換裝置之輸出電壓-責任週期之曲線、一習知倍壓耦合電感式升壓轉換器之輸出電壓-責任週期之曲線、一習知切換電感式升壓轉換器之輸出電壓-責任週期之曲線、一傳統升壓型轉換器之輸出電壓-責任週期之曲線、一習知疊接升壓型順向式轉換器之輸出電壓-責任週期之曲線、以及一習知疊接升壓型返馳式轉換器之輸出電壓-責任週期之曲線。 FIG. 7 is a graph showing a relationship between an output voltage and a duty cycle of a conventional boost converter circuit according to another embodiment of the present invention. Please refer to Figure 7. FIG. 7 is a graph showing six output voltage-responsibility periods, including an output voltage-response period curve of a boost converter of the present embodiment, and an output voltage of a conventional double-voltage coupled inductive boost converter. The duty cycle curve, the output voltage of a conventional switched inductive boost converter - the duty cycle curve, the output voltage of a conventional boost converter - the duty cycle curve, a conventional stacked boost type forward The output voltage-duty cycle curve of the converter, and the output voltage-response period curve of a conventional stacked boost-type flyback converter.
由圖7可知,本實施例可在較小的工作週期內達到升壓之目的。例如以升壓至200伏特為例,本實施例以約為0.5的責任週期即可達到升壓至200伏特。而習知倍壓耦合電感式升壓轉換器、習知切換電感式升壓轉換器、傳統升壓型轉換器、習知疊接升壓型順向式轉換器以及習知疊接升壓型返馳式轉換器分別須以約0.7~0.9的責任週期才可達到升壓至200伏特。簡單來說,本實施例改善其他升壓轉換器因須達到高升壓比,而使得工作週期過大導致效率不佳的問題。 As can be seen from FIG. 7, this embodiment can achieve the purpose of boosting in a small duty cycle. For example, in the case of boosting to 200 volts, this embodiment can achieve boosting to 200 volts with a duty cycle of about 0.5. Conventional double-voltage coupled inductive boost converters, conventional switched inductive boost converters, conventional boost converters, conventional stacked boost forward converters, and conventional stacked boost converters The flyback converters must be boosted to 200 volts with a duty cycle of approximately 0.7 to 0.9. In brief, this embodiment improves the problem that other boost converters have to achieve a high boost ratio, resulting in an excessively large duty cycle resulting in inefficient efficiency.
綜上所述,本發明為一種升壓轉換裝置,透過包括開關模組、 第一耦合電感、第一漏電感、第一電感、第三單向導通單元、第三儲能單元、第三耦合電感、第二漏電感及第二電感之切換電感式升壓型轉換器為架構,並於兩組耦合電感的二次側採用倍壓電路,致使該些儲能單元疊加以達成高昇壓比。另外,在開關模組截止時,本實施例利用第三儲能單元回收第一及第二漏電感的能量,藉此能有效地箝制開關模組之開關上的電壓。再者,由於其輸出負載端上的電壓是透過該些電容疊加,可達到有效減少各電容上耐壓的問題,如此可以減小各電容的體積。除此之外,本實施例更可透過匝數比來調整各電容上的分壓,讓開關模組之開關的電壓應力可限制在所需的範圍內,在挑選電路元件方面擁有極大的優勢。如此一來,本實施例確實適合應用於高升壓的應用並提升升壓轉換裝置的使用方便性。 In summary, the present invention is a boost converter device that includes a switch module, The first inductive inductor, the first leakage inductance, the first inductance, the third one-way conduction unit, the third energy storage unit, the third coupling inductance, the second leakage inductance, and the second inductance switching inductive boost converter are The structure uses a voltage doubler circuit on the secondary side of the two sets of coupled inductors, so that the energy storage units are superimposed to achieve a high boost ratio. In addition, when the switch module is turned off, the third energy storage unit recovers the energy of the first and second leakage inductors, thereby effectively clamping the voltage on the switch of the switch module. Moreover, since the voltage on the output load terminal is superimposed through the capacitors, the problem of effectively reducing the withstand voltage of each capacitor can be achieved, so that the volume of each capacitor can be reduced. In addition, in this embodiment, the voltage division on each capacitor can be adjusted through the turns ratio, so that the voltage stress of the switch of the switch module can be limited to a required range, and has great advantages in selecting circuit components. . As such, the present embodiment is indeed suitable for application in high boost applications and improves the usability of the boost converter.
以上所述僅為本發明之實施例,其並非用以侷限本發明之專利範圍。 The above description is only an embodiment of the present invention, and is not intended to limit the scope of the invention.
1‧‧‧升壓轉換裝置 1‧‧‧Boost converter
L1‧‧‧第一耦合電感 L1‧‧‧First coupled inductor
L2‧‧‧第二耦合電感 L2‧‧‧Second coupled inductor
L3‧‧‧第三耦合電感 L3‧‧‧ Third coupled inductor
L4‧‧‧第四耦合電感 L4‧‧‧4th coupled inductor
LF‧‧‧第一電感 LF‧‧‧first inductance
LS‧‧‧第二電感 LS‧‧‧second inductance
Lk1‧‧‧第一漏電感 Lk1‧‧‧First Leakage Inductance
Lk2‧‧‧第二漏電感 Lk2‧‧‧Second leakage inductance
DS‧‧‧直流電源 DS‧‧‧DC power supply
SM‧‧‧開關模組 SM‧‧‧ switch module
C1~C5‧‧‧儲能單元 C1~C5‧‧‧ energy storage unit
D1~D5‧‧‧單向導通單元 D1~D5‧‧‧One-way unit
RL‧‧‧負載 RL‧‧ load
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104139629A TWI581552B (en) | 2015-11-27 | 2015-11-27 | Boost converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104139629A TWI581552B (en) | 2015-11-27 | 2015-11-27 | Boost converter |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI581552B true TWI581552B (en) | 2017-05-01 |
TW201720037A TW201720037A (en) | 2017-06-01 |
Family
ID=59367257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104139629A TWI581552B (en) | 2015-11-27 | 2015-11-27 | Boost converter |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI581552B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI822501B (en) * | 2022-12-01 | 2023-11-11 | 國立臺灣科技大學 | Boost converter |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101702578B (en) * | 2009-12-07 | 2012-01-11 | 浙江大学 | Forward-flyback isolated type boost inverter realized by coupling inductors and application thereof |
TWI360284B (en) * | 2008-10-07 | 2012-03-11 | Univ Hungkuang | |
US8605467B2 (en) * | 2009-07-17 | 2013-12-10 | National Semiconductor Corporation | High step-up ratio soft-switched flyback converter |
TWI456886B (en) * | 2012-05-04 | 2014-10-11 | Nat Univ Tsing Hua | Inverter with soft-switching |
CN103368401B (en) * | 2012-04-09 | 2015-07-08 | 星博电子股份有限公司 | Power supply conversion device with control switch |
TWI495242B (en) * | 2013-10-09 | 2015-08-01 | Nat Univ Tsing Hua | Bidirectional dc-dc converter |
-
2015
- 2015-11-27 TW TW104139629A patent/TWI581552B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI360284B (en) * | 2008-10-07 | 2012-03-11 | Univ Hungkuang | |
US8605467B2 (en) * | 2009-07-17 | 2013-12-10 | National Semiconductor Corporation | High step-up ratio soft-switched flyback converter |
CN101702578B (en) * | 2009-12-07 | 2012-01-11 | 浙江大学 | Forward-flyback isolated type boost inverter realized by coupling inductors and application thereof |
CN103368401B (en) * | 2012-04-09 | 2015-07-08 | 星博电子股份有限公司 | Power supply conversion device with control switch |
TWI456886B (en) * | 2012-05-04 | 2014-10-11 | Nat Univ Tsing Hua | Inverter with soft-switching |
TWI495242B (en) * | 2013-10-09 | 2015-08-01 | Nat Univ Tsing Hua | Bidirectional dc-dc converter |
Non-Patent Citations (1)
Title |
---|
J-W. Baek, M-H. Ryoo, T-J. Kim, D-W. Yoo, and J-S. Kim "High Boost Converter Using Voltage multiplier," 31st Annual Conference of IEEE Industrial Electronics Society, pp. 567-572, 2005 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI822501B (en) * | 2022-12-01 | 2023-11-11 | 國立臺灣科技大學 | Boost converter |
Also Published As
Publication number | Publication date |
---|---|
TW201720037A (en) | 2017-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gu et al. | High boost ratio hybrid transformer DC–DC converter for photovoltaic module applications | |
Hu et al. | A three-state switching boost converter mixed with magnetic coupling and voltage multiplier techniques for high gain conversion | |
Chen et al. | A cascaded high step-up DC–DC converter with single switch for microsource applications | |
CN107231097B (en) | Power conversion device and method for installing the same | |
Leu et al. | A novel dual-inductor boost converter with ripple cancellation for high-voltage-gain applications | |
CN110224601B (en) | High-gain Boost converter based on three-winding coupling inductor and working method thereof | |
TWI682617B (en) | Interleaved ultra-high boost converter | |
CN110581649B (en) | High-gain soft-switching direct-current converter and control method thereof | |
CN103051179A (en) | High step-up ratio voltage doubling structure passive lossless clamped converter | |
TWI625033B (en) | Interleaved direct-current boost device | |
CN215934730U (en) | DC-DC converter with high step-up ratio | |
Chen et al. | High step-up interleaved converter with three-winding coupled inductors and voltage multiplier cells | |
TWI581552B (en) | Boost converter | |
CN217063567U (en) | Secondary boosting high-gain DC-DC converter of fuel cell system | |
CN110752752A (en) | High-transformation-ratio DC-DC converter and method suitable for photovoltaic direct-current boosting system | |
TW201703414A (en) | Direct current power converter | |
CN114915170A (en) | Capacitor-diode unit-based interleaved parallel DC/DC boost converter | |
TWI575860B (en) | Boost converter | |
TW202308278A (en) | Interleaved high step-up dc converter | |
CN112968601A (en) | Non-isolated bidirectional direct current converter with high voltage conversion ratio | |
He et al. | Switched-inductor/switched-capacitor active-network converters | |
Reshma et al. | Soft switching sepic boost converter with high voltage gain | |
Desai et al. | Design and Analysis of High Gain DC-DC Converter | |
CN204089602U (en) | Be applicable to the efficient isolated converters of low pressure photovoltaic generating system | |
CN220457296U (en) | High-efficiency boosting DC-DC converter |