TWI453869B - Rom and manufacturing method of the same - Google Patents

Rom and manufacturing method of the same Download PDF

Info

Publication number
TWI453869B
TWI453869B TW101109007A TW101109007A TWI453869B TW I453869 B TWI453869 B TW I453869B TW 101109007 A TW101109007 A TW 101109007A TW 101109007 A TW101109007 A TW 101109007A TW I453869 B TWI453869 B TW I453869B
Authority
TW
Taiwan
Prior art keywords
region
doping concentration
substrate
read
low
Prior art date
Application number
TW101109007A
Other languages
Chinese (zh)
Other versions
TW201340257A (en
Inventor
Chih Chieh Cheng
Cheng Hsien Cheng
Wen Jer Tsai
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW101109007A priority Critical patent/TWI453869B/en
Publication of TW201340257A publication Critical patent/TW201340257A/en
Application granted granted Critical
Publication of TWI453869B publication Critical patent/TWI453869B/en

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Description

唯讀記憶體及其製造方法Read-only memory and its manufacturing method

本發明是有關於一種唯讀記憶體,且特別是有關於一種抑制第二位元效應(2nd bit effect)的唯讀記憶體及其製造方法。The present invention relates to a read only memory, and more particularly to a method of manufacturing the memory bit effect about one second (2 nd bit effect) inhibition read only.

具有電荷儲存結構作為資料儲存型態的唯讀記憶體(read only memory)是目前常見的非揮發性記憶體。一個唯讀記憶體的結構包含一被儲存甚至捕捉電荷特性的結構層,如ONO(oxide-nitride-oxide)層。如採用局部化的電荷捕捉結構來儲存電荷,能允許每一個記憶胞中可以有兩個分離的電荷位元,而形成所謂的單記憶胞二位元(2 bits/cell)儲存的記憶體。A read-only memory having a charge storage structure as a data storage type is a conventional non-volatile memory. A read-only memory structure contains a structural layer that stores and even captures charge characteristics, such as an ONO (oxide-nitride-oxide) layer. If a localized charge trapping structure is used to store charge, it can allow two separate charge cells in each memory cell to form a so-called single memory cell (2 bits/cell) memory.

為了判斷一個二位元儲存的記憶體兩側的實際上分離的電荷,而採用逆向讀取。逆向讀取代表藉著將讀取偏壓施加於源極端,以感測在汲極側接面上的電荷來完成讀取操作;反之亦然。如果源極側接面上有電荷,則讀取偏壓需要夠高,才能夠阻擋源極側接面上的電荷的影響。In order to determine the actually separated charge on both sides of a two-dimensional memory, reverse reading is used. Reverse reading represents the completion of a read operation by applying a read bias to the source terminal to sense the charge on the drain side junction; and vice versa. If there is charge on the source side junction, the read bias needs to be high enough to block the effects of charge on the source side junction.

然而,在操作二位元儲存的記憶體時,同一記憶胞的兩個位元彼此仍然會互相影響而產生問題。因此,若是記憶胞的一側已儲存一位元,則在對記憶胞的另一側進行讀取時,使得原先應該為高電流的部分會有電流下降的情形,即所謂第二位元效應。也就是說,當對記憶胞進行讀 取操作時,原先已經存在的位元會對記憶胞造成影響,而使能障提高,並導致讀取的臨界電壓(Vt)升高。在此情況下,就容易造成讀取錯誤。However, when operating a two-bit memory, the two bits of the same memory cell still interact with each other and cause problems. Therefore, if one side of the memory cell has stored a single element, when the other side of the memory cell is read, the current portion that should be a high current has a current drop, that is, the so-called second bit effect. . That is, when reading the memory cells When the operation is taken, the originally existing bit element will affect the memory cell, and the enablement barrier is increased, and the threshold voltage (Vt) of the reading is increased. In this case, it is easy to cause a reading error.

第二位元效應不僅會導致元件操作上的困難,甚至會造成元件的可靠度降低。並且,因為第二位元效應減少了讀取感應裕度(sense margin)及操作左右位元的臨界電壓空間(Vt window),使得多階記憶體的操作更加困難。The second bit effect not only causes difficulty in the operation of the component, but may even cause a decrease in the reliability of the component. Moreover, since the second bit effect reduces the sense margin and the threshold voltage space (Vt window) for operating the left and right bits, the operation of the multi-level memory is more difficult.

本發明提供一種唯讀記憶體,能降低第二位元效應。The invention provides a read-only memory capable of reducing the second bit effect.

本發明另提供一種唯讀記憶體的製造方法,能製作受第二位元效應影響小的記憶體。The present invention further provides a method of manufacturing a read-only memory capable of producing a memory that is less affected by the second bit effect.

本發明提出一種唯讀記憶體,包括基底、源極區與汲極區、電荷儲存結構、閘極和局部極端摻雜區。上述源極區與汲極區設置於基底中、電荷儲存結構位於源極區與汲極區之間的基底上、閘極則設置於電荷儲存結構上。至於局部極端摻雜區是位於源極區與汲極區之間的基底內,且所述局部極端摻雜區包括一低摻雜濃度區以及至少一高摻雜濃度區。高摻雜濃度區設置於源極區與汲極區中之一與低摻雜濃度區之間,其中高摻雜濃度區的摻雜濃度要比低摻雜濃度區的摻雜濃度高3倍以上。上述高摻雜濃度區與低摻雜濃度區為同一導電態。The present invention provides a read-only memory comprising a substrate, a source region and a drain region, a charge storage structure, a gate and a local extreme doping region. The source region and the drain region are disposed in the substrate, the charge storage structure is on the substrate between the source region and the drain region, and the gate is disposed on the charge storage structure. The local extreme doping region is located within the substrate between the source region and the drain region, and the local extreme doping region includes a low doping concentration region and at least one high doping concentration region. The high doping concentration region is disposed between one of the source region and the drain region and the low doping region, wherein the doping concentration of the high doping region is three times higher than the doping concentration of the low doping region the above. The high doping concentration region and the low doping concentration region are in the same conductive state.

在本發明之一實施例中,上述高摻雜濃度區的摻雜濃度要比低摻雜濃度區的摻雜濃度高10倍以下。In an embodiment of the invention, the doping concentration of the high doping concentration region is 10 times or less higher than the doping concentration of the low doping concentration region.

在本發明之一實施例中,上述基底的摻雜濃度比低摻雜濃度區的摻雜濃度高3倍至10倍。In an embodiment of the invention, the doping concentration of the substrate is 3 to 10 times higher than the doping concentration of the low doping concentration region.

在本發明之一實施例中,上述高摻雜濃度區包含兩個摻雜區,分別位於源極區與低摻雜濃度區之間和汲極區與低摻雜濃度區之間。In an embodiment of the invention, the high doping concentration region comprises two doped regions between the source region and the low doping concentration region and between the drain region and the low doping concentration region.

在本發明之一實施例中,上述低摻雜濃度區的厚度例如在50Å~500Å之間。In an embodiment of the invention, the thickness of the low doping concentration region is, for example, between 50 Å and 500 Å.

在本發明之一實施例中,上述低摻雜濃度區與電荷儲存結構直接接觸。In one embodiment of the invention, the low doping concentration region is in direct contact with the charge storage structure.

在本發明之一實施例中,上述低摻雜濃度區的邊緣和源極區或汲極區之間的距離約小於150Å。In one embodiment of the invention, the distance between the edge of the low doping concentration region and the source region or the drain region is less than about 150 Å.

本發明另提出一種唯讀記憶體的製造方法,包括在一基底內形成與其表面相隔一距離的井區,並在基底上形成一電荷儲存結構,再於電荷儲存結構上形成一閘極。然後,於電荷儲存結構兩側的基底內形成一源極區與一汲極區。於源極區與汲極區之間的基底內形成一局部極端摻雜區,其中所述局部極端摻雜區至少包括一低摻雜濃度區和至少一高摻雜濃度區,且高摻雜濃度區的摻雜濃度要比低摻雜濃度區的摻雜濃度高3倍以上。The invention further provides a method for manufacturing a read-only memory, comprising forming a well region at a distance from a surface thereof in a substrate, forming a charge storage structure on the substrate, and forming a gate on the charge storage structure. Then, a source region and a drain region are formed in the substrate on both sides of the charge storage structure. Forming a local extreme doping region in the substrate between the source region and the drain region, wherein the local extreme doping region includes at least a low doping concentration region and at least one high doping concentration region, and high doping The doping concentration of the concentration region is more than three times higher than the doping concentration of the low doping concentration region.

在本發明之另一實施例中,形成上述井區的方法包括對基底植入一摻質,使其位於上述距離以外的基底內;或者,形成上述井區的方法包括對基底進行摻雜,然後對基底進行逆摻雜,以降低上述距離以內的基底內的摻雜濃度。In another embodiment of the present invention, a method of forming the well region includes implanting a dopant into a substrate outside the distance; or forming a well region comprising doping the substrate, The substrate is then inversely doped to reduce the doping concentration within the substrate within the above distance.

在本發明之另一實施例中,形成上述局部極端摻雜區 的方法包括對源極區與汲極區之邊緣進行碳離子共植入或低溫離子植入搭配熱還原製程,以形成上窄下寬的高摻雜濃度區。In another embodiment of the invention, the local extreme doping region is formed The method comprises carbon ion co-implantation or low temperature ion implantation and a thermal reduction process on the edges of the source region and the drain region to form a high doping concentration region with a narrow upper and a lower width.

基於上述,本發明的唯讀記憶體在通道區採用局部極端摻雜區的結構,所以能藉由摻雜濃度差異大的通道來降低第二位元效應對於元件操作上的影響。Based on the above, the read-only memory of the present invention adopts a structure of a locally extreme doped region in the channel region, so that the effect of the second bit effect on the operation of the device can be reduced by the channel having a large difference in doping concentration.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

圖1是依照本發明之第一實施例之一種唯讀記憶體的示意圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic illustration of a read only memory in accordance with a first embodiment of the present invention.

在圖1中,唯讀記憶體包括基底100、源極區102a與汲極區102b、電荷儲存結構104、閘極106和局部極端摻雜區108。在本文中,所謂的「局部極端摻雜區」是指具有摻雜濃度差異大於3倍以上的多個摻雜區構成的區域。至於局部極端摻雜區108是位於源極區102a與汲極區102b之間的基底100內,且所述局部極端摻雜區108包括一低摻雜濃度區110以及至少一高摻雜濃度區112。上述由多個摻雜區構成的局部極端摻雜區108內之摻雜濃度差異如大於3倍以上,與只有低摻雜濃度區110的相比,其第二位元效應能降低約0.66倍;反之,如果上述摻雜濃度差異沒有大於3倍時,其第二位元效應絳低程度不明顯。上述源極區102a與汲極區102b設置於基底100中、電荷 儲存結構104位於源極區102a與汲極區102b之間的基底100上、閘極106則設置於電荷儲存結構104上。In FIG. 1, the read-only memory includes a substrate 100, a source region 102a and a drain region 102b, a charge storage structure 104, a gate 106, and a local extreme doping region 108. Herein, the "local extreme doping region" means a region composed of a plurality of doping regions having a doping concentration difference of more than 3 times or more. The local extreme doping region 108 is located in the substrate 100 between the source region 102a and the drain region 102b, and the local extreme doping region 108 includes a low doping concentration region 110 and at least one highly doped concentration region. 112. The difference in doping concentration in the local extreme doping region 108 composed of the plurality of doped regions is more than 3 times, and the second bit effect can be reduced by about 0.66 times compared with the region only having the low doping concentration region 110. On the other hand, if the difference in doping concentration is not more than 3 times, the degree of the second bit effect is not significant. The source region 102a and the drain region 102b are disposed in the substrate 100 and have a charge The storage structure 104 is located on the substrate 100 between the source region 102a and the drain region 102b, and the gate 106 is disposed on the charge storage structure 104.

高摻雜濃度區112可選擇只設置於源極區102a與低摻雜濃度區110之間、只設置於汲極區102b與低摻雜濃度區110之間;或者如圖1所示,分別設置在源極區102a以及汲極區102b與低摻雜濃度區110之間。高摻雜濃度區112的摻雜濃度需比低摻雜濃度區110的摻雜濃度高3倍以上;譬如3倍~20倍;較佳是3倍以上且10倍以下。上述電荷儲存結構104可為ONO層或其他適合的電荷儲存層。The high doping concentration region 112 may be disposed only between the source region 102a and the low doping concentration region 110, and only between the drain region 102b and the low doping concentration region 110; or as shown in FIG. It is disposed between the source region 102a and the drain region 102b and the low doping concentration region 110. The doping concentration of the high doping concentration region 112 is required to be more than three times higher than the doping concentration of the low doping concentration region 110; for example, 3 times to 20 times; preferably 3 times or more and 10 times or less. The charge storage structure 104 described above can be an ONO layer or other suitable charge storage layer.

在本實施例中,高摻雜濃度區112是上窄下寬的區域,且高摻雜濃度區112與低摻雜濃度區110是同一導電態,譬如高摻雜濃度區112與低摻雜濃度區110都是p型,而源極區102a以及汲極區102b都是n型。至於基底100內一般有井區114,其摻雜濃度(即基底100的摻雜濃度)例如比低摻雜濃度區110的摻雜濃度高3倍至10倍;換言之,基底100的摻雜濃度可等於或接近高摻雜濃度區112的摻雜濃度。In the present embodiment, the high doping concentration region 112 is a region that is narrower and narrower, and the high doping concentration region 112 and the low doping concentration region 110 are in the same conductive state, such as the high doping concentration region 112 and low doping. The concentration regions 110 are all p-type, and the source regions 102a and the drain regions 102b are all n-type. As for the well region 114 in the substrate 100, the doping concentration (i.e., the doping concentration of the substrate 100) is, for example, 3 to 10 times higher than the doping concentration of the low doping concentration region 110; in other words, the doping concentration of the substrate 100. The doping concentration of the high doping concentration region 112 may be equal to or close to.

以下列舉幾個模擬實驗。Several simulation experiments are listed below.

模擬實驗一Simulation experiment one

模擬對象分別是具有局部極端摻雜區之唯讀記憶體(如圖2)和不具局部極端摻雜區之傳統唯讀記憶體(對照例),且於圖3A顯示其源極區、通道及汲極區的摻雜濃度變化。在圖2的唯讀記憶體200中,於ONO層202右側的位置204已注入電荷,故模擬的實驗是對ONO層202 的另一側進行讀取時,估算有無局部極端摻雜區之記憶體的第二位元效應變化,結果顯示於圖3B。The simulated objects are a read-only memory with local extreme doping regions (Fig. 2) and a conventional read-only memory without a local extreme doping region (control), and the source regions, channels and The doping concentration of the drain region changes. In the read-only memory 200 of FIG. 2, a charge has been injected at a position 204 on the right side of the ONO layer 202, so the simulation experiment is for the ONO layer 202. When reading on the other side, the second bit effect change of the memory with or without the local extreme doping region is estimated, and the result is shown in Fig. 3B.

由圖3B可知具有局部極端摻雜區之唯讀記憶體能大幅降低第二位元效應。It can be seen from Fig. 3B that a read-only memory having a locally extreme doped region can substantially reduce the second bit effect.

模擬實驗二Simulation experiment 2

模擬對象是具有局部極端摻雜區之唯讀記憶體400(如圖4),其中固定的參數為:Lg =0.08μm;Leff =0.057μm;高摻雜濃度區404的摻雜濃度=基底406的摻雜濃度=2e18cm-3 ;源極區408a以及汲極區408b的摻雜濃度=1e20cm-3 ;電荷儲存區410的寬度為50Å,而其右側邊緣與汲極區408b的左邊緣切齊。The simulated object is a read-only memory 400 having a locally extreme doped region (Fig. 4), wherein the fixed parameters are: L g = 0.08 μm; L eff = 0.057 μm; doping concentration of the high doping concentration region 404 = The doping concentration of the substrate 406 = 2e18 cm -3 ; the doping concentration of the source region 408a and the drain region 408b = 1e20 cm -3 ; the width of the charge storage region 410 is 50 Å, and the right edge thereof and the left edge of the drain region 408b Cut together.

變數是局部極端摻雜區中的低摻雜濃度區412的摻雜濃度,請見圖5A顯示的摻雜濃度變化是由比高摻雜濃度區404的摻雜濃度大的3.0e18cm-3 到比高摻雜濃度區404的摻雜濃度小的1.0e16cm-3The variable is the doping concentration of the low doping concentration region 412 in the local extreme doping region, and the doping concentration change shown in FIG. 5A is 3.0e18 cm -3 to the ratio of the doping concentration of the high doping concentration region 404. The doping concentration of the highly doped concentration region 404 is as small as 1.0e16 cm -3 .

模擬結果請見下表一與圖5B。See Table 1 and Figure 5B for the simulation results.

由表一可得知,當濃度差大於3倍時,第二位元效應只有均勻濃度(即低摻雜濃度區412的濃度為2.0e18)的0.66倍。如果高摻雜濃度區404的摻雜濃度比低摻雜濃度區412的摻雜濃度沒有高於3倍時,雖然第二位元效應也有縮小的趨勢,但效果並沒有這麼明顯。It can be seen from Table 1 that when the concentration difference is more than 3 times, the second bit effect is only 0.66 times of the uniform concentration (ie, the concentration of the low doping concentration region 412 is 2.0e18). If the doping concentration of the high doping concentration region 404 is not higher than 3 times than the doping concentration of the low doping concentration region 412, although the second bit effect also tends to shrink, the effect is not so obvious.

上述結果同樣可自圖5B得到,而且當高摻雜濃度區404的摻雜濃度比低摻雜濃度區412的摻雜濃度高10倍以上,第二位元效應的變化逐漸變小,所以即便高摻雜濃度區404與低摻雜濃度區412之間的摻雜濃度差異更大,對於降低第二位元效應對記憶體的影響將趨向一致。The above results are also obtained from FIG. 5B, and when the doping concentration of the high doping concentration region 404 is more than 10 times higher than the doping concentration of the low doping concentration region 412, the change in the second bit effect is gradually reduced, so even The difference in doping concentration between the high doping concentration region 404 and the low doping concentration region 412 is greater, and the effect on the memory for reducing the second bit effect will tend to be uniform.

模擬實驗三Simulation experiment three

模擬對象基本上與圖4的唯讀記憶體400一樣,其中 固定的參數為:Lg =0.08μm;Leff =0.057μm;低摻雜濃度區的摻雜濃度固定為1e17cm-3 ;源極區及汲極區的摻雜濃度=1e20cm-3 ;電荷儲存區410的寬度為50Å,而其右側邊緣與汲極區408b的左邊緣切齊。The simulated object is basically the same as the read-only memory 400 of FIG. 4, wherein the fixed parameters are: L g =0.08 μm; L eff =0.057 μm; the doping concentration of the low doping concentration region is fixed at 1e17 cm -3 ; The doping concentration of the region and the drain region is 1e20 cm -3 ; the width of the charge storage region 410 is 50 Å, and the right edge thereof is aligned with the left edge of the drain region 408b.

變數是局部極端摻雜區中的高摻雜濃度區與基底的摻雜濃度,且分別模擬1e18cm-3 、2e18cm-3 、3e18cm-3 之結果如圖6,其中顯示高摻雜濃度區的摻雜濃度變化對於降低第二位元效應對記憶體的影響不大,但是較低的摻雜濃度會影響Vpt (punch-through voltage)。Extreme local variable doping concentration of doped regions with high doping concentration of the substrate region, and simulate 1e18cm -3, 2e18cm -3, 3e18cm -3 result of FIG. 6, which shows a high doping concentration doped region The change in the impurity concentration has little effect on the memory for reducing the second bit effect, but the lower doping concentration affects the V pt (punch-through voltage).

模擬實驗四Simulation experiment four

模擬對象基本上與圖4的唯讀記憶體400一樣,其中固定的參數為:Lg =0.08μm;Leff =0.057μm;低摻雜濃度區的摻雜濃度固定為1e17cm-3 ;源極區及汲極區的摻雜濃度=1e20cm-3 ;電荷儲存區410的寬度為50Å,而其右側邊緣與汲極區408b的左邊緣切齊。The simulated object is basically the same as the read-only memory 400 of FIG. 4, wherein the fixed parameters are: L g =0.08 μm; L eff =0.057 μm; the doping concentration of the low doping concentration region is fixed at 1e17 cm -3 ; The doping concentration of the region and the drain region is 1e20 cm -3 ; the width of the charge storage region 410 is 50 Å, and the right edge thereof is aligned with the left edge of the drain region 408b.

局部極端摻雜區中的高摻雜濃度區的摻雜濃度都比低摻雜濃度區的摻雜濃度高10倍。The doping concentration of the high doping concentration region in the local extreme doping region is 10 times higher than the doping concentration in the low doping concentration region.

變數是高摻雜濃度區與低摻雜濃度區的摻雜濃度,且分別模擬高摻雜濃度區之摻雜濃度為1e18cm-3 、2e18cm-3 、3e18cm-3 的情形,結果顯示於圖7。Variable high doping concentration doping concentration region and the low concentration region, and each simulated doping concentration of the high impurity concentration region 1e18cm -3, 2e18cm -3, 3e18cm -3 situation, shown in Figure 7. The results .

由圖7可知,只要維持高、低摻雜濃度區的摻雜濃度比,就能得到類似的結果。As can be seen from Fig. 7, similar results can be obtained as long as the doping concentration ratio of the high and low doping concentration regions is maintained.

模擬實驗五Simulation experiment five

模擬對象基本上與圖4的唯讀記憶體400一樣,其中固定的參數為:Lg =0.08μm;Leff =0.057μm;低摻雜濃度區的摻雜濃度為1e17cm-3 ;高摻雜濃度區和基底的摻雜濃度都是2e18cm-3 ;源極區及汲極區的摻雜濃度=1e20cm-3 ;電荷儲存區410的寬度為50Å,而其右側邊緣與汲極區408b的左邊緣切齊。The simulated object is basically the same as the read-only memory 400 of FIG. 4, wherein the fixed parameters are: L g =0.08 μm; L eff =0.057 μm; the doping concentration of the low doping concentration region is 1e17 cm -3 ; The doping concentration of the concentration region and the substrate are both 2e18 cm -3 ; the doping concentration of the source region and the drain region is = 1e20 cm -3 ; the width of the charge storage region 410 is 50 Å, and the right edge thereof and the left side of the drain region 408b The edges are aligned.

變數是低摻雜濃度區的厚度,請見圖8A顯示的厚度變化是由9Å至345Å,模擬結果顯示於圖8B。由圖8B可知,低摻雜濃度區的厚度在50Å~500Å之間,就具有能降低第二位元效應的效果。而且,因為從模擬結果來看當低摻雜濃度區的厚度大於150Å的改善程度增加有限,所以低摻雜濃度區的厚度較佳是在50Å~150Å之間。The variable is the thickness of the low doping concentration region. See Figure 8A for the thickness variation from 9 Å to 345 Å. The simulation results are shown in Figure 8B. As can be seen from FIG. 8B, the thickness of the low doping concentration region is between 50 Å and 500 Å, which has the effect of reducing the second bit effect. Moreover, since the improvement of the thickness of the low doping concentration region greater than 150 Å is limited from the simulation results, the thickness of the low doping concentration region is preferably between 50 Å and 150 Å.

模擬實驗六Simulation experiment six

模擬對象如圖9的唯讀記憶體,其中固定的參數為:Lg =0.08μm;Leff =0.057μm;低摻雜濃度區的摻雜濃度為1e17cm-3 ;高摻雜濃度區和基底的摻雜濃度都是2e18cm-3 ;源極區及汲極區的摻雜濃度=1e20cm-3 ;電荷儲存區410的寬度為50Å,而其右側邊緣與汲極區408b的左邊緣切齊。The simulated object is the read-only memory of Figure 9, where the fixed parameters are: L g = 0.08 μm; L eff = 0.057 μm; the doping concentration of the low doping concentration region is 1e17 cm -3 ; the high doping concentration region and the substrate The doping concentration is 2e18 cm -3 ; the doping concentration of the source region and the drain region is 1e20 cm -3 ; the width of the charge storage region 410 is 50 Å, and the right edge thereof is aligned with the left edge of the drain region 408b.

變數是低摻雜濃度區與ONO層之間的距離d1由0~42Å變化,模擬結果顯示於圖10。由圖10可知,低摻 雜濃度區與ONO層(即電荷儲存結構)直接接觸的效果最好。The variable is that the distance d1 between the low doping concentration region and the ONO layer varies from 0 to 42 Å, and the simulation results are shown in FIG. As can be seen from Figure 10, low blending The direct contact between the impurity concentration region and the ONO layer (ie, the charge storage structure) is the best.

模擬實驗七Simulation experiment seven

模擬對象如圖11的唯讀記憶體,其中固定的參數為:Lg =0.08μm;Leff =0.057μm;低摻雜濃度區的摻雜濃度為1e17cm-3 ;高摻雜濃度區和基底的摻雜濃度都是2e18cm-3 ;源極區及汲極區的摻雜濃度=1e20cm-3The simulated object is the read-only memory of Figure 11, where the fixed parameters are: L g = 0.08 μm; L eff = 0.057 μm; the doping concentration of the low doping concentration region is 1e17 cm -3 ; the high doping concentration region and the substrate The doping concentration is 2e18cm -3 ; the doping concentration of the source region and the drain region is = 1e20cm -3 .

變數是源極區408a或汲極區408b和低摻雜濃度區的邊緣之間的距離,請見圖12A顯示的寬度W變化是由110Å至550Å,模擬結果顯示於圖12B。The variable is the distance between the source region 408a or the drain region 408b and the edge of the low doping concentration region. See Figure 12A for the width W change from 110 Å to 550 Å. The simulation results are shown in Figure 12B.

由於Lg 為0.08μm時,電荷儲存區410的邊緣和低摻雜濃度區的邊緣之間的距離為0時所對應的寬度W為470Å,所以由圖12B可知,當源極區408a或汲極區408b和低摻雜濃度區的邊緣之間的距離小於150Å對降低第二位元效應有幫助,而電荷儲存區的邊緣對準低摻雜濃度區的邊緣可得到最佳效果。Since the width W of the edge of the charge storage region 410 and the edge of the low doping concentration region is 0 when the L g is 0.08 μm, the width W corresponding to 0 is 470 Å, so that the source region 408a or 汲 is known from FIG. 12B. The distance between the polar region 408b and the edge of the low doping concentration region of less than 150 Å is helpful in reducing the second bit effect, and the edge of the charge storage region is aligned with the edge of the low doping concentration region to obtain the best effect.

模擬實驗八Simulation experiment eight

模擬對象如模擬實驗七的唯讀記憶體,其中不同僅在Lg 為0.07μm、Leff =0.043μm。Analog simulation objects such as read only memory seven, which differ only in L g is 0.07μm, L eff = 0.043μm.

變數同樣是源極區408a或汲極區408b和低摻雜濃度區412的邊緣之間的距離,請見圖13A顯示的寬度變化是由110Å至390Å,模擬結果顯示於圖13B。The variable is also the distance between the source region 408a or the drain region 408b and the edge of the low doping concentration region 412. See Figure 13A for the width variation from 110 Å to 390 Å. The simulation results are shown in Figure 13B.

由於Lg 為0.07μm時,電荷儲存區的邊緣和低摻雜濃 度區的邊緣之間的距離為0時所對應的寬度為350Å,所以由圖13B可知,當源極區408a或汲極區408b和低摻雜濃度區的邊緣之間的距離小於150Å對降低第二位元效應有幫助,而電荷儲存區的邊緣對準低摻雜濃度區的邊緣可得到最佳效果。這樣的結果與模擬實驗七一樣。Since the width of the edge of the charge storage region and the edge of the low doping concentration region is 0 when the L g is 0.07 μm, the corresponding width is 350 Å, so that the source region 408a or the drain region is known from FIG. 13B. The distance between the 408b and the edge of the low doping concentration region of less than 150 Å is helpful in reducing the second bit effect, and the edge of the charge storage region is aligned with the edge of the low doping concentration region to obtain the best effect. This result is the same as the simulation experiment 7.

模擬實驗九Simulation experiment nine

模擬對象如圖14A至圖14C的唯讀記憶體,其中固定的參數為:Lg =0.08μm;Leff =0.057μm;低摻雜濃度區的摻雜濃度為1e17cm-3 ;高摻雜濃度區和基底的摻雜濃度都是2e18cm-3 ;源極區及汲極區的摻雜濃度=1e20cm-3 ;電荷儲存區410的寬度為50Å,而其右側邊緣與汲極區408b的左邊緣切齊。The simulated object is the read-only memory of FIG. 14A to FIG. 14C, wherein the fixed parameters are: L g =0.08 μm; L eff =0.057 μm; the doping concentration of the low doping concentration region is 1e17 cm -3 ; The doping concentration of the region and the substrate are both 2e18 cm -3 ; the doping concentration of the source region and the drain region is = 1e20 cm -3 ; the width of the charge storage region 410 is 50 Å, and the right edge thereof and the left edge of the drain region 408b Cut together.

變數是局部極端摻雜區中的高、低摻雜濃度區與電荷儲存區之關係。圖14A是低摻雜濃度區兩邊有對稱的高摻雜濃度區;圖14B是低摻雜濃度區只有一邊有不對稱的單一高摻雜濃度區,且高摻雜濃度區與電荷儲存區位在同一側;圖14C同樣是低摻雜濃度區只有一邊有不對稱的單一高摻雜濃度區,但高摻雜濃度區是與電荷儲存區位在不同側。模擬結果顯示於圖15。The variable is the relationship between the high and low doping concentration regions in the local extreme doping region and the charge storage region. 14A is a symmetrical high doping concentration region on both sides of the low doping concentration region; FIG. 14B is a single high doping concentration region in which the low doping concentration region has an asymmetry only, and the high doping concentration region and the charge storage region are located at The same side; FIG. 14C is also a single high doping concentration region in which the low doping concentration region has an asymmetry on one side, but the high doping concentration region is on the different side from the charge storage region. The simulation results are shown in Figure 15.

由圖15可知,圖14C的結構具有較佳的抑制第二位元效應之效果。As can be seen from Fig. 15, the structure of Fig. 14C has a better effect of suppressing the second bit effect.

以上關於模擬實驗二~九的唯讀記憶體示意圖,如無 特別標示都可參照圖4的內容。The above diagram of the read-only memory of the simulation experiment 2~9, if no For the special indication, refer to the content of FIG.

圖16A至圖16D是依照本發明之第二實施例之一種唯讀記憶體的製造流程剖面示意圖。16A to 16D are schematic cross-sectional views showing a manufacturing process of a read-only memory in accordance with a second embodiment of the present invention.

請參照圖16A,在一基底1600內形成與其表面1600a相隔一距離d2的井區1602,其中井區1602的摻雜濃度比基底1600本質摻雜濃度高10倍以上。Referring to FIG. 16A, a well region 1602 is formed in a substrate 1600 at a distance d2 from its surface 1600a, wherein the doping concentration of the well region 1602 is more than 10 times higher than the intrinsic doping concentration of the substrate 1600.

以上製程是直接對基底1600植入一摻質,使其位於距離d2以外的基底1600內,還可配合一般離子植入後進行的熱處理。在其他實施例中,形成井區1602的方式還可以是對基底1600進行摻雜後,再對基底1600進行一次逆摻雜,以降低距離d2以內的基底1600內的摻雜濃度。也就是說,可以先對基底1600進行p型離子植入,再於距離d2以內的基底1600內進行n型離子植入。The above process directly implants a dopant into the substrate 1600 so as to be located in the substrate 1600 outside the distance d2, and can also be combined with the heat treatment after the general ion implantation. In other embodiments, the well region 1602 may be formed by doping the substrate 1600 and then performing a reverse doping of the substrate 1600 to reduce the doping concentration in the substrate 1600 within a distance d2. That is, the substrate 1600 may be subjected to p-type ion implantation, and then n-type ion implantation may be performed in the substrate 1600 within a distance d2.

接著請參照圖16B,在基底1600上形成電荷儲存結構1604,再於電荷儲存結構1604上形成閘極1606。電荷儲存結構1604例如ONO層,而閘極1606例如多晶矽層。Referring next to FIG. 16B, a charge storage structure 1604 is formed over the substrate 1600, and a gate 1606 is formed over the charge storage structure 1604. The charge storage structure 1604 is, for example, an ONO layer, and the gate 1606 is, for example, a polysilicon layer.

然後請參照圖16C,於電荷儲存結構1604之間的基底1600內形成源極區/汲極區1608。之後,於源極區/汲極區1608之間的基底1600內形成一局部極端摻雜區1610,其中所述局部極端摻雜區1610至少包括一低摻雜濃度區1612和至少一高摻雜濃度區1614,且高摻雜濃度區1614的摻雜濃度要比低摻雜濃度區1612的摻雜濃度高3倍以上。而高摻雜濃度區1614的製作譬如是對源極區/汲極區1608之邊緣進行口袋佈植製程,以形成上窄下寬的高摻雜 濃度區1614,其中所述口袋佈植製程例如碳離子共植入(Carbon co-implantation)或低溫離子植入(Low temperature ion implantation)搭配熱還原製程(Thermal reduction),以精確得到所需的高摻雜濃度區1614的摻雜輪廓(doping profile)。此時,井區1602的摻雜濃度例如比低摻雜濃度區1612的摻雜濃度高3倍至10倍。Referring now to Figure 16C, a source/drain region 1608 is formed within the substrate 1600 between the charge storage structures 1604. Thereafter, a localized highly doped region 1610 is formed in the substrate 1600 between the source/drain regions 1608, wherein the localized highly doped region 1610 includes at least a low doping concentration region 1612 and at least one high doping region. The concentration region 1614, and the doping concentration of the high doping concentration region 1614 is more than three times higher than the doping concentration of the low doping concentration region 1612. The high doping concentration region 1614 is fabricated by performing a pocket implant process on the edge of the source/drain region 1608 to form a high doping with an upper narrow width. a concentration region 1614, wherein the pocket implant process, such as carbon co-implantation or low temperature ion implantation, is combined with a thermal reduction process to accurately obtain a desired high The doping profile of the doping concentration region 1614. At this time, the doping concentration of the well region 1602 is, for example, 3 to 10 times higher than the doping concentration of the low doping concentration region 1612.

最後可選擇性地進行圖16D的製程,在源極區/汲極區1608表面形成絕緣層1616,並於整個基底1600上形成連接閘極1606的字元線1618。Finally, the process of FIG. 16D can be selectively performed to form an insulating layer 1616 on the surface of the source/drain region 1608 and a word line 1618 connecting the gate 1606 over the entire substrate 1600.

基於上述,本發明之設計概念在於將唯讀記憶體之通道區,以多個摻雜濃度差異大的摻雜區構成局部極端摻雜區,並藉此降低第二位元效應對於元件操作上的影響。Based on the above, the design concept of the present invention consists in forming a channel region of a read-only memory with a plurality of doping regions having a large difference in doping concentration to form a local extreme doping region, and thereby reducing the second bit effect on the device operation. Impact.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100、1600、406‧‧‧基底100, 1600, 406‧‧‧ base

102a、408a、1608‧‧‧源極區102a, 408a, 1608‧‧‧ source area

102b、408b、1608‧‧‧汲極區102b, 408b, 1608‧‧‧ bungee area

104、1604‧‧‧電荷儲存結構104, 1604‧‧‧ Charge storage structure

106、1606‧‧‧閘極106, 1606‧‧‧ gate

108、1610‧‧‧局部極端摻雜區108, 1610‧‧‧Local extreme doping zone

110、412、1612‧‧‧低摻雜濃度區110, 412, 1612‧‧‧ low doping concentration zone

112、1614、404‧‧‧高摻雜濃度區112, 1614, 404‧‧‧High doping concentration zone

114、1602‧‧‧井區114, 1602‧‧ Well area

200、400‧‧‧唯讀記憶體200, 400‧‧‧ read-only memory

202、402‧‧‧ONO層202, 402‧‧‧ONO layer

204‧‧‧位置204‧‧‧Location

410‧‧‧電荷儲存區410‧‧‧charge storage area

1600a‧‧‧表面1600a‧‧‧ surface

1618‧‧‧字元線1618‧‧‧ character line

1616‧‧‧絕緣層1616‧‧‧Insulation

d1、d2‧‧‧距離D1, d2‧‧‧ distance

W‧‧‧寬度W‧‧‧Width

圖1是依照本發明之第一實施例之一種唯讀記憶體的示意圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic illustration of a read only memory in accordance with a first embodiment of the present invention.

圖2是模擬實驗一之唯讀記憶體的示意圖。2 is a schematic diagram of a read-only memory of the simulation experiment 1.

圖3A顯示模擬實驗一之唯讀記憶體的源極區、通道及汲極區的摻雜濃度變化。Fig. 3A shows the change in doping concentration of the source region, the channel and the drain region of the read-only memory of the simulation experiment 1.

圖3B顯示模擬實驗一之第二位元效應變化圖。Fig. 3B shows a second bit effect change diagram of the simulation experiment 1.

圖4是模擬實驗二之唯讀記憶體的示意圖。4 is a schematic diagram of a read-only memory of the second experiment.

圖5A顯示模擬實驗二之唯讀記憶體的局部極端摻雜區中的低摻雜濃度區的摻雜濃度變化。Figure 5A shows the change in doping concentration of the low doping concentration region in the local extreme doping region of the read-only memory of the second experiment.

圖5B顯示模擬實驗二之第二位元效應變化圖。Figure 5B shows a second bit effect change plot for Simulation Experiment 2.

圖6顯示模擬實驗三之第二位元效應變化圖。Figure 6 shows the second bit effect change plot of the simulation experiment 3.

圖7顯示模擬實驗四之第二位元效應變化圖。Figure 7 shows a second bit effect change plot for the simulation experiment 4.

圖8A顯示模擬實驗五之唯讀記憶體的局部極端摻雜區中的低摻雜濃度區的厚度變化。Fig. 8A shows the thickness variation of the low doping concentration region in the local extreme doping region of the read-only memory of the simulation experiment 5.

圖8B顯示模擬實驗五之第二位元效應變化圖。Figure 8B shows a second bit effect change plot for Simulation Experiment 5.

圖9是模擬實驗六之唯讀記憶體的示意圖。Figure 9 is a schematic diagram of the read-only memory of the simulation experiment 6.

圖10顯示模擬實驗六之第二位元效應變化圖。Figure 10 shows a second bit effect change plot for the simulation experiment 6.

圖11是模擬實驗七之唯讀記憶體的示意圖。Figure 11 is a schematic diagram of the read-only memory of the simulation experiment 7.

圖12A顯示模擬實驗七之電荷儲存區的邊緣和低摻雜濃度區的邊緣之間的距離變化。Fig. 12A shows the change in the distance between the edge of the charge storage region of the simulation experiment 7 and the edge of the low doping concentration region.

圖12B顯示模擬實驗七之第二位元效應變化圖。Fig. 12B shows a second bit effect change diagram of the simulation experiment 7.

圖13A顯示模擬實驗八之電荷儲存區的邊緣和低摻雜濃度區的邊緣之間的距離變化。Fig. 13A shows the change in the distance between the edge of the charge storage region of the simulation experiment 8 and the edge of the low doping concentration region.

圖13B顯示模擬實驗八之第二位元效應變化圖。Fig. 13B shows a second bit effect change diagram of the simulation experiment 8.

圖14A至圖14C是模擬實驗九之唯讀記憶體的示意圖。14A to 14C are schematic views of the read-only memory of the simulation experiment 9.

圖15顯示模擬實驗九之第二位元效應變化圖。Figure 15 shows a second bit effect change plot for the simulation experiment 9.

圖16A至圖16D是依照本發明之第二實施例之一種唯讀記憶體的製造流程剖面示意圖。16A to 16D are schematic cross-sectional views showing a manufacturing process of a read-only memory in accordance with a second embodiment of the present invention.

100‧‧‧基底100‧‧‧Base

102a‧‧‧源極區102a‧‧‧ source area

102b‧‧‧汲極區102b‧‧‧Bungee Area

104‧‧‧電荷儲存結構104‧‧‧Charge storage structure

106‧‧‧閘極106‧‧‧ gate

108‧‧‧局部極端摻雜區108‧‧‧Local extreme doping zone

110‧‧‧低摻雜濃度區110‧‧‧Low doping concentration zone

112‧‧‧高摻雜濃度區112‧‧‧High doping concentration zone

Claims (9)

一種唯讀記憶體,包括:一基底;一源極區與一汲極區,設置於該基底中;一電荷儲存結構,位於該源極區與該汲極區之間的該基底上;一閘極,設置於該電荷儲存結構上;以及一局部極端摻雜區,位於該源極區與該汲極區之間的該基底內,且該局部極端摻雜區包括:一低摻雜濃度區,其邊緣和該源極區或該汲極區之間的距離小於150Å;以及至少一高摻雜濃度區,設置於該源極區與該汲極區中之一與該低摻雜濃度區之間,其中該至少一高摻雜濃度區的摻雜濃度要比該低摻雜濃度區的摻雜濃度高3倍以上,且該至少一高摻雜濃度區與該低摻雜濃度區為同一導電態。 A read-only memory comprising: a substrate; a source region and a drain region disposed in the substrate; a charge storage structure on the substrate between the source region and the drain region; a gate disposed on the charge storage structure; and a locally extreme doped region located in the substrate between the source region and the drain region, and the local extreme doping region includes: a low doping concentration a region having a distance between the edge and the source region or the drain region of less than 150 Å; and at least one highly doped concentration region disposed between the source region and the drain region and the low doping concentration Between the regions, wherein the doping concentration of the at least one high doping concentration region is more than three times higher than the doping concentration of the low doping concentration region, and the at least one high doping concentration region and the low doping concentration region It is the same conductive state. 如申請專利範圍第1項所述之唯讀記憶體,其中該至少一高摻雜濃度區的摻雜濃度要比該低摻雜濃度區的摻雜濃度高10倍以下。 The read-only memory of claim 1, wherein the doping concentration of the at least one highly doped concentration region is less than 10 times higher than the doping concentration of the low doping concentration region. 如申請專利範圍第1項所述之唯讀記憶體,其中該基底的摻雜濃度比該低摻雜濃度區的摻雜濃度高3倍至10倍。 The read-only memory of claim 1, wherein the doping concentration of the substrate is 3 to 10 times higher than the doping concentration of the low doping concentration region. 如申請專利範圍第1項所述之唯讀記憶體,其中該至少一高摻雜濃度區包含兩個摻雜區,分別位於該源極區 與該低摻雜濃度區之間和該汲極區與該低摻雜濃度區之間。 The read-only memory according to claim 1, wherein the at least one highly doped concentration region comprises two doped regions respectively located in the source region. And the low doping concentration region and between the drain region and the low doping concentration region. 如申請專利範圍第1項所述之唯讀記憶體,其中該低摻雜濃度區的厚度在50Å~500Å之間。 The read-only memory according to claim 1, wherein the low doping concentration region has a thickness of between 50 Å and 500 Å. 如申請專利範圍第1項所述之唯讀記憶體,其中該低摻雜濃度區與該電荷儲存結構直接接觸。 The read-only memory of claim 1, wherein the low doping concentration region is in direct contact with the charge storage structure. 一種唯讀記憶體的製造方法,包括:在一基底內形成一井區,該井區與該基底的表面相隔一距離;在該基底上形成一電荷儲存結構;在該電荷儲存結構上形成一閘極;在該電荷儲存結構兩側的該基底內形成一源極區與一汲極區;以及於該源極區與該汲極區之間的該基底內形成一局部極端摻雜區,其中該局部極端摻雜區至少包括一低摻雜濃度區和至少一高摻雜濃度區,且該至少一高摻雜濃度區的摻雜濃度要比該低摻雜濃度區的摻雜濃度高3倍以上,其中該低摻雜濃度區的邊緣和該源極區或該汲極區之間的距離小於150Å。 A method for manufacturing a read-only memory, comprising: forming a well region in a substrate, the well region being spaced apart from a surface of the substrate; forming a charge storage structure on the substrate; forming a charge storage structure on the substrate a gate electrode; a source region and a drain region are formed in the substrate on both sides of the charge storage structure; and a local extreme doping region is formed in the substrate between the source region and the drain region, Wherein the local extreme doping region comprises at least a low doping concentration region and at least one high doping concentration region, and the doping concentration of the at least one high doping concentration region is higher than the doping concentration of the low doping concentration region More than 3 times, wherein the distance between the edge of the low doping concentration region and the source region or the drain region is less than 150 Å. 如申請專利範圍第7項所述之唯讀記憶體的製造方法,其中形成該井區的方法包括:對該基底植入一摻質,使其位於該距離以外的該基底內、或形成該井區的方法包括:對該基底進行摻雜;以及 對該基底進行逆摻雜,以降低該距離以內的該基底內的摻雜濃度。 The method of manufacturing a read-only memory according to claim 7, wherein the method of forming the well region comprises: implanting a dopant into the substrate to be located in the substrate outside the distance, or forming the The method of the well region includes: doping the substrate; The substrate is inversely doped to reduce the doping concentration within the substrate within the distance. 如申請專利範圍第7項所述之唯讀記憶體的製造方法,其中形成該局部極端摻雜區的方法包括:對該源極區與該汲極區之邊緣進行碳離子共植入或低溫離子植入搭配熱還原製程,以形成上窄下寬的該高摻雜濃度區。 The method for manufacturing a read-only memory according to claim 7, wherein the method for forming the local extreme doping region comprises: carbon ion co-implantation or low temperature of the edge of the source region and the drain region; The ion implantation is combined with a thermal reduction process to form the high doping concentration region of the upper narrow and lower width.
TW101109007A 2012-03-16 2012-03-16 Rom and manufacturing method of the same TWI453869B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101109007A TWI453869B (en) 2012-03-16 2012-03-16 Rom and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101109007A TWI453869B (en) 2012-03-16 2012-03-16 Rom and manufacturing method of the same

Publications (2)

Publication Number Publication Date
TW201340257A TW201340257A (en) 2013-10-01
TWI453869B true TWI453869B (en) 2014-09-21

Family

ID=49771036

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101109007A TWI453869B (en) 2012-03-16 2012-03-16 Rom and manufacturing method of the same

Country Status (1)

Country Link
TW (1) TWI453869B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI570892B (en) * 2016-06-30 2017-02-11 世界先進積體電路股份有限公司 Memory device and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724032B2 (en) * 2002-07-25 2004-04-20 Motorola, Inc. Multi-bit non-volatile memory cell and method therefor
TW200805661A (en) * 2006-06-09 2008-01-16 Taiwan Semiconductor Mfg Ultra-shallow and highly activated source/drain extension formation using phosphorus
TW200814240A (en) * 2006-06-01 2008-03-16 Semiconductor Energy Lab Nonvolatile semiconductor memory device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724032B2 (en) * 2002-07-25 2004-04-20 Motorola, Inc. Multi-bit non-volatile memory cell and method therefor
TW200814240A (en) * 2006-06-01 2008-03-16 Semiconductor Energy Lab Nonvolatile semiconductor memory device
TW200805661A (en) * 2006-06-09 2008-01-16 Taiwan Semiconductor Mfg Ultra-shallow and highly activated source/drain extension formation using phosphorus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI570892B (en) * 2016-06-30 2017-02-11 世界先進積體電路股份有限公司 Memory device and method of manufacturing the same

Also Published As

Publication number Publication date
TW201340257A (en) 2013-10-01

Similar Documents

Publication Publication Date Title
JP5010815B2 (en) Gate recess structure and method for forming the same
US9379129B1 (en) Assist gate structures for three-dimensional (3D) vertical gate array memory structure
KR101028993B1 (en) 3d-nonvolatile memory device and method for fabricating the same
CN1988178B (en) Semiconductor having a field effcet source/drain region
TWI566408B (en) Integrated circuit and method for manufacturing the same
TW201030945A (en) Nonvolatile memory cell and method for fabricating the same
TWI536504B (en) Non-volatile memory cell, manufacturing method thereof and non-volatile memory array
TWI396287B (en) Lateral pocket implant charge trapping devices
TWI512729B (en) Semiconductor structure with improved capacitance of bit line
TWI453869B (en) Rom and manufacturing method of the same
US20080099828A1 (en) Semiconductor structure, semiconductor memory device and method of manufacturing the same
KR20050030099A (en) Non-volatile semiconductor memory device and manufacturing method thereof
US20160329490A1 (en) Vertical transistor for resistive memory
KR101037649B1 (en) Nor flash memory array having vertical multi-bitlines and fabrication method for the same
US7687350B2 (en) Method for manufacturing semiconductor memory device using asymmetric junction ion implantation
TWI513007B (en) Memory device and methods for fabricating and operating the same
TWI556412B (en) Memory device and method for fabricating the same
KR20110093312A (en) 3d non-volatile memory device and method for manufacturing the same
US9882033B2 (en) Method of manufacturing a non-volatile memory cell and array having a trapping charge layer in a trench
US9209316B2 (en) ROM for constraining 2nd-bit effect
CN105990365B (en) Memory element and its manufacturing method
TW473841B (en) Multi-state trench-type gate mask ROM
TW201635350A (en) Method for manufacturing semiconductor devices
TWI612640B (en) Memory device and method for fabricating the same
CN103325790B (en) Read-only memory and manufacture method thereof