TWI452290B - Field-effect ion sensing device with dual-film differential structure - Google Patents

Field-effect ion sensing device with dual-film differential structure Download PDF

Info

Publication number
TWI452290B
TWI452290B TW098140410A TW98140410A TWI452290B TW I452290 B TWI452290 B TW I452290B TW 098140410 A TW098140410 A TW 098140410A TW 98140410 A TW98140410 A TW 98140410A TW I452290 B TWI452290 B TW I452290B
Authority
TW
Taiwan
Prior art keywords
layer
substrate
sensing device
film layer
film
Prior art date
Application number
TW098140410A
Other languages
Chinese (zh)
Other versions
TW201118374A (en
Original Assignee
Univ Chang Gung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Chang Gung filed Critical Univ Chang Gung
Priority to TW098140410A priority Critical patent/TWI452290B/en
Publication of TW201118374A publication Critical patent/TW201118374A/en
Application granted granted Critical
Publication of TWI452290B publication Critical patent/TWI452290B/en

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

具有雙膜差動結構之場效型離子感測裝置Field effect type ion sensing device with double membrane differential structure

本發明為一種酸鹼度感測器裝置,特別是一種具有雙膜差動結構之場效型離子感測裝置所形成的酸鹼度感測器裝置。The invention relates to a pH sensor device, in particular to a pH sensor device formed by a field effect type ion sensing device with a double film differential structure.

酸鹼度感測器(pH sensor)可運用於各項工業檢測上,在石化、食品、水質、醫療、環保、電機、半導體、光電、生物科技等,包括在傳統工業以及高科技產業領域上,對於酸鹼度(pH)的量測與應用皆相當的頻繁與廣泛。pH sensor can be used in various industrial inspections in petrochemical, food, water, medical, environmental, electrical, semiconductor, optoelectronic, biotechnology, etc., including in traditional industries and high-tech industries. The measurement and application of pH are quite frequent and extensive.

與傳統玻璃電極相較下,離子感測場效電晶體(Ion-Sensitive Field Effect Transistor;ISFET)主要是利用金氧半導體場效電晶體(Metal Oxide Semiconductor Field Effect Transistor;MOSFET)的原理,將其閘電極去掉之後,將帶有二氧化矽(SiO2 )層的元件放在水溶液之中,發覺其效應與玻璃電極相同,即具有酸鹼感測特性。Compared with traditional glass electrodes, Ion-Sensitive Field Effect Transistor (ISFET) mainly uses the principle of Metal Oxide Semiconductor Field Effect Transistor (MOSFET). After the gate electrode was removed, the element with the cerium oxide (SiO 2 ) layer was placed in an aqueous solution, and it was found that the effect was the same as that of the glass electrode, that is, it had acid-base sensing characteristics.

離子感測場效電晶體元件利用不同感測膜的pH響應特性,其表面將與不同酸鹼值之溶液形成電雙層,並起此電雙層之OH- 離子群與表面密度Ns相關,而各類絕緣層的Ns值為其特性值。當表面接觸酸鹼溶液時,表面鍵結位置(site- bonding)被當成分離方式參與化學反應。由於Ns 與酸鹼平衡常數ka 和kb 相關,當元件置於不同pH值的溶液中時,其ka 和kb 將不相同,因而造成Ns 的改變,進而影響電雙層的電位差,造成離子感測場效電晶體之臨界電壓(Threshold voltage)的不同,此時提供固定VDS 和VG 時,不同的酸鹼度將會造成IDS 的差異而被感測而量化。The ion-sensing field-effect transistor component utilizes the pH response characteristics of different sensing films, the surface of which will form an electric double layer with a solution of different pH values, and the OH - ion group of the electric double layer is related to the surface density Ns. The Ns value of each type of insulating layer is its characteristic value. When the surface is exposed to an acid-base solution, site-bonding is involved in the chemical reaction as a separation. Since N s is related to the acid-base equilibrium constants k a and k b , when the components are placed in solutions of different pH values, their k a and k b will be different, thus causing a change in N s , which in turn affects the electrical double layer. The potential difference causes the difference in the threshold voltage of the ion-sensing field-effect transistor. When the fixed V DS and V G are provided, different pH will cause the difference of I DS to be sensed and quantified.

自從離子感測場效電晶體在1970年由P. Bergveld發表後(IEEE Transcactions on Bio-Medical Engineering,pp. 70-71,1970),相關的研究不停地在進行。如材料之改良,參考電極的研究及微小化,結構的改善等均已相繼被討論。目前針對離子感測場效電晶體之專利包括:美國專利案號U.S. Patent No. 5,414,284,此專利係提出離子感測場效電晶體元件與ESD保護電路同時製備在同一個矽基板上;美國專利案號U.S. Patent No. 5,407,854,係揭露如何防止場效型離子感測元件發生電子遷移之方法;美國專利案號U.S. Patent No. 5,387,328,係揭露利用酵素固定於感測膜之上,進行葡萄糖濃度的感測,並且利用鉑金屬作為參考電極;美國專利案號U.S. Patent No. 5,350,701,係揭露利用化學合成磷化基感測膜於場效型離子感測元件的閘區上,可進行鹼土族金屬含量的檢測,特別是針對鈣離子含量的感測;美國專利案號U.S. Patent No. 5,319,226,係揭露利用射頻濺鍍(RF sputtering)製備氧化鉭感測膜於場效型離子感測元件的閘區上,形成氧化鉭/氮化矽/二氧化矽結構之場效型離子感測元件;美國專利案號U.S. Patent No. 5,314,833,係揭露利用砷化鎵(GaAs)基板沉積矽薄膜,並且在此薄膜上植入砷(As+ )和磷(P+ )離子,製備低電俎的閘極材料,以減低元件的熱效應,改善電晶體元件操作特性;美國專利案號U.S. Patent No. 4,812,220,係揭露利用酵素完成場效型離子感測元件,以進行食物中之胺基酸的含量;美國專利案號U.S. Patent No. 4,657,658,係揭露一個金氧半導體電晶體及一個場效型離子感測元件組合成差動對模組系統;美國專利案號U.S. Patent No. 4,609,932,係揭露利用微機電技術之雷射鑽孔技術,製備立體結構之場效型離子感測元件;及美國專利案號U.S. Patent No. 4,358,274,係揭露利用一組場效型離子感測元件之差動系統,結合電路讀出模組,進而達成溫度補償之目的。Since ion-sensing field-effect transistors were published by P. Bergveld in 1970 (IEEE Transcactions on Bio-Medical Engineering, pp. 70-71, 1970), related research is ongoing. For example, improvements in materials, research and miniaturization of reference electrodes, and structural improvements have been discussed. The current patents for ion-sensing field-effect transistors include: U.S. Patent No. 5,414,284, which discloses that an ion-sensing field-effect transistor component and an ESD protection circuit are simultaneously fabricated on the same substrate; U.S. Patent No. 5,407,854, the disclosure of which is incorporated herein incorporated by reference in its entirety, the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire disclosure Sensing, and using platinum metal as a reference electrode; U.S. Patent No. 5,350,701 discloses the use of a chemically synthesized phosphating-based sensing film on the gate region of a field-effect type ion sensing element for alkaline earth family The detection of the metal content, in particular for the sensing of the calcium ion content; U.S. Patent No. 5,319,226, the disclosure of which is incorporated herein by reference. On the sluice area, a field effect type ion sensing element having a yttria/niobium nitride/yttria structure is formed; U.S. Patent No. 5,314,833 is disclosed. Using gallium arsenide (GaAs) substrate, depositing a silicon thin film, and on this film in the implant arsenic (As +) and phosphorus (P +) ions, in the preparation of low ZU gate material to reduce the thermal effects of the elements, improve transistor U.S. Patent No. 4,812,220, the disclosure of which is incorporated herein by reference to U.S. Patent No. 4, 812,220, the disclosure of which is incorporated herein by reference. A MOS transistor and a field effect type ion sensing element are combined into a differential pair module system; U.S. Patent No. 4,609,932 discloses a laser drilling technique using MEMS technology to prepare a three-dimensional structure. Field effect type ion sensing element; and US Patent No. 4,358,274, discloses a differential system using a set of field effect type ion sensing elements, combined with a circuit readout module, thereby achieving temperature compensation. .

在形成場效型離子感測電晶體時,最常使用的閘極層的材料有,氧化矽、五氧化二鉭、氧化鋁和二氧化矽,而最普遍的是利用二氧化矽作為閘極層,藉由此二氧化矽閘極層與水溶液接觸,用於感測水溶液對二氧化矽層表面產生之介面電位,以達到感測水溶液離子之濃度的目的。簡言之,離子感測場效電晶體是一種電化學與微機電相結合的元件,其具有離子選擇電極(Ion Selective electrode;ISE)的功能,也同時具有場效電晶體的特性,為一種與傳統離子選擇電極截然不同的新型離子感測元件,然而使用二氧化矽作為閘極層之缺點在於會有漏電流的缺點,係為目前離子感測場效電晶體元件須解決的課題。When forming field-effect ion sensing transistors, the most commonly used gate layers are yttrium oxide, tantalum pentoxide, aluminum oxide and hafnium oxide, and the most common is the use of germanium dioxide as a gate. The layer is contacted with the aqueous solution by the cerium oxide gate layer for sensing the interface potential generated by the aqueous solution on the surface of the cerium oxide layer for the purpose of sensing the concentration of the aqueous solution ions. In short, the ion-sensing field-effect transistor is an electrochemical and micro-electromechanical device that has the function of an ion-selective electrode (ISE) and also has the characteristics of a field-effect transistor. A novel ion sensing element that is distinct from conventional ion selective electrodes. However, the disadvantage of using erbium dioxide as a gate layer is that it has a leakage current, which is a problem to be solved by current ion sensing field effect transistor elements.

本發明為一種具有雙膜差動結構之場效型離子感測裝置,係可使用於酸鹼度感測器裝置。The invention relates to a field effect type ion sensing device with a double membrane differential structure, which can be used for a pH sensor device.

本發明係以無機薄膜進行低氫離子的感測,採用具有高形變應力之薄膜,藉由調變薄膜厚度或改變基板型態及摻雜濃度,調整感測薄膜對於氫離子感應的靈敏度。The invention adopts an inorganic film for sensing low hydrogen ions, and adopts a film with high deformation stress, and adjusts the sensitivity of the sensing film to hydrogen ion sensing by modulating the thickness of the film or changing the substrate type and doping concentration.

根據上述之目的,本發明揭露一種使用於感測酸鹼度之具有雙膜差動結構之場效型離子感測裝置,其包含:一半導體基板具有一上表面及一下表面;一絕緣層形成在半導體基板之上表面;第一薄膜層形成在絕緣層上;第二薄膜層形成在第一薄膜層之部份表面上;及金屬接觸層,形成在半導體基板之部份下表面上。According to the above object, the present invention discloses a field effect type ion sensing device having a double film differential structure for sensing pH, comprising: a semiconductor substrate having an upper surface and a lower surface; and an insulating layer formed on the semiconductor a surface of the substrate; a first film layer formed on the insulating layer; a second film layer formed on a portion of the surface of the first film layer; and a metal contact layer formed on a portion of the lower surface of the semiconductor substrate.

本發明揭露另一種使用於感測酸鹼度之具有雙膜差動結構之場效型離子感測裝置,包含:一半導體基板,具有一上表面及一下表面;一絕緣層,形成在半導體基板之上表面;第一薄膜層,形成在絕緣層上;至少兩層膠層,形成在第一薄膜層上,用以在第一薄膜上定義出一感測區域;複數個中間物,形成在兩層膠層之間;第二薄膜層,形成在兩層膠層之間,且覆蓋在複數個中間物之上;及金屬接觸層,形成在半導體基板之部份下表面上。The present invention discloses another field effect type ion sensing device having a double film differential structure for sensing pH, comprising: a semiconductor substrate having an upper surface and a lower surface; and an insulating layer formed on the semiconductor substrate a first film layer formed on the insulating layer; at least two adhesive layers formed on the first film layer for defining a sensing region on the first film; and a plurality of intermediate materials formed on the two layers Between the adhesive layers; a second film layer formed between the two adhesive layers and covering the plurality of intermediate materials; and a metal contact layer formed on a portion of the lower surface of the semiconductor substrate.

故而,關於本發明之優點與精神可以藉由以下發明詳述及所附圖式得到進一步的瞭解。Therefore, the advantages and spirit of the present invention will be further understood from the following detailed description of the invention.

本發明為一種使用於感測酸鹼度之具有雙膜差動結構之場效型離子感測裝置。為了能徹底地瞭解本發明,將在下列的描述中提出詳盡的裝置結構。The invention relates to a field effect type ion sensing device with double membrane differential structure for sensing pH. In order to fully understand the present invention, a detailed device structure will be presented in the following description.

請參考第1A圖,係表示具有雙膜差動結構之場效型離子感測裝置之截面示意圖。如第1A圖所示,先提供一半導體基板10,特別是P-型半導體基板。接著,為了確保半導體基板10表面具有一定的平坦度及無原始氧化層(native oxide)。因此,在進行後續製程時,執行清洗製程,特別是利用RCA製程,用以清洗半導體基板10以確保微粒、金屬雜質、有機物及氧化層這些污染物可以完全被清除且不會重新沉積半導體基板10上。接著,利用熱氧化法(thermal oxidation)在半導體基板10上形成一厚度約為450埃()的二氧化矽層(SiO2 )以做為絕緣層(insulator)12。Please refer to FIG. 1A, which is a schematic cross-sectional view showing a field effect type ion sensing device having a double film differential structure. As shown in FIG. 1A, a semiconductor substrate 10, particularly a P-type semiconductor substrate, is provided first. Next, in order to ensure a certain degree of flatness on the surface of the semiconductor substrate 10 and no native oxide. Therefore, during the subsequent process, the cleaning process is performed, in particular, the RCA process is used to clean the semiconductor substrate 10 to ensure that particulates, metal impurities, organic matter, and oxide layers can be completely removed and the semiconductor substrate 10 is not re-deposited. on. Next, a thickness of about 450 angstroms is formed on the semiconductor substrate 10 by thermal oxidation ( The ruthenium dioxide layer (SiO 2 ) is used as an insulator 12 .

接著,由於二氧化鉿為具有高介電常數,因此在本實施例中用來取代原來金氧化半導體場效電晶體(MOSFET)結構內的閘氧化層(gate oxide layer),以避免施加多次電壓於場效電晶體之後由於閘氧化層變薄,而有漏電流的發生;此外,二氧化鉿具有較大的能隙(Eg>5eV)、良好的熱穩定性以及可靠性,因此可以做為光定址電位感測器(LAPS;light addressable potentiometric sensor)內的感測薄膜(sensing membrane)。因此,在半導體基板10上形成絕緣層12之後,即接著利用濺鍍(sputtering)法形成厚度約為350埃(A)的二氧化鉿(HfO2 )層做為第一薄膜層14在絕緣層12上。Then, since the cerium oxide has a high dielectric constant, it is used in the present embodiment to replace the gate oxide layer in the original gold oxide semiconductor field effect transistor (MOSFET) structure to avoid application of the gate oxide layer. After the voltage is applied to the field effect transistor, leakage current occurs due to the thinning of the gate oxide layer. In addition, the germanium dioxide has a large energy gap (Eg>5eV), good thermal stability and reliability, so it can be done. It is a sensing membrane in a light addressable potentiometric sensor (LAPS). Therefore, after the insulating layer 12 is formed on the semiconductor substrate 10, a layer of hafnium oxide (HfO 2 ) having a thickness of about 350 angstroms (A) is formed as a first thin film layer 14 in an insulating layer by a sputtering method. 12 on.

緊接著,對具有絕緣層12及做為第一薄膜層14之二氧化鉿層之半導體基板10執行一快速熱回火(RTA,rapid thermal annealing)步驟,其回火時間約為1分鐘,及回火溫度約在700℃。Next, a rapid thermal annealing (RTA) step is performed on the semiconductor substrate 10 having the insulating layer 12 and the ceria layer as the first thin film layer 14, and the tempering time is about 1 minute, and The tempering temperature is about 700 °C.

接著,同樣參考第1A圖,將已經經過清洗步驟之半導體基板10的背面形成金屬層(未在圖中表示);接著利用半導體製程,例如,微影及蝕刻製程,先在金屬層上形成圖案化之光阻層(未在圖中表示);然後利用蝕刻步驟,移除部份金屬層,以形成做為電極之金屬接觸層30,在本實施例中,金屬接觸層30材料為鋁。Next, referring to FIG. 1A, a metal layer (not shown) is formed on the back surface of the semiconductor substrate 10 that has been subjected to the cleaning step; and then a pattern is formed on the metal layer by using a semiconductor process such as a lithography and etching process. The photoresist layer (not shown) is then removed by an etching step to form a metal contact layer 30 as an electrode. In the present embodiment, the metal contact layer 30 is made of aluminum.

接著,在第一薄膜層14上方形成氧化鉭鉿(HfTaO)層,其形成的方法包括:形成一光罩層(未在圖中表示)在第一薄膜層14的上方,以覆蓋住做為感測薄膜的部份第一薄膜層14;接著,利用濺鍍(sputtering)法,特別是射頻濺鍍(RF sputtering)法,在未被光罩層(未在圖中表示)所覆蓋住之另一部份的第一薄膜層14上方,形成厚度約200埃(A)且做為第二薄膜層16的氧化鉭鉿層。因此,所形成之場效型離子感測裝置係同時利用第一薄膜層14與第二薄膜層16所構成之感測膜結構,以感測氫(H+ )離子的存在。Next, a hafnium oxide (HfTaO) layer is formed over the first thin film layer 14 by forming a photomask layer (not shown) over the first thin film layer 14 to cover Sensing a portion of the first film layer 14 of the film; then, by sputtering, in particular RF sputtering, without being covered by a mask layer (not shown) On the other portion of the first film layer 14, a ruthenium oxide layer having a thickness of about 200 angstroms (A) and serving as the second film layer 16 is formed. Therefore, the field effect type ion sensing device is formed by simultaneously utilizing the sensing film structure composed of the first film layer 14 and the second film layer 16 to sense the presence of hydrogen (H + ) ions.

接著,請參考第1B圖,係表示具有感測膜之場效型離子感測裝置之示意圖。在第1B圖中,係在第1A圖結構上方置放之參考電極40,係在量測酸鹼度時,提供一參考電位;以及在半導體基板10之下表面已定義之照射區域置放一照明裝置50,例如紅外線發光二極體(IR LED),用以提供一光源照射此場效型離子感測裝置,並藉由金屬接觸層30擷取訊號,經由op放大器之後放大該訊號並且藉由第一感測膜14與第二感測膜16所感測到的氫離子且與參考電極40所提供之參考電位比較,而可以得到欲感測之溶液之酸鹼度。Next, please refer to FIG. 1B, which is a schematic diagram showing a field effect type ion sensing device having a sensing film. In FIG. 1B, the reference electrode 40 placed above the structure of FIG. 1A provides a reference potential when measuring the pH, and a lighting device is disposed on the defined illumination area on the lower surface of the semiconductor substrate 10. 50, such as an infrared light emitting diode (IR LED), for providing a light source to illuminate the field effect type ion sensing device, and extracting the signal by the metal contact layer 30, and amplifying the signal through the op amplifier and A sensing electrode 14 is compared with the hydrogen ions sensed by the second sensing film 16 and compared with the reference potential provided by the reference electrode 40 to obtain the pH of the solution to be sensed.

接著,在第2A圖中,係表示經過熱回火步驟之後之具有二氧化鉿(HfO2 )層/氧化鉭鉿(HfTaO)層感測膜結構之場效型離子感測裝置在酸鹼度為2(pH=2)至酸鹼度為12(pH=12)之緩衝溶液(buffer solution),經感測之後所產生的電流(I)與電壓(V)之關係圖。Next, in FIG. 2A, a field effect type ion sensing device having a cerium oxide (HfO 2 ) layer/yttria (HfTaO) layer sensing film structure after a thermal tempering step is shown at a pH of 2 (pH=2) to a buffer solution with a pH of 12 (pH=12), a graph of the current (I) and voltage (V) produced after sensing.

在第2B圖中同樣也是表示經過熱回火步驟之後之具有二氧化鉿(HfO2 )層/氧化鉭鉿(HfTaO)層感測膜結構之場效型離子感測裝置在具有酸鹼度為2(pH=2)至酸鹼度為12(pH=12)之緩衝溶液(buffer solution),經感測之後所產生的電流(I)與電壓(V)之關係圖。Also shown in Fig. 2B is a field effect type ion sensing device having a cerium oxide (HfO 2 ) layer/yttria (HfTaO) layer sensing film structure after a thermal tempering step having a pH of 2 ( pH=2) to a buffer solution with a pH of 12 (pH=12), a graph of current (I) and voltage (V) produced after sensing.

第2C圖係表示經過熱回火步驟之後之具有二氧化鉿(HfO2 )層/氧化鉭鉿(HfTaO)層感測膜結構之場效型離子感測裝置在酸鹼度為2(pH=2)至酸鹼度為12(pH=12)之緩衝溶液(buffer solution),經感測之後所產生的電流(I)與電壓(V)之關係圖。Figure 2C shows a field effect type ion sensing device having a cerium oxide (HfO 2 ) layer / yttria (HfTaO) layer sensing film structure after a thermal tempering step at a pH of 2 (pH = 2) A diagram showing the relationship between the current (I) and the voltage (V) generated after sensing by a buffer solution having a pH of 12 (pH = 12).

第2C圖中小圖係表示電壓與酸鹼度之關係圖,其中場效型離子感測裝置之感測度為10.26,其線性度為99.246。因此,很明顯的可以知道,具有二氧化鉿(HfO2 )層/氧化鉭鉿(HfTaO)層感測膜結構之場效型離子感測裝置對於酸鹼度有良好的感測性。The small graph in Fig. 2C shows the relationship between voltage and pH, wherein the field effect type ion sensing device has a sensitivity of 10.26 and a linearity of 99.246. Therefore, it is apparent that a field effect type ion sensing device having a cerium oxide (HfO 2 ) layer/yttria (HfTaO) layer sensing film structure has good sensitivity to pH.

第3A圖係表示本發明另一種具有雙膜差動結構之場效型離子感測裝置之截面示意圖,在第3A圖中,其中半導體基板10、絕緣層12、第一薄膜層14及金屬接觸層30之形成方式、結構及功能均與先前之實施例相同,在此不再多加贅述。在此,要說明的是,於第一薄膜層14上執行熱回火步驟之後,係在第一薄膜層14上形成複數個膠層(glue layer)20,在此實施例中,係藉由此複數個膠層20定義出在第一薄膜層14上的感測區域15。接著,將具有複數個膠層20之半導體基板20在溫度150℃進行烘烤步驟,其烘烤時間大約40分鐘,使得複數個膠層20可以固著於第一薄膜層14的表面上。3A is a schematic cross-sectional view showing another field effect type ion sensing device having a double film differential structure in the 3A, wherein the semiconductor substrate 10, the insulating layer 12, the first film layer 14 and the metal contact are in contact with each other. The formation, structure and function of the layer 30 are the same as those of the previous embodiments, and will not be further described herein. Here, it is to be noted that after performing the thermal tempering step on the first film layer 14, a plurality of glue layers 20 are formed on the first film layer 14, in this embodiment, by The plurality of glue layers 20 define a sensing region 15 on the first film layer 14. Next, the semiconductor substrate 20 having a plurality of adhesive layers 20 is subjected to a baking step at a temperature of 150 ° C for a baking time of about 40 minutes so that a plurality of adhesive layers 20 can be adhered to the surface of the first film layer 14.

緊接著,再進行一次清洗步驟,係利用醇類,特別是乙醇以及去離子水將經過烘烤固化之具有複數個膠層20之半導體基板10清洗乾淨,再一次確保半導體基板10的潔淨度。然後,將此半導體基板10置於室溫下約30分鐘乾燥。Next, a cleaning step is performed to clean the semiconductor substrate 10 having a plurality of adhesive layers 20 which are baked and cured by using an alcohol, particularly ethanol and deionized water, to ensure the cleanliness of the semiconductor substrate 10 again. Then, the semiconductor substrate 10 was dried at room temperature for about 30 minutes.

然後,在半導體基板10上執行一矽烷化步驟(silylating process),使得在感測區域15上,第一薄膜層14的表面上形成複數個中間物22,其形成步驟包括:利用甲苯(toluene)將六甲基二矽氮烷(HMDS,hexamethyldisilane)稀釋之混合溶液,與在半導體基板10之感測區域15上進行接觸,使得六甲基二矽氮烷的矽與第一薄膜層(二氧化鉿層)14反應,而形成複數個矽氧化物(即為中間物)22在感測區域14上。在此實施例中,六甲基二矽氮烷與甲烷的體積比約為1:3且其形成的矽烷化混合溶液的體積約為62ul至85ul。然後,再將經過矽烷化步驟之半導體基板10在室溫下進行乾燥約30分鐘。Then, a silylating process is performed on the semiconductor substrate 10 such that a plurality of intermediates 22 are formed on the surface of the first thin film layer 14 on the sensing region 15, and the forming step includes: using toluene The mixed solution of hexamethyldiazide (HMDS, hexamethyldisilane) is diluted and contacted on the sensing region 15 of the semiconductor substrate 10 to make the ruthenium of the hexamethyldioxane and the first thin film layer (dioxide The ruthenium layer 14 reacts to form a plurality of ruthenium oxides (i.e., intermediates) 22 on the sensing region 14. In this embodiment, the volume ratio of hexamethyldioxane to methane is about 1:3 and the volume of the decane-based mixed solution formed is about 62 ul to 85 ul. Then, the semiconductor substrate 10 subjected to the decaneization step was dried at room temperature for about 30 minutes.

緊接著,同樣參考第3A圖,係將聚氯乙烯(PVC)沉積在半導體基板10之感測區域15上,並且覆蓋住形成在感測區域15之間的複數個中間物22以形成做為第二薄膜層18聚氯乙烯薄膜層,接著在室溫下乾燥至少12小時以上,即完成具有雙層感測膜之場效型離子感測裝置。在此要說明的是,聚氯乙烯薄膜層18可以是只有聚氯乙烯或者是由DNP與聚氯乙烯混合而成之混合物,DNP配置的比例可以是佔混合物(DNP加聚氯乙烯)的50%至80%之間不等,但是此混合物的重量須維持在約200毫克且須溶於四氫呋喃(THF,Tetrahydrofuran)溶液裡。Next, referring also to FIG. 3A, polyvinyl chloride (PVC) is deposited on the sensing region 15 of the semiconductor substrate 10, and covers a plurality of intermediates 22 formed between the sensing regions 15 to form The second film layer 18 is a polyvinyl chloride film layer, and then dried at room temperature for at least 12 hours or more to complete a field effect type ion sensing device having a double layer sensing film. It should be noted that the polyvinyl chloride film layer 18 may be only polyvinyl chloride or a mixture of DNP and polyvinyl chloride. The ratio of the DNP configuration may be 50% of the mixture (DNP plus polyvinyl chloride). Between % and 80%, the weight of this mixture must be maintained at about 200 mg and must be dissolved in tetrahydrofuran (THF, Tetrahydrofuran) solution.

接著,參考第3B圖,係表示具有雙膜差動結構之場效型離子感測裝置之示意圖。在第3B圖中,係在第3A圖結構上方置放之參考電極40,係在量測酸鹼度時,提供一參考電位;以及在半導體基板10之下表面已定義之照射區域置放一照明裝置50,例如紅外線發光二極體(IR LED),用以提供一光源照射此場效型離子感測裝置之感測區域,並藉由半導體基板10下表面之金屬接觸層30擷取訊號,經由op放大器之後放大該訊號並且藉由第一感測膜14與第二感測膜16所感測到的氫離子且與參考電極40所提供之參考電位比較,而可以得到欲感測之溶液之酸鹼度。Next, referring to FIG. 3B, a schematic diagram of a field effect type ion sensing device having a double film differential structure is shown. In FIG. 3B, the reference electrode 40 placed above the structure of FIG. 3A provides a reference potential when measuring the pH, and a lighting device is disposed on the defined illumination area on the lower surface of the semiconductor substrate 10. 50, for example, an infrared light emitting diode (IR LED) for providing a light source to illuminate a sensing region of the field effect type ion sensing device, and extracting a signal through the metal contact layer 30 on the lower surface of the semiconductor substrate 10, via After the op amplifier amplifies the signal and compares the hydrogen ions sensed by the first sensing film 14 and the second sensing film 16 with the reference potential provided by the reference electrode 40, the pH of the solution to be sensed can be obtained. .

另外,在第3C圖中,係表示具有雙膜差動結構之場效型離子感測裝置之另一種較佳實施例之示意圖。第3C圖與第3B圖的差異在於,在第一薄膜層14上所形成的複數個膠層20係以陣列的方式形成,係將第一薄膜層14之表面區分成數個感測區域,同樣的,在進行矽烷化步驟之後,複數個中間物22只會形成在經過矽烷化步驟之第一薄膜層14之表面上;然後與前述步驟相同,再將含有聚氯乙烯之混合物形成在第一薄膜層14上,且覆蓋住複數個中間物22以完成一場效型離子感測裝置之結構。Further, in Fig. 3C, there is shown a schematic view of another preferred embodiment of the field effect type ion sensing device having a double film differential structure. The difference between the 3C and 3B is that the plurality of adhesive layers 20 formed on the first film layer 14 are formed in an array, and the surface of the first film layer 14 is divided into a plurality of sensing regions, and the same. After the decaneization step, a plurality of intermediates 22 are formed only on the surface of the first film layer 14 subjected to the decaneization step; then, in the same manner as the foregoing steps, the mixture containing the polyvinyl chloride is formed in the first step. The film layer 14 is covered with a plurality of intermediates 22 to complete the structure of a utility ion sensing device.

在第4A圖中係表示在緩衝溶液的酸鹼度由2至12,且當照射裝置照射場效型離子感測裝置之感測區域時,藉由金屬接觸層30所擷取到的訊號而經由訊號轉換產生的電流與電壓之間的關係圖,在此圖中其DNP的重量百分比為60%。In Fig. 4A, the pH of the buffer solution is from 2 to 12, and when the irradiation device illuminates the sensing region of the field-effect ion sensing device, the signal is extracted by the metal contact layer 30. A plot of the current versus voltage produced by the conversion, in which the weight percent of its DNP is 60%.

第4B圖則是DNP的重量百分比為60%,且同樣是在緩衝溶液的酸鹼度由2至12,且當照射裝置照射場效型離子感測裝置之感測區域時,藉由金屬接觸層30所擷取到的訊號而經由訊號轉換產生的電流與電壓之間的關係圖。Figure 4B shows that the weight percentage of DNP is 60%, and the pH of the buffer solution is also from 2 to 12, and when the irradiation device illuminates the sensing region of the field effect ion sensing device, the metal contact layer 30 A diagram showing the relationship between the current and voltage generated by the signal conversion.

而第4C圖是將第4B圖轉換成電壓與酸鹼度之關係圖,可以得到其感測度為24.32,線性度為98.807。The 4C figure is a graph that converts the 4B picture into a voltage and a pH, and the sensitivity is 24.32, and the linearity is 98.807.

第4D圖是DNP的重量百分比為70%,且同樣是在緩衝溶液的酸鹼度由2至12,且當照射裝置照射場效型離子感測裝置之感測區域時,藉由金屬接觸層30所擷取到的訊號而經由訊號轉換產生的電流與電壓之間的關係圖。4D is a weight percentage of DNP of 70%, and also the pH of the buffer solution is from 2 to 12, and when the irradiation device illuminates the sensing region of the field effect ion sensing device, by the metal contact layer 30 A diagram showing the relationship between current and voltage generated by signal conversion.

而第4E圖是將第4D圖轉換成電壓與酸鹼度之關係圖,可以得到其感測度為34.96,線性度為99.004。The 4E plot is a graph that converts the 4D graph into a voltage versus pH, which gives a sensitivity of 34.96 and a linearity of 99.004.

第4F圖是DNP的重量百分比為80%,且同樣是在緩衝溶液的酸鹼度由2至12,且當照射裝置照射場效型離子感測裝置之感測區域時,藉由金屬接觸層30所擷取到的訊號而經由訊號轉換產生的電流與電壓之間的關係圖。FIG. 4F is a graph showing that the weight percentage of DNP is 80%, and the pH of the buffer solution is also from 2 to 12, and when the irradiation device irradiates the sensing region of the field effect type ion sensing device, the metal contact layer 30 is used. A diagram showing the relationship between current and voltage generated by signal conversion.

而第4G圖是將第4F圖轉換成電壓與酸鹼度之關係圖,可以得到其感測度為50.26,線性度為98.294。The 4G graph is a graph that converts the 4F map into a voltage and a pH, and the sensitivity is 50.26 and the linearity is 98.294.

另外,第4H圖中係表示在緩衝溶液的酸鹼度由2至12,且當照射裝置照射場效型離子感測裝置之感測區域時,藉由金屬接觸層30所擷取到的訊號而經由訊號轉換產生的電流與電壓之間的關係圖,其與第4A圖的差別在於只有聚氯乙烯薄膜而沒有DNP。In addition, in FIG. 4H, the pH of the buffer solution is from 2 to 12, and when the irradiation device irradiates the sensing region of the field effect ion sensing device, the signal extracted by the metal contact layer 30 is passed through The relationship between current and voltage generated by signal conversion is different from that of Figure 4A in that there is only a polyvinyl chloride film and no DNP.

而第4I圖是將第4H圖轉換成電壓與酸鹼度之關係圖,可以得到聚氯乙烯(第二薄膜層18)的感測度為33mV/pH,二氧化鉿層(第一薄膜層14)的感測度為59mV/pH。4I is a diagram for converting the 4H map into a voltage and a pH, and the degree of sensitivity of the polyvinyl chloride (second film layer 18) is 33 mV/pH, and the ruthenium dioxide layer (first film layer 14) can be obtained. The sensitivity is 59 mV/pH.

第4J圖中係DNP的重量百分比為80%,具有聚氯乙烯/二氧化鉿層感測膜結構之本發明,在緩衝溶液的酸鹼度由2至12,且當照射裝置照射場效型離子感測裝置之感測區域時,藉由金屬接觸層30所擷取到的訊號而經由訊號轉換產生的電流與電壓之間的關係圖。In the 4th figure, the weight percentage of DNP is 80%, and the invention has a polyvinyl chloride/ceria layer sensing film structure, the pH of the buffer solution is from 2 to 12, and when the irradiation device irradiates the field effect type ion sensation A diagram showing the relationship between current and voltage generated by signal conversion by the signal captured by the metal contact layer 30 when the sensing region of the device is measured.

以上所述僅為本發明之較佳實施例而已,並非用以限定本發明之申請專利範圍;凡其它未脫離本發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之申請專利範圍內。The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention; all other equivalent changes or modifications which are not departing from the spirit of the present invention should be included in the following. Within the scope of the patent application.

10...半導體基板10. . . Semiconductor substrate

12...絕緣層12. . . Insulation

14...第一薄膜層14. . . First film layer

15...感測區域15. . . Sensing area

16...第二薄膜層16. . . Second film layer

18...第二薄膜層18. . . Second film layer

20...膠層20. . . Glue layer

22...中間物twenty two. . . Intermediate

30...金屬接觸層30. . . Metal contact layer

40...參考電極40. . . Reference electrode

50...照射裝置50. . . Irradiation device

第1A圖係根據本發明所揭露之技術,具有具有雙膜差動結構之場效型離子感測裝置之截面示意圖。1A is a schematic cross-sectional view of a field effect type ion sensing device having a dual film differential structure in accordance with the teachings of the present invention.

第1B圖係根據本發明所揭露之技術,表示具有雙膜差動結構之場效型離子感測裝置之示意圖。1B is a schematic diagram showing a field effect type ion sensing device having a dual film differential structure in accordance with the teachings of the present invention.

第2A圖係具有二氧化鉿層感測膜結構之本發明於酸鹼度為2(pH=2)至酸鹼度為12(pH=12)之緩衝溶液中感測,所產生的電流(I)與電壓(V)之關係圖。其中小圖為轉換之電壓與酸鹼度之關係圖。2A is a sensing solution having a cerium oxide layer sensing film structure. The present invention senses a current (I) and a voltage in a buffer solution having a pH of 2 (pH=2) to a pH of 12 (pH=12). (V) diagram. The small picture is the relationship between the voltage of the conversion and the pH.

第2B圖係具有氧化鉭鉿層感測膜結構之本發明於酸鹼度為2(pH=2)至酸鹼度為12(pH=12)之緩衝溶液中感測,所產生的電流(I)與電壓(V)之關係圖。其中小圖為轉換之電壓與酸鹼度之關係圖。2B is a schematic diagram of a structure having a yttria layer sensing film structure. The present invention senses a current (I) and a voltage in a buffer solution having a pH of 2 (pH=2) to a pH of 12 (pH=12). (V) diagram. The small picture is the relationship between the voltage of the conversion and the pH.

第2C圖係具有二氧化鉿層/氧化鉭鉿層之雙感測膜結構之本發明在具有酸鹼度為2(pH=2)至酸鹼度為12(pH=12)之緩衝溶液中感測,所產生的電流(I)與電壓(V)之關係圖。其中小圖為轉換之電壓與酸鹼度之關係圖。2C is a double-sensing film structure having a cerium oxide layer/yttria layer. The present invention senses in a buffer solution having a pH of 2 (pH=2) to a pH of 12 (pH=12). A plot of the resulting current (I) versus voltage (V). The small picture is the relationship between the voltage of the conversion and the pH.

第3A圖係根據本發明所揭露之技術,表示另一種具有雙膜差動結構之場效型離子感測裝置之截面示意圖。3A is a schematic cross-sectional view showing another field effect type ion sensing device having a dual film differential structure in accordance with the teachings of the present invention.

第3B圖係根據本發明所揭露之技術,表示具有雙膜差動結構之場效型離子感測裝置之示意圖。3B is a schematic diagram showing a field effect type ion sensing device having a dual film differential structure in accordance with the teachings of the present invention.

第3C圖係根據本發明所揭露之技術,表示具有雙膜差動結構之場效型離子感測裝置之另一種較佳實施例之示意圖。3C is a schematic diagram showing another preferred embodiment of a field effect type ion sensing device having a dual film differential structure in accordance with the teachings of the present invention.

第4A圖中係表示在緩衝溶液的酸鹼度由2至12,及DNP的重量百分比為60%,且當照射裝置照射場效型離子感測裝置之感測區域時,藉由金屬接觸層所擷取到的訊號而經由訊號轉換產生的電流與電壓之間的關係圖。In Fig. 4A, the pH of the buffer solution is from 2 to 12, and the weight percentage of DNP is 60%, and when the irradiation device irradiates the sensing region of the field effect type ion sensing device, the metal contact layer is The relationship between the current and the voltage generated by the signal conversion.

第4B圖係為在DNP的重量百分比為60%,且緩衝溶液的酸鹼度由2至12,且當照射裝置照射場效型離子感測裝置之感測區域時,藉由金屬接觸層所擷取到的訊號而經由訊號轉換產生的電流與電壓之間的關係圖。4B is a 60% by weight of DNP, and the pH of the buffer solution is from 2 to 12, and is taken by the metal contact layer when the irradiation device illuminates the sensing region of the field effect ion sensing device. The relationship between the current and the voltage generated by the signal conversion.

第4C圖係為第4B圖轉換成電壓與酸鹼度之關係圖。Figure 4C is a graph showing the relationship between voltage and pH in Figure 4B.

第4D圖係表示DNP的重量百分比為70%,且緩衝溶液的酸鹼度由2至12,且當照射裝置照射場效型離子感測裝置之感測區域時,藉由金屬接觸層所擷取到的訊號而經由訊號轉換產生的電流與電壓之間的關係圖。4D shows that the weight percentage of DNP is 70%, and the pH of the buffer solution is from 2 to 12, and when the irradiation device irradiates the sensing region of the field effect ion sensing device, it is extracted by the metal contact layer. The relationship between the current and the voltage generated by the signal conversion.

第4E圖係為第4D圖轉換成電壓與酸鹼度之關係圖。Figure 4E is a graph showing the relationship between voltage and pH in the 4D graph.

第4F圖係表示在DNP的重量百分比為80%,且緩衝溶液的酸鹼度由2至12,且當照射裝置照射場效型離子感測裝置之感測區域時,藉由金屬接觸層所擷取到的訊號而經由訊號轉換產生的電流與電壓之間的關係圖。Figure 4F shows that the weight percentage of DNP is 80%, and the pH of the buffer solution is from 2 to 12, and when the irradiation device irradiates the sensing region of the field effect ion sensing device, it is taken by the metal contact layer. The relationship between the current and the voltage generated by the signal conversion.

第4G圖係為第4F圖轉換成電壓與酸鹼度之關係圖。The 4G graph is a graph in which the 4F map is converted into a voltage and a pH.

第4H圖中係表示在緩衝溶液的酸鹼度由2至12,且當照射裝置照射場效型離子感測裝置之感測區域時,藉由金屬接觸層所擷取到的訊號而經由訊號轉換產生的電流與電壓之間的關係圖。In Fig. 4H, the pH of the buffer solution is from 2 to 12, and when the irradiation device illuminates the sensing region of the field-effect ion sensing device, the signal extracted by the metal contact layer is generated by signal conversion. A diagram of the relationship between current and voltage.

第4I圖係為第4H圖轉換成電壓與酸鹼度之關係圖。Figure 4I is a graph showing the relationship between voltage and pH in the 4H chart.

第4J圖中係具有聚氯乙烯/二氧化鉿層雙感測膜結構之本發明在具有酸鹼度為2(pH=2)至酸鹼度為12(pH=12)之緩衝溶液中感測,所產生的電流(I)與電壓(V)之關係圖。The present invention having a polyvinyl chloride/ceria layer double-sensing film structure in FIG. 4J is sensed in a buffer solution having a pH of 2 (pH=2) to a pH of 12 (pH=12). Diagram of current (I) versus voltage (V).

10...半導體基板10. . . Semiconductor substrate

12...絕緣層12. . . Insulation

14...第一薄膜層14. . . First film layer

16...第二薄膜層16. . . Second film layer

30...金屬接觸層30. . . Metal contact layer

40...參考電極40. . . Reference electrode

50...照射裝置50. . . Irradiation device

Claims (22)

一種用於具有雙膜差動結構之場效型離子感測裝置,包含:一基板,具有一上表面及一下表面,其中該基板為一P型矽基板;一絕緣層,形成在該基板之該上表面,其中該絕緣層為二氧化矽層;一第一薄膜層,形成在該絕緣層上,其中該第一薄膜層為二氧化鉿(HfO2 )層;一第二薄膜層,形成在該第一薄膜層之部份表面上;以及一金屬接觸層,形成在該基板之部份該下表面上,其中該金屬接觸層為一金屬鋁,藉以形成該具有雙膜差動結構之場效型離子感測裝置。A field effect type ion sensing device for a dual film differential structure, comprising: a substrate having an upper surface and a lower surface, wherein the substrate is a P-type germanium substrate; and an insulating layer is formed on the substrate The upper surface, wherein the insulating layer is a ceria layer; a first film layer is formed on the insulating layer, wherein the first film layer is a hafnium oxide (HfO 2 ) layer; and a second film layer is formed And a metal contact layer formed on a portion of the lower surface of the substrate, wherein the metal contact layer is a metal aluminum, thereby forming the double film differential structure Field effect type ion sensing device. 如申請專利範圍第1項所述之感測裝置,其中該第二薄膜層為氧化鉭鉿(HfTaO)層。 The sensing device of claim 1, wherein the second film layer is a hafnium oxide (HfTaO) layer. 一種用於具有雙膜差動結構之場效型離子感測裝置,包含:一基板,具有一上表面及一下表面,其中該基板為一P型矽基板;一絕緣層,形成在該基板之該上表面,其中該絕緣 層為二氧化矽層;一第一薄膜層,形成在該絕緣層上;一第二薄膜層,形成在該第一薄膜層之部份表面上,其中該第二薄膜層為二氧化鉿(HfO2 )層;以及一金屬接觸層,形成在該基板之部份該下表面上,其中該金屬接觸層為一金屬鋁,藉以形成該具有雙膜差動結構之場效型離子感測裝置。A field effect type ion sensing device for a dual film differential structure, comprising: a substrate having an upper surface and a lower surface, wherein the substrate is a P-type germanium substrate; and an insulating layer is formed on the substrate The upper surface, wherein the insulating layer is a ceria layer; a first film layer is formed on the insulating layer; and a second film layer is formed on a part of the surface of the first film layer, wherein the second layer The thin film layer is a hafnium oxide (HfO 2 ) layer; and a metal contact layer is formed on a portion of the lower surface of the substrate, wherein the metal contact layer is a metal aluminum, thereby forming the double film differential structure. Field effect type ion sensing device. 如申請專利範圍第3項所述之感測裝置,其中該第一薄膜層為二氧化鉿(HfO2 )層。The sensing device of claim 3, wherein the first film layer is a layer of hafnium oxide (HfO 2 ). 一種具有雙膜差動結構之場效型離子感測裝置,包含:一基板,具有一上表面及一下表面,其中該基板為一P型矽基板;一絕緣層,形成在該基板之該上表面,其中該絕緣層為一二氧化矽層;一第一薄膜層,形成在該絕緣層上,其中該第一薄膜層為二氧化鉿(HfO2 )層;一第二薄膜層,形成在該第一薄膜層之部份表面上;一金屬接觸層,形成在該基板之部份該下表面上,使得曝露出之該基板之部份該下表面為一感測區域,其中該金屬接觸層為一金屬鋁;一參考電極,設置在該第二薄膜層上方,係用以在量測 時提供一參考電位;以及一光源裝置,設置於該基板之該下表面且介於該金屬接觸層之間,其中該光源裝置為一紅外線發光二極體(IR-LED),藉以形成該具有雙膜差動結構之場效型離子感測裝置。A field effect type ion sensing device having a double film differential structure, comprising: a substrate having an upper surface and a lower surface, wherein the substrate is a P-type germanium substrate; and an insulating layer is formed on the substrate a surface, wherein the insulating layer is a germanium dioxide layer; a first thin film layer is formed on the insulating layer, wherein the first thin film layer is a hafnium oxide (HfO 2 ) layer; and a second thin film layer is formed on a portion of the surface of the first film layer; a metal contact layer formed on a portion of the lower surface of the substrate such that a portion of the exposed surface of the substrate is a sensing region, wherein the metal contact The layer is a metal aluminum; a reference electrode is disposed above the second film layer for providing a reference potential during measurement; and a light source device is disposed on the lower surface of the substrate and interposed between the metal contacts Between the layers, wherein the light source device is an infrared light emitting diode (IR-LED), thereby forming the field effect type ion sensing device with a double film differential structure. 如申請專利範圍第5項所述之感測裝置,其中該第二薄膜層為一氧化鉭鉿(HfTaO)層。 The sensing device of claim 5, wherein the second film layer is a hafnium oxide (HfTaO) layer. 一種具有雙膜差動結構之場效型離子感測裝置,包含:一基板,具有一上表面及一下表面,其中該基板為一P型矽基板;一絕緣層,形成在該基板之該上表面,其中該絕緣層為一二氧化矽層;一第一薄膜層,形成在該絕緣層上;一第二薄膜層,其中該第二薄膜層為一氧化鉭鉿(HfTaO)層,形成在該第一薄膜層之部份表面上;一金屬接觸層,形成在該基板之部份該下表面上,使得曝露出之該基板之部份該下表面為一感測區域,其中該金屬接觸層為一金屬鋁;一參考電極,設置在該第二薄膜層上方,係用以在量測時提供一參考電位;以及一光源裝置,設置於該基板之該下表面且介於該 金屬接觸層之間,其中該光源裝置為一紅外線發光二極體(IR-LED),藉以形成該具有雙膜差動結構之場效型離子感測裝置。 A field effect type ion sensing device having a double film differential structure, comprising: a substrate having an upper surface and a lower surface, wherein the substrate is a P-type germanium substrate; and an insulating layer is formed on the substrate a surface, wherein the insulating layer is a germanium dioxide layer; a first thin film layer is formed on the insulating layer; and a second thin film layer, wherein the second thin film layer is a hafnium oxide (HfTaO) layer, formed on the surface a portion of the surface of the first film layer; a metal contact layer formed on a portion of the lower surface of the substrate such that a portion of the exposed surface of the substrate is a sensing region, wherein the metal contact The layer is a metal aluminum; a reference electrode is disposed above the second film layer for providing a reference potential during measurement; and a light source device is disposed on the lower surface of the substrate and interposed therebetween Between the metal contact layers, wherein the light source device is an infrared light emitting diode (IR-LED), thereby forming the field effect type ion sensing device having a double film differential structure. 一種具有雙膜差動結構之場效型離子感測裝置,包含:一基板,具有一上表面及一下表面;一絕緣層,形成在該基板之該上表面;一第一薄膜層,形成在該絕緣層上;複數個兩層膠層,形成在該第一薄膜層上,用以在該第一薄膜上定義出一感測區域;複數個中間物,形成在該複數個膠層之間;一第二薄膜層,形成在該複數個膠層之間且覆蓋在該些中間物上;以及一金屬接觸層,形成在該基板之部份該下表面,藉以形成該具有雙膜差動結構之場效型離子感測裝置。 A field effect type ion sensing device having a double film differential structure, comprising: a substrate having an upper surface and a lower surface; an insulating layer formed on the upper surface of the substrate; a first thin film layer formed on a plurality of adhesive layers formed on the first film layer for defining a sensing region on the first film; a plurality of intermediates formed between the plurality of adhesive layers a second film layer formed between the plurality of glue layers and covering the intermediate materials; and a metal contact layer formed on a portion of the lower surface of the substrate, thereby forming the double film differential Structured field effect ion sensing device. 如申請專利範圍第9項所述之感測裝置,其中該基板為一P型矽基板。 The sensing device of claim 9, wherein the substrate is a P-type germanium substrate. 如申請專利範圍第9項所述之感測裝置,其中該絕緣層為一二氧化矽層。 The sensing device of claim 9, wherein the insulating layer is a ceria layer. 如申請專利範圍第9項所述之感測裝置,其中該第一薄膜層為一二氧化鉿(HfO2 )層。The sensing device of claim 9, wherein the first film layer is a layer of hafnium oxide (HfO 2 ). 如申請專利範圍第9項所述之感測裝置,其中該中間物 係為矽烷化物。 The sensing device of claim 9, wherein the intermediate device It is a decane compound. 如申請專利範圍第9項所述之感測裝置,其中該第二薄膜層為一聚氯乙烯(PVC,poly(vinyl chloride))薄膜層。 The sensing device of claim 9, wherein the second film layer is a poly(vinyl chloride) film layer. 如申請專利範圍第9項所述之感測裝置,其中該金屬接觸層為一金屬鋁。 The sensing device of claim 9, wherein the metal contact layer is a metal aluminum. 一種具有雙膜差動結構之場效型離子感測裝置,包含:一基板,具有一上表面及一下表面;一絕緣層,形成在該基板之該上表面;一第一薄膜層,形成在該絕緣層上;複數個膠層,形成在該第一薄膜層上,用以定義出一感測區域;複數個中間物,形成在該複數個膠層之間;一第二薄膜層,形成在該複數個膠層之間且覆蓋在該些中間物上;一參考電極,設置在該第二薄膜層上方,係用以在量測時提供一參考電位;一金屬接觸層,形成在該基板之部份該下表面上,使得曝露出之該基板之部份該下表面為一感測區域;及一光源裝置,設置於該基板之該下表面且介於該金屬接觸層之間,藉以形成該具有雙膜差動結構之場效型離子 感測裝置。 A field effect type ion sensing device having a double film differential structure, comprising: a substrate having an upper surface and a lower surface; an insulating layer formed on the upper surface of the substrate; a first thin film layer formed on a plurality of adhesive layers formed on the first film layer for defining a sensing region; a plurality of intermediates formed between the plurality of adhesive layers; and a second film layer formed Between the plurality of adhesive layers and covering the intermediates; a reference electrode disposed above the second thin film layer for providing a reference potential during measurement; a metal contact layer formed thereon a portion of the lower surface of the substrate such that a portion of the lower surface of the exposed substrate is a sensing region; and a light source device disposed on the lower surface of the substrate and interposed between the metal contact layers Forming the field effect type ion having a double film differential structure Sensing device. 如申請專利範圍第16項所述之感測裝置,其中該基板為一P型矽基板。 The sensing device of claim 16, wherein the substrate is a P-type germanium substrate. 如申請專利範圍第16項所述之感測裝置,其中該絕緣層為一二氧化矽層。 The sensing device of claim 16, wherein the insulating layer is a hafnium oxide layer. 如申請專利範圍第16項所述之感測裝置,其中該第一薄膜層為一二氧化鉿(HfO2 )層。The sensing device of claim 16, wherein the first film layer is a layer of hafnium oxide (HfO 2 ). 如申請專利範圍第16項所述之感測裝置,其中該中間物係為矽烷化物。 The sensing device of claim 16, wherein the intermediate is a decane compound. 如申請專利範圍第16項所述之感測裝置,其中該第二薄膜層為一聚氯乙烯(PVC,poly(vinyl chloride))薄膜層。 The sensing device of claim 16, wherein the second film layer is a poly(vinyl chloride) film layer. 如申請專利範圍第16項所述之感測裝置,其中該金屬接觸層為一金屬鋁。 The sensing device of claim 16, wherein the metal contact layer is a metal aluminum. 如申請專利範圍第16項所述之感測裝置,其中該光源裝置為一紅外線發光二極體(IR-LED)。 The sensing device of claim 16, wherein the light source device is an infrared light emitting diode (IR-LED).
TW098140410A 2009-11-26 2009-11-26 Field-effect ion sensing device with dual-film differential structure TWI452290B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098140410A TWI452290B (en) 2009-11-26 2009-11-26 Field-effect ion sensing device with dual-film differential structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098140410A TWI452290B (en) 2009-11-26 2009-11-26 Field-effect ion sensing device with dual-film differential structure

Publications (2)

Publication Number Publication Date
TW201118374A TW201118374A (en) 2011-06-01
TWI452290B true TWI452290B (en) 2014-09-11

Family

ID=44935622

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098140410A TWI452290B (en) 2009-11-26 2009-11-26 Field-effect ion sensing device with dual-film differential structure

Country Status (1)

Country Link
TW (1) TWI452290B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733009B (en) * 2018-03-23 2021-07-11 國立成功大學 Dielectric particle controlling chip

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567302A (en) * 1995-06-07 1996-10-22 Molecular Devices Corporation Electrochemical system for rapid detection of biochemical agents that catalyze a redox potential change

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567302A (en) * 1995-06-07 1996-10-22 Molecular Devices Corporation Electrochemical system for rapid detection of biochemical agents that catalyze a redox potential change

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Shishkanova, T.V., Volf, R., Krondak, M., Král, V., 2007. Functionalization of PVC membrane with ss oligonucleotides for a potentiometric biosensor. Biosens. Bioelectron., 22(11):2712-2717 --- PVC membrance *
Xiao-lin ZONG, "A non-labeled DNA biosensor based on light addressable potentiometric sensor modified with TiO2 thin film", J. Zhejiang Univ Sci B, 20091011 pp.860-866 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733009B (en) * 2018-03-23 2021-07-11 國立成功大學 Dielectric particle controlling chip

Also Published As

Publication number Publication date
TW201118374A (en) 2011-06-01

Similar Documents

Publication Publication Date Title
Spijkman et al. Dual‐gate organic field‐effect transistors as potentiometric sensors in aqueous solution
TW201225304A (en) Chemically sensitive sensor with lightly doped drains
CN109682863B (en) TMDCs-SFOI heterojunction-based gas sensor and preparation method thereof
Chin et al. A novel SnO2/Al discrete gate ISFET pH sensor with CMOS standard process
KR102316202B1 (en) A high-performance biosensor based on a ion-sensitive field effect transistor having a triple gate structure
US7355200B2 (en) Ion-sensitive field effect transistor and method for producing an ion-sensitive field effect transistor
Sinha et al. A comprehensive review of FET‐based pH sensors: materials, fabrication technologies, and modeling
Yang et al. PIN amorphous silicon for thin-film light-addressable potentiometric sensors
Khanna Fabrication of ISFET microsensor by diffusion-based Al gate NMOS process and determination of its pH sensitivity from transfer characteristics
Lu et al. Non-ideal effects improvement of SF6 plasma treated hafnium oxide film based on electrolyte–insulator–semiconductor structure for pH-sensor application
LU101020B1 (en) Ion-sensitive field effect transistor
TWI452290B (en) Field-effect ion sensing device with dual-film differential structure
TWI244702B (en) Titanium oxide thin film for extended gate field effect transistor using reactive sputtering
Chang et al. Characteristics of zirconium oxide gate ion-sensitive field-effect transistors
Chen et al. Ion-sensitive field-effect transistors with periodic-groove channels fabricated using nanoimprint lithography
Rodrigues et al. Fabrication and characterization of a pH sensor
JP2546340B2 (en) Moisture sensitive element and its operating circuit
US8410530B2 (en) Sensitive field effect transistor apparatus
Wu et al. ISFET-based pH sensor composed of a high transconductance CMOS chip and a disposable touch panel film as the sensing layer
TWM305339U (en) pH-ISFET device and system for measuring pH value in a solution using the same
Liu et al. Investigation of AlGaZnO pH Sensors Fabricated by Using Cosputtering System
TWI757122B (en) Field-effect-diode photo detector
Chen et al. pH Sensing of Ba0. 7Sr0. 3TiO3∕ SiO2 Film for Metal-Oxide-Semiconductor and Ion-Sensitive Field-Effect Transistor Devices
CN110137203A (en) The forming method of pixel sensing arrangement, sensing device and pixel sensing arrangement
Duarte et al. ISFET Fabrication and Characterization for Hydrogen Peroxide sensing

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees