TWM305339U - pH-ISFET device and system for measuring pH value in a solution using the same - Google Patents
pH-ISFET device and system for measuring pH value in a solution using the same Download PDFInfo
- Publication number
- TWM305339U TWM305339U TW95210633U TW95210633U TWM305339U TW M305339 U TWM305339 U TW M305339U TW 95210633 U TW95210633 U TW 95210633U TW 95210633 U TW95210633 U TW 95210633U TW M305339 U TWM305339 U TW M305339U
- Authority
- TW
- Taiwan
- Prior art keywords
- solution
- acid
- sensing element
- measuring
- sensing
- Prior art date
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
M305339 威 · 八、新型說明: 【新型所屬之技術領域】 本創作係有關於酸驗離子場效型感測元件,且特別係 有關於氮化鋁薄膜酸鹼離子場效型感測元件。 【先前技術】 離子感測場效電晶體(Ion sensitive field effect transistor,簡稱 ISFET)係由 P. Bergveld 於 1970 年提出(Ρ· 私 Bergveld,IEEE Transactions on Bio-Medical Engineering, Vol· SEM-17, pp· 70-71,1970),並迅速發展之一種微型化 學感測器。其係將傳統之金屬-氧化-半導體場效電晶體 (metal oxide semiconductor field effect transistor,簡稱 MOSFET)的金屬閘極去掉,換成對氫離子感應之感測膜。 感測膜與待測電解液(electrolyte)間之化學反應會使兩者的 介面產生電位差,利用該電位差隨著溶液中氫離子之活化 程度而變化的特性,可用來檢測溶液中之氫離子濃度。同 | 時,ISFET亦係電化學與微電子學相結合之產物,其具有 離子選擇電極之功能,又具有場效應電晶體之特性,係一 種與傳統離子選擇電極截然不同之新型離子感測元件。當 時P· Bergveld只是將普通之MOSFET金屬閘極去掉後,再 將元件放入電解液中,並無外加參考電極。而後來之研究 者發現,於進行量測時必須外加參考電極以確定其電解液 與半導體基底間之相對電位,才能正確操作ISFET(W. M. Siu and R. S. C. Cobbold, IEEE Transactions on Electron Devices, Vol· ED-26,No· 11,pp· 1805-1815,1979; C. D. 0847-A2034丌 WF(N2) ;chiumeow 5 M305339 * «M305339 威 · 八, new description: [New technology field] This creation is about acid-ion ion field sensing components, and especially related to aluminum nitride film acid-base ion field sensing components. [Prior Art] Ion sensitive field effect transistor (ISFET) was proposed by P. Bergveld in 1970 (Ρ· Private Bergveld, IEEE Transactions on Bio-Medical Engineering, Vol·SEM-17, Pp·70-71, 1970), and rapidly developed a miniature chemical sensor. The metal gate of a conventional metal oxide semiconductor field effect transistor (MOSFET) is removed and replaced with a sensing film for hydrogen ion sensing. The chemical reaction between the sensing membrane and the electrolyte to be tested causes a potential difference between the interfaces of the two, and the characteristics of the potential difference as a function of the activation of hydrogen ions in the solution can be used to detect the concentration of hydrogen ions in the solution. . At the same time, ISFET is also a combination of electrochemical and microelectronics. It has the function of ion-selective electrode and the characteristics of field-effect transistor. It is a new type of ion sensing component that is completely different from traditional ion-selective electrode. . At this time, P· Bergveld simply removed the common MOSFET metal gate and placed the component in the electrolyte without the addition of a reference electrode. Later researchers found that the reference electrode must be applied to determine the relative potential between the electrolyte and the semiconductor substrate in order to properly operate the ISFET (WM Siu and RSC Cobbold, IEEE Transactions on Electron Devices, Vol· ED- 26, No· 11, pp·1805-1815, 1979; CD 0847-A2034丌WF(N2); chiumeow 5 M305339 * «
Fung,et al. IEEE Transactions on Electron Devices, Vol. ED-33, No.1,January,pp· 8-18,1986) o ISFET發現至今,不斷引起全世界各研究機構之重視, 並相繼投入了大量之研究工作,並於短短三十幾年間便風 靡了全球,係由於ISFET具有以下與傳統電極所無之優點 (B· D· Liu, et al·,INT. J. Electronics,Vol· 67, Νο·1,pp.59-63, 1989):(1)輸入阻抗高;(2)輸出阻抗低;(3)響應時間快; (4)低價位;(5)製程與MOSFET技術相容;(6)微小型化 I 和可進行微量溶液測量;以及(7)可應用於生醫感測器。 其中以Si〇2直接做感測膜時,元件之靈敏度與穩定性 較差,而以 Si3N4/Si〇2(B· D· Liu,et al.5 INT· J· Electronics, Vol. 67, No.l,pp. 59-63, 1989; Μ· Ν· Niu,et al·,Sensors and Actuators B,pp. 13-17,1996; J· C. Chou and Y. N. Tseng, Proc. of SPIE Yol. 4078-The International Symposium on Optoelectronic Materials and Devices II,Taipei,Taiwan, July 26-28, 2000, pp· 793-800)、Al203/Si〇2(Luc Bousse,et ’ al·,Sensors and Actuators B,pp· 103-110,1990; J. C. Chou and C. Y. Weng5 Proc. of SPIE Vol. 4078-The International Symposium on Optoelectronic Materials and Devices II, Taipei, Taiwan,July 26-28,2000,pp· 801-808)、Fung, et al. IEEE Transactions on Electron Devices, Vol. ED-33, No.1, January, pp· 8-18, 1986) o ISFET has been discovered so far, and has attracted the attention of research institutions all over the world. A large amount of research work has swept the world in just 30 years, because ISFET has the following advantages over traditional electrodes (B·D· Liu, et al·, INT. J. Electronics, Vol· 67) , Νο·1, pp.59-63, 1989): (1) high input impedance; (2) low output impedance; (3) fast response time; (4) low price; (5) process and MOSFET technology (6) Micro-miniature I and can be used for micro-solution measurement; and (7) can be applied to biomedical sensors. When the sensing film is directly made of Si〇2, the sensitivity and stability of the element are poor, and Si3N4/Si〇2 (B·D· Liu, et al. 5 INT·J· Electronics, Vol. 67, No. L, pp. 59-63, 1989; Μ· Ν· Niu, et al·, Sensors and Actuators B, pp. 13-17, 1996; J· C. Chou and YN Tseng, Proc. of SPIE Yol. 4078- The International Symposium on Optoelectronic Materials and Devices II, Taipei, Taiwan, July 26-28, 2000, pp·793-800), Al203/Si〇2 (Luc Bousse, et 'al·, Sensors and Actuators B, pp·103 -110, 1990; JC Chou and CY Weng5 Proc. of SPIE Vol. 4078-The International Symposium on Optoelectronic Materials and Devices II, Taipei, Taiwan, July 26-28, 2000, pp 801-808),
Ta2〇5/Si02(A. S. Poghossian, Sensors and Actuators B5 pp. 367-370, 1992; J. A. Voorthuyzen and P. Bergveld, Sensors and Actuators Bl? pp. 350-353, 1990; Hirokazu Hara,et. Al·, Sensors and Actuators B,32, pp. 115-119,1996; D. H. Kwon, 0847-A20347TWF(N2);chiumeow 6 M305339 * · et al·,Sensors and Actuators Β,34,ρρ· 350-353,1996; J· C· Chou,et al.,Sensors and Actuators B,71,pp. 73-76, 2000)、 Sn02/Si02(H. K. Kiao5 et al.9 Sensors and Actuators B5 505 pp. 104-109,1998; Η· K. Liao,et al·,Materials Chemistry and Physics, 59, pp· 6-11,1999)、a-W〇3/Si〇2(J. C. Chou and J. L·Ta2〇5/Si02 (AS Poghossian, Sensors and Actuators B5 pp. 367-370, 1992; JA Voorthuyzen and P. Bergveld, Sensors and Actuators Bl? pp. 350-353, 1990; Hirokazu Hara, et. Al·, Sensors And Actuators B, 32, pp. 115-119, 1996; DH Kwon, 0847-A20347TWF (N2); chiumeow 6 M305339 * · et al·, Sensors and Actuators Β, 34, ρρ· 350-353, 1996; J· C·Chou, et al., Sensors and Actuators B, 71, pp. 73-76, 2000), Sn02/Si02 (HK Kiao5 et al. 9 Sensors and Actuators B5 505 pp. 104-109, 1998; Η·K Liao, et al·, Materials Chemistry and Physics, 59, pp· 6-11, 1999), aW〇3/Si〇2 (JC Chou and J. L·
Chiang,Sensors and Actuators B,62,pp. 81-87,2000; J. C. Chou and J. L. Chiang, Sensors and Actuators B,66,pp. 106-108, 2000)、a-Si:H//Si〇2(J. C. Chou,et al_,Sensors and . Actuators B,62, pp. 92-96, 2000; J. C· Chou and C· N. Hsiao, Materials Chemistry and Physics, 63, pp· 270-273, 2000)等為 感測膜之雙層閘極的pH-ISFET性能均優於單層Si〇2感測 膜元件。 由於ISFET具有良好之阻抗匹配及與MOSFET技術相 容等優點,三十多年來引起了許多研究單位對於離子感測 場效電晶體之研究熱潮。而於此期間之研究大致可分為以 下幾點: _ (1)以化學氣相沈積法(chemical vapor deposition,簡 稱 CVD)(B. D· Liu,et al·,INT· J· Electronics,voL 67, No. 1, pp.59-63,1989)、熱氧化法(thermal oxidation)(J. C· Chou and C. Y. Weng5 Proc. of SPIE Vol. 4078-The International Symposium on Optoelectronic Materials and Devices II? Taipei,Taiwan,July 26-28, 2000, pp. 801-808)、電子搶蒸鍍 法(E-gun evaporation)(A. S. Poghossian,Sensors and Actuators B,pp. 367-370,1990)、熱蒸鍍法(J· A· 0847-A20347TWF(N2);chiumeow 7 M305339Chiang, Sensors and Actuators B, 62, pp. 81-87, 2000; JC Chou and JL Chiang, Sensors and Actuators B, 66, pp. 106-108, 2000), a-Si: H//Si〇2 ( JC Chou, et al_, Sensors and . Actuators B, 62, pp. 92-96, 2000; J. C. Chou and C. N. Hsiao, Materials Chemistry and Physics, 63, pp. 270-273, 2000) The pH-ISFET performance of the double-layer gate for the sensing film is superior to that of the single-layer Si〇2 sensing film element. Due to the good impedance matching and compatibility with MOSFET technology, ISFET has caused many research units to study the ion-sensing field-effect transistors for more than 30 years. The research during this period can be roughly divided into the following points: _ (1) by chemical vapor deposition (CVD) (B. D· Liu, et al·, INT·J· Electronics, voL 67, No. 1, pp. 59-63, 1989), thermal oxidation (J. C. Chou and CY Weng5 Proc. of SPIE Vol. 4078-The International Symposium on Optoelectronic Materials and Devices II? Taipei , Taiwan, July 26-28, 2000, pp. 801-808), E-gun evaporation (AS Poghossian, Sensors and Actuators B, pp. 367-370, 1990), thermal evaporation (J·A· 0847-A20347TWF(N2); chiumeow 7 M305339
Voorthuyzen and P. Bergveld,Sensors and Actuators Bl, ρρ·350-353,1990)、濺鍍法(sputtering)( B· D· Liu,et al·,INT· J. Electronics,vol. 67, No. 1, pp.59-63,1989; Hirokazu Hara, et al·,Sensors and Actuators B,32,pp. 115-119,1996; J. C. Chou, et al·,Sensors and Actuators B,71,pp. 73-76, 2000; H.Voorthuyzen and P. Bergveld, Sensors and Actuators Bl, ρρ·350-353, 1990), sputtering (B·D· Liu, et al·, INT·J. Electronics, vol. 67, No. 1 , pp. 59-63, 1989; Hirokazu Hara, et al., Sensors and Actuators B, 32, pp. 115-119, 1996; JC Chou, et al., Sensors and Actuators B, 71, pp. 73-76 , 2000; H.
K. Kiao,et al·,Sensors and Actuators B,50,pp. 104-109, 1998; Η. K. Liao, et al·,Materials Chemistry and Physics,59, pp. 6-11,1999; J. C. Chou and J. L. Chiang,Sensors and Actuators B,62, 〇〇· 81-87, 2000; J· C. Chou and J. L· Chiang, Sensors and Actuators B,66, pp· 106-108, 2000)和溶膠_凝膠 法(sol-gel)(S. S. Jan, et al.5 Proc. of the 2000 International Electron Devices and Materials Symposia (IEDMS’2000), National Central University,Chung-Li,Taiwan,Dec, 20-21, 2000, pp. 242-245)製備感測膜之研究。 (2) 元件與參考電極微型化之研究(Z. Μ· Baccar,et al·, Sensors and Actuators B,32,pp· 101-105,1996; W. Y. Chung, et al.,The 11th VLSI Design/CAD Symposium, Taiwan,August 2000, ρρ· 345_348) o (3) 吸附鍵結模型(site binding model)理論之探討(C· D. Fung,et al” IEEE Transactions on Elctron Devices,Vol. ED-33, No.l, January, pp. 8-18, 1986; L. K. Meixner and S. Koch,Sensors and Actuators B,6, pp. 315-318,1992) 〇 (4) 封裝技術上之研究一發橡膠、環氧樹脂(J. C. Chou, et al·,Sensors and Actuators B,71,ρρ· 73-76,2000; K. 0847-A2034丌 WF(N2);chiumeow 8 M305339 * 身K. Kiao, et al., Sensors and Actuators B, 50, pp. 104-109, 1998; Η. K. Liao, et al., Materials Chemistry and Physics, 59, pp. 6-11, 1999; JC Chou And JL Chiang, Sensors and Actuators B, 62, 〇〇 81-87, 2000; J. C. Chou and J. L. Chiang, Sensors and Actuators B, 66, pp· 106-108, 2000) and Sol_ Sol-gel (SS Jan, et al. 5 Proc. of the 2000 International Electron Devices and Materials Symposia (IEDMS '2000), National Central University, Chung-Li, Taiwan, Dec, 20-21, 2000 , pp. 242-245) Preparation of a sensing film. (2) Research on miniaturization of components and reference electrodes (Z. Μ Baccar, et al·, Sensors and Actuators B, 32, pp 101-105, 1996; WY Chung, et al., The 11th VLSI Design/CAD Symposium, Taiwan, August 2000, ρρ· 345_348) o (3) Discussion on the theory of site binding model (C·D. Fung, et al) IEEE Transactions on Elctron Devices, Vol. ED-33, No .l, January, pp. 8-18, 1986; LK Meixner and S. Koch, Sensors and Actuators B, 6, pp. 315-318, 1992) 〇 (4) Research on packaging technology, rubber, epoxy Resin (JC Chou, et al., Sensors and Actuators B, 71, ρρ· 73-76, 2000; K. 0847-A2034 丌 WF (N2); chiumeow 8 M305339 * body
Kiao,et al·,Sensors and Actuators B,50, ρρ· 104-109,1998; Η. K. Liao, et al·,Materials Chemistry and Physics,59,ρρ· 6-11,1999; J. C. Chou and J. L. Chiang,Sensors and Actuators B,62, pp· 81-87, 2000; J. C· Chou and J· L· Chiang, Sensors and Actuators B5 66, pp. 106-108, 2000; J. L. Chiang5 et al.5 Proc. of SPIE Vol. 4078-The international Symposium on Optoelectronic Materials and Devices II,Taipei,Taiwan, July 26-28,2000,pp· 689-696; J. L· Chiang,et al·, Proceedings of the 8th International Meeting on Chemical Sensors (IMCS8),International Convention Center, Basel, Switzerland,July 2-5, 2000, ρ·400; J· C· Chou,et al·,Sensors and Actuators B,62,pp. 92-96,2000; JL C. Cliou and C. N. Hsiao,Materials Chemistry and Physics, 63,pp· 270-273, 2000; S. S. Jan? et al.5 Proc. of the 2000 International Electron Devices and Materials Symposia (IEDMS’2000), National Central University, Chung-Li,Taiwan, Dec. 20-21, 2000, ρρ·242-245) 〇 (5) 元件結合量測電路之研究(S. Martinoia,et al., Sensors and Actuators B,pp. 60-68,1998)。 (6) ISFET 元件特性模擬之研究(J· C. Chou,Sensors and Actuators B,71,pp· 73-76,2000; J. L. Chiang,et al·, Proceedings of the 8th International Meeting on Chemical Sensors (IMCS8),International Convention Center,Basel, Switzerland,July 2-5,2000,p.400; L.K· Meixner and S. 0847-A20347TWF(N2);chiumeow 9 M305339Kiao, et al., Sensors and Actuators B, 50, ρρ· 104-109, 1998; Η. K. Liao, et al., Materials Chemistry and Physics, 59, ρρ· 6-11, 1999; JC Chou and JL Chiang, Sensors and Actuators B, 62, pp 81-87, 2000; J. C. Chou and J. L. Chiang, Sensors and Actuators B5 66, pp. 106-108, 2000; JL Chiang5 et al. 5 Proc . SPIE Vol. 4078-The international Symposium on Optoelectronic Materials and Devices II, Taipei, Taiwan, July 26-28, 2000, pp· 689-696; J. L. Chiang, et al·, Proceedings of the 8th International Meeting On Chemical Sensors (IMCS8), International Convention Center, Basel, Switzerland, July 2-5, 2000, ρ·400; J·C·Chou, et al·, Sensors and Actuators B, 62, pp. 92-96, 2000 JL C. Cliou and CN Hsiao, Materials Chemistry and Physics, 63, pp. 270-273, 2000; SS Jan? et al. 5 Proc. of the 2000 International Electron Devices and Materials Symposia (IEDMS'2000), National Central University, Chung-Li, Taiwan, Dec. 20-21, 2000, ρρ·242-245) 〇 (5) Research on component-incorporated measurement circuits (S. Martinoia, et al., Sensors and Actuators B, pp. 60-68, 1998). (6) Study on the simulation of ISFET component characteristics (J.C. Chou, Sensors and Actuators B, 71, pp. 73-76, 2000; JL Chiang, et al., Proceedings of the 8th International Meeting on Chemical Sensors (IMCS8) , International Convention Center, Basel, Switzerland, July 2-5, 2000, p.400; LK· Meixner and S. 0847-A20347TWF(N2); chiumeow 9 M305339
Koch,Sensors and Actuators B,6,pp.315-318,1992· S Martinoia,et al·,Sensors and Actuators B,pp· 6〇_68, 1998)。 在本創作前之專利有如下: (1) 美國專利第5,407,854號揭露一種場效型離子感測 元件於水溶液中進行量測時防止靜電放電之方法。靜電1 電保護電路係同時製作於ISFET元件中,此新型 ISFET元件係利用介於保護電路與水溶液間之介二^容社 構,以防止直流漏電流之發生以達保護元件的目的 (2) 吴國專利第5,387,328號揭示將酵素膜固定於 膜表面,以形成對葡萄糖濃度感測之生物感測元件。此y、, 利用翻CPt)作為電極’以達到小型化之目的。本專 麵電極增加氫離子之數目,改善了感測度與反應時間^吏 兀件具有極高之感測度與快速的反應時間。 制國專利第5,319,226號揭示利用射頻濺鍍法,備 灰乳化組溥膜於場效型離子感測元件之閘極區上, 氧化组/氮切/二氧切結構之場效型離子感測並 薄膜進行,·冒火處理,此種方式與閘極結構改盖元十 狀感_性,且對氫離子具餘高之感測度與良好的穩 疋性。感測度維持在52_59mV/pH,檢測範圍邱。 ⑷美國專利第5,35〇,7〇1號揭露於場效型離子感測元 ==上’再以化學合成麟化基感測膜,以形成微小 化之:子感測兀件。此元件可作為鹼土族金屬含量之檢 測,特別係針對鈣離子含量之檢測。 (5)美國專利第4,839,〇〇〇號揭露利用離子感測場效元 0847-A20347TWF(N2);chiume〇' 10 M305339 &Koch, Sensors and Actuators B, 6, pp. 315-318, 1992 · S Martinoia, et al., Sensors and Actuators B, pp. 6〇_68, 1998). The patents before this creation are as follows: (1) U.S. Patent No. 5,407,854 discloses a method of preventing electrostatic discharge when a field effect type ion sensing element is measured in an aqueous solution. The electrostatic 1 electrical protection circuit is simultaneously fabricated in the ISFET component. The new ISFET component utilizes a dielectric structure between the protection circuit and the aqueous solution to prevent the occurrence of DC leakage current to protect the component. (2) U.S. Patent No. 5,387,328 discloses the immobilization of an enzyme membrane on a membrane surface to form a biosensing element that senses glucose concentration. This y, the use of tumbling CPt) as the electrode 'for the purpose of miniaturization. This surface electrode increases the number of hydrogen ions, improving the sensitivity and reaction time. The device has extremely high sensitivity and fast response time. U.S. Patent No. 5,319,226 discloses the use of an RF sputtering method to prepare an ash-emulsified group of ruthenium films on the gate region of a field-effect ion sensing element, and an oxidation-type/nitrogen-cut/dioxo-cut structure field-effect ion sensing And the film is carried out, and the fire treatment is carried out. In this way, the gate structure is changed to the ten-sense sensibility, and the sense of hydrogen ion has a high degree of sensitivity and good stability. The sensitivity is maintained at 52_59 mV/pH, and the detection range is Qiu. (4) U.S. Patent No. 5,35,7,1 discloses the field-effect ion sensing element == upper and then chemically synthesizes the lining-based sensing film to form a miniaturized: sub-sensing element. This component can be used as a test for the content of alkaline earth metals, especially for the detection of calcium ion content. (5) U.S. Patent No. 4,839, the nickname discloses the use of ion sensing field effect elements 0847-A20347TWF(N2); chiume〇' 10 M305339 &
A 件(ISFET)結構,應用於酵素感測元件(ENFET),並同時將 ISFET與ENFET元件放入缓衝水溶液中進行氫離子與酵素 濃度之檢測,並結合控制信號與回授電路進行離子偵測補 償之作用,以使每一個元件皆能獲得相等之離子濃度的偵 測結果。 (6) 美國專利第4,812,220號揭露利用酵素塑場效離子 感測電晶體以檢測食品中胺基酸之含量。合成胺基酸酵素 感測膜可利用共價鍵或吸附方法被固定於酸鹼玻璃電極或 I 場效離子感測電晶體上,以進行檢測。檢測濃度高達 lOOmM 〇 (7) 美國專利第4,657,658號揭露以Si3N4當感測膜, 利用一個金氧半場效電晶體及一個場效型離子感測元件組 成差動對系統模組系統。並利用差動放大器進行回授補 償。另外’本專利亦包括靜電保護電路之設計及溫度變化 之量測,以及矩陣式元件設計可同時檢測H+、及Na+離 子。 . (8)美國專利第4,609,932號揭露利用雷射鑌孔與固態 雜質擴散之微機電技術以形成立體3D結構場效型離子咸 測元件。而於元件中之接合,係於雷射鑽孔之圓柱體 内利用雜質擴散方式形成的。 & (9)美國專利第4,358,274號揭露利用一組場效型離子 感測元件差動系統及電路讀出模組,並藉由調變汲極電济 方式,進行參考電極與水溶液間溫度補償以及感測層輿^ 溶液間溫度補償之目的。 0847-A2034丌 WF(N2);chiumeow 11 M305339 依據文獻報告,閘極氧化層上之 體,最常使用之氫離子感測膜有二氧化=離子感測電晶 銘及氧化钽等材料。然而,上述材料 「夕氧化 此於感測膜材料之研發上仍亟需有致U 【新型内容】 善之這。 有鑑於此,本創作主要目的之〜, 曰 子場效型感測元件,具有氮化!呂/二氣T'提出種酸驗離 用以偵測溶液中之酸驗度。本創作之停:雙層閘極結構, 、 k 4係上述酸驗離子 場效型感測元件具有極高的感測靈铋 π ! ’其範圍介於 52〜58mV/pH、並具有極佳之線性度與穩定性,適合應用於 酸驗離子感測元件及生醫感測器中。 ’ 、 依據本創作之上述目的,本創作之―型態係提供一 酸鹼離子場效型感測元件,其為—金 /、 ^ ? ^ 至氧+ ~效電晶體,其 寸,在;以鱼虱丁%政电晶體之閘極係由 矽雙層薄膜組成。 、b鋁/一乳化 本創作之另一型悲係提供一種測量〜、々 系統’其包括··一如上述之酸鹼離子場效型:測::度: 蒼考電極以提供穩定電位’· 一半導體特 ^ 與該酸鹼離子場效型感翊元件及該參 J儀,其为別 控制器以控制感測元件之溫度,其 电極連接,—溫度 一埶叙人哭 ^ I敖⑽ ’皿度控制中拖、 ,、、、耦口盗、及一加熱咨,其中該熱偶合哭鱼 口 別與該控制中樞連接,·以及一光 μ σ'々,、益分 =效應影響。测量-溶液中之免㈡ 置於该光隔絕容器中,將酸鹼離子場效刑 —Μ♦液 土感測兀件、表考 0847-A20347TWF(N2);chiumeow M3 053 3 9 § 1及熱_合器浸人該溶液中,且於該㈣合器測得溶液 溫度變化時由溫度控制中樞控制加熱器調節溶液溫度,酸 驗離子場效縣測元件與參考電極之感測值可傳送至該半 導體特性量顯’纽讀出該職之電流_電跡v)值以得 到该溶液中之酸鹼度。 【實施方式】 種使 /創作挺供一種酸鹼離子場效型感測元件以及 用該感測元件以測量-溶液中酸鹼度之系統。 因此本創作之酸鹼離子場效型感測元件之一實施例 中,該酸驗離子場效型感測元件為一金氧半場效電晶體, 其仏政在於該金氧半場效電晶體之雜係由氮化紹/ 化石夕雙層薄膜組成。可參考第!圖所示,本創作之酸驗離 子場效型感測元件之一實施例包括一 p型矽基底 (P_Sl)12 L其上有一閑極’閘極包括一二氧化石夕(Si〇2)薄膜 14’上述薄膜上再固定一氮化銘(AlN)感測膜15,係此場效 電晶體結構t唯-可直接與待測歸16闕者,其他元件 f包覆於如環氧樹脂所構成之絕緣區17之内。於二氧化矽 薄膜14兩侧之基底係N型重摻雜區(亦即是沒極與源 極)13 ’整個電晶體結構經由導線u如紹導線與外界相通, 可將感測膜15侧待測溶液16後場效電晶體之没極/源極 13所得到之電訊號經由導線u傳輸送出。另外此種結構 亦必須包括-參考電極18,以提供穩定電位,避免雜訊干 擾。 整個元件之架構則如第2A與2β圖所示,第2a圖係 0847-A20347TWF(N2);chiumeow M305339 感測兀件之感測端的結構,第2B圖係封裝完成之元件示意 圖。如第2A圖所示,於本創作之一實施例中,於基板, 如陶瓷基板21上有一離子感測場效電晶體2〇,其上之閘 極22係氮化鉅/二氧化矽雙層薄膜,可與待測溶液接觸, 而以連接源極、汲極及基底之導線(依序分別為23、24、25) 傳輸電訊號’經封裝後’如第2B圖所示,感測元件以絕緣 材料27 ’如環氧樹脂,封裝、露出閘極部分以與待測溶液 接觸’而傳輸電職之導線,包括連㈣極、祕 之導線(依序分別為23、24、25)以玻璃管26包覆。— 此外,本創作之測量一溶液中酸驗度的系統之實施例 一 述系統包括:-如上述之酸驗離子場效型感測元件; -茶号電極以提供齡餘;—半導體特性量關,其分 別與該酸鹼離子場效型感測元件及該參考電一加 度控制裔以控制感測元件之溫度 柩、一_合器、及-加熱器Λ中該;4—人=控制中 器分別與該控制中框連接;以及—光糾::㈣該加熱 元件受到光敏效應影響。測量-溶液中之免感測 溶液置於該光隔絕容器中,將酸驗離子場 =考電極及_合!1浸域溶液中,且在触: 喊溫度變化時由溫度控制中樞控制加 度,酸鹼離子場效型感測元件鱼夂考帝極、二凋即洛液)孤 至該半導體特性量測儀,由此讀出該溶:之之 值以得到該溶液中之酸鹼度。 电/爪-¾壓(I-V) 於本創作之實施例中,如第3圖所示之電流_電壓㈣ 〇847-A2〇347TWF(N2) :chiumeow M305339 I . 3 量測系統,將本創作之酸鹼離子場效型感測元件3〇浸入待 測溶液38中,待測溶液38係置於一容器中,而上述感剛 兀件30係經導線,例如鋁導線,將其汲極與源極分別與半 導體特性(電流-電壓)量測儀36,例如Keithley 236及238 相連,以進一步將電晶體所測得之電訊號做數據處理,更 可連接到一數據處理器37,如電腦,以便及時處理訊號。 另可於待測溶液38中同時浸入一參考電極32以提供穩定 丨 包位,其可為一銀/氯化銀(Ag/AgCl)參考電極,且亦經由一 I 導線與上述半導體特性(電流_電壓)量測儀36相連;而於容 器之外部有一組加熱器34,連接於一溫度控制器(溫度控制 中樞)35,其中,該加熱器34之作用在於當待測溶液%之 溫度上升或下降時,該溫度控制器(溫度控制中樞)35負責 控制该加熱器34進行停止加熱或加熱之動作。而待測溶液 38之溫度高低則由連接於該溫度控制器35的熱耦合器 (thermal couple)31做感應。前述之待測溶液38、與該待測 _ 溶液38有接觸之各元件以及加熱器34等皆置放於一光隔 絕容器(如暗箱)33中,以隔絕光對量測數值之影響。 本創作中雙層閘極選擇氮化鋁薄膜(A1N)覆蓋於二氧 化矽(Si〇2),係因為A1N薄膜具有電阻係數高(約1〇14 Ω-cm)、能帶寬(約5·9〜6.2 eV),硬度高、化學與熱之穩定 性佳、介電常數大(12.4)的特性[Y. J. Y〇ng and J. Y. Lee, Characteristics of Hydrogenated Aluminum Nitride Films Prepared by Radio Frequency Reactive Sputtering and Their Application to Surface Acoustic Wave Devices,,,J. Vac. Sci. 0847-A2034丌 WF(N2):chiumeow 15 M305339 iThe A-piece (ISFET) structure is applied to the enzyme sensing element (ENFET), and the ISFET and ENFET components are placed in a buffered aqueous solution to detect the hydrogen ion and enzyme concentration, and combined with the control signal and the feedback circuit for ion detection. The effect of the compensation is measured so that each component can obtain an equal ion concentration detection result. (6) U.S. Patent No. 4,812,220 discloses the use of an enzyme plastic field effect ion sensing transistor to detect the amount of amino acid in a food product. Synthetic Amino Acid Enzyme The sensing film can be immobilized on an acid-base glass electrode or an I field effect ion-sensing transistor by covalent bonding or adsorption to detect. The detection concentration is as high as 100 mM. (7) U.S. Patent No. 4,657,658 discloses the use of Si3N4 as a sensing film, using a gold oxide half field effect transistor and a field effect ion sensing element to form a differential pair system module system. The differential amplifier is used for feedback compensation. In addition, this patent also includes the design of electrostatic protection circuits and the measurement of temperature changes, and the matrix element design can simultaneously detect H+ and Na+ ions. (8) U.S. Patent No. 4,609,932 discloses the use of microelectromechanical techniques for the diffusion of laser pupils and solid impurities to form stereoscopic 3D structure field effect ion sensing elements. The bonding in the component is formed by diffusion of impurities in the cylinder of the laser drilled hole. < (9) U.S. Patent No. 4,358,274 discloses the use of a set of field effect type ion sensing element differential system and circuit readout module, and by means of a modulated bungee electric mode, temperature compensation between the reference electrode and the aqueous solution And the purpose of temperature compensation between the sensing layer and the solution. 0847-A2034丌 WF(N2);chiumeow 11 M305339 According to the literature report, the most commonly used hydrogen ion sensing film on the gate oxide layer is oxidized = ion-sensing electro-crystal and yttrium oxide. However, the above-mentioned materials "the oxidation of the sensing film material is still in need of the U [new content] goodness. In view of this, the main purpose of this creation ~, the scorpion field effect sensing element, with nitrogen Lu / L gas T' proposed acid detection to detect the acidity in the solution. The creation of this stop: double-layer gate structure, k 4 series of acid detector ion field sensing elements have Very high sensing 铋 π ! 'The range is between 52~58mV / pH, and has excellent linearity and stability, suitable for use in acid detection ion sensing components and biomedical sensors. ' According to the above purpose of the creation, the "type" of the present invention provides an acid-base ion field-effect sensing element, which is - gold /, ^ ^ ^ to oxygen + ~ effect transistor, its inch, in; fish The gate of Kenting's political power crystal consists of a double-layer film. Another type of sorrow of b-aluminum/one emulsification provides a measure of the ~, 々 system' which includes the acid-base ions as described above. Field effect type: Measurement: Degree: Cang test electrode to provide stable potential '· A semiconductor special ^ and the acid and alkali The subfield effect sensing element and the reference device are different controllers for controlling the temperature of the sensing element, and the electrodes are connected, and the temperature is 埶 埶 人 ^ 敖 敖 敖 敖 10 10 10 10 10 10 10 10 10 10 10 10 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , In the light isolation container, the acid-base ion field effect - Μ ♦ liquid soil sensing element, table test 0847-A20347TWF (N2); chiumeow M3 053 3 9 § 1 and heat _ immersion in the solution And when the temperature change of the solution is measured by the (four) combiner, the temperature is controlled by the temperature control center to adjust the temperature of the solution, and the sensing value of the acid field effect measuring device and the reference electrode can be transmitted to the semiconductor characteristic quantity. The current_electric trace v) value of the job is obtained to obtain the pH in the solution. [Embodiment] The seeding/creation is provided for an acid-base ion field-effect sensing element and the sensing element is used for measurement-solution The system of pH. Therefore, one of the acid-base ion field sensing elements of this creation In the embodiment, the acid-detecting ion field-effect sensing element is a gold-oxygen half-field effect transistor, and the sub-system of the gold-oxygen half-field effect transistor is composed of a nitrided/fossil-shaped double-layer film. Referring to the figure, one embodiment of the acid-detecting ion field-effect sensing element of the present invention includes a p-type germanium substrate (P_S1) 12 L having a dummy electrode thereon including a dioxide dioxide (Si) 〇 2) The film 14' is further fixed with an nitriding (AlN) sensing film 15 on the film, and the field effect transistor structure t-only can be directly compared with the 16 阙 to be measured, and other components f are coated on the film The epoxy resin is formed in the insulating region 17. The substrate on both sides of the yttria film 14 is an N-type heavily doped region (that is, a immersion and a source) 13 'the entire transistor structure via a wire u The wire is connected to the outside, and the electric signal obtained by the electrode/source 13 of the field effect transistor after the solution 16 on the side of the sensing film 15 can be transmitted through the wire u. In addition, such a structure must also include a reference electrode 18 to provide a stable potential to avoid noise interference. The structure of the entire component is shown in Figures 2A and 2β, Figure 2a is 0847-A20347TWF (N2); chiumeow M305339 senses the structure of the sensing end of the component, and Figure 2B is a schematic diagram of the completed component. As shown in FIG. 2A, in one embodiment of the present invention, an ion sensing field effect transistor 2 is formed on a substrate, such as the ceramic substrate 21, and the gate 22 is nitrided with giant/cerium oxide double. The layer film can be in contact with the solution to be tested, and the wire connecting the source, the drain and the substrate (in order of 23, 24, 25 respectively) transmits the electrical signal 'after being packaged' as shown in FIG. 2B, sensing The component is insulated with an insulating material 27' such as epoxy resin, which exposes the gate portion to contact the solution to be tested, and transmits the wires of the electric power, including the connecting wires of the four poles and the secret wires (in order of 23, 24, 25 respectively). Covered with a glass tube 26. - In addition, the system of the present embodiment for measuring the acidity of a solution in a solution comprises: - an acid field-effect sensing element as described above; - a tea electrode to provide age; - a semiconductor characteristic quantity Guan, respectively, and the acid-base ion field-effect sensing element and the reference-electricity control unit to control the temperature of the sensing element, a _he, and a heater ;; 4 - person = The control unit is respectively connected to the control middle frame; and—the light correction:: (4) the heating element is affected by the photosensitive effect. Measurement - The sense-free solution in the solution is placed in the light-insulating container, and the acid field is tested. 1 immersion in the solution, and in the touch: when the temperature changes, the temperature control center is controlled by the degree of addition, the acid-base ion field-effect sensing element, the fish 夂 夂 帝 帝, the two withered, the liquid is solitary to the semiconductor characteristic measurement The instrument reads the value of the solution to obtain the pH in the solution. Electric / Claw - 3⁄4 pressure (IV) In the embodiment of this creation, as shown in Figure 3, current_voltage (four) 〇 847-A2 〇 347TWF (N2): chiumeow M305339 I. 3 measurement system, this creation The acid-base ion field-effect sensing element 3 is immersed in the solution to be tested 38, and the solution 38 to be tested is placed in a container, and the sensing element 30 is passed through a wire, such as an aluminum wire, and the bungee is The sources are respectively connected to semiconductor characteristic (current-voltage) measuring instruments 36, such as Keithley 236 and 238, to further process the electrical signals measured by the transistors, and are further connected to a data processor 37, such as a computer. In order to process the signal in time. Alternatively, a reference electrode 32 can be simultaneously immersed in the solution to be tested 38 to provide a stable sputum package, which can be a silver/silver chloride (Ag/AgCl) reference electrode, and also via an I wire with the above semiconductor characteristics (current _ voltage) measuring instrument 36 is connected; and outside the container is a set of heaters 34 connected to a temperature controller (temperature control center) 35, wherein the heater 34 functions to increase the temperature of the solution to be tested Alternatively, the temperature controller (temperature control hub) 35 is responsible for controlling the heater 34 to stop heating or heating. The temperature of the solution 38 to be tested is sensed by a thermal couple 31 connected to the temperature controller 35. The foregoing test solution 38, the components in contact with the test solution 38, and the heater 34 are placed in a light-tight container (such as a black box) 33 to isolate the influence of the light on the measured value. In this creation, the double-layer gate is selected from aluminum nitride film (A1N) over cerium oxide (Si〇2) because A1N film has high resistivity (about 1〇14 Ω-cm) and energy bandwidth (about 5· 9~6.2 eV), high hardness, good chemical and thermal stability, and high dielectric constant (12.4) [YJ Y〇ng and JY Lee, Characteristics of Hydrogenated Aluminum Nitride Films Prepared by Radio Frequency Reactive Sputtering and Their Application To Surface Acoustic Wave Devices,,,J. Vac. Sci. 0847-A2034丌WF(N2):chiumeow 15 M305339 i
Technol. A,15, ρρ· 390-393,1997; D. Manova,V. Dimitrova, W. Fukarek and D. Karpuzov, “Investigation of D.C.-Reactive Magnetron-Sputtered AIN Thin Films by Electron Microprobe Analysis, X-ray Photoelectron Spectroscopy and Polarised Infra-red Reflection’’,Surface and Coatings Technol·,106, pp. 205-208,1998],且有良好之 電容-電壓(C-V)特性曲線,極具製作ISFET感測器之潛力。Technol. A, 15, ρρ· 390-393, 1997; D. Manova, V. Dimitrova, W. Fukarek and D. Karpuzov, “Investigation of DC-Reactive Magnetron-Sputtered AIN Thin Films by Electron Microprobe Analysis, X-ray Photoelectron Spectroscopy and Polarised Infra-red Reflection'', Surface and Coatings Technol·, 106, pp. 205-208, 1998], and has a good capacitance-voltage (CV) characteristic curve, which has great potential for making ISFET sensors. .
一般沈積氮化鋁薄膜的方式包括有機金屬化學汽相沈 積〉去(Metalorganic chemical vapor deposition,M〇CVD)[D. C. Bertolet,Herng Liu and J. W. Rogers, Jr·,“Initial Stages of AIN Thin-Film Growth on Alumina Using Trimethylamine Alane and Ammonia Precursors”,J. Appl. Phys·,75,pp. 5385-5390,1994]、分子束蠢晶成長(Molecular beam epitaxy, MBE)[E. Calleja,M. A. Sanchez-Garcia,E. Monroy,F. J· Sanchez, E. Munoz, A. Sanz-Hervas,C. Villar and M. Aguilar, uGrowth Kinetics and Morphology of High Quality AIN Grown on Si(lll) by Plasma-Assisted Molecular Beam Epitaxy”,J· Appl· Phys·,82, pp· 4681-4683,1997]、直流或 交流磁控藏鍍(DC or RF magnetron sputtering)[Y· J· Yong and J. Y. Lee, ‘‘Characteristics of Hydrogenated Aluminum Nitride Films Prepared by Radio Frequency Reactive Sputtering and Their Application to Surface Acoustic Wave Devices”,J. Vac. Sci· Technol· A,15, pp. 390-393, 1997 ; D·Generally, the method of depositing an aluminum nitride film includes metalorganic chemical vapor deposition (M〇CVD) [DC Bertolet, Herng Liu and JW Rogers, Jr., "Initial Stages of AIN Thin-Film Growth on Alumina Using Trimethylamine Alane and Ammonia Precursors", J. Appl. Phys., 75, pp. 5385-5390, 1994], Molecular beam epitaxy (MBE) [E. Calleja, MA Sanchez-Garcia, E Monroy, F. J. Sanchez, E. Munoz, A. Sanz-Hervas, C. Villar and M. Aguilar, uGrowth Kinetics and Morphology of High Quality AIN Grown on Si (lll) by Plasma-Assisted Molecular Beam Epitaxy", J· Appl· Phys·, 82, pp· 4681-4683, 1997], DC or RF magnetron sputtering [Y·J· Yong and JY Lee, ''Characteristics of Hydrogenated Aluminum Nitride Films Prepared by Radio Frequency Reactive Sputtering and Their Application to Surface Acoustic Wave Devices”, J. Vac. Sci· Technol· A, 15, pp. 390-393, 1997; D·
Manova,V. Dimitrova, W. Fukarek and D. Karpuzov, 0847-A2034丌 WF(N2);chiumeow 16 M305339 ^Investigation of D.C.-Reactive Magnetron-Sputtered AIN Thin Films by Electron Microprobe Analysis, X-ray Photoelectron Spectroscopy and Polarised Infra-red Reflection’’,Surface and Coatings Technol·,106, pp. 205-208, 1998]、脈衝雷射沈積(Pulsed laser deposition)[R· D· Vispute, Hong Wu and J. Narayan, "High Quality Epitaxial Aluminum Nitride Layers on Sapphire by Pulsed Laser Deposition,,, Appl· Phys· Lett·,67, pp. 1549-1551, 1995·]、電子迴旋共 振離子束濺鍍(ECR)[Hiroshi Okano,Toshihrau Tanaka, ICenichi Shibata and Shoichi Nakano, ^Orientation Control of AIN Film by Electron Cyclotron Resonance Ion BeamManova, V. Dimitrova, W. Fukarek and D. Karpuzov, 0847-A2034丌WF(N2); chiumeow 16 M305339 ^Investigation of DC-Reactive Magnetron-Sputtered AIN Thin Films by Electron Microprobe Analysis, X-ray Photoelectron Spectroscopy and Polarised Infra-red Reflection'', Surface and Coatings Technol·, 106, pp. 205-208, 1998], Pulsed Laser Deposition [R·D· Vispute, Hong Wu and J. Narayan, "High Quality Epitaxial Aluminum Nitride Layers on Sapphire by Pulsed Laser Deposition,,, Appl· Phys· Lett·, 67, pp. 1549-1551, 1995·], Electron Cyclotron Resonance Ion Beam Sputtering (ECR) [Hiroshi Okano, Toshihrau Tanaka, ICenichi Shibata and Shoichi Nakano, ^Orientation Control of AIN Film by Electron Cyclotron Resonance Ion Beam
Sputtering”,Jpn· J· Appl· Phys·,31,pp· 3017-3020, 1992] 等。於上述沈積薄膜方式中,化學汽相沈積法之沈積速率 雖快,但因沈積溫度高達900°C,基板材料受限,再加上 曰曰粒太大、表面租链兩項不利因素,將無法於薄膜上製作 微米(// m)寬之電極。相較之下,射頻濺鍍法係一種不錯之 選擇,因其具有低溫沈積、表面平整、沈積速率佳、價格 與複雜度低等優點。而且可藉由控制基板溫度(Substrate temperature)、工作壓力、濺鍍氣體成份及濺鍍功率以控制 薄膜之組成成份,以期獲得所需之薄膜性質。 因此本創作實施例中係採用射頻雜法備製氮化銘酸 驗離子感測場效電晶體,係於混合旭和&氣體下,利用 射頻濺鐘法備製m薄膜,以作為離子感測場效元件之 感測膜’亦即氮化㈣膜/二氧切雙層閘極結構之感測元 〇847-A20347TWF(N2);chiumeow M305339 件,進而探求氮化鋁感測膜於不同待測水溶液中之感測靈 敏度(Sensitivity)及其穩定性(Stability)。 以氮化鋁薄膜作為氫離子感測材料之場效型離子感測 電晶體係首次由本創作人所製作完成,立以本創作實施例 中之感測元件進行電流電壓特性曲線量測時’於標準酸驗 缓衝溶液中有極佳之感測靈敏度;亦即於至PH:=11 量測範圍内,以氮化鋁為感測膜之離子感測元件’其感測 靈敏度為52〜58 mV/pH,且感測線性度及穩定度佳,證明 本創作係對酸鹼溶液感測度極高、線性度及穩定性極佳之 氮化鋁場效型感測元件。 實施例 本實施例係依照本創作所設計之以氮化鋁薄膜進行感 測酸驗離子之場效型感測元件的製備方法與量測步驟為 例,詳細說明如何實施本創作。於後述量測條件之實驗參 數值乃至於量測裝置均僅用以舉例說明,但並非用以限定 本創作。 貝施例1 · IL化銘薄膜之酸驗場效型感測元件的製備方法 所裝備之氣化銘薄膜酸驗場效感測元件中,通道長度 為50μιτι、通道寬度為1000μιη,元件的寬長比率為2〇,其 製作流程如下所示: 取一 Ρ型矽晶片(1,〇5〇),其電阻係數為8〜12歐姆-公 分,將之以去離子水清洗後,以濕氧成長二氧化矽層 (5000人)。之後塗佈正光阻,以一光罩進行曝光顯影,再濕 蝕刻上述二氧化矽層(5000Α)。接著進行離子植入,其條件 0847-A20347TWF(N2) ichiumeow M305339 為P: 1015 cm-2。再以另一光罩進行曝光顯影,再濕钱刻上 述二氧化矽層(5000A)並去光阻。之後形成閘極二氧化矽層 (1000人)。以另一光罩進行曝光顯影,經濕蝕刻上述二氧化 石夕層。接著進行金屬铭藏鐘程序,厚度為5000人。再以另 一光罩進行曝光顯影,經濕银刻金屬銘(5000A)並去光阻。 最後利用射頻濺鍍法及金屬光罩,於閘極二氧化矽薄膜 上,備製氮化銘薄膜,以形成氮化銘酸驗離子感測場效電 晶體。 由上述步驟可得如第1圖所示之氮化銘酸驗離子場效 型感測元件結構,此亦為pH-ISFET之基本結構。上述結 構與MOSFET具有相似之結構,區別之處僅在於MOSFET 之金屬閘極被氫離子感測膜、待測溶液及參考電極所取 代。此外,由於工作時感測膜需與待測溶液相接觸,因此 除了感測膜區域外,整個元件均用絕緣性良好之密封材料 包封。由此結構圖可以得知元件之閘極係以氮化鋁作為感 測材料,亦利用環氧樹脂(Epoxy)包裝元件,而參考電極則 提供元件於進行量測時之一個基準電位。 另外由第1圖亦可得知pH_ISFET工作時,閘極感測膜 區域需浸泡於水溶液中。顯然與待測溶液相接觸之感測膜 係離子感測元件將化學量轉換成電學量的關鍵。關於對溶 液中離子活度之響應機制,係於待測溶液和感測膜之界面 處形成界面電位。該界面電位隨不同待測溶液之離子活度 而變化,並對ISFET之通道電導起調制作用,從而引起汲 源極電流之變化,此即為pH-ISFET元件之基本工作原理。 0847-A20347TWF(N2):chiumeow 19 M305339 而本實施例所製備之啊丁元件之剖面圖可參考第从 與^圖。、第2A圖係感測頭部分;第犯圖係元件封裝後 i:f夕e:舁Ϊ接的導線。其中本實施例係利用環氧樹脂將 讀之導線封裝於破璃滴管内m水溶液渗入 V線中而造成漏電流增大。 ^施例2··氮化㈣膜之酸驗場效型感測元件的感測度量Sputtering", Jpn·J·Appl· Phys·, 31, pp· 3017-3020, 1992], etc. In the above deposited thin film method, the deposition rate of the chemical vapor deposition method is fast, but the deposition temperature is as high as 900 ° C. The substrate material is limited, coupled with two unfavorable factors such as too large particles and surface renting, it is impossible to make micro-(//m) wide electrodes on the film. In contrast, RF sputtering is a kind of method. Good choice because of its low temperature deposition, smooth surface, good deposition rate, low price and complexity, etc. It can also be controlled by controlling substrate temperature, working pressure, sputtering gas composition and sputtering power. The composition of the film is in order to obtain the desired film properties. Therefore, in the present embodiment, the radio frequency hybrid method is used to prepare the nitriding acid-sensing ion-sensing field-effect transistor, which is used under the mixture of Asahi & The RF sputtering method is used to prepare the m film as the sensing film of the ion sensing field effect device, that is, the sensing element of the nitride (four) film/diode double-layer gate structure 847-A20347TWF (N2); chiumeow M305339 pieces, and then explore nitrogen The sensing sensitivity (Sensitivity) and stability of aluminum sensing film in different aqueous solutions to be tested. The field effect type ion sensing electro-crystal system with aluminum nitride film as hydrogen ion sensing material was firstly created by the creator. After the fabrication is completed, the sensing element in the present embodiment is used to measure the current-voltage characteristic curve. 'There is excellent sensing sensitivity in the standard acid buffer solution; that is, measuring to PH:=11 In the range, the ion sensing element with aluminum nitride as the sensing film has a sensing sensitivity of 52~58 mV/pH, and the sensing linearity and stability are good, which proves that the creative system is sensitive to the acid-base solution. High-linearity, linearity and stability of aluminum nitride field-effect sensing element. Embodiments The present embodiment is a field-effect sensing element designed to sense acid ions with an aluminum nitride film according to the present design. The preparation method and the measurement step are taken as an example to explain in detail how to implement the creation. The experimental parameter values of the measurement conditions described later and even the measurement device are only used for illustration, but are not intended to limit the creation. · IL-based film The method for preparing the acid field-sensing sensing element is equipped with a gasification inspecting film, and the channel length is 50 μm τι, the channel width is 1000 μιη, and the width to length ratio of the component is 2 〇. Shown: Take a 矽 type 矽 wafer (1, 〇 5 〇) with a resistivity of 8 to 12 ohm-cm, which is washed with deionized water to grow a cerium oxide layer (5000 people) with wet oxygen. Then, a positive photoresist was applied, exposed and developed with a mask, and the above-mentioned cerium oxide layer (5000 Å) was wet-etched. Then, ion implantation was carried out under the conditions of 0847-A20347TWF(N2) ichiumeow M305339 of P: 1015 cm-2. Then, exposure and development were carried out with another mask, and the above-mentioned layer of ruthenium dioxide (5000A) was wet-etched and the photoresist was removed. A gate cerium oxide layer (1000 people) is then formed. Exposure development was carried out with another mask, and the above-mentioned layer of silica was wet-etched. Then proceed to the metal inscription clock program with a thickness of 5,000 people. Then, exposure and development were carried out with another mask, and the metal was polished (5000A) by wet silver and the photoresist was removed. Finally, using the RF sputtering method and the metal mask, a nitriding film is prepared on the gate cerium oxide film to form a nitriding acid-sensing field-sensing field effect transistor. From the above steps, the structure of the nitriding acid-detecting ion field-effect sensing element as shown in Fig. 1 can be obtained, which is also the basic structure of the pH-ISFET. The above structure has a similar structure to that of the MOSFET, except that the metal gate of the MOSFET is replaced by a hydrogen ion sensing film, a solution to be tested, and a reference electrode. In addition, since the sensing film needs to be in contact with the solution to be tested during operation, the entire component is encapsulated with a sealing material having good insulation except for the sensing film region. The structure diagram shows that the gate of the component is made of aluminum nitride as the sensing material, and the epoxy resin (Epoxy) is used to package the component, and the reference electrode provides a reference potential for the component to be measured. In addition, it can be seen from Fig. 1 that the gate sensing film region needs to be immersed in an aqueous solution when the pH_ISFET is operated. It is apparent that the sensing membrane in contact with the solution to be tested is the key to converting the stoichiometric amount into an electrical quantity. Regarding the response mechanism to the ion activity in the solution, an interface potential is formed at the interface between the solution to be tested and the sensing film. The interface potential varies with the ion activity of different solutions to be tested, and modulates the channel conductance of the ISFET, thereby causing a change in the source current of the ytterbium, which is the basic working principle of the pH-ISFET element. 0847-A20347TWF(N2): chiumeow 19 M305339 For the cross-sectional view of the component prepared in this embodiment, reference can be made to the first and second figures. The 2A figure is the sensor head part; the first line of the picture component is packaged after the i:f eve: the wire that is connected. In the present embodiment, the read current is encapsulated in the glass dropper with epoxy resin and the m aqueous solution is infiltrated into the V line to cause an increase in leakage current. ^Example 2·· nitriding (four) film acid sensing field sensing element sensing metric
湞丨J 利用如第3圖之量測系統測量實施例i所製備的氮化 。於量測電流電壓過程中,係 :考心了置測參數’而於量測之期間需將元件與 、多考-电極同日守放入待測水溶液中,並置於暗箱中量測,以 減少照光對ISFET元件輪屮夕旦/塑闩士 、 輪出之衫曰。同日守亦利用恆溫裝置 間度。而本創作係於室溫下量測,量測期 夂::…疋為25°c,藉以維持量測期間溫度改變所 化成之秩差。 你“以弟3圖為例’詳而言之係利用感測元件30與銀/氣化 ,g/Aga)參考電㈣-同置人待測溶液38中,2= ? Κ^2Γ6 ===定-場™ >、正吊區域,Keithley 236設定如下·氣| =;:場效型感測元件3〇之_動二^ = :i':?;6V。如此即可量測感測器㈣ 二' 堡(I_V)曲線。因ΡΗ值越高之酸鹼溶液,感 患之起始電壓Vt隨著上升。藉由此—機制即可量測出所= 0847-A20347TWF(N2);chiUme〇w 20 M305339 ir 義之感測度(S = VQ/pH),再利用該汲極電流對閘極電壓 之曲線’取—固定電流以求出於25oc時該氮化鋁酸鹼離子 場政型感_元件之感測度。 第4圖顯示實施例1所製備之氮化I呂薄膜表面電位與 酉义&度之模擬曲線圖。使用Mathematica3.〇軟體模擬電解 液/絕緣層(感測層)/半導體(EIS)系統中繁雜之計算,求得建 T元件模型之主要參數。而於使用Mathematica 3.0 _ 模擬EIS系統時,設定ISFET模擬條件為:溫度27。〇, .雜/辰度Pp0為1〇15/cm3,絕緣層A1N之厚度為1〇〇〇人,浈丨J The nitridation prepared in Example i was measured using the measurement system as in Fig. 3. In the process of measuring the current and voltage, the system considers the parameter to be measured, and during the measurement, the component and the multi-test-electrode are placed in the aqueous solution to be tested, and placed in a dark box for measurement. Reducing the illumination of the ISFET components on the wheel of the idyllic / plastic latch, the wheel of the shirt. The same day also uses the thermostat device. The creation is measured at room temperature, and the measurement period 夂::...疋 is 25°c, in order to maintain the rank difference formed by the temperature change during the measurement. You "take the brother 3 picture as an example" in detail, using the sensing element 30 and silver / gasification, g / Aga) reference electricity (four) - the same person to be tested in the solution 38, 2 = ? Κ ^ 2 Γ 6 == = fixed-field TM >, positive hanging area, Keithley 236 is set as follows: gas | =;: field effect sensing element 3 _ 动 2 ^ = :i':?; 6V. Detector (4) 2' Fort (I_V) curve. Because the pH value of the acid-base solution is higher, the initial voltage Vt of the sensor rises. By this mechanism, the measured = 0847-A20347TWF(N2); chiUme〇w 20 M305339 ir Sense of Sensibility (S = VQ/pH), and then use the curve of the gate current to the gate voltage 'takes a fixed current to find the aluminosilicate alkali ion field at 25 oc Sense_sensitivity of the component. Fig. 4 is a graph showing the surface potential and the 酉义 & degree of the nitrided film prepared in Example 1. The simulated electrolyte/insulation layer (sensing layer) was simulated using Mathematica 3. ) / The complex calculation in the semiconductor (EIS) system, the main parameters of the T component model are obtained. When using the Mathematica 3.0 _ analog EIS system, the ISFET simulation condition is set to: temperature 27. The impurity/length Pp0 is 1〇15/cm3, and the thickness of the insulating layer A1N is 1〇〇〇,
Helmh〇ltz電雙層電容ch為2〇MF/cm2,絕緣層表面之烷醇 放Nsll為8xi〇14/cm2,解離常數κ·37χ1〇-8,解離常數 Κ_ 一2·1x10 9,外加參考電壓Vg為5 V,電解液之介電常數 為8〇,電解液濃度〇.丨M。模擬所得之曲線斜率即代表感 測靈敏度,其模擬之表面電位呈線性反應,斜率約為 59mV/pH 〇 _ 第5圖顯示將實施例1所製備之感測元件,利用Helmh〇ltz electric double layer capacitor ch is 2〇MF/cm2, the alkanol on the surface of the insulating layer is Nsll is 8xi〇14/cm2, the dissociation constant κ·37χ1〇-8, the dissociation constant Κ_1·1x10 9, plus reference The voltage Vg is 5 V, the dielectric constant of the electrolyte is 8 〇, and the electrolyte concentration is 〇.丨M. The slope of the curve obtained by the simulation represents the sensing sensitivity, and the simulated surface potential is linearly reacted, and the slope is about 59 mV/pH _ _ Figure 5 shows the sensing element prepared in Example 1, using
Kekhley 236和238半導體參數分析儀(Semiconduct〇r Parameter Analyzer)與PID恆溫控制系統結合成iSFET元件 電流電壓量測系統進行量測,於室溫(25。〇下將元件放置 於水溶液pH=l,3,5,7,9,ll中所量測之電流電壓特性曲線。 由此圖可得知AlN/Si〇2雙層閘極ISFET元件之起始電壓 (Threshold Voltage,VT),會隨著水溶液之改變而增大。藉 此可計算出ISFET元件於不同pH值水溶液中起始電壓的 變化量(Δντ),亦即為元件之感測靈敏度。而ISFET元件 0847-A20347TWF(N2);chiumeow 21 M305339 1The Kekhley 236 and 238 Semiconductor parameter analyzers were combined with the PID thermostat control system to measure the iSFET component current and voltage measurement system. The components were placed in aqueous solution at pH=l at room temperature (25°〇, The current-voltage characteristic curve measured in 3,5,7,9,ll. It can be seen from this figure that the starting voltage (VT) of the AlN/Si〇2 double-layered ISFET component will follow The change of the aqueous solution is increased, thereby calculating the amount of change (Δντ) of the initial voltage of the ISFET element in different pH aqueous solutions, that is, the sensing sensitivity of the element. The ISFET element 0847-A20347TWF(N2); chiumeow 21 M305339 1
感測靈敏度(861^1^忖7,8)定義為 s = VT〇〇-VT(y) _ AVT pH (x)- pH (y) ΔpH (mV/pH) 其中,△ VT係ISFET元件於不同pH值水溶液中起始 電壓的變化量。 由量測結果可得知以氮化鋁/二氧化矽雙層閘極結構為 感測材料,其起始電壓呈線性之變化,且感測靈敏度相當 高,即介於pH二1〜11範圍中,其平均感測靈敏度約為 , 56mV/pH。 第6圖顯示將實施例1所製備之感測元件,利用 Keithley 236 和 238 半導體參數分析儀(Semiconductor Parameter Analyzer)與PID悝溫控制系統,於室溫下將元件 放置於水溶液pH=l,3,5,7,9,ll中所量測之電流電壓特性曲 線。由此圖可得知以氮化鋁為感測材料之場效型感測元 件,其通道電流(IDS)係隨著水溶液之氫離子濃度大小而調 變,且元件之通道電流會隨著水溶液pH值之增加而降低。 > 亦即,pH值之增加,IDS下降。 第7圖顯示實施例1所製備之感測元件的pH值對起始 電壓的關係圖,圖中之直線斜率即代表元件的感測靈敏 度。所測試之感測元件的氮化銘薄膜厚度為1200人,元件 於pE = 1〜11之水溶液中所量測得到的感測靈敏度為5 5.8 mV/pH。 第8圖顯示,實施例所製備之感測元件的感測度隨時 間變化之關係圖。由圖中可得知以氮化鋁為感測材料之 ISFET元件進行感測度的量測,其輸出穩定性良好,感測 〇847-A20347TWF(N2);chiumeow 22 M305339 靈敏度之平均值約為56 mV/pH。 由上述結果歸納可得知本創作之氮化鋁/二氧化矽雙層 閘極場效型感測元件,於pH=l〜11水溶液中之感測靈敏度 範圍為52〜58mV/pH,且元件之穩定性佳,反應呈線性變 化。 將本創作之射頻濺鍍法備製之氮化鋁/二氧化矽雙層閘 極離子場效型感測元件與其他感測材料的特性進行比較, 結果列示於表1。 表1 :不同感測材料特性之比較 感測膜材料 pH值測試範圍靈敏度(mV/pH)穩定度 線性度 AIN 1〜 11 52 〜58 佳 優 a-W03 1〜 7 50 〜58 佳 優 a-Si:H 2〜 7 51 〜56.5 佳 優 Sn02 2〜 10 56 〜58 佳 優 Ta2〇5 2〜 12 53 〜59 佳 優 Al2〇3 1〜 13 53 〜57 佳 優 Si3N4 1〜 13 46 〜56 佳 優 Si〇2 4〜 10 25 〜48 不穩定 劣 綜合實驗與模擬之結果,發現A1N薄膜適合作為ISFET 之感測材料,因其對電解液中之酸鹼離子有較大的靈敏 度,且有線性之變化輸出。因此以A1N作為絕緣層之ISFET 應用於生物醫學及廢水檢測方面有其發展的潛力。 雖然於國際上對離子感測場效電晶體(ISFET)元件的 研究相當熱絡,然而在國内對此種元件之研究卻非常缺 0847-A20347TWF(N2) ;chiumeow 23 M305339 乏。基於離子感測場效電晶體元件具有許多優點,本創作 人因而開始對此種元件之模擬、元件製作與包裝、及新離 子感測膜材料(氮化鋁,A1N)作預先的研究工作。本封作係 首次將氮化鋁材料應用於場效型離子感測元件中,結果發 現氮化鋁薄膜具有優異之感測度及線性度與良好之穩定 性。未來可將此等元件結合生物酵素之技術,而能應用於 相當多之檢測,如形成生醫感測器(Biosensor)等,因此本 創作之ISFET元件於未來研究與發展的空間係非常的廣 闊。Sensing sensitivity (861^1^忖7,8) is defined as s = VT〇〇-VT(y) _ AVT pH (x)- pH (y) ΔpH (mV/pH) where Δ VT is an ISFET component The amount of change in the initial voltage in aqueous solutions of different pH values. It can be known from the measurement results that the aluminum nitride/cerium oxide double-layer gate structure is used as the sensing material, and the initial voltage changes linearly, and the sensing sensitivity is quite high, that is, in the range of pH two to 11 The average sensing sensitivity is about 56mV/pH. Fig. 6 shows the sensing element prepared in Example 1, using a Keithley 236 and 238 Semiconductor Parameter Analyzer and a PID temperature control system, and placing the component in an aqueous solution at a pH of 1, 3 at room temperature. , 5, 7, 9, ll measured current and voltage characteristics. From this figure, the field effect type sensing element with aluminum nitride as the sensing material can be known, and the channel current (IDS) is modulated with the hydrogen ion concentration of the aqueous solution, and the channel current of the element will follow the aqueous solution. The pH value decreases and decreases. > That is, the pH value increases and the IDS decreases. Fig. 7 is a graph showing the relationship between the pH of the sensing element prepared in Example 1 and the initial voltage, and the slope of the line in the figure represents the sensing sensitivity of the element. The thickness of the nitriding film of the sensing element tested was 1,200, and the sensing sensitivity of the device measured in an aqueous solution of pE = 1 to 11 was 5 5.8 mV/pH. Fig. 8 is a graph showing the relationship between the sensitivity of the sensing elements prepared in the examples and the change in time. It can be seen from the figure that the sensing of the ISFET component with aluminum nitride as the sensing material has good output stability, and the sensitivity of the sensing 〇847-A20347TWF(N2); chiumeow 22 M305339 is about 56. mV/pH. From the above results, it can be known that the aluminum nitride/cerium oxide double-layer gate field-effect sensing element of the present invention has a sensing sensitivity range of 52 to 58 mV/pH in an aqueous solution of pH=l-11, and components. The stability is good and the reaction changes linearly. The characteristics of the aluminum nitride/cerium oxide double-gate MOSFET field-effect sensing element prepared by the RF sputtering method of this creation are compared with those of other sensing materials, and the results are shown in Table 1. Table 1: Comparison of different sensing material characteristics Sensing film material pH test range Sensitivity (mV/pH) Stability Linearity AIN 1~ 11 52 ~58 Jiayou a-W03 1~ 7 50 ~58 Jiayou a- Si:H 2~7 51 ~56.5 Jiayou Sn02 2~10 56~58 Jiayou Ta2〇5 2~12 53~59 Jiayou Al2〇3 1~13 53~57 Jiayou Si3N4 1~13 46~56 Good Excellent Si〇2 4~ 10 25 ~48 The results of the unstable experiment and simulation show that the A1N film is suitable as the sensing material of ISFET because it has greater sensitivity to the acid-base ions in the electrolyte and has linearity. The change output. Therefore, ISFETs with A1N as an insulating layer have potential for development in biomedical and wastewater detection. Although the research on ion sensing field effect transistor (ISFET) components is quite hot in the world, the research on such components in China is very lacking 0847-A20347TWF (N2); chiumeow 23 M305339 is lacking. Based on the many advantages of ion-sensing field-effect transistor components, the authors have begun to conduct preliminary research on the simulation of such components, component fabrication and packaging, and new ion sensing membrane materials (A1N). This seal is the first time that an aluminum nitride material has been applied to a field-effect type ion sensing element, and it has been found that the aluminum nitride film has excellent sensitivity, linearity, and good stability. In the future, these components can be combined with the technology of biological enzymes, and can be applied to a considerable number of tests, such as the formation of biosensors, etc., so the space of the ISFET components of this creation in the future research and development is very broad. .
0847-A20347TWF(N2);chiumeow 24 M305339 【圖式簡單說明】 第1圖顯示本創作之氮化鋁/二氧化矽雙層閘極場效型 離子感測元件之一實施例的剖面圖。 第2 A與2B圖顯示本創作之氮化铭/二氧化石夕雙層閘極 場效型離子感測元件示意圖。第2A圖係封裝前之感測元 件,第2B圖係封裝後之感測元件。 第3圖顯示採用本創作之氮化鋁/二氧化矽雙層閘極場 效型離子感測元件之電流電壓量測系統示意圖。 第4圖顯示本創作之氮化鋁/二氧化矽雙層閘極場效型 離子感測元件之氮化鋁薄膜表面電位與酸鹼水溶液之模擬 曲線。 第5圖顯示本創作之氮化鋁/二氧化矽雙層閘極場效型 離子感測元件之電壓輸出特性曲線。 第6圖顯示本創作之氮化鋁/二氧化矽雙層閘極場效型 離子感測元件之電流電壓特性曲線。 第7圖顯示本創作之氮化鋁/二氧化矽雙層閘極場效型 離子感測元件之感測特性曲線。 第8圖顯示本創作之氮化鋁/二氧化矽雙層閘極場效型 離子感測元件之感測度與時間變化的關係圖。 【主要元件符號說明】 第1圖: 10〜基底導線, 11〜源極/汲極導線; 0847-A20347TWF(N2);chiumeow 25 M305339 12〜碎基底, 13〜源極/没極; 14〜二氧化矽(Si02)薄膜; 15〜氮化鋁(A1N)薄膜; 16〜待測溶液; 17〜環氧樹脂; 18〜爹考電極。 第2A與2B圖: 20〜離子感測場效電晶體, 21〜陶瓷基板; 2 2〜間極, 2 3〜源極導線, 24〜〉及極導線, 2 5〜基底導線, 26〜玻璃管; I 27〜環氧樹脂; 2 8〜感測頭。 第3圖: 3 0〜酸驗離子場效型感測元件; 31〜熱耦合器; 3 2〜爹^考電極, 33〜光隔絕容器; 3 4〜加熱器; 35〜溫度控制器; 0847-A20347TWF(N2);chiumeow 20 M305339 36〜半導體特性(電流-電壓)量測儀; 37〜數據處理器; 38〜待測溶液。0847-A20347TWF(N2); chiumeow 24 M305339 [Simplified Schematic] FIG. 1 is a cross-sectional view showing an embodiment of the present invention for an aluminum nitride/cerium oxide double-layer gate field effect ion sensing element. Figures 2A and 2B show a schematic diagram of the nitriding/ear dioxide double-layer gate field effect type ion sensing element of the present invention. Fig. 2A is a sensing element before packaging, and Fig. 2B is a sensing element after packaging. Figure 3 shows a schematic diagram of the current-voltage measurement system using the aluminum nitride/cerium oxide double-layer gate field effect ion sensing device of the present invention. Fig. 4 is a graph showing the surface potential of an aluminum nitride film and an aqueous acid-base solution of the aluminum nitride/cerium oxide double-layer gate field effect type ion sensing element of the present invention. Figure 5 shows the voltage output characteristics of the aluminum nitride/cerium oxide double-layer gate field effect ion sensing device of the present invention. Figure 6 shows the current-voltage characteristics of the aluminum nitride/cerium oxide double-layer gate field effect ion sensing device of the present invention. Figure 7 shows the sensing characteristics of the aluminum nitride/cerium oxide double-layer gate field effect ion sensing device of the present invention. Figure 8 shows the relationship between the sensitivity and time variation of the aluminum nitride/cerium oxide double-layer gate field effect type ion sensing device. [Main component symbol description] Figure 1: 10~ base wire, 11~source/drain wire; 0847-A20347TWF(N2); chiumeow 25 M305339 12~ broken base, 13~source/no pole; 14~2 Cerium oxide (SiO 2 ) film; 15 ~ aluminum nitride (A1N) film; 16 ~ solution to be tested; 17 ~ epoxy resin; 18 ~ 爹 test electrode. 2A and 2B: 20~ ion sensing field effect transistor, 21~ceramic substrate; 2 2~dipole, 2 3~source wire, 24~> and pole wire, 2 5~base wire, 26~glass Tube; I 27 ~ epoxy; 2 8 ~ sensing head. Figure 3: 3 0 ~ acid test ion field effect sensing element; 31 ~ thermal coupler; 3 2 ~ 爹 ^ test electrode, 33 ~ light isolation container; 3 4 ~ heater; 35 ~ temperature controller; 0847 -A20347TWF (N2); chiumeow 20 M305339 36 ~ semiconductor characteristics (current-voltage) measuring instrument; 37 ~ data processor; 38 ~ solution to be tested.
0847-A2034丌 WF(N2);chiume〇w0847-A2034丌 WF(N2);chiume〇w
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95210633U TWM305339U (en) | 2006-06-19 | 2006-06-19 | pH-ISFET device and system for measuring pH value in a solution using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95210633U TWM305339U (en) | 2006-06-19 | 2006-06-19 | pH-ISFET device and system for measuring pH value in a solution using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM305339U true TWM305339U (en) | 2007-01-21 |
Family
ID=38435830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW95210633U TWM305339U (en) | 2006-06-19 | 2006-06-19 | pH-ISFET device and system for measuring pH value in a solution using the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM305339U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI386644B (en) * | 2009-01-10 | 2013-02-21 | Univ Chang Gung | Ion sensing field effect transistor and ion sensing electrode having the ion sensing field effect transistor |
TWI414787B (en) * | 2009-05-26 | 2013-11-11 | Univ Chang Gung | Sensitive field effect transistor apparatus |
CN110646490A (en) * | 2019-09-30 | 2020-01-03 | 深圳大学 | Ion sensitive field effect transistor sensor based on tungsten diselenide and preparation method thereof |
-
2006
- 2006-06-19 TW TW95210633U patent/TWM305339U/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI386644B (en) * | 2009-01-10 | 2013-02-21 | Univ Chang Gung | Ion sensing field effect transistor and ion sensing electrode having the ion sensing field effect transistor |
TWI414787B (en) * | 2009-05-26 | 2013-11-11 | Univ Chang Gung | Sensitive field effect transistor apparatus |
CN110646490A (en) * | 2019-09-30 | 2020-01-03 | 深圳大学 | Ion sensitive field effect transistor sensor based on tungsten diselenide and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI302197B (en) | Reference ph sensor, the preparation and application thereof | |
TWI383144B (en) | Sensing element, manufacturing method and detecting system thereof | |
TWI377342B (en) | Method for forming an extended gate field effect transistor (egfet) based sensor and the sensor formed thereby | |
TWI295729B (en) | Preparation of a ph sensor, the prepared ph sensor, systems comprising the same, and measurement using the systems | |
US20170273608A1 (en) | Ionic barrier for floating gate in vivo biosensors | |
TWI279539B (en) | Biosensor containing ruthenium, and measurement using the same and the application thereof | |
TW434704B (en) | Device of amorphous WO3 ion sensitive field effect transistor (ISFET) and method for making the same | |
US7387923B2 (en) | ISFET using PbTiO3 as sensing film | |
Lee et al. | Integrated pH sensors and performance improvement mechanism of ZnO-based ion-sensitive field-effect transistors | |
CN110865110A (en) | Coplanar gate oxide thin film transistor biosensor and preparation method thereof | |
Chou et al. | Fabrication and application of ruthenium-doped titanium dioxide films as electrode material for ion-sensitive extended-gate FETs | |
CN113960128B (en) | Silicon nanowire field effect transistor biosensor based on modification of potassium ion aptamer | |
US6218208B1 (en) | Fabrication of a multi-structure ion sensitive field effect transistor with a pH sensing layer of a tin oxide thin film | |
Khanna | Fabrication of ISFET microsensor by diffusion-based Al gate NMOS process and determination of its pH sensitivity from transfer characteristics | |
TWM305339U (en) | pH-ISFET device and system for measuring pH value in a solution using the same | |
CN101964360A (en) | Ion sensitive field effect transistor and production method thereof | |
JP2001272372A (en) | Field-effect transistor | |
TWI244702B (en) | Titanium oxide thin film for extended gate field effect transistor using reactive sputtering | |
Bhat et al. | AlGaN/GaN HEMT Based Ph Detection Using Atomic Layer Deposition of Al 2 O 3 as Sensing Membrane and Passivation | |
JP3390756B2 (en) | Field effect transistor | |
Rosdan et al. | Sputtered titanium dioxide thin film for Extended-Gate FET sensor application | |
Chang et al. | Characteristics of zirconium oxide gate ion-sensitive field-effect transistors | |
TWI326894B (en) | Ion sensing devices, reference electrodes and fabrication methods thereof | |
Lam et al. | Development of highly sensitive interdigitated electrodes (IDEs) with APTES/GOx based lab-on-chip biosensor to determine glucose level | |
Yusof et al. | TiO 2-based extended gate FET pH-sensor: Effect of annealing temperature on its sensitivity, hysteresis and stability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4K | Annulment or lapse of a utility model due to non-payment of fees |