TWI414787B - Sensitive field effect transistor apparatus - Google Patents

Sensitive field effect transistor apparatus Download PDF

Info

Publication number
TWI414787B
TWI414787B TW098117383A TW98117383A TWI414787B TW I414787 B TWI414787 B TW I414787B TW 098117383 A TW098117383 A TW 098117383A TW 98117383 A TW98117383 A TW 98117383A TW I414787 B TWI414787 B TW I414787B
Authority
TW
Taiwan
Prior art keywords
effect transistor
field effect
positive
electrode
sensing
Prior art date
Application number
TW098117383A
Other languages
Chinese (zh)
Other versions
TW201042254A (en
Inventor
Chao Sung Lai
Cheng En Lue
Chia Ming Yang
Szu Chieh Wang
Original Assignee
Univ Chang Gung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Chang Gung filed Critical Univ Chang Gung
Priority to TW098117383A priority Critical patent/TWI414787B/en
Priority to US12/591,466 priority patent/US8410530B2/en
Publication of TW201042254A publication Critical patent/TW201042254A/en
Application granted granted Critical
Publication of TWI414787B publication Critical patent/TWI414787B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4148Integrated circuits therefor, e.g. fabricated by CMOS processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

The invention discloses a sensitive field effect transistor apparatus, which uses an inorganic membrane to sense hydrogen ions. The invention adopts the membrane with high deformation stress. The sensitivity of the sensitive membrane to hydrogen ions is adjusted through altering the membrane thickness and changing the substrate type and doped concentration. A differential amplifier is used to read a signal to form the inorganic Ion Sensitive Field Effect Transistor/Reference Field Effect Transistor apparatus.

Description

感測場效電晶體裝置Sense field effect transistor device

本發明為一種感測場效電晶體裝置,特別是一種離子感測場效電晶體/參考場效電晶體/準參考電極裝置。The invention is a sensing field effect transistor device, in particular an ion sensing field effect transistor/reference field effect transistor/quasi-reference electrode device.

離子感測場效電晶體(Ion Sensitive Field Effect Transistor,ISFET)裝置最早曾於1970年時,由P. Bergveld首先提出其初步構想,陸續進行改良與研發。而離子感測場效電晶體發展至今,在眾多pH型的離子感測場效電晶體(pH-ISFET)感測薄膜的材料中,已研發出具備高感測度且不會受到非理想效應干擾之技術優勢。除此之外,又因為離子感測場效電晶體與金氧半場效電晶體之結構類似,因此可以藉由半導體CMOS元件製程以製造出離子感測場效電晶體,並加以微型化。而離子感測場效電晶體元件本身具有很高的生物相容性,所以被廣泛的應用於人體檢測與生物晶片等領域。The Ion Sensitive Field Effect Transistor (ISFET) device was first introduced in 1970 by P. Bergveld, and it was first proposed and improved. However, ion-sensing field-effect transistors have been developed to date, and high-sensitivity measures have been developed in many pH-type ion-sensing field-effect transistor (pH-ISFET) sensing films, and are not subject to non-ideal effects. Technical advantages. In addition, because the ion-sensing field-effect transistor is similar in structure to the MOS field-effect transistor, the ion-sensing field-effect transistor can be fabricated and miniaturized by a semiconductor CMOS device process. The ion-sensing field-effect transistor component itself has high biocompatibility, so it is widely used in human detection and bio-wafer fields.

然而,在微型化離子感測場效電晶體的過程中,具有一個極大的待解決問題,即是在參考電極的部分,也就是目前所有的離子感測場效電晶體感測系統,都仍須搭配傳統玻璃參考電極(如Ag/AgCl或甘汞電極)才得以能提供一穩定參考電位。然而,此類型之參考電極在固態化與微型化的過程中,面臨因內部離子交換溶液的體積微型化的減少,以及不能更換該內部離子交換溶液而降低了電極穩定性與使用壽命。故而難以微型化參考電極的問題,嚴重地限制了離子感測場效電晶體在生醫領域以及人體內檢測診斷的應用與發展。However, in the process of miniaturizing ion sensing field effect transistors, there is a great problem to be solved, that is, in the part of the reference electrode, that is, all current ion sensing field effect transistor sensing systems are still A stable reference potential can be provided with a conventional glass reference electrode such as an Ag/AgCl or calomel electrode. However, this type of reference electrode is faced with a reduction in the volume miniaturization of the internal ion exchange solution during solidification and miniaturization, and the inability to replace the internal ion exchange solution reduces electrode stability and service life. Therefore, it is difficult to miniaturize the problem of the reference electrode, which severely limits the application and development of the ion-sensing field-effect transistor in the field of biomedicine and human detection.

Matsuo於1978年首次提出參考場效電晶體(Reference Field Effect Transistor,REFET)裝置,目前針對此元件之研究主要可區分為三類:Matsuo first proposed the Reference Field Effect Transistor (REFET) device in 1978. At present, the research on this component can be divided into three categories:

一、在原本無機薄膜上增加一離子隔絕層,藉以減少感測薄膜表面與離子鍵結的數量。1. Adding an ion barrier layer to the original inorganic film to reduce the amount of surface and ionic bonding of the sensing film.

二、以聚合物形成隔絕離子(Ion-blocking)的薄膜,但受限於薄膜厚度問題,厚度必須增加,以改善薄膜孔隙產生的缺陷,但厚度增加,卻會造成元件轉導(Transconductance)的衰減,而使得系統操作的不匹配。另外此類型的薄膜也仍有穩定性、感測度無法降低等問題存在。Second, the formation of Ion-blocking films with polymers, but limited by the thickness of the film, the thickness must be increased to improve the defects caused by the pores of the film, but the thickness increases, but will cause the transconductance of the components. Attenuation, which causes a mismatch in system operation. In addition, this type of film also has problems such as stability and inability to reduce the sensitivity.

三、以聚合物形成離子交換(Ion-unblocking)薄膜解決了上述轉導衰減的問題,也是目前發展最成熟穩定的低感測度薄膜。儘管如此,其薄膜仍有使用壽命短的限制。Third, the ion-exchange (Ion-unblocking) film formed by the polymer solves the above-mentioned problem of transduction attenuation, and is also the most mature and stable low-sensitivity film currently developed. Despite this, the film has a short life limit.

有機參考場效電晶體固然發展成熟,目前已可將感測度降低到大約1mV/pH至2mV/pH。但此有機薄膜與其半導體元件仍存在著製程複雜與結構不完全相容之問題。因此,開發無機薄膜的參考場效電晶體,除了可簡化製程,且能與半導體CMOS製程完全相容,並且可避免有機薄膜所造成的電性衰減,可為參考場效電晶體與離子感測場效電晶體領域上的創新發展。While organic reference field effect transistors have matured, it is now possible to reduce the sensitivity to approximately 1 mV/pH to 2 mV/pH. However, the organic film and its semiconductor components still have problems of complicated process and incomplete structure. Therefore, the development of the reference film of the inorganic thin film, in addition to simplifying the process, and fully compatible with the semiconductor CMOS process, and can avoid the electrical attenuation caused by the organic film, can be reference field effect transistor and ion sensing Innovative developments in the field of field effect transistors.

參考場效電晶體之結構與離子感測場效電晶體極為相似,而主要差異處在於離子感測場效電晶體對於目標離子(如氫離子、鈉鉀離子等)有很高的敏感度(Sensitivity),而參考場效電晶體則對目標離子較為不敏感,或者僅具有較低的敏感度。而離子感測場效電晶體/參考場效電晶體還需搭配可提供電位的準參考電極(quasi Reference Electrode,qRE),主要功用在於提供感測系統偏壓以形成迴路。且再經由差動放大電路將兩者與準參考電極的輸出電壓進行差分,而最後所得到的輸出訊號即為離子感測場效電晶體/參考場效電晶體系統對離子濃度的輸出,也因為經由差動放大電路,而將準參考電極之不穩定固液介面電位之影響也互相抵銷。故就以上所述,低離子感測度之參考場效電晶體可以形成如離子感測場效電晶體/參考場效電晶體/準參考電極(ISFET/REFET/qRE)結合的形式。The structure of the reference field effect transistor is very similar to that of the ion sensing field effect transistor, and the main difference is that the ion sensing field effect transistor has high sensitivity to the target ion (such as hydrogen ion, sodium potassium ion, etc.) Sensitivity), while the reference field effect transistor is less sensitive to the target ion, or has only lower sensitivity. The ion-sensing field-effect transistor/reference field-effect transistor also needs to be matched with a quasi-reference electrode (qRE) that can provide a potential. The main function is to provide a sensing system bias to form a loop. And further, the difference between the two is compared with the output voltage of the quasi-reference electrode via the differential amplifier circuit, and the resulting output signal is the output of the ion-sensing field effect transistor/reference field effect transistor system. Because of the differential amplifier circuit, the effects of the unstable solid-liquid interface potential of the quasi-reference electrode are also offset. Therefore, as described above, the low field sensitivity reference field effect transistor can be formed in the form of a combination of an ion sensing field effect transistor/reference field effect transistor/quasi-reference electrode (ISFET/REFET/qRE).

在傳統的離子感測場效電晶體裝置中,因其參考電極難以微小化而整合於積體電路(IC)中,故而提出了離子感測場效電晶體/參考場效電晶體系統。但又因當降低離子感測度時,需仰賴一層額外添加的有機薄膜,故而增加了製程的複雜度,且亦減少了其使用壽命。In the conventional ion sensing field effect transistor device, since the reference electrode is difficult to be miniaturized and integrated in the integrated circuit (IC), an ion sensing field effect transistor/reference field effect transistor system is proposed. However, when the ion sensitivity is lowered, it is necessary to rely on an additional organic film, which increases the complexity of the process and reduces the service life.

由前述理由可知感測場效電晶體之發展日益受到重視。爲因應未來需求,尚需發展相關感測場效電晶體裝置技術,藉以降低製作與操作之人力與時間等成本,且能有效達成節能與減碳之目的。From the foregoing reasons, it is known that the development of sensing field effect transistors has received increasing attention. In order to meet future demand, it is necessary to develop relevant sensing field effect transistor device technology, thereby reducing the manpower and time costs of production and operation, and effectively achieving energy saving and carbon reduction.

本發明使用半導體製程技術以形成感測場效電晶體,亦即一種無機離子感測場效電晶體/參考場效電晶體裝置。The present invention uses semiconductor process technology to form a sensing field effect transistor, that is, an inorganic ion sensing field effect transistor/reference field effect transistor device.

本發明為一種使用半導體基底,於其基底中形成井(Well)的方式,形成無機離子感測場效電晶體/參考場效電晶體。The present invention is a method of forming an inorganic ion sensing field effect transistor/reference field effect transistor using a semiconductor substrate in the form of a well in its substrate.

本發明之無機離子感測場效電晶體包括了正型矽晶片之半導體基底,負型井形成於正型矽晶片內;由源極、汲極及負型離子所形成的電極形成於負型井內;而金屬導線連接於電極表面上,且二氧化矽形成於正型矽晶片表面上,電極之上與金屬導線之間;單層氮化矽形成於負型井表面上,因氮化矽並不會對氫離子感測度有影響,可用於無機離子感測場效電晶體;形成光阻層於二氧化矽表面上與金屬導線表面上而形成無機離子感測場效電晶體。The inorganic ion sensing field effect transistor of the present invention comprises a semiconductor substrate of a positive tantalum wafer, a negative well is formed in a positive tantalum wafer; an electrode formed by a source, a drain and a negative ion is formed in a negative type Inside the well; the metal wire is connected to the surface of the electrode, and ruthenium dioxide is formed on the surface of the positive ruthenium wafer, between the electrode and the metal wire; a single layer of tantalum nitride is formed on the surface of the negative well due to nitridation矽 does not affect the hydrogen ion sensitivity, and can be used for inorganic ion sensing field effect transistors; forming a photoresist layer on the surface of the ceria and the surface of the metal wire to form an inorganic ion sensing field effect transistor.

本發明之參考場效電晶體裝置包括了正型矽晶片之半導體基底,正型井形成於正型矽晶片內;由源極,汲極及正型離子所形成的電極形成於正型井內;而金屬導線連接於電極表面上,二氧化矽形成於正型矽晶片表面上,第二電極表面上與金屬導線之間;單層氮化矽形成於正型井表面上,而單層氮化矽沈積於正型井表面上,可有效地降低氫離子感測度,使表面對氫離子不敏感;形成光阻層於二氧化矽表面上與金屬導線表面上而形成無機參考場效電晶體。The reference field effect transistor device of the present invention comprises a semiconductor substrate of a positive type germanium wafer, the positive type well is formed in the positive type germanium wafer; the electrode formed by the source, the drain and the positive type ion is formed in the positive type well And the metal wire is connected to the surface of the electrode, the ruthenium dioxide is formed on the surface of the positive ruthenium wafer, and the surface of the second electrode is between the metal wire; the single layer of tantalum nitride is formed on the surface of the positive well, and the single layer of nitrogen Deuterium deposition on the surface of the positive well can effectively reduce the hydrogen ion sensitivity and make the surface insensitive to hydrogen ions; forming a photoresist layer on the surface of the ceria and the surface of the metal wire to form an inorganic reference field effect transistor .

本發明於無機離子感測場效電晶體與參考場效電晶體之中間,形成二氧化矽於正型矽晶片表面上;於二氧化矽兩側形成金屬導線;而鉑金形成於二氧化矽表面上;形成光阻層於二氧化矽表面上與金屬導線表面上,且圍繞鉑金之兩側,藉而形成本發明之無機離子感測場效電晶體/參考場效電晶體裝置。The invention forms ruthenium dioxide on the surface of the positive ruthenium wafer in the middle of the inorganic ion sensing field effect transistor and the reference field effect transistor; forms a metal wire on both sides of the cerium oxide; and platinum is formed on the surface of the cerium oxide Forming a photoresist layer on the surface of the ceria and on the surface of the metal wire, and surrounding both sides of the platinum, thereby forming the inorganic ion sensing field effect transistor/reference field effect transistor device of the present invention.

本發明係將離子感測場效電晶體與參考場效電晶體整合在同一個晶圓上,故而有別於習知技術中所分離形成的獨立兩個元件,故而於使用上較為便利。In the invention, the ion sensing field effect transistor and the reference field effect transistor are integrated on the same wafer, so that it is different from the two separate components formed in the prior art, and thus is convenient to use.

本發明係以無機薄膜進行低氫離子的感測,採用具有高形變應力之薄膜,藉由調變薄膜厚度或改變基板型態及摻雜濃度,調整感測薄膜對於氫離子感應的靈敏度。The invention adopts an inorganic film for sensing low hydrogen ions, and adopts a film with high deformation stress, and adjusts the sensitivity of the sensing film to hydrogen ion sensing by modulating the thickness of the film or changing the substrate type and doping concentration.

本發明可以解決參考電極在微型化過程中所遭遇的穩定度與使用壽命等問題,也可藉由差動放大電路而降低元件之非理想效應。The invention can solve the problems of stability and service life encountered by the reference electrode in the miniaturization process, and can also reduce the non-ideal effect of the component by the differential amplifier circuit.

故而,關於本發明之優點與精神可以藉由以下發明詳述及所附圖式得到進一步的瞭解。Therefore, the advantages and spirit of the present invention will be further understood from the following detailed description of the invention.

本發明選擇以半導體製程技術,使用負型(N-type)或是正型(P-type)之半導體基底,或是以井(Well)的方式,形成無機離子感測場效電晶體/參考場效電晶體。The present invention selects a semiconductor process technology using a semiconductor process technology, using a negative (N-type) or positive (P-type) semiconductor substrate, or in the form of a well, forming an inorganic ion sensing field effect transistor/reference field. Effect transistor.

如第1圖所示為本發明較佳實施例之無機離子感測場效電晶體/參考場效電晶體裝置,係分別由左側之無機離子感測場效電晶體(ISFET)與右側之參考場效電晶體(REFET)所組合而成。FIG. 1 shows an inorganic ion sensing field effect transistor/reference field effect transistor device according to a preferred embodiment of the present invention, which is respectively composed of an inorganic ion sensing field effect transistor (ISFET) on the left side and a reference on the right side. Field effect transistors (REFETs) are combined.

仍如第1圖所示,左側之無機離子感測場效電晶體包括了正型矽(P-type Silicon)晶片101之半導體基底,負型井(N-well)102形成於正型矽晶片101內;由第1源極(Source)103A,第1汲極103B及負型離子(N+ )103C所形成的第1電極103形成於負型井102內;而第1金屬導線106A連接於第一電極103表面上,第1二氧化矽(SiO2 )107A形成於正型矽晶片101表面上,第1電極103之表面上與金屬導線106A之間;第1單層氮化矽(Si3 N4 )108A,即第1氫離子感測薄膜形成於負型井102表面上,因第1氮化矽108A並不會對氫離子感測度有影響,可用於無機離子感測場效電晶體;形成第1光阻層109A於第1二氧化矽107A表面上與第1金屬導線106A表面上而形成無機離子感測場效電晶體。Still as shown in FIG. 1, the inorganic ion sensing field effect transistor on the left side includes a semiconductor substrate of a P-type silicon wafer 101, and a negative well (N-well) 102 is formed on the positive type germanium wafer. 101; a first electrode 103 formed of a first source 103A, a first drain 103B, and a negative ion (N + ) 103C is formed in the negative well 102; and the first metal wire 106A is connected to On the surface of the first electrode 103, a first germanium dioxide (SiO 2 ) 107A is formed on the surface of the positive-type germanium wafer 101, between the surface of the first electrode 103 and the metal wire 106A; and the first single-layer tantalum nitride (Si) 3 N 4 ) 108A, that is, the first hydrogen ion sensing film is formed on the surface of the negative well 102, since the first tantalum nitride 108A does not affect the hydrogen ion sensitivity, and can be used for the inorganic ion sensing field effect electric a crystal; a first photoresist layer 109A is formed on the surface of the first ceria 107A and the surface of the first metal wire 106A to form an inorganic ion-sensing field effect transistor.

續如第1圖所示,右側之參考場效電晶體裝置包括了正型矽晶片101之半導體基底,正型井(P-well)104形成於正型矽晶片101內;由第2源極105A,第2汲極105B及正型離子(P+ )105C所形成的第二電極105形成於正型井104內;而第2金屬導線106連接於第2電極105表面上,第2二氧化矽107B形成於正型矽晶片101表面上,第二電極105表面上與第2金屬導線106B之間;第2單層氮化矽108B形成於正型井104表面上,而第2單層氮化矽108B,即第2氫離子感測薄膜沈積於正型井表面上,可有效地降低氫離子感測度,使表面對氫離子不敏感;形成第2光阻層109B於第2二氧化矽107B表面上與第2金屬導線106B表面上而形成無機參考場效電晶體。其中除使用氮化矽(Si3 N4 )作為氫離子感測薄膜,亦可使用氧化鉭(Ta2 O5 )及氧化鋁(Al2 O3 )應用於氫離子感測薄膜。Continued as shown in FIG. 1, the right reference field effect transistor device includes a semiconductor substrate of a positive type germanium wafer 101, a positive well (P-well) 104 is formed in the positive type germanium wafer 101; and a second source 105A, the second electrode 105 formed by the second drain 105B and the positive ion (P + ) 105C is formed in the positive well 104; and the second metal wire 106 is connected to the surface of the second electrode 105, the second dioxide is矽107B is formed on the surface of the positive-type germanium wafer 101, between the surface of the second electrode 105 and the second metal wire 106B; the second single-layer tantalum nitride 108B is formed on the surface of the positive well 104, and the second single-layer nitrogen矽108B, that is, the second hydrogen ion sensing film is deposited on the surface of the positive well, which can effectively reduce the hydrogen ion sensation and make the surface insensitive to hydrogen ions; forming the second photoresist layer 109B on the second cerium oxide An inorganic reference field effect transistor is formed on the surface of 107B and the surface of the second metal wire 106B. In addition to the use of tantalum nitride (Si 3 N 4 ) as the hydrogen ion sensing film, tantalum oxide (Ta 2 O 5 ) and aluminum oxide (Al 2 O 3 ) may be used for the hydrogen ion sensing film.

如第1圖所示,左側之無機離子感測場效電晶體與右側之參考場效電晶體之中間,形成第3二氧化矽107C於正型矽晶片101表面上;於第3二氧化矽107C兩側形成第3金屬導線106C;而準參考電極鉑(Pt)110形成於第3二氧化矽107C表面上;形成第3光阻層109B於第3二氧化矽107C表面上與第3金屬導線106C表面上,且圍繞鉑110之兩側,其中之準參考電極通常由金、鉑等材料製備而成,藉而形成本發明之無機離子感測場效電晶體/參考場效電晶體裝置。As shown in FIG. 1, the third cerium oxide 107C is formed on the surface of the positive ruthenium wafer 101 in the middle of the inorganic ion sensing field effect transistor on the left side and the reference field effect transistor on the right side; A third metal wire 106C is formed on both sides of the 107C; and a quasi-reference electrode platinum (Pt) 110 is formed on the surface of the third cerium oxide 107C; a third photoresist layer 109B is formed on the surface of the third cerium oxide 107C and the third metal The surface of the wire 106C and surrounding the two sides of the platinum 110, wherein the quasi-reference electrode is usually made of gold, platinum or the like, thereby forming the inorganic ion sensing field effect transistor/reference field effect transistor device of the present invention. .

第2圖為本發明之氫離子感測特性與差動放大之輸出電壓,以正型電容感測器(P-type Electrolyte Insulator Semiconductor,p-EIS)以及負型電容感測器(N-type Electrolyte Insulator Semiconductor,n-EIS)量測兩者之感測特性與兩者差分之結果。可得到正型電容感測器對氫離子的感測度較低,只有27.2mV/pH。而負型電容感測器則有較高的斜率,感測度為52.4mV/pH。並可相減而得到一差動之輸出電壓(Differential response),其感測度為25.14mV/pH。此感測度(Sensitivity)即為應用於ISFET/REFET/qRE之輸出電壓與感測度。Fig. 2 is a diagram showing the hydrogen ion sensing characteristics and differential amplification output voltage of the present invention, using a P-type Electrolyte Insulator Semiconductor (p-EIS) and a negative capacitance sensor (N-type). Electrolyte Insulator Semiconductor, n-EIS) measures the difference between the sensing characteristics of the two and the difference between the two. The positive capacitive sensor can be used to sense hydrogen ions with a low sensitivity of only 27.2 mV/pH. The negative capacitive sensor has a higher slope with a sensitivity of 52.4 mV/pH. It can be subtracted to obtain a differential output response with a sensitivity of 25.14 mV/pH. This Sensitivity is the output voltage and sensitivity applied to the ISFET/REFET/qRE.

此外,由第3圖所示為時飄效應之結果,因長時間穩定度也一直是感測元件所需具備的要求。前述使用近似結構與相同製程之電容感測器結構在時飄效應上,經過相減後,可以有效降低至1mV/h,故可有效改善其非理想效應,而使元件之準確度大幅提昇。In addition, as shown in Fig. 3, as a result of the time-varying effect, long-term stability has always been a requirement for the sensing element. The above-mentioned capacitive sensor structure using the approximate structure and the same process can be effectively reduced to 1 mV/h after subtraction, so that the non-ideal effect can be effectively improved, and the accuracy of the component is greatly improved.

本發明係將離子感測場效電晶體與參考場效電晶體整合在同一個晶圓上,故而有別於習知技術中所分離形成的獨立兩個元件,提昇使用便利性。而本發明係以無機薄膜進行低氫離子的感測,採用具有高形變應力之薄膜,藉由調變薄膜厚度或改變基板型態及摻雜濃度,調整感測薄膜對於氫離子感應的靈敏度。本發明更可以解決參考電極在微型化過程中,所需考量的穩定度與使用壽命等問題,亦可藉由差動放大電路而降低元件之非理想效應。The invention integrates the ion sensing field effect transistor and the reference field effect transistor on the same wafer, so that it is different from the two independent components formed in the prior art, thereby improving the convenience of use. In the present invention, the inorganic thin film is used for sensing low hydrogen ions, and the film having high deformation stress is used to adjust the sensitivity of the sensing film to hydrogen ion sensing by modulating the thickness of the film or changing the substrate type and doping concentration. The invention can solve the problems of stability and service life of the reference electrode in the process of miniaturization, and can also reduce the non-ideal effect of the component by the differential amplifier circuit.

以上所述僅為本發明之較佳實施例而已,並非用以限定本發明之申請專利範圍;凡其它未脫離本發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之申請專利範圍內。The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention; all other equivalent changes or modifications which are not departing from the spirit of the present invention should be included in the following. Within the scope of the patent application.

101‧‧‧正型矽晶片半導體基底101‧‧‧Positive-type wafer semiconductor substrate

102‧‧‧負型井102‧‧‧Negative well

103‧‧‧第1電極103‧‧‧1st electrode

103A‧‧‧第1源極103A‧‧‧1st source

103B‧‧‧第1汲極103B‧‧‧1st pole

103C‧‧‧負型離子103C‧‧‧negative ions

104‧‧‧正型井104‧‧‧ positive well

105‧‧‧第2電極105‧‧‧2nd electrode

105A‧‧‧第2源極105A‧‧‧2nd source

105B‧‧‧第2汲極105B‧‧‧2nd bungee

105C‧‧‧正型離子105C‧‧‧Positive ions

106A‧‧‧第1金屬導線106A‧‧‧1st metal wire

106B‧‧‧第2金屬導線106B‧‧‧2nd metal wire

106C‧‧‧第3金屬導線106C‧‧‧3rd metal wire

107A‧‧‧第1二氧化矽107A‧‧‧1nd bismuth oxide

107B‧‧‧第2二氧化矽107B‧‧‧2nd bismuth oxide

107C‧‧‧第3二氧化矽107C‧‧‧3rd cerium oxide

108A‧‧‧第1單層氮化矽108A‧‧‧1st single layer tantalum nitride

108B‧‧‧第2單層氮化矽108B‧‧‧2nd single layer tantalum nitride

109A‧‧‧第1光阻層109A‧‧‧1st photoresist layer

109B‧‧‧第2光阻層109B‧‧‧2nd photoresist layer

109C‧‧‧第3光阻層109C‧‧‧3rd photoresist layer

110‧‧‧鉑110‧‧‧Platinum

第1圖所示為本發明之較佳實施例圖。Figure 1 is a diagram showing a preferred embodiment of the present invention.

第2圖所示為本發明之氫離子感測特性與差動放大之輸出電壓。Fig. 2 shows the hydrogen ion sensing characteristics and the differential amplification output voltage of the present invention.

第3圖所示為本發明之時飄效應結果。Fig. 3 shows the results of the floating effect of the present invention.

101‧‧‧正型矽晶片半導體基底101‧‧‧Positive-type wafer semiconductor substrate

102‧‧‧負型井102‧‧‧Negative well

103‧‧‧第1電極103‧‧‧1st electrode

103A‧‧‧第1源極103A‧‧‧1st source

103B‧‧‧第1汲極103B‧‧‧1st pole

103C‧‧‧負型離子103C‧‧‧negative ions

104‧‧‧正型井104‧‧‧ positive well

105‧‧‧第2電極105‧‧‧2nd electrode

105A‧‧‧第2源極105A‧‧‧2nd source

105B‧‧‧第2汲極105B‧‧‧2nd bungee

105C‧‧‧正型離子105C‧‧‧Positive ions

106A‧‧‧第1金屬導線106A‧‧‧1st metal wire

106B‧‧‧第2金屬導線106B‧‧‧2nd metal wire

106C‧‧‧第3金屬導線106C‧‧‧3rd metal wire

107A‧‧‧第1二氧化矽107A‧‧‧1nd bismuth oxide

107B‧‧‧第2二氧化矽107B‧‧‧2nd bismuth oxide

107C‧‧‧第3二氧化矽107C‧‧‧3rd cerium oxide

108A‧‧‧第1單層氮化矽108A‧‧‧1st single layer tantalum nitride

108B‧‧‧第2單層氮化矽108B‧‧‧2nd single layer tantalum nitride

109A‧‧‧第1光阻層109A‧‧‧1st photoresist layer

109B‧‧‧第2光阻層109B‧‧‧2nd photoresist layer

109C...第3光阻層109C. . . Third photoresist layer

110...鉑110. . . platinum

Claims (6)

一種感測場效電晶體裝置,至少包含:一正型矽晶片半導體基底,一負型井形成於該正型矽晶片內;一第1電極形成於該負型井內,係由一第1源極,一第1汲極及一負型離子所形成;一第1金屬導線連接於該第一電極表面上;一第1二氧化矽形成於正型矽晶片表面上,該第1電極之表面上與該第1金屬導線之間;一第1氫離子感測薄膜形成於該負型井表面上;以及一第1光阻層形成於該第1二氧化矽表面上與該第1金屬導線表面上以形成一無機離子感測場效電晶體;該正型矽晶片半導體基底,一正型井形成於該正型矽晶片內;一第二電極形成於該正型井內,該第二電極係由一第2源極,一第2汲極及一正型離子所形成;一第2金屬導線連接於該第二電極表面上;一第2二氧化矽形成於該正型矽晶片半導體基底表面上,該第二電極表面上與該第2金屬導線之間;一第2氫離子感測薄膜形成於該正型井表面上,該第2單層氮化矽沈積於該正型井表面上;以及一第2光阻層形成於該第2二氧化矽表面上與該第2金屬導線表面上以形成無機參考場效電晶體;一第3二氧化矽形成於該正型矽晶片表面上; 一第3金屬導線形於該第3二氧化矽之兩側;一準參考電極形成於該第3二氧化矽表面上;以及一第3光阻層形成於該第3二氧化矽表面上與該第3金屬導線表面上,且圍繞該鉑金屬之兩側,藉以形成該感測場效電晶體裝置。 A sensing field effect transistor device includes at least: a positive-type germanium wafer semiconductor substrate, a negative-type well formed in the positive-type germanium wafer; and a first electrode formed in the negative-type well by a first a source, a first drain and a negative ion; a first metal wire is connected to the surface of the first electrode; a first germanium dioxide is formed on the surface of the positive electrode, the first electrode a surface of the first metal wire; a first hydrogen ion sensing film formed on the surface of the negative well; and a first photoresist layer formed on the surface of the first germanium dioxide and the first metal Forming an inorganic ion sensing field effect transistor on the surface of the wire; the positive type germanium wafer semiconductor substrate, a positive well formed in the positive type germanium wafer; a second electrode formed in the positive type well, the first The two electrodes are formed by a second source, a second drain and a positive ion; a second metal wire is connected to the surface of the second electrode; and a second germanium dioxide is formed on the positive germanium chip. a surface of the semiconductor substrate, between the surface of the second electrode and the second metal wire; a second hydrogen a sub sensing thin film is formed on the surface of the positive well, the second single layer of tantalum nitride is deposited on the surface of the positive well; and a second photoresist layer is formed on the surface of the second tantalum oxide and the first 2 forming a inorganic reference field effect transistor on the surface of the metal wire; a third cerium oxide is formed on the surface of the positive type germanium wafer; a third metal wire is formed on both sides of the third cerium oxide; a quasi-reference electrode is formed on the surface of the third cerium oxide; and a third photoresist layer is formed on the surface of the third cerium oxide The third metal wire is on the surface and surrounds both sides of the platinum metal to form the sensing field effect transistor device. 如申請專利範圍第1項之感測場效電晶體裝置,其中該氫離子感測薄膜至少包含氮化矽。 The sensing field effect transistor device of claim 1, wherein the hydrogen ion sensing film comprises at least tantalum nitride. 如申請專利範圍第1項之感測場效電晶體裝置,其中該氫離子感測薄膜至少包含氧化鉭。 The sensing field effect transistor device of claim 1, wherein the hydrogen ion sensing film comprises at least cerium oxide. 如申請專利範圍第1項之感測場效電晶體裝置,其中該氫離子感測薄膜至少包含氧化鋁。 The sensing field effect transistor device of claim 1, wherein the hydrogen ion sensing film comprises at least alumina. 如申請專利範圍第1項之感測場效電晶體裝置,其中該準參考電極至少包含鉑。 The sensing field effect transistor device of claim 1, wherein the quasi-reference electrode comprises at least platinum. 如申請專利範圍第1項之感測場效電晶體裝置,其中該準參考電極至少包含金。 The sensing field effect transistor device of claim 1, wherein the quasi-reference electrode comprises at least gold.
TW098117383A 2009-05-26 2009-05-26 Sensitive field effect transistor apparatus TWI414787B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW098117383A TWI414787B (en) 2009-05-26 2009-05-26 Sensitive field effect transistor apparatus
US12/591,466 US8410530B2 (en) 2009-05-26 2009-11-20 Sensitive field effect transistor apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098117383A TWI414787B (en) 2009-05-26 2009-05-26 Sensitive field effect transistor apparatus

Publications (2)

Publication Number Publication Date
TW201042254A TW201042254A (en) 2010-12-01
TWI414787B true TWI414787B (en) 2013-11-11

Family

ID=43219249

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098117383A TWI414787B (en) 2009-05-26 2009-05-26 Sensitive field effect transistor apparatus

Country Status (2)

Country Link
US (1) US8410530B2 (en)
TW (1) TWI414787B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2500715A (en) * 2012-03-30 2013-10-02 Gene Onyx Ltd Single nucleotide polymorphism detection using an ISFET array
CN112268942A (en) * 2020-09-10 2021-01-26 江苏中天科技股份有限公司 Micro-nano sensing device, preparation method thereof and pH value detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667196B2 (en) * 2001-07-25 2003-12-23 Motorola, Inc. Method for real-time monitoring and controlling perovskite oxide film growth and semiconductor structure formed using the method
TW200532870A (en) * 2004-03-31 2005-10-01 Micro Base Technology Corp Packaging process for ion sensing field effect transistor of bio-medical samples
TWM305339U (en) * 2006-06-19 2007-01-21 Univ Nat Sun Yat Sen pH-ISFET device and system for measuring pH value in a solution using the same
US20090127589A1 (en) * 2006-12-14 2009-05-21 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes using large scale FET arrays

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3236757A1 (en) * 1982-10-05 1984-04-05 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Circuit arrangement containing an ion-sensitive field-effect transistor (ISFET) and an evaluation circuit
JP4296356B1 (en) * 2008-09-12 2009-07-15 国立大学法人 岡山大学 Gas sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667196B2 (en) * 2001-07-25 2003-12-23 Motorola, Inc. Method for real-time monitoring and controlling perovskite oxide film growth and semiconductor structure formed using the method
TW200532870A (en) * 2004-03-31 2005-10-01 Micro Base Technology Corp Packaging process for ion sensing field effect transistor of bio-medical samples
TWM305339U (en) * 2006-06-19 2007-01-21 Univ Nat Sun Yat Sen pH-ISFET device and system for measuring pH value in a solution using the same
US20090127589A1 (en) * 2006-12-14 2009-05-21 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes using large scale FET arrays

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
楊家銘,以無機與有機離子感測薄膜實現離子感應場效電晶體/參考場效電晶體,長庚大學,博士論文,(2006)。 *

Also Published As

Publication number Publication date
TW201042254A (en) 2010-12-01
US20100301399A1 (en) 2010-12-02
US8410530B2 (en) 2013-04-02

Similar Documents

Publication Publication Date Title
Chou et al. Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol–gel method
TWI422818B (en) Hydrogen ion sensitive field effect transistor and manufacturing method thereof
US20170315086A1 (en) Structures, Apparatuses and Methods for Fabricating Sensors in Multi-Layer Structures
US6617190B2 (en) A-WO3-gate ISFET devices and method of making the same
Lai et al. Body effect minimization using single layer structure for pH-ISFET applications
TW201224478A (en) Methods and apparatus for testing ISFET arrays
TWI296709B (en) Ion sensing circuit with body effect reduction technique
JP2008039523A (en) Ph detector
US20110100810A1 (en) Chip integrated ion sensor
KR20210012454A (en) A high-performance biosensor based on a ion-sensitive field effect transistor having a triple gate structure
Zhou et al. Highly sensitive pH sensors based on double-gate silicon nanowire field-effect transistors with dual-mode amplification
TWI414787B (en) Sensitive field effect transistor apparatus
Khanna Fabrication of ISFET microsensor by diffusion-based Al gate NMOS process and determination of its pH sensitivity from transfer characteristics
JP2011215105A (en) Chemical sensor and detecting method
JP2002181776A (en) Semiconductor ion sensor and its manufacturing method
JP2007278760A (en) Chemical/physical phenomenon detector
CN103940884A (en) Ion sensitive field effect transistor and preparation method thereof
JP3167022B2 (en) Gas sensor
TWI334025B (en) Portable multi-ions sensing system
US8148756B2 (en) Separative extended gate field effect transistor based uric acid sensing device, system and method for forming thereof
WO2020177576A1 (en) Detector, detection system, and substance concentration detection method
TWI342392B (en) Ph-ion selective field effect transistor (ph-isfet) with a miniaturized silver chloride reference electrode
CN111781266A (en) Electrochemical sensor, preparation method thereof and ion concentration detection system
US20060046375A1 (en) ISFETs fabrication method
JP2011220955A (en) Chemical sensor and detection method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees