TWI450313B - 以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法 - Google Patents

以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法 Download PDF

Info

Publication number
TWI450313B
TWI450313B TW101117069A TW101117069A TWI450313B TW I450313 B TWI450313 B TW I450313B TW 101117069 A TW101117069 A TW 101117069A TW 101117069 A TW101117069 A TW 101117069A TW I450313 B TWI450313 B TW I450313B
Authority
TW
Taiwan
Prior art keywords
femtosecond laser
transparent conductive
conductive film
laser pulse
self
Prior art date
Application number
TW101117069A
Other languages
English (en)
Other versions
TW201346979A (zh
Inventor
Jihperng Leu
Chih Wei Luo
Chih Wang
Jwo Huei Jou
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW101117069A priority Critical patent/TWI450313B/zh
Priority to US13/563,715 priority patent/US8835215B2/en
Publication of TW201346979A publication Critical patent/TW201346979A/zh
Application granted granted Critical
Publication of TWI450313B publication Critical patent/TWI450313B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Laser Beam Processing (AREA)

Description

以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜 表面之方法
本發明提出一個簡單快速的技術,用以於表面製備類金屬奈米點陣列,進而有效提高透明導電氧化物之表面導電特性。
銦錫氧化物(Indium Tin Oxide,ITO)透明導電薄膜在上述的顯示器中扮演重要的角色,係極佳的透明電極材料,也廣泛的被應用在顯示器為習用的電子產品,如有機電激發光顯示器(Organic Electro-Luminescence Display,OELD)、電漿顯示器(Plasma Display Panel,PDP)、液晶顯示器(Liquid Crystal Display,LCD)以及發光二極體(Light Emitting Diode,LED)顯示器等。
研究發現,經由濺鍍法所製備的非晶質銦錫氧化物薄膜,其較低的表面粗糙度使得銦錫氧化物薄膜具有較高的電阻值,連帶的造成銦錫氧化物薄膜的表面電流表現不佳。有鑒於此,美國專利US 5,163,220以濺鍍技術沉積Ag和Ti等金屬薄膜於ITO導電薄膜之上,進而將該等金屬薄膜作為metal bus bar來增加ITO的導電率用以增進thin film electroluminescent(TFEL)display的效率。除了藉由沉積金屬薄膜增進ITO的導電率之外,美國專利US 7,687,349以兩道製程於介電材料表面,先以前驅物(例如silane gas)作為成核點 位置,再以金屬類的前驅物製備金屬奈米點陣列;如此,藉由製備金屬奈米點陣列於介電材料之表面的方式,增加介電材料之表面電流。
有別於前述沉積金屬薄膜或者金屬奈米點陣列於介電材料表面之方式,飛秒雷射脈衝表面奈米結構化技術(femtosecond laser surface nanostructuring technique)近年來廣泛的被應用在不同的材料上,如金屬、半導體、玻璃等,使得這些材料具有更多的附加價值。國際期刊OPTICS LETTERS Vol.32,No.13 pp.1932即報導了飛秒雷射脈衝之相關應用,於該期刊中,係將飛秒雷射脈衝聚光”數微米”的區域以製備”線狀”的次波長表面週期奈米結構於tungsten表面。 另外,APPLIED PHYSICS LETTERS Vol.82,No.25 pp.4462報導類似的”線狀”次波長表面週期奈米結構於不同的compound semiconductors表面。並且,期刊:Phys.Rev.Lett.91,247405-1-247405-8(2003)也透過single beam聚焦的方式於Glass表面,製備大小約1 μm×1 μm、間距20 nm的週期性奈米線微結構。再者,美國專利號US7438824也提出利用聚光飛秒雷射脈衝,搭配掃描平台,製備大範圍的表面週期結構於透明或半透明之介電材料表面。
以飛秒雷製備週期性奈米結構於透明導電薄膜,國際期刊OPTICS EXPRESS Vol.18,No.14 pp.14401報導以飛秒雷射脈衝雙干涉的方式製備週期性奈米結構於透明導電 薄膜ZnO表面。但是仍需要利用聚光掃描的方式來製備大面積的結構以利應用。綜合以上習知技術之說明及其缺失:
1.目前以飛秒雷射脈衝誘發週期性表面微結構於各種不同的材料,例如:金屬和半導體等,大多將雷射光束聚焦至數十微米(接近材料的albtion能量),再以數發的脈衝製備週期性微結構。這種方式仍需要搭配掃描平台才能進行大面積的製程。
2.目前的文獻報導的結構多以”線”的方式所組成之週期性表面微結構,較少報導陣列點所組成之微結構。
本發明之主要目的,係提出一個簡單快速的技術,即以利用飛秒雷射脈衝技術於透明導電氧化物之表面製備陣列類金屬奈米點陣列,進而有效提高透明導電氧化物之表面導電特性。本發明以低能量(low-fluence)的方式,製備大面積且規則排列的奈米結構於透明導電氧化物薄膜表面,不需要使用任何掃描設備,因此具有技術設備成本低廉之優勢。此外,將類金屬奈米點陣列製作於透明導電氧化物薄膜之表面,有助於提升OLED和LED之效率。
因此,為了達成本發明之主要目的,本案之發明人係提出一種以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法,係包括: (1)使用一雷射發射晶體發出一飛秒雷射脈衝,其中該飛秒雷射脈衝具有一特定脈衝寬度、一特定波長;(2)藉由一放大器放大該飛秒雷射脈衝,使其具有一特定脈衝能量;(3)使該飛秒雷射脈衝入射一離軸拋物面鏡;(4)該離軸拋物面鏡反射飛秒雷射脈衝以使得飛秒雷射脈衝以一特定入射角入射一透明導電薄膜之表面,並涵蓋整個透明導電薄膜之表面;(5)飛秒雷射脈衝於透明導電薄膜表面所形成之建設性干涉打斷複數個金屬-氧原子鍵結,並形成金屬-金屬鍵結;以及(6)複數個週期性奈米點陣列形成於透明導電薄膜之表面。
為了能夠更清楚地描述本發明所提出之一種以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法,以下將配合圖式,詳盡說明本發明之實施例。
在說明本發明之以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法前,必須先說明飛秒雷射脈衝之發射系統。請參閱第一圖,係一種飛秒雷射脈衝之發射系統的架構圖。如第一圖所示,該飛秒雷射脈衝之發射系統1係包括:一雷射發射晶體11、一放大器12以及 一離軸拋物面鏡(off-axis parabolic mirror)13,其中該雷射發射晶體11為摻鈦藍寶石(Ti:sapphire)。
簡單說明飛秒雷射脈衝之發射系統後,接著,便可開始說明本發明之以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法,請參閱第二圖,係本發明之一種以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法的流程圖。如第一圖與第二圖所示,欲執行本發明之以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法,首先,係執行步驟(S01),使用雷射發射晶體11發出一飛秒雷射脈衝,其中該飛秒雷射脈衝具有一特定脈衝寬度(pulse duration)及一特定波長。於步驟(S01)之中,雷射發射晶體11所發射的飛秒雷射脈衝之直徑為14mm,且其特定脈衝寬度與特定波長分別為100 fs及800 nm;雷射發射晶體(即,摻鈦藍寶石(Ti:sapphire))之特定脈衝重複率則為5 kHz。於本發明的方法中,特別地,雷射發射晶體所發射出的飛秒雷射脈衝之特定飛秒雷射脈衝數必須至少大於1000。(關於特定飛秒雷射脈衝數被設定為至少大於1000的原因,會於下述中透過實驗數據加以解釋說明)。
該方法流程係接著執行步驟(S02),藉由一放大器12放大該飛秒雷射脈衝,使其具有一特定脈衝能量。於步驟(S02)之中,經放大器12放大後的飛秒雷射脈衝係具有0.1 mJ/cm2 的脈衝能量。繼續地,則執行步驟(S03)與步驟(S04),使該飛秒雷射脈衝入射一離軸拋物面鏡13,透過離軸拋物面鏡13反射飛秒雷射脈衝以使得飛秒雷射脈衝以一特定入射角入射一透明導電薄膜14之表面,並涵蓋整個透明導電薄膜14之表面。該方法流程係繼續地執行步驟(S05),飛秒雷射脈衝於透明導電薄膜14表面形成週期性之建設性干涉圖形,該區域之能量足以打斷複數個金屬-氧原子鍵結,並形成金屬-金屬鍵結;最後,於步驟(S06)中,複數個週期性陣列奈米點陣列便形成於透明導電薄膜14之表面。
上述步驟(S04)至步驟(S06)中,該透明導電薄膜14為氧化銦錫薄膜,其包括有複數個In-O鍵結與複數個Sn-O鍵結,飛秒雷射脈衝於氧化銦錫薄膜表面所形成之建設性干涉會打斷部分In-O鍵結與Sn-O鍵結,進而形成In-In鍵結並構成複數個週期性奈米點陣列。其中,具有In-In鍵結之奈米點表面導電度係大於具有In-O鍵結與Sn-O鍵結之氧化銦錫薄膜有30倍之多,因此,奈米點陣列的表面電流也相對的高於氧化銦錫薄膜。
為了證明本發明之以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法係確實可實施的,以下將輔以各種實驗數據,驗證該以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法的可行性。請參 閱第三圖,係經飛秒雷射脈衝照射之氧化銦錫薄膜的電阻率、載子濃度與載子遷移率的曲線圖。第三圖所示之資料係經由霍爾量測所得,並且,透過第三圖所示之資料,可以得知氧化銦錫薄膜的電阻率、載子濃度與載子遷移率係隨著飛秒雷射脈衝脈衝數N而改變(N為定義符號,非元件符號。)。其中,當N<1000時,電阻率、載子濃度與載子遷移率的變化並不大;而當N>1000並增加至3x106 時,載子濃度也線性地增加60%(由1x1019 cm-3 增加至1.6x1019 cm-3 )。另外,載子遷移率也相對地下降17%(由12.3cm2 /V-s下降至10.2cm2 /V-s),且電阻率也相對地下降14%(由4.3x10-2 Ω-cm下降至3.7x10-2 Ω-cm)。
請繼續參閱第四圖,係經飛秒雷射脈衝照射之氧化銦錫薄膜的SEM表面形貌、AFM表面形貌與表面電流分佈圖;並請同時參閱第五圖,係經飛秒雷射脈衝照射之氧化銦錫薄膜的表面形貌示意圖。其中,第四圖所示之圖(a)係利用掃描式電子顯微鏡(scanning electron microscope,SEM)所拍攝,且圖(a)之氧化銦錫薄膜係經過能量0.1mJ/cm2 且N為3x106 之飛秒雷射脈衝處理。吾人可發現氧化銦錫薄膜表面之週期性陣列奈米點陣列可大致分為3個群組,且這3個週期性陣列奈米點陣列之間的間距分別為798±15nm、420±14nm與230±15nm,而奈米點陣列之大小則約為20~500nm;若以第五圖之示意圖作說明,則可將這3個週期性陣列奈米點 陣列之間的間距分別粗估為800nm、400nm與200nm。
另外,第四圖所示之圖(b)係利用原子力顯微鏡(Atomic Force Microscopy,AFM)所拍攝,同樣的,圖(b)之氧化銦錫薄膜係經過能量0.1mJ/cm2 且N為3X106 之飛秒雷射脈衝處理。吾人可由圖(b)觀察到,經飛秒雷射脈衝處理處理後,氧化銦錫薄膜之表面粗糙度係明顯提升,約為4.2nm(初沉積之氧化銦錫薄膜的表面粗糙度約為0.4nm)。
第四圖所示之圖(c)則是利用電流感測原子力顯微鏡(Current Sensing Atomic Force Microscopy,CSAFM)所測得,且圖(c)之氧化銦錫薄膜係同樣地經過能量0.1mJ/cm2 且N為3x106 之飛秒雷射脈衝處理。吾人可由圖(c)得知,經飛秒雷射脈衝處理後,氧化銦錫薄膜之表面電流同樣明顯提升,約為10pA(初沉積之氧化銦錫薄膜的表面電流約為0.3pA)。並且,相互對照圖(b)與圖(c),更可進一步地發現,該些高電流之分佈與奈米點陣列形成的區域有著高度相關,也就是說,奈米點陣列形成的區域即是高電流分佈的區域。
接著請參閱第六圖,係氧化銦錫薄膜的X射線光電子能譜圖。第六圖所示之能譜係使用X射線光電子能譜儀(X-ray Photoelectron Spectrometer,XPS)所測得。在解釋第六圖所隱含的現象之前,必須先行說明氧化銦錫薄膜的表面模型(ITO surface model)。請參閱第七圖,係氧化銦錫薄膜的表面模型的示意圖。如第七圖所示,氧化銦錫薄膜包括許多In-O 鍵結與Sn-O鍵結,並且氧化銦錫薄膜也包括一些氧空缺(oxygen vacancy site)。
如第六圖所示之XPS能譜圖中,可發現三組氧原子(O1S)之能譜峰值,分別為氧化銦錫薄膜內與金屬原子鍵結的氧原子之能譜峰值(位於鍵結能529.6±0.1eV處)、氧化銦錫薄膜內的鄰近氧空缺的氧原子之能譜峰值(位於鍵結能531±0.1eV處)以及氫氧根內的氧原子之能譜峰值(位於鍵結能532±0.1eV處)。比較第六圖之圖(b)與圖(c),發現初始沉積的氧化銦錫薄膜所具有的氧空缺之氧原子的能譜峰值係高於In2 O3 粉末之氧空缺氧原子的能譜峰值,原因在於磁控濺鍍法使得氧化銦錫薄膜內的氧空缺氧原子增加。
並且,如第六圖之圖(d)、圖(e)、圖(f)以及圖(g)所示,於經飛秒雷射脈衝處理之氧化銦錫薄膜之中,隨著飛秒雷射脈衝脈衝數N之增加,氧化銦錫薄膜內與金屬原子鍵結的氧原子之能譜峰值係顯著下降,這表示In-O鍵結或Sn-O鍵斷裂而使得氧原子被釋放出來;且,該些被釋放的氧原子以氫氧根的形式與金屬原子鍵結,例如In原子;因此,如第六圖之圖(d)、圖(e)、圖(f)、以及圖(g)所示,隨著飛秒雷射脈衝脈衝數N之增加,氧化銦錫薄膜內的氫氧根內的氧原子之能譜峰值係顯著上升。
如此,上述各種實驗數據已證明本發明之以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法 是確實可實施的。另外,必須補充說明的是,前述第五圖所示之氧化銦錫薄膜的表面形貌示意圖係基於第四圖之圖(a)所呈現的結果,而將形成於氧化銦錫薄膜表面的3個週期性陣列奈米點陣列之間的間距分別視為800nm、400nm與200nm。而這樣的結果也符合散射模型之理論基礎。散射模型公式為:Λ=λ/(1±sinθ),其中,Λ代表週期性陣列奈米點陣列之間距,λ代表飛秒雷射脈衝之特定波長,θ代表飛秒雷射脈衝之特定入射角。但,可預知的是,800nm與400nm之奈米點陣列週期間距是確實可以符合散射模型公式,也就是說,800nm與400nm之奈米點陣列間距可透過散射模型公式推估而得;然而,200nm之奈米點陣列群組間距則因為遠小於飛秒雷射脈衝之波長(800nm),因此,200nm之奈米點陣列週期無法透過散射模型公式推估而得;於此,吾人推估200nm之奈米點陣列週期是由於400nm之短波長於氧化銦錫薄膜表面的倍頻(second harmonic generation,SHG)現象所造成的結果。
如此,藉由上述之說明,本發明之以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法係已經完整且清楚地被揭露,並且,本發明之以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法的可行性亦藉由實驗數據而被加以證明;如此,經由上述,吾人可得知本發明係具有下列之優點:
1.相較於美國專利號5,163,220習知技術以濺鍍技術沉積Ag和Ti等金屬薄膜於ITO導電薄膜之上,進而將該等金屬薄膜作為metal bus bar來增加ITO的導電率用以增進thin film electroluminescent(TFEL)display的效率。本發明之方法係不需要沉積任何金屬薄膜,而僅是利用簡易的飛秒雷射脈衝退火製程即可在ITO表面製備金屬奈米點陣列,增進30倍的表面電流(改善約14%的導電率)。
2.相較於美國專利號7687349以兩道製程於介電材料表面,先以前驅物(ex:silane gas)作為成核點位置,再以金屬類的前驅物製備金屬奈米點陣列。本申請案不需要使用到前驅物,利用飛秒雷射脈衝退火製程即可在ITO表面製備金屬奈米點陣列,增進30倍的表面電流(改善約14%的導電率)。
3.相較於期刊:Opt.Express 18,14401-14408(2010)以雙光干涉的方式,將光束聚焦到數十微米的大小再以掃描的方式,於ZnO薄膜表面製備週期性奈米線微結構,可以增加ZnO的光吸收率。本申請案不需要掃描的方式,以single beam的方式即可製備200μm×200μm大小的奈米陣列點微結構於ITO試片中心。
4.相較於期刊:Phys.Rev.Lett.91,247405-1-247405-8(2003)以single beam聚焦的方式於Glass表面,製備大小約1μm×1μm、間距20nm的週期性奈米線微結構。 本申請案以single beam的方式製備大小範圍約200μm×200μm、間距800,400,200nm的奈米點陣列微結構於ITO試片中心。
必須強調的是,上述之詳細說明係針對本發明可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。
S01~S06‧‧‧方法步驟
1‧‧‧飛秒雷射脈衝之發射系統
11‧‧‧雷射發射晶體
12‧‧‧放大器
13‧‧‧離軸拋物面鏡
14‧‧‧透明導電薄膜
第一圖係一種飛秒雷射脈衝之發射系統的架構圖;第二圖係本發明之一種以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法的流程圖;第三圖係經飛秒雷射脈衝照射之氧化銦錫薄膜的電阻率、載子濃度與載子遷移率的曲線圖;第四圖係經飛秒雷射脈衝照射之氧化銦錫薄膜的SEM表面形貌、AFM表面形貌與表面電流分佈圖;第五圖係經飛秒雷射脈衝照射之氧化銦錫薄膜的表面形貌示意圖;第六圖係氧化銦錫薄膜的X射線光電子能譜圖;以及第七圖係氧化銦錫薄膜的表面模型的示意圖。
S01~S06‧‧‧方法步驟

Claims (10)

  1. 一種以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法,係包括:(1)使用一雷射發射晶體發出一飛秒雷射脈衝,其中該飛秒雷射脈衝具有一特定脈衝寬度、一特定波長及一特定脈衝重複率;(2)藉由一放大器放大該飛秒雷射脈衝,使其具有一特定脈衝能量;(3)使該飛秒雷射脈衝入射一離軸拋物面鏡;(4)該離軸拋物面鏡反射飛秒雷射脈衝以使得飛秒雷射脈衝以一特定入射角入射一透明導電薄膜之表面,並涵蓋整個透明導電薄膜之表面;(5)飛秒雷射脈衝於透明導電薄膜表面形成一建設性干涉圖形,該建設性干涉圖形所在的區域之能量足以打斷複數個金屬-氧原子鍵結,並形成金屬-金屬鍵結;以及(6)複數個週期性奈米點陣列形成於透明導電薄膜之表面。
  2. 如申請專利範圍第1項所述之以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法,其中,該特定脈衝重複率的範圍為1-5kHz。
  3. 如申請專利範圍第1項所述之以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法,其中,該 飛秒雷射脈衝之該特定脈衝寬度至少小於100fs,且該特定波長為800nm。
  4. 如申請專利範圍第1項所述之以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法,其中,該特定飛秒雷射脈衝脈衝數至少大於1000。
  5. 如申請專利範圍第1項所述之以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法,其中,該特定脈衝能量至少大於0.02mJ/cm2
  6. 如申請專利範圍第1項所述之以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法,其中,該透明導電薄膜為氧化銦錫薄膜。
  7. 如申請專利範圍第6項所述之以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法,其中,該複數個金屬-氧原子鍵結包括In-O鍵結與Sn-O鍵結。
  8. 如申請專利範圍第6項所述之以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法,其中,該金屬-金屬鍵結為In-In鍵結。
  9. 如申請專利範圍第1項所述之以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法,其中,該週期性奈米點陣列之週期可由下列模型決定:Λ=λ/(1±sinθ),其中,Λ代表週期性奈米點陣列,λ代表該飛秒雷射脈衝之該特定波長,θ代表該飛秒 雷射脈衝之該特定入射角。
  10. 如申請專利範圍第1項所述之以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法,其中,該雷射發射晶體為摻鈦藍寶石(Ti:sapphire)。
TW101117069A 2012-05-14 2012-05-14 以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法 TWI450313B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101117069A TWI450313B (zh) 2012-05-14 2012-05-14 以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法
US13/563,715 US8835215B2 (en) 2012-05-14 2012-07-31 Method for forming superior local conductivity in self-organized nanodots of transparent conductive film by femtosecond laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101117069A TWI450313B (zh) 2012-05-14 2012-05-14 以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法

Publications (2)

Publication Number Publication Date
TW201346979A TW201346979A (zh) 2013-11-16
TWI450313B true TWI450313B (zh) 2014-08-21

Family

ID=49547845

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101117069A TWI450313B (zh) 2012-05-14 2012-05-14 以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法

Country Status (2)

Country Link
US (1) US8835215B2 (zh)
TW (1) TWI450313B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9425121B2 (en) 2013-09-11 2016-08-23 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated fan-out structure with guiding trenches in buffer layer
US9455211B2 (en) * 2013-09-11 2016-09-27 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated fan-out structure with openings in buffer layer
US20180105455A1 (en) * 2016-10-17 2018-04-19 Corning Incorporated Silica test probe and other such devices
CN109317856A (zh) * 2018-11-19 2019-02-12 东莞市云方金属制品有限公司 一种便于拿取和撕拉防护膜的锡条

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5163220A (en) * 1991-10-09 1992-11-17 The Unites States Of America As Represented By The Secretary Of The Army Method of enhancing the electrical conductivity of indium-tin-oxide electrode stripes
US20070115469A1 (en) * 2005-06-14 2007-05-24 Ebstein Steven M Applications of laser-processed substrate for molecular diagnostics
US7687349B2 (en) * 2006-10-30 2010-03-30 Atmel Corporation Growth of silicon nanodots having a metallic coating using gaseous precursors
TW201136078A (en) * 2010-02-24 2011-10-16 Alcon Lensx Inc High power femtosecond laser with adjustable repetition rate and simplified structure
US20110255065A1 (en) * 2010-04-15 2011-10-20 Sergey Oshemkov Method and apparatus for modifying a substrate surface of a photolithographic mask

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7006747B2 (en) * 2003-01-17 2006-02-28 3M Innovative Properties Company Optical devices incorporating photo reactive polymers
US7438824B2 (en) 2005-03-25 2008-10-21 National Research Council Of Canada Fabrication of long range periodic nanostructures in transparent or semitransparent dielectrics
US7655544B2 (en) * 2005-10-21 2010-02-02 Utah State University Self-assembled nanostructures
TWI307677B (en) * 2006-07-18 2009-03-21 Applied Res Lab Method and device for fabricating nano-structure with patterned particle beam
US8367462B2 (en) * 2010-04-21 2013-02-05 Georgia Tech Research Corporation Large-scale fabrication of vertically aligned ZnO nanowire arrays
EP2458412A1 (en) * 2010-11-24 2012-05-30 Université de Liège Method for manufacturing an improved optical layer of a light emitting device, and light emitting device with surface nano-micro texturation based on radiation speckle lithography.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5163220A (en) * 1991-10-09 1992-11-17 The Unites States Of America As Represented By The Secretary Of The Army Method of enhancing the electrical conductivity of indium-tin-oxide electrode stripes
US20070115469A1 (en) * 2005-06-14 2007-05-24 Ebstein Steven M Applications of laser-processed substrate for molecular diagnostics
US20100165336A1 (en) * 2005-06-14 2010-07-01 Ebstein Steven M Applications of laser-processed substrate for molecular diagnostics
US7687349B2 (en) * 2006-10-30 2010-03-30 Atmel Corporation Growth of silicon nanodots having a metallic coating using gaseous precursors
TW201136078A (en) * 2010-02-24 2011-10-16 Alcon Lensx Inc High power femtosecond laser with adjustable repetition rate and simplified structure
US20110255065A1 (en) * 2010-04-15 2011-10-20 Sergey Oshemkov Method and apparatus for modifying a substrate surface of a photolithographic mask

Also Published As

Publication number Publication date
US8835215B2 (en) 2014-09-16
TW201346979A (zh) 2013-11-16
US20130299466A1 (en) 2013-11-14

Similar Documents

Publication Publication Date Title
Yu et al. Three-dimensional nanobranched indium–tin-oxide anode for organic solar cells
Li et al. Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices
JP6373552B2 (ja) 光電変換素子
Zhao et al. Optical transmittance enhancement of flexible copper film electrodes with a wetting layer for organic solar cells
TWI450313B (zh) 以飛秒雷射脈衝製備自我組裝奈米點陣列於透明導電薄膜表面之方法
US9373740B1 (en) Wavelength converting structure for near-infrared rays and solar cell comprising the same
Chen et al. Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes
Triambulo et al. All-solution-processed foldable transparent electrodes of Ag nanowire mesh and metal matrix films for flexible electronics
KR20150028759A (ko) 상온 직접 증발식 리소그래피에 의한 연성 투명 전도성 코팅
Kang et al. Transfer of ultrathin molybdenum disulfide and transparent nanomesh electrode onto silicon for efficient heterojunction solar cells
US20120292725A1 (en) Deposition and post-processing techniques for transparent conductive films
Wang et al. Programmed ultrafast scan welding of Cu nanowire networks with a pulsed ultraviolet laser beam for transparent conductive electrodes and flexible circuits
Dong et al. Abnormal dewetting of Ag layer on three-dimensional ITO branches to form spatial plasmonic nanoparticles for organic solar cells
US9269856B2 (en) Method for making light emitting diode
Zhou et al. A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light–matter interactions
US9362450B2 (en) Light emitting diode
Han et al. Synthesis, photoluminescence and ultrafast nonlinear optical properties of copper nanolayers/particles uniformly decorated ZnO nanowires
JP2007531301A (ja) ポリマー光電子デバイスおよびその製造方法
Shao et al. Simulation and experimental study on anti-reflection characteristics of nano-patterned si structures for si quantum dot-based light-emitting devices
Rajendran et al. Properties of Indium Tin Oxide Films Grown on Microtextured Glass Substrates
Isiyaku et al. Characterization of Cr/Ag metal thin films interaction with infra-red laser
JP2016021428A (ja) 半導体発光素子用基板、半導体発光素子、モールド及び半導体発光素子の製造方法
KR101491749B1 (ko) 유기태양전지 및 그의 제조방법
Cho et al. Formation of TiO2 nano pattern on GaN-based light-emitting diodes for light extraction efficiency
Mondal et al. Evolution of nano-structures of silver due to rapid thermal annealing

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees