TWI449103B - Method of fomring patterns - Google Patents

Method of fomring patterns Download PDF

Info

Publication number
TWI449103B
TWI449103B TW098145552A TW98145552A TWI449103B TW I449103 B TWI449103 B TW I449103B TW 098145552 A TW098145552 A TW 098145552A TW 98145552 A TW98145552 A TW 98145552A TW I449103 B TWI449103 B TW I449103B
Authority
TW
Taiwan
Prior art keywords
layer
forming
pattern
etching
mask
Prior art date
Application number
TW098145552A
Other languages
Chinese (zh)
Other versions
TW201123295A (en
Inventor
Tzong Liang Yau
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW098145552A priority Critical patent/TWI449103B/en
Publication of TW201123295A publication Critical patent/TW201123295A/en
Application granted granted Critical
Publication of TWI449103B publication Critical patent/TWI449103B/en

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Drying Of Semiconductors (AREA)

Description

形成圖案的方法Method of forming a pattern

本發明係關於一種形成圖案的方法,尤指一種在形成圖案時,避免硬遮罩沾附蝕刻反應物的方法。The present invention relates to a method of forming a pattern, and more particularly to a method of preventing a hard mask from adhering to an etching reactant when forming a pattern.

積體電路或微機電系統之製作係利用一半導體基底,如矽晶圓,並反覆經歷數百道的薄膜沉積、氧化、微影、蝕刻與摻雜等不同製程加以形成。在微影和蝕刻製程中,包括形成圖案化之光阻於基板上的薄膜,及藉蝕刻轉移光阻之圖案至下面的薄膜。然而,隨著關鍵尺寸的縮小,微影系統的解析度也需配合提升,目前所使用的方法之一為增加數值孔徑來達成較高解析度,雖然增加的數值孔徑允許較高的解析度,但會使得投射入光阻的影像焦深(depth of focus)減小,導致圖案化光阻層變薄。因此,蝕刻時大部分的圖案化光阻會於蝕刻期間被消耗,使得蝕刻成效不佳。Integral circuits or MEMS systems are fabricated using a semiconductor substrate, such as a germanium wafer, and repeatedly subjected to hundreds of different processes such as thin film deposition, oxidation, lithography, etching, and doping. In the lithography and etching process, a film is formed that forms a patterned photoresist on the substrate, and a pattern of the transferred photoresist is etched to the underlying film. However, as the critical size shrinks, the resolution of the lithography system needs to be improved. One of the methods used today is to increase the numerical aperture to achieve higher resolution, although the increased numerical aperture allows for higher resolution. However, the depth of focus of the image projected into the photoresist is reduced, resulting in thinning of the patterned photoresist layer. Therefore, most of the patterned photoresist during etching is consumed during etching, resulting in poor etching performance.

因此,目前在蝕刻製程中,使用硬遮罩來代替光阻,因為硬遮罩具有比光阻材料高之抗蝕刻性,所以利用硬遮罩作為遮罩來蝕刻基板上的薄膜時,硬遮罩較不會在蝕刻時耗損,而影響到薄膜的圖案。硬遮罩可以為複合材料層,例如:氮化矽、氮氧化矽和氧化矽。第1圖至第2圖繪示的是習知圖案化硬遮罩之方法示意圖。如第1圖所示,一待蝕刻之材料層10上覆有一硬遮罩12,包含一氧化矽層14、一氮氧化矽層16和一氮化矽層18由下至上覆蓋,接著利用微影和蝕刻製程,先於硬遮罩12表面形成一圖案化之光阻(圖未示),再圖案化硬遮罩12,之後去除圖案化之光阻,就可以形成如第2圖中的圖案化之硬遮罩20。Therefore, in the etching process, a hard mask is currently used instead of the photoresist because the hard mask has higher etching resistance than the photoresist material, so when the hard mask is used as a mask to etch the film on the substrate, the hard mask is used. The cover is less likely to be worn during etching and affects the pattern of the film. The hard mask can be a composite layer such as tantalum nitride, tantalum oxynitride and tantalum oxide. 1 to 2 are schematic views showing a conventional method of patterning a hard mask. As shown in FIG. 1, a material layer 10 to be etched is covered with a hard mask 12, including a hafnium oxide layer 14, a hafnium oxynitride layer 16 and a tantalum nitride layer 18, which are covered from bottom to top, and then utilized micro The shadow and etching process, before forming a patterned photoresist (not shown) on the surface of the hard mask 12, and then patterning the hard mask 12, and then removing the patterned photoresist, can be formed as shown in FIG. Patterned hard mask 20.

由於硬遮罩12中的各個材料層的化學和物理特性不同,會有不同的蝕刻速率且相對伴隨而來的蝕刻副產物、殘留物也不同,因此,圖案化之硬遮罩20的輪廓將會因為各層的蝕刻速率與蝕刻副產物的不同而於開口處產生輪廓不平整的狀況,使得圖案化之硬遮罩20之圖案在蝕刻之後無法精確的轉印至待蝕刻之材料層10上。Since the chemical and physical properties of the various material layers in the hard mask 12 are different, there are different etch rates and the accompanying etching by-products and residues are different, so the outline of the patterned hard mask 20 will A pattern irregularity may occur at the opening due to the difference in etching rate of each layer and etching by-products, so that the pattern of the patterned hard mask 20 cannot be accurately transferred onto the material layer 10 to be etched after etching.

有鑑於此,本發明提供一種形成圖案的方法,可避免上述問題。根據本發明之一較佳實施例,本發明提供一種形成圖案的方法,首先提供一待蝕刻之材料層,材料層可以為待形成金屬內連線的介電層,接著在材料層上形成圖案化硬遮罩,其中圖案化硬遮罩可以為多層或是單層結構,然後,再進行一預處理製程,此預處理製程可以包含氮化製程、氧化製程或光化輻射製程,接著再利用處理過後的圖案化硬遮罩作為遮罩,蝕刻材料層。In view of this, the present invention provides a method of forming a pattern which can avoid the above problems. According to a preferred embodiment of the present invention, the present invention provides a method of forming a pattern by first providing a material layer to be etched, the material layer being a dielectric layer to be formed into a metal interconnect, and then forming a pattern on the material layer. A hard mask, wherein the patterned hard mask can be a multi-layer or single-layer structure, and then a pre-processing process can be performed, and the pre-processing process can include a nitridation process, an oxidation process, or an actinic radiation process, and then reuse The treated patterned hard mask acts as a mask to etch the layer of material.

根據本發明之另一較佳實施例,硬遮罩係由氮化矽層、氮氧化矽層、氮化鈦層和鈦金屬層之任意組合所構成。使用氮化製程處理過後,鈦金屬層之表面會轉化成氮化鈦。In accordance with another preferred embodiment of the present invention, the hard mask is comprised of any combination of a tantalum nitride layer, a hafnium oxynitride layer, a titanium nitride layer, and a titanium metal layer. After treatment with a nitridation process, the surface of the titanium metal layer is converted to titanium nitride.

根據本發明之又一較佳實施例,蝕刻所使用的機台之兩電極之間的距離係介於26毫米至33毫米之間。According to still another preferred embodiment of the present invention, the distance between the two electrodes of the machine used for etching is between 26 mm and 33 mm.

根據本發明之又一較佳實施例,蝕刻時的操作功率為50瓦至150瓦。According to still another preferred embodiment of the present invention, the operating power during etching is 50 watts to 150 watts.

根據本發明之再一較佳實施例,蝕刻時通入氮氣作為輸送氣體。According to still another preferred embodiment of the present invention, nitrogen gas is introduced as a transport gas during etching.

本發明之特色在於利用預處理將圖案化硬遮罩的表面性質改變,使得在蝕刻材料層時,圖案化硬遮罩不會不利地(adversely)和蝕刻氣體反應產生沾附物,造成圖案化硬遮罩變形並且使得蝕刻殘留物累積於圖案化硬遮罩上。The invention is characterized in that the surface property of the patterned hard mask is changed by pretreatment, so that when the material layer is etched, the patterned hard mask does not adversely react with the etching gas to generate an adherent, resulting in patterning. The hard mask deforms and causes etch residues to accumulate on the patterned hard mask.

本發明之另一特色在於有數種可避免圖案化硬遮罩變形方式可以單獨或混合使用,以加強效果。Another feature of the present invention is that there are several ways to avoid patterning hard mask deformation that can be used alone or in combination to enhance the effect.

第3圖至第6圖繪示的是本發明之形成圖案的方法。如第3圖所示,首先,提供一待蝕刻之材料層30,例如包含介電層34和低介電材料層36,待蝕刻之材料層30係位於一金屬內連線層32之上方,其中一金屬內連線37位於金屬內連線層32中,舉例而言,金屬內連線37可以為單鑲嵌金屬導線或雙鑲嵌金屬導線,或是其它如金屬插塞之導電元件。接著依序形成硬遮罩層35,硬遮罩層35至少包含一含金屬原子材料,硬遮罩層35可以由選擇性之氮氧化矽層40、選擇性的鈦金屬層42、氮化鈦層44、選擇性之氮氧化矽層46和選擇性之氧化矽層48由下至上堆疊所組成的複合材料層於材料層30上,接著利用圖案化之光阻(圖未示),再圖案化硬遮罩層35,之後去除圖案化之光阻,就可以形成如第4圖中的圖案化硬遮罩38。值得注意的是:硬遮罩35中選擇性的氧化矽層48、選擇性的氮氧化矽層46、氮化鈦層44和選擇性的鈦金屬層42在蝕刻時皆被蝕穿,直至曝露出選擇性的氮氧化矽層40,而選擇性的氮氧化矽層40只有部分被移除,也就是說,選擇性的氮氧化矽層40下的低介電材料層36並未曝露出來,依然被氮氧化矽層40遮蔽,因此在去除光阻的步驟時低介電材料層36不會受到不利的影響。又,硬遮罩35的材料可依應力、抗反射能力、黏著性、抗蝕刻能力...等因素考量而採用上述材料或上述材料與其他材料的任意組合。例如,不同硬遮罩材料可具有不同的應力類型如拉伸應力與收縮應力,使得硬遮罩材料的總應力不會對下方待蝕刻材料層造成過大的拉伸或收縮影響,因此減少脫層的風險。3 to 6 illustrate a method of forming a pattern of the present invention. As shown in FIG. 3, first, a material layer 30 to be etched is provided, for example, including a dielectric layer 34 and a low dielectric material layer 36. The material layer 30 to be etched is located above a metal interconnect layer 32. One of the metal interconnects 37 is located in the metal interconnect layer 32. For example, the metal interconnects 37 can be single damascene metal or dual damascene metal traces, or other conductive components such as metal plugs. Then, a hard mask layer 35 is formed in sequence, the hard mask layer 35 includes at least one metal atom-containing material, and the hard mask layer 35 may be composed of a selective oxynitride layer 40, a selective titanium metal layer 42, and titanium nitride. Layer 44, selective yttria layer 46 and selective yttria layer 48 are layered from a bottom-up stack of composite material layer 30, followed by patterned photoresist (not shown), and patterned By patterning the hard mask layer 35 and then removing the patterned photoresist, a patterned hard mask 38 as in FIG. 4 can be formed. It is worth noting that the selective yttrium oxide layer 48, the selective yttria layer 46, the titanium nitride layer 44 and the selective titanium metal layer 42 in the hard mask 35 are etched through during etching until exposure The selective ruthenium oxynitride layer 40 is removed, and the selective ruthenium oxynitride layer 40 is only partially removed, that is, the low dielectric material layer 36 under the selective ruthenium oxynitride layer 40 is not exposed. It is still shielded by the ruthenium oxynitride layer 40, so the low dielectric material layer 36 is not adversely affected during the step of removing the photoresist. Moreover, the material of the hard mask 35 may be any combination of the above materials or the above materials and other materials in consideration of factors such as stress, antireflection ability, adhesion, etching resistance, and the like. For example, different hard mask materials can have different stress types such as tensile stress and shrinkage stress, so that the total stress of the hard mask material does not cause excessive stretching or shrinkage on the layer of material to be etched below, thus reducing delamination risks of.

根據本發明之另一較佳實施例,其中待蝕刻之材料層30亦可以包含半導體材料、導電材料或者是功函數材料等,而欲產生的圖案可以是通孔、溝槽、線條或區塊。而圖案化硬遮罩38中的鈦金屬層42可以依不同製程需求,得變更為鉭、鑭、稀土元素或過渡金屬元素,氮化鈦層44亦可使用其它金屬氮化物或金屬氧化物來代替如氮化鉭、氧化鋁等。另外,圖案化硬遮罩38中也可另包含有機材料例如光阻,且圖案化硬遮罩38的材料組成可以為其他多層結構或單層結構。此外,本發明之方法可應用於半導體製程中各種需要使用硬遮罩的蝕刻製程,在下文所舉的實施例為製作金屬內連線時的應用,而其它如閘極定義或是雙鑲嵌製程也可使用本發明之方法。當圖案化硬遮罩38的材料包含感光材質如光阻時,係藉由圖案化硬遮罩35以形成圖案化硬遮罩38,其步驟係利用微影製程即曝光與顯影步驟之組合來加以達成,且在圖案化硬遮罩35後毋需去除光阻的步驟。According to another preferred embodiment of the present invention, the material layer 30 to be etched may also comprise a semiconductor material, a conductive material or a work function material, etc., and the pattern to be created may be a via, a trench, a line or a block. . The titanium metal layer 42 in the patterned hard mask 38 can be changed to yttrium, lanthanum, rare earth elements or transition metal elements according to different process requirements, and the titanium nitride layer 44 can also be made of other metal nitrides or metal oxides. Instead of, for example, tantalum nitride, aluminum oxide, and the like. In addition, an organic material such as a photoresist may be further included in the patterned hard mask 38, and the material composition of the patterned hard mask 38 may be other multilayer structures or a single layer structure. In addition, the method of the present invention can be applied to various etching processes in a semiconductor process that require the use of a hard mask. The embodiments exemplified below are applications for fabricating metal interconnects, while others such as gate definition or dual damascene processes The method of the invention can also be used. When the material of the patterned hard mask 38 comprises a photosensitive material such as a photoresist, the patterned hard mask 38 is formed by patterning the hard mask 35 by using a combination of a lithography process, that is, an exposure and development step. This is achieved and the step of removing the photoresist is not required after patterning the hard mask 35.

如第5圖所示,在形成圖案化硬遮罩38之後,接著進行一預處理50,如進行氮化製程,對圖案化硬遮罩38曝露在空間之中的表面進行氮化處理,形成圖案化硬遮罩38’,原本圖案化硬遮罩38中曝露的選擇性的氮氧化矽層40、選擇性的鈦金屬層42、氮化鈦層44、選擇性的氮氧化矽層46和選擇性的氧化矽層48在處理之後與氮形成鍵結而成為氮化物,尤其值得注意的是此氮化製程,主要目的是要使圖案化硬遮罩38中,曝露在空間之中的鈦金屬層42,也就是鈦金屬層42的側壁表面形成氮化鈦52,另外,氮氧化矽層40之上表面和側壁表面也同時被氮化。氮化製程係使用電漿機台,其操作的較佳條件為操作頻率2千7百萬赫茲或6千萬赫茲,進行10至15秒反應。As shown in FIG. 5, after the patterned hard mask 38 is formed, a pretreatment 50 is performed, such as performing a nitridation process, and nitriding the surface of the patterned hard mask 38 exposed in the space to form a patterned hard mask 38', a selective yttria layer 40 exposed in the patterned hard mask 38, a selective titanium metal layer 42, a titanium nitride layer 44, a selective yttria layer 46, and The selective ruthenium oxide layer 48 is bonded to nitrogen to form a nitride after the treatment, and it is particularly noteworthy that the nitridation process is mainly for the purpose of patterning the hard mask 38 to be exposed to titanium in the space. The metal layer 42, that is, the side wall surface of the titanium metal layer 42, forms titanium nitride 52. Further, the upper surface and the side wall surface of the yttrium oxynitride layer 40 are simultaneously nitrided. The nitriding process uses a plasma machine, which is preferably operated at a frequency of 2,7 million Hz or 60 megahertz for a 10 to 15 second reaction.

最後,如第6圖所示,先蝕刻圖案化硬遮罩38’中的選擇性的氮氧化矽層40,至曝露出材料層30後,再以預處理後之圖案化硬遮罩38’為遮罩,蝕刻材料層30,完成圖案轉移。因為圖案化硬遮罩38’和圖案化硬遮罩38’表面的氮化物在蝕刻過程中被消耗,所以在第6圖中只餘留下部分的圖案化硬遮罩38’。蝕刻材料層30之步驟可以在圖案化硬遮罩38氮化處理之後原位(in-situ)進行,或是離場(ex-situ)進行。Finally, as shown in FIG. 6, the selective yttria layer 40 in the patterned hard mask 38' is first etched, and after exposing the material layer 30, the pre-processed patterned hard mask 38' is used. To mask, the material layer 30 is etched to complete the pattern transfer. Since the nitride of the patterned hard mask 38' and the surface of the patterned hard mask 38' is consumed during the etching process, only a portion of the patterned hard mask 38' remains in Fig. 6. The step of etching the material layer 30 may be performed in-situ after the nitriding treatment of the patterned hard mask 38, or ex-situ.

前述的預處理50可以依不同製程需求更改為氧化製程或使用光化輻射製程如紫外光照射或是其它可以改變圖案化硬遮罩38的表面特性(化學性質或物理性質)如之製程,舉例而言,經過氧化處理之後的圖案化硬遮罩38’的臨界尺寸可以縮小;而在紫外光照射之後的所形成的圖案化硬遮罩38’中的鍵結改變,使得硬度增加,以 在後續的蝕刻步驟提供更佳的遮蔽效果。The foregoing pretreatment 50 can be changed to an oxidation process according to different process requirements or using an actinic radiation process such as ultraviolet light irradiation or other processes that can change the surface characteristics (chemical or physical properties) of the patterned hard mask 38, for example, In other words, the critical dimension of the patterned hard mask 38' after the oxidation treatment can be reduced; and the bond in the formed patterned hard mask 38' after the ultraviolet light irradiation is changed, so that the hardness is increased to A better masking effect is provided in subsequent etching steps.

第7圖繪示的是圖案化硬遮罩變形之示意圖,其中相同的元件以相同的符號表示,傳統蝕刻材料層的步驟中,通常是使用碳氟化合物作為蝕刻氣體,例如四氟化碳、三氟甲烷、六氟乙烷等,在碳氟化合物被電離之後,則會形成電漿,其中包含氟離子、碳氟化合物的自由基等。然而,習知製程在蝕刻材料層之前,並沒有對圖案化硬遮罩進行預處理,因此,如第7圖所示,在利用電漿蝕刻時,未處理的鈦金屬層42的表面會和氟離子發生反應,形成氟化鈦凸起物54等之副產物附著在鈦金屬層42的表面上,之後會使得蝕刻殘留物如碳氟高分子聚合物56淤積在圖案化硬遮罩38之側壁,造成圖案化硬遮罩38變形,改變所欲定義之開口的大小,進而嚴重影響蝕刻效果。和習知技術不同的是:本發明利用預處理,將鈦金屬層42的表面轉變為氮化鈦,降低鈦金屬層與蝕刻氣體反應的可能性,故可有效避免產生氟化鈦凸起物54。Figure 7 is a schematic diagram showing the deformation of the patterned hard mask, in which the same elements are denoted by the same symbols. In the conventional step of etching the material layer, fluorocarbon is usually used as an etching gas, such as carbon tetrafluoride. After trifluoromethane, hexafluoroethane or the like, after the fluorocarbon is ionized, a plasma is formed, which contains a fluoride ion, a fluorocarbon radical, or the like. However, the conventional process does not pretreat the patterned hard mask before etching the material layer, and therefore, as shown in Fig. 7, when the plasma etching is performed, the surface of the untreated titanium metal layer 42 is combined. The fluoride ion reacts to form a by-product of the titanium fluoride protrusion 54 or the like adhered to the surface of the titanium metal layer 42, and then an etching residue such as the fluorocarbon polymer 56 is deposited on the patterned hard mask 38. The sidewalls cause deformation of the patterned hard mask 38, changing the size of the opening to be defined, thereby seriously affecting the etching effect. Different from the prior art, the present invention utilizes pretreatment to convert the surface of the titanium metal layer 42 into titanium nitride, thereby reducing the possibility of the titanium metal layer reacting with the etching gas, so that the titanium fluoride protrusion can be effectively avoided. 54.

第8圖繪示的是習知之材料層經蝕刻後發生碗形輪廓之示意圖,其中相同的元件以相同的符號表示。於傳統步驟中,因為圖案化硬遮罩的蝕刻速率和材料層相差過大,因此,在蝕刻後會形成碗形輪廓(bowl-like profile),若以第1圖中的圖案化硬遮罩38由選擇性的氮氧化矽層40、選擇性的鈦金屬層42、氮化鈦44、選擇性的氮氧化矽46和選擇性的氧化矽48所構成為例,在未經過預處理50之前的選擇性的氮氧化矽層40之蝕刻速率較低介電材料36小,因此,在蝕刻時,低介電材料36就會被蝕刻較多,而氮氧化矽層40被蝕刻較少,進而造成如第8圖中以圓圈標示的碗形輪廓62。如第 5圖所示,本發明中,進行預處理50之後所形成的圖案化硬遮罩38’之表質性質改變,使得圖案化硬遮罩38’的蝕刻速率和材料層30拉近,尤其是圖案化硬遮罩38’中選擇性的氮氧化矽層40因為被氮化,而使得氮化後的選擇性的氮氧化矽層40和材料層30中的低介電材料36的蝕刻速率拉近,因此,在蝕刻後可形成如第5圖圓圈標示的平順輪廓60。FIG. 8 is a schematic view showing a bowl-shaped profile after a conventional material layer is etched, wherein the same elements are denoted by the same symbols. In the conventional step, since the etching rate of the patterned hard mask and the material layer are too large, a bowl-like profile is formed after etching, if the patterned hard mask 38 is used in FIG. An example consisting of a selective ruthenium oxynitride layer 40, a selective titanium metal layer 42, titanium nitride 44, a selective ruthenium oxyhydroxide 46, and a selective ruthenium oxide 48, prior to pretreatment 50 The etch rate of the selective ruthenium oxynitride layer 40 is lower than that of the dielectric material 36. Therefore, during etching, the low dielectric material 36 is etched more, and the ruthenium oxynitride layer 40 is etched less, thereby causing A bowl-shaped outline 62, as indicated by a circle, in Figure 8. Such as the first As shown in FIG. 5, in the present invention, the quality of the patterned hard mask 38' formed after the pretreatment 50 is changed, so that the etching rate of the patterned hard mask 38' and the material layer 30 are brought closer, especially The selective ruthenium oxynitride layer 40 in the patterned hard mask 38' is nitrided to cause an etch rate of the nitrided selective ruthenium oxynitride layer 40 and the low dielectric material 36 in the material layer 30. Nearly, therefore, a smooth profile 60 as indicated by the circle in Figure 5 can be formed after etching.

除此之外,本發明另有提供了三種可避免氟化鈦凸起物形成的方式,說明如下:增加蝕刻用之電漿機台的兩電極之間距、降低蝕刻時電漿機台之功率或者在蝕刻時通入輸送氣體(carrier gas),如氮氣、氬氣或氦氣。增加電極之間距和降低蝕刻電漿之功率,其目的在於降低電極之間的電場,當電場降低後,在反應室中的氟離子的量就會下降,因此就可降低氟離子和鈦金屬層反應。另外,通入輸送氣體的目的是讓蝕刻時,部分的鈦金屬層表面會反應成含氮化合物,如氮化鈦,如此,鈦金屬層就不會和蝕刻氣體反應,即可避免形成氟化鈦凸起物。根據發明人的研究發現,將兩電極的距離維持在26毫米至33毫米之間,或者是將機台之操作功率調整在50瓦至150瓦之間並配合操作頻率2百萬赫茲、2千7百萬赫茲或6千萬赫茲,亦或者是在蝕刻時通入20-50每分鐘標準毫升(sccm)的輸送氣體,皆可有效地避免氟化鈦凸起物的形成。上述的三種方式可以單獨使用、相互搭配使用,甚至配合預處理製程,舉例而言,可以在蝕刻前先氮化圖案化硬遮罩,然後在蝕刻時,再配合通入輸送氣體,可使得避免氟化鈦凸起物形成的效果更佳。In addition, the present invention further provides three ways to avoid the formation of titanium fluoride protrusions, which are described as follows: increasing the distance between the two electrodes of the plasma machine for etching and reducing the power of the plasma machine during etching. Alternatively, a carrier gas such as nitrogen, argon or helium may be introduced during etching. Increasing the distance between the electrodes and reducing the power of the etching plasma, the purpose of which is to reduce the electric field between the electrodes. When the electric field is lowered, the amount of fluoride ions in the reaction chamber is lowered, thereby reducing the fluoride ion and the titanium metal layer. reaction. In addition, the purpose of introducing the gas is to allow some of the surface of the titanium metal layer to react to form a nitrogen-containing compound, such as titanium nitride, so that the titanium metal layer does not react with the etching gas, thereby avoiding formation of fluorination. Titanium bumps. According to the study by the inventors, the distance between the two electrodes is maintained between 26 mm and 33 mm, or the operating power of the machine is adjusted between 50 watts and 150 watts and the operating frequency is 2 megahertz, 2,000. 7 million Hz or 60 megahertz, or a feed gas of 20-50 minutes per minute (sccm) during etching, can effectively avoid the formation of titanium fluoride protrusions. The above three methods can be used alone, in combination with each other, or even with a pretreatment process. For example, the patterned hard mask can be nitrided before etching, and then the etching gas can be used in the etching process to avoid The effect of titanium fluoride protrusion formation is better.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10‧‧‧待蝕刻之材料層10‧‧‧Material layer to be etched

12‧‧‧硬遮罩12‧‧‧ Hard mask

14、48‧‧‧氧化矽層14, 48‧‧ ‧ yttrium oxide layer

16‧‧‧氮氧化矽層16‧‧‧Nitrogen oxide layer

40、46‧‧‧氮氧化矽層40, 46‧‧‧ 氮 氮 氮 layer

18‧‧‧氮化矽層18‧‧‧矽 nitride layer

20‧‧‧圖案化之硬遮罩20‧‧‧ patterned hard mask

30‧‧‧材料層30‧‧‧Material layer

32‧‧‧金屬內連線層32‧‧‧Metal interconnect layer

34‧‧‧介電層34‧‧‧ dielectric layer

35‧‧‧硬遮罩層35‧‧‧hard mask layer

36‧‧‧低介電材料層36‧‧‧Low dielectric material layer

38‧‧‧金屬插塞38‧‧‧Metal plug

38、38’‧‧‧圖案化硬遮罩38, 38'‧‧‧ patterned hard mask

42‧‧‧鈦金屬層42‧‧‧Titanium metal layer

44‧‧‧氮化鈦層44‧‧‧Titanium nitride layer

50‧‧‧預處理50‧‧‧Pretreatment

52‧‧‧氮化鈦52‧‧‧Titanium nitride

54‧‧‧氟化鈦凸起物54‧‧‧Titanium fluoride bumps

56‧‧‧碳氟高分子聚合物56‧‧‧Fluorocarbon polymer

60‧‧‧平順輪廓60‧‧ ‧ smooth contour

62‧‧‧碗形輪廓62‧‧‧ bowl outline

第1圖至第2圖繪示的是習知圖案化硬遮罩之方法。Figures 1 through 2 illustrate a conventional method of patterning a hard mask.

第3圖至第5圖繪示的是本發明之形成圖案的方法。3 to 5 illustrate a method of forming a pattern of the present invention.

第6圖繪示的是圖案化硬遮罩變形之示意圖。Figure 6 is a schematic diagram showing the deformation of the patterned hard mask.

第7圖繪示的是材料層經蝕刻後發生碗形輪廓之示意圖。Figure 7 is a schematic view showing the shape of the bowl after the material layer is etched.

第8圖繪示的是習知技術中材料層經蝕刻後發生碗形輪廓之示意圖。Figure 8 is a schematic view showing a bowl-shaped profile of a material layer after etching in the prior art.

30...材料層30. . . Material layer

34...介電層34. . . Dielectric layer

32...金屬內連線層32. . . Metal interconnect layer

36...低介電材料層36. . . Low dielectric material layer

37...金屬插塞37. . . Metal plug

38’...圖案化硬遮罩38’. . . Patterned hard mask

42...鈦金屬層42. . . Titanium layer

44...氮化鈦層44. . . Titanium nitride layer

40、46...氮氧化矽層40, 46. . . Niobium oxynitride layer

48...氧化矽層48. . . Cerium oxide layer

50...預處理50. . . Pretreatment

52...氮化鈦52. . . Titanium nitride

Claims (20)

一種形成圖案的方法,包含:提供一材料層其上覆有一遮罩層,其中該遮罩層為複合材料層;蝕刻部分之該遮罩層以形成一圖案化遮罩,其中該圖案化遮罩遮蔽該材料層;進行一預處理,改變該圖案化遮罩之性質;在該預處理之後,蝕刻該圖案化遮罩至該材料層曝露出來;以及在該材料層曝露出來之後,以該圖案化遮罩作為遮罩,圖案化該材料層。 A method of forming a pattern comprising: providing a layer of material overlying a mask layer, wherein the mask layer is a composite layer; etching the portion of the mask layer to form a patterned mask, wherein the patterned mask Masking the layer of material; performing a pretreatment to change the properties of the patterned mask; after the pre-treating, etching the patterned mask to expose the layer of material; and after exposing the layer of material, The patterned mask acts as a mask to pattern the layer of material. 如申請專利範圍第1項所述之形成圖案的方法,其中該預處理係選自下列群組包含:氮化製程、氧化製程和光化輻射製程。 The method of forming a pattern according to claim 1, wherein the pretreatment is selected from the group consisting of a nitridation process, an oxidation process, and an actinic radiation process. 如申請專利範圍第1項所述之形成圖案的方法,其中該材料層包含一半導體材料。 The method of forming a pattern according to claim 1, wherein the material layer comprises a semiconductor material. 如申請專利範圍第1項所述之形成圖案的方法,其中該材料層包含一功函數材料。 The method of forming a pattern as described in claim 1, wherein the material layer comprises a work function material. 如申請專利範圍第1項所述之形成圖案的方法,其中該圖案化遮罩包含金屬、金屬氮化物或金屬氧化物。 The method of forming a pattern according to claim 1, wherein the patterned mask comprises a metal, a metal nitride or a metal oxide. 如申請專利範圍第5項所述之形成圖案的方法,其中該圖案化遮罩更包含一介電材料。 The method of forming a pattern according to claim 5, wherein the patterned mask further comprises a dielectric material. 如申請專利範圍第5項所述之形成圖案的方法,其中該圖案化遮罩更包含一有機材料。 The method of forming a pattern according to claim 5, wherein the patterned mask further comprises an organic material. 如申請專利範圍第7項所述之形成圖案的方法,其中在完成該預處理之後係原位(in-situ)圖案化該材料層。 A method of forming a pattern as described in claim 7 wherein the layer of material is in-situ patterned after completion of the pretreatment. 如申請專利範圍第1項所述之形成圖案的方法,其中進行該預處理後,該圖案化遮罩之化學性質和物理性質之其中之一被改變。 The method of forming a pattern as described in claim 1, wherein one of the chemical and physical properties of the patterned mask is changed after the pretreatment. 如申請專利範圍第9項所述之形成圖案的方法,其中該化學性質包含該圖案化遮罩之表面之鍵結方式。 The method of forming a pattern as described in claim 9, wherein the chemical property comprises a bonding manner of a surface of the patterned mask. 一種形成圖案的方法,包含:提供一材料層其上覆有包含至少一含金屬原子材料的一遮罩層,其中該遮罩層為複合材料層;蝕刻部分之該遮罩層以形成一圖案化遮罩,其中該圖案化遮罩遮蔽該材料層;進行一預處理,改變該圖案化遮罩之表面特性;在該預處理之後,蝕刻該圖案化遮罩至該材料層曝露出來;以及在該材料層曝露出來之後,進行一蝕刻製程,以該圖案化遮罩作為 遮罩,蝕刻該材料層。 A method of forming a pattern comprising: providing a material layer overlying a mask layer comprising at least one metal atom-containing material, wherein the mask layer is a composite material layer; etching the portion of the mask layer to form a pattern a mask, wherein the patterned mask shields the layer of material; performing a pretreatment to change surface characteristics of the patterned mask; after the pre-treating, etching the patterned mask to expose the layer of material; After the material layer is exposed, an etching process is performed, using the patterned mask as Masking, etching the layer of material. 如申請專利範圍第11項所述之形成圖案的方法,其中該預處理係選自下列群組包含:氮化製程、氧化製程和光化輻射製程。 The method of forming a pattern according to claim 11, wherein the pretreatment is selected from the group consisting of a nitridation process, an oxidation process, and an actinic radiation process. 如申請專利範圍第12項所述之形成圖案的方法,其中在該預處理之後,該圖案化遮罩中的該含金屬原子材料之表面會形成該含金屬原子材料之氮化物和該含金屬原子材料之氧化物之其中之一。 The method of forming a pattern according to claim 12, wherein after the pretreatment, the surface of the metal atom-containing material in the patterned mask forms the nitride containing the metal atomic material and the metal One of the oxides of atomic materials. 如申請專利範圍第13項所述之形成圖案的方法,其中該含金屬原子材料係選自下列群組包含:氮化鈦、鈦、鉭、鑭、稀土元素和過渡金屬元素。 The method of forming a pattern according to claim 13, wherein the metal atom-containing material is selected from the group consisting of titanium nitride, titanium, niobium, tantalum, rare earth elements, and transition metal elements. 如申請專利範圍第11項所述之形成圖案的方法,其中在完成該預處理之後係原位(in-situ)進行該蝕刻製程。 The method of forming a pattern as described in claim 11, wherein the etching process is performed in-situ after the pretreatment is completed. 如申請專利範圍第11項所述之形成圖案的方法,其中該蝕刻製程係利用一機台進行電漿蝕刻。 The method of forming a pattern according to claim 11, wherein the etching process is performed by plasma etching using a machine. 如申請專利範圍第16項所述之形成圖案的方法,其中該機台之兩電極之間的距離係介於26毫米至33毫米之間。 The method of forming a pattern according to claim 16, wherein the distance between the two electrodes of the machine is between 26 mm and 33 mm. 如申請專利範圍第16項所述之形成圖案的方法,其中該機台之 操作功率為50瓦至150瓦,該機台之操作頻率包含2百萬赫茲、2千7百萬赫茲或6千萬赫茲。 A method of forming a pattern as described in claim 16 wherein the machine is Operating power is 50 watts to 150 watts, and the operating frequency of the machine includes 2 megahertz, 27 megahertz or 60 megahertz. 如申請專利範圍第11項所述之形成圖案的方法,其中在進行該蝕刻製程時,係同時通入氮氣。 A method of forming a pattern as described in claim 11, wherein the etching process is performed while introducing nitrogen gas. 如申請專利範圍第11項所述之形成圖案的方法,其中該圖案化遮罩為包含一氧化矽層、一氮氧化矽層、一氮化鈦層和一鈦金屬層。The method of forming a pattern according to claim 11, wherein the patterned mask comprises a ruthenium oxide layer, a ruthenium oxynitride layer, a titanium nitride layer and a titanium metal layer.
TW098145552A 2009-12-29 2009-12-29 Method of fomring patterns TWI449103B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098145552A TWI449103B (en) 2009-12-29 2009-12-29 Method of fomring patterns

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098145552A TWI449103B (en) 2009-12-29 2009-12-29 Method of fomring patterns

Publications (2)

Publication Number Publication Date
TW201123295A TW201123295A (en) 2011-07-01
TWI449103B true TWI449103B (en) 2014-08-11

Family

ID=45046635

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098145552A TWI449103B (en) 2009-12-29 2009-12-29 Method of fomring patterns

Country Status (1)

Country Link
TW (1) TWI449103B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832167B (en) * 2012-06-21 2016-01-20 上海华力微电子有限公司 Metal hard mask layer preparation method and semiconductor making method
CN103515312B (en) * 2013-10-18 2017-02-08 上海华力微电子有限公司 Preparation method for metal hard mask layer and copper interconnected structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020132485A1 (en) * 1998-01-20 2002-09-19 Tegal Corporation Method for using a hard mask for critical dimension growth containment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020132485A1 (en) * 1998-01-20 2002-09-19 Tegal Corporation Method for using a hard mask for critical dimension growth containment

Also Published As

Publication number Publication date
TW201123295A (en) 2011-07-01

Similar Documents

Publication Publication Date Title
CN106169415B (en) Optical tunable hard mask for multiple patterning applications
US9607850B2 (en) Self-aligned double spacer patterning process
US7494934B2 (en) Method of etching carbon-containing layer and method of fabricating semiconductor device
TWI642101B (en) Plasma etching method and plasma etching device
US9305839B2 (en) Curing photo resist for improving etching selectivity
KR20210121264A (en) Film stack for lithography applications
KR20210018548A (en) Patterning method to improve EUV resist and hard mask selectivity
US11094543B1 (en) Defect correction on metal resists
US20110155692A1 (en) Method of forming patterns
CN110890321A (en) Method for manufacturing semiconductor structure
JP2010045264A (en) Method of manufacturing semiconductor device
CN110931354A (en) Semiconductor structure and method for manufacturing semiconductor structure
TWI449103B (en) Method of fomring patterns
US8125069B2 (en) Semiconductor device and etching apparatus
JP2011071279A (en) Method of fabricating semiconductor device
US20060194440A1 (en) Semiconductor device and method for producing the same
CN109326518B (en) Method for forming structure with high aspect ratio graph
KR20080069346A (en) Method of forming pattern of semiconductor device
CN101169600A (en) Method for removing photoresist of titanium or titanium nitride layer in semiconductor production
US20020094693A1 (en) Method for fabricating an ultra small opening
CN108417528B (en) Method for improving residues on aluminum pad
CN102122112A (en) Method for forming patterns
US7691754B2 (en) Method for removing photoresist layer and method of forming opening
JP2011029562A (en) Processing method of semiconductor-wafer end face, and manufacturing method of semiconductor device
KR100777925B1 (en) Method for manufacturing metal wire