TWI447860B - Non-volatile memory and method for fabricating the same - Google Patents

Non-volatile memory and method for fabricating the same Download PDF

Info

Publication number
TWI447860B
TWI447860B TW098108039A TW98108039A TWI447860B TW I447860 B TWI447860 B TW I447860B TW 098108039 A TW098108039 A TW 098108039A TW 98108039 A TW98108039 A TW 98108039A TW I447860 B TWI447860 B TW I447860B
Authority
TW
Taiwan
Prior art keywords
spacers
volatile memory
layer
substrate
gate
Prior art date
Application number
TW098108039A
Other languages
Chinese (zh)
Other versions
TW201034128A (en
Inventor
Lu Ping Chiang
Hsiu Han Liao
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to TW098108039A priority Critical patent/TWI447860B/en
Publication of TW201034128A publication Critical patent/TW201034128A/en
Application granted granted Critical
Publication of TWI447860B publication Critical patent/TWI447860B/en

Links

Description

非揮發性記憶體及其製造方法Non-volatile memory and method of manufacturing same

本發明是有關於一種半導體元件及其製造方法,且特別是有關於一種非揮發性記憶體及其製造方法。The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a non-volatile memory and a method of fabricating the same.

隨著消費性電子產品的普及與系統產品的廣泛應用,對於具有低功率耗損、低成本、高讀取/寫入速度、小體積與高容量密度的記憶體之需求也越來越高。因此,將多種功能相異之元件混載於單一半導體基底上的作法因應而生。在單一晶片上混載非揮發性記憶體及邏輯電路的嵌入式(embedded)非揮發性記憶體即為一例。With the popularity of consumer electronics and the widespread use of system products, there is an increasing demand for memory with low power consumption, low cost, high read/write speed, small size and high capacity density. Therefore, the practice of mixing a plurality of functionally distinct components on a single semiconductor substrate arises. An example is an embedded non-volatile memory in which non-volatile memory and logic circuits are mixed on a single wafer.

在邏輯電路中,除了包含用以控制記憶體或進行運算的電路元件外,通常也會含有非揮發性記憶體。一般而言,非揮發性記憶體的閘極結構是藉由進行微影製程與蝕刻製程將導體材料層圖案化而形成的。In logic circuits, in addition to circuit components used to control memory or perform operations, non-volatile memory is also typically included. In general, the gate structure of a non-volatile memory is formed by patterning a layer of a conductor material by performing a lithography process and an etching process.

隨著半導體製程技術的快速發展,為了增進元件的速度與效能,積體電路的積集度必須持續地提升,且記憶體元件的每一個記憶胞所佔的面積必須縮減。因此,如何在有限的晶片面積下,利用簡單的製造方法並使用較少的光罩製作出非揮發性記憶體,將是目前極為重要的課題。With the rapid development of semiconductor process technology, in order to improve the speed and performance of components, the integration of integrated circuits must be continuously improved, and the area occupied by each memory cell of the memory component must be reduced. Therefore, how to make non-volatile memory using a simple manufacturing method and using fewer masks under a limited wafer area will be an extremely important issue at present.

有鑑於此,本發明提供一種非揮發性記憶體的製造方法,其為後閘極製程(gate last process)。In view of this, the present invention provides a method of manufacturing a non-volatile memory which is a gate last process.

本發明另提供一種非揮發性記憶體,其具有尺寸較小的記憶胞。The present invention further provides a non-volatile memory having a memory cell of a smaller size.

本發明提出一種非揮發性記憶體的製造方法。首先,提供一基底。接著,於基底上形成圖案化罩幕層,且圖案化罩幕層具有多個開口。之後,於各開口中的圖案化罩幕層之側壁上形成多個第一間隙壁。隨之,於各開口中的相鄰兩第一間隙壁之間的基底上形成閘介電層。然後,於基底上形成導體層,至少填滿開口並覆蓋第一間隙壁。接著,對導體層進行平坦化製程,以形成多個閘極結構。之後,移除圖案化罩幕層,再於相鄰兩閘極結構之間的基底中形成摻雜區。續之,於閘極結構之側壁上形成多個第二間隙壁。接著,於相鄰兩第二間隙壁之間形成接觸窗插塞。The present invention provides a method of manufacturing a non-volatile memory. First, a substrate is provided. Next, a patterned mask layer is formed on the substrate, and the patterned mask layer has a plurality of openings. Thereafter, a plurality of first spacers are formed on the sidewalls of the patterned mask layer in each of the openings. A gate dielectric layer is then formed on the substrate between adjacent first spacers in each of the openings. Then, a conductor layer is formed on the substrate, filling at least the opening and covering the first spacer. Next, the conductor layer is planarized to form a plurality of gate structures. Thereafter, the patterned mask layer is removed, and a doped region is formed in the substrate between the adjacent two gate structures. Further, a plurality of second spacers are formed on the sidewalls of the gate structure. Next, a contact plug is formed between the adjacent two second spacers.

本發明另提出一種非揮發性記憶體,包括多個閘極結構、多個摻雜區、多個第二間隙壁以及多個接觸窗插塞。閘極結構配置於基底上,各閘極結構包括控制閘極與閘介電層。控制閘極配置於基底上,且各控制閘極的兩側具有二個第一間隙壁。閘介電層配置於控制閘極與基底之間。摻雜區配置於相鄰兩閘極結構之間的基底中。第二間隙壁配置於閘極結構之側壁上。接觸窗插塞配置於相鄰兩第二間隙壁之間。The present invention further provides a non-volatile memory comprising a plurality of gate structures, a plurality of doped regions, a plurality of second spacers, and a plurality of contact window plugs. The gate structure is disposed on the substrate, and each gate structure includes a control gate and a gate dielectric layer. The control gate is disposed on the substrate, and each of the control gates has two first spacers on both sides. The gate dielectric layer is disposed between the control gate and the substrate. The doped region is disposed in a substrate between adjacent two gate structures. The second spacer is disposed on a sidewall of the gate structure. The contact window plug is disposed between the adjacent two second gap walls.

基於上述,本發明之非揮發性記憶體的製造方法先在開口中形成第一間隙壁,再利用平坦化製程使填入開口的導體層平坦化以形成閘極結構,可有助於縮小各個記憶胞的尺寸。此外,在相鄰兩第二間隙壁之間形成自對準接觸窗,可有效防止製程誤差所造成的缺陷,以確保元件品質。Based on the above, the method for manufacturing a non-volatile memory of the present invention first forms a first spacer in the opening, and then planarizes the conductor layer filled in the opening to form a gate structure, which can help to reduce each The size of the memory cell. In addition, a self-aligned contact window is formed between adjacent two second spacers, which can effectively prevent defects caused by process errors and ensure component quality.

再者,本發明之非揮發性記憶體的每個控制閘極兩側各具有第一間隙壁,因此記憶胞的尺寸較小。Furthermore, the non-volatile memory of the present invention has a first spacer on each side of each of the control gates, so that the size of the memory cell is small.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

圖1A至圖1H是依照本發明之一實施例之非揮發性記憶體的製造流程剖面示意圖。1A through 1H are schematic cross-sectional views showing a manufacturing process of a non-volatile memory according to an embodiment of the present invention.

請參照圖1A,提供一基底100。基底100例如是半導體基底,如N型或P型之矽基底、三五族半導體基底等。一般而言,基底100包括主要元件區與周邊電路區。在半導體元件製程中,於主要元件區例如是進行記憶體製程等,而於周邊電路區例如是進行邏輯製程等。在此實施例中,後續是以在邏輯製程中形成非揮發性記憶體為例來進行說明,但並非用以限定本發明之範圍。Referring to FIG. 1A, a substrate 100 is provided. The substrate 100 is, for example, a semiconductor substrate such as an N-type or P-type germanium substrate, a tri-five semiconductor substrate, or the like. In general, substrate 100 includes a main component area and a peripheral circuit area. In the semiconductor device process, for example, a memory system process or the like is performed in the main device region, and a logic process or the like is performed in the peripheral circuit region, for example. In this embodiment, the following is an example of forming a non-volatile memory in a logic process, but is not intended to limit the scope of the present invention.

請繼續參照圖1A,於基底100上依序形成墊層102與圖案化罩幕層104。墊層102的材料例如是氧化矽,且其形成方法例如是熱氧化法或化學氣相沈積法。圖案化罩幕層104例如是具有開口105,以暴露出部分的墊層102表面。圖案化罩幕層104的材料例如是氮化矽。圖案化罩幕層104的形成方法例如是先以化學氣相沈積法於基底100上形成一層罩幕材料層(未繪示),之後再依序進行微影製程、蝕刻製程移除部分罩幕材料層而形成之。Referring to FIG. 1A, the pad layer 102 and the patterned mask layer 104 are sequentially formed on the substrate 100. The material of the underlayer 102 is, for example, ruthenium oxide, and the formation method thereof is, for example, a thermal oxidation method or a chemical vapor deposition method. The patterned mask layer 104 has, for example, an opening 105 to expose a portion of the surface of the pad layer 102. The material of the patterned mask layer 104 is, for example, tantalum nitride. The method for forming the patterned mask layer 104 is, for example, first forming a layer of mask material (not shown) on the substrate 100 by chemical vapor deposition, and then sequentially performing a lithography process and an etching process to remove a portion of the mask. Formed by a layer of material.

值得注意的是,在此步驟中,圖案化罩幕層104之間的開口105配置是根據後續預形成閘極結構的區域來設計,亦即開口105的形成位置即為後續預形成閘極結構的區域。It should be noted that, in this step, the configuration of the opening 105 between the patterned mask layers 104 is designed according to the area of the subsequent pre-formed gate structure, that is, the formation position of the opening 105 is the subsequent pre-formed gate structure. Area.

請參照圖1B,於基底100上形成高溫氧化層(high temperature oxide,HTO)106。高溫氧化層106順應性地覆蓋墊層102與圖案化罩幕層104。高溫氧化層106的形成方法例如是熱氧化法。之後,於開口105中的圖案化罩幕層104側壁上形成第一間隙壁108。第一間隙壁108的頂面高度例如是低於圖案化罩幕層104的頂面高度。第一間隙壁108的材料可以是會使電荷陷入於其中的電荷儲存材料,其例如是氮化矽、鉭氧化矽、鈦酸鍶矽或鉿氧化矽等。第一間隙壁108的形成方法例如是先以化學氣相沈積法於基底100上形成填入開口105的電荷儲存材料層(未繪示),之後再進行非等向性蝕刻製程移除部分電荷儲存材料層,以於圖案化罩幕層104的側壁上形成間隙壁結構。移除部分電荷儲存材料層而形成第一間隙壁108例如是使用反應性離子蝕刻(reactive ion etch,RIE)製程。在一實施例中,在進行反應性離子蝕刻的過程中,位於相鄰兩第一間隙壁108之間的高溫氧化層106以及部分暴露出的墊層102也會被移除,而形成墊層102a。Referring to FIG. 1B, a high temperature oxide (HTO) 106 is formed on the substrate 100. The high temperature oxide layer 106 conformally covers the pad layer 102 and the patterned mask layer 104. The method of forming the high temperature oxide layer 106 is, for example, a thermal oxidation method. Thereafter, a first spacer 108 is formed on the sidewall of the patterned mask layer 104 in the opening 105. The top surface height of the first spacer 108 is, for example, lower than the top surface height of the patterned mask layer 104. The material of the first spacers 108 may be a charge storage material that traps charges therein, such as tantalum nitride, tantalum oxide, tantalum titanate or tantalum oxide. The first spacers 108 are formed by, for example, forming a charge storage material layer (not shown) filled in the openings 105 on the substrate 100 by chemical vapor deposition, and then performing an anisotropic etching process to remove the partial charges. A layer of material is stored to form a spacer structure on the sidewalls of the patterned mask layer 104. Removing a portion of the charge storage material layer to form the first spacers 108 is, for example, a reactive ion etch (RIE) process. In an embodiment, during the reactive ion etching process, the high temperature oxide layer 106 between the adjacent first spacers 108 and the partially exposed pad layer 102 are also removed to form a pad layer. 102a.

請參照圖1C,在一實施例中,還可以利用原位蒸汽生成法(in-situ steam generation,ISSG)於基底100上全面性地形成一層氧化物層(未繪示),之後再進行濕式浸泡(wet dip)製程移除氧化物層。濕式浸泡製程不僅會移除由原位蒸汽生成法所形成的氧化物層,也會同時移除位於圖案化罩幕層104頂面的氧化物,而形成高溫氧化層106’。濕式浸泡製程所使用的溶劑例如是氫氟酸溶液(HF)。在此說明的是,在進行非等向性蝕刻製程以形成第一間隙壁108時,可能會對墊層102a或第一間隙壁108的材料造成損傷,因此使用活性較強的原位蒸汽生成法於基底100上形成氧化物,再利用濕式浸泡製程移除氧化物,可以去除在先前製程中受到損傷的材料,避免後續製程受影響。隨之,於基底100上形成閘介電層110。閘介電層110會形成在開口105中的相鄰兩第一間隙壁108之間。閘介電層110的材料例如是氧化矽,其形成方法例如是氧化法。Referring to FIG. 1C, in an embodiment, an oxide layer (not shown) may be formed on the substrate 100 by in-situ steam generation (ISSG), and then wet. The wet dip process is removed by a wet dip process. The wet immersion process not only removes the oxide layer formed by the in-situ steam generation process, but also removes the oxide on the top surface of the patterned mask layer 104 to form the high temperature oxide layer 106'. The solvent used in the wet soaking process is, for example, a hydrofluoric acid solution (HF). It is explained here that when the anisotropic etching process is performed to form the first spacers 108, the material of the pad layer 102a or the first spacers 108 may be damaged, so that the active in-situ steam generation is used. By forming an oxide on the substrate 100 and then removing the oxide by a wet immersion process, the material damaged in the previous process can be removed to avoid subsequent processes being affected. Accordingly, a gate dielectric layer 110 is formed on the substrate 100. A gate dielectric layer 110 is formed between adjacent first spacers 108 in the opening 105. The material of the gate dielectric layer 110 is, for example, ruthenium oxide, and the formation method thereof is, for example, an oxidation method.

請參照圖1D,於基底100上形成導體層112,其至少填滿開口105並覆蓋第一間隙壁108。導體層112的材料例如是摻雜多晶矽,且其形成方法例如是化學氣相沈積法。接著,對導體層112進行平坦化製程使導體層112的頂面與圖案化罩幕層104的頂面約略相等,以形成閘極結構。平坦化製程例如是化學機械研磨製程(chemical mechanical polishing,CMP),並以圖案化罩幕層104作為研磨終止層。Referring to FIG. 1D, a conductor layer 112 is formed on the substrate 100, which fills at least the opening 105 and covers the first spacers 108. The material of the conductor layer 112 is, for example, doped polysilicon, and the formation method thereof is, for example, a chemical vapor deposition method. Next, the planarization process of the conductor layer 112 is performed such that the top surface of the conductor layer 112 is approximately equal to the top surface of the patterned mask layer 104 to form a gate structure. The planarization process is, for example, a chemical mechanical polishing (CMP), and the patterned mask layer 104 is used as a polishing stop layer.

請參照圖1E,在一實施例中,可選擇性地進行氧化製程,以使部分導體層112形成氧化物。在進行氧化製程的過程中,僅有導體層112的上半部受到氧化而作為頂蓋層112a,而導體層112的下半部則維持原先的導體材料而作為控制閘極112b。閘介電層110、第一間隙壁108、控制閘極112b與頂蓋層112a例如是共同作為非揮發性記憶體的閘極結構124。Referring to FIG. 1E, in an embodiment, an oxidation process may be selectively performed to form a portion of the conductor layer 112 to form an oxide. During the oxidation process, only the upper half of the conductor layer 112 is oxidized as the cap layer 112a, and the lower half of the conductor layer 112 maintains the original conductor material as the control gate 112b. The gate dielectric layer 110, the first spacers 108, the control gates 112b, and the cap layer 112a are, for example, gate structures 124 that collectively function as non-volatile memory.

此外,在另一實施例中,也可以不需要使導體層112的上半部形成氧化物,而是直接在導體層112上形成另一層介電層(未繪示)作為頂蓋層。In addition, in another embodiment, it is not necessary to form an oxide on the upper half of the conductor layer 112, but another dielectric layer (not shown) is directly formed on the conductor layer 112 as a cap layer.

請參照圖1F,移除圖案化罩幕層104,而形成開口114。移除圖案化罩幕層104的方法可以是乾式蝕刻法或濕式蝕刻法。在移除圖案化罩幕層104時,配置在閘極結構124側壁的高溫氧化層106’可以作為保護第一間隙壁108與控制閘極112b之用。之後,於相鄰兩閘極結構124之間的基底100中形成摻雜區116。摻雜區116例如是重摻雜區,以作為非揮發性記憶體的源極區或汲極區。摻雜區116的形成方法例如是以閘極結構124為罩幕進行離子植入製程。Referring to FIG. 1F, the patterned mask layer 104 is removed to form an opening 114. The method of removing the patterned mask layer 104 may be a dry etching method or a wet etching method. When the patterned mask layer 104 is removed, the high temperature oxide layer 106' disposed on the sidewalls of the gate structure 124 can serve as the first spacer 108 and the control gate 112b. Thereafter, a doped region 116 is formed in the substrate 100 between adjacent two gate structures 124. The doped region 116 is, for example, a heavily doped region to serve as a source region or a drain region of the non-volatile memory. The method of forming the doping region 116 is performed, for example, by using the gate structure 124 as a mask for the ion implantation process.

請參照圖1G,於開口114中的閘極結構124側壁上形成第二間隙壁118。第二間隙壁118的材料例如是氮化矽。第二間隙壁118的形成方法例如是先以化學氣相沈積法於基底100上形成填入開口114的間隙壁材料層(未繪示),之後再進行非等向性蝕刻製程移除部分間隙壁材料層,以於高溫氧化層106’的側壁上形成第二間隙壁118。Referring to FIG. 1G, a second spacer 118 is formed on the sidewall of the gate structure 124 in the opening 114. The material of the second spacers 118 is, for example, tantalum nitride. The second spacers 118 are formed by, for example, forming a layer of spacer material (not shown) filled in the opening 114 on the substrate 100 by chemical vapor deposition, and then performing an anisotropic etching process to remove a portion of the gap. A layer of wall material forms a second spacer 118 on the sidewall of the high temperature oxide layer 106'.

請參照圖1H,於基底100上形成介電層120。介電層120例如是覆蓋閘極結構124,且至少填滿開口114中相鄰兩第二間隙壁118之間的間隙。介電層120例如是選用具有與第二間隙壁118不同蝕刻選擇性的材料,其可以是氧化矽。之後,移除部分介電層120與部分墊層102a,以形成接觸窗開口120a。接觸窗開口120a例如是形成在摻雜區116上的相鄰兩第二間隙壁118之間。接觸窗開口120a例如是依序進行微影製程與蝕刻製程。由於介電層120的蝕刻選擇性與第二間隙壁118的蝕刻選擇性不同,因此接觸窗開口120a例如是自對準接觸窗(self-aligned contact,SAC)開口。特別說明的是,在移除部分介電層120時以形成接觸窗開口120a時,即使發生對準失誤的情況,也可以藉由配置在閘極結構124側壁上的第二間隙壁118防止閘極結構124受到損傷。接著,於接觸窗開口120a中填入導體材料層,以於相鄰兩第二間隙壁118之間形成接觸窗插塞122。接觸窗插塞122的材料例如是鎢、銅、鋁或其他合適之金屬。Referring to FIG. 1H, a dielectric layer 120 is formed on the substrate 100. The dielectric layer 120, for example, covers the gate structure 124 and fills at least the gap between two adjacent second spacers 118 in the opening 114. Dielectric layer 120, for example, is selected to have a different etch selectivity than second spacers 118, which may be tantalum oxide. Thereafter, a portion of the dielectric layer 120 and a portion of the pad layer 102a are removed to form a contact opening 120a. Contact window opening 120a is, for example, formed between adjacent two second spacers 118 on doped region 116. The contact window opening 120a is, for example, sequentially performing a lithography process and an etching process. Since the etch selectivity of the dielectric layer 120 is different from the etch selectivity of the second spacers 118, the contact opening 120a is, for example, a self-aligned contact (SAC) opening. In particular, when the portion of the dielectric layer 120 is removed to form the contact opening 120a, the gate can be prevented by the second spacer 118 disposed on the sidewall of the gate structure 124 even if an alignment error occurs. The pole structure 124 is damaged. Next, a layer of conductive material is filled in the contact opening 120a to form a contact plug 122 between the adjacent two spacers 118. The material of the contact window plug 122 is, for example, tungsten, copper, aluminum or other suitable metal.

上述實施例之非揮發性記憶體的製造方法為後閘極製程(gate last process),其藉由圖案化罩幕層104的開口105定義出閘極結構124預形成的位置,再於開口105中形成第一間隙壁108與控制閘極112b,並在移除圖案化罩幕層104之後,形成第二間隙壁118與位於相鄰兩第二間隙壁118之間的接觸窗插塞122。利用化學機械研磨製程使填入開口105的導體層平坦化以形成控制閘極112b,可有助於縮小各個記憶胞的尺寸。此外,藉由在相鄰兩第二間隙壁118之間形成自對準接觸窗,可有效防止因對準失誤等製程誤差所造成的缺陷,以確保元件品質。The method for fabricating the non-volatile memory of the above embodiment is a gate last process, which defines the pre-formed position of the gate structure 124 by patterning the opening 105 of the mask layer 104, and then opening 105. The first spacer 108 and the control gate 112b are formed, and after the patterned mask layer 104 is removed, the second spacer 118 and the contact plug 122 between the adjacent two spacers 118 are formed. The use of a chemical mechanical polishing process to planarize the conductor layer filled in the opening 105 to form the control gate 112b can help to reduce the size of each memory cell. In addition, by forming a self-aligned contact window between the adjacent two second spacers 118, defects caused by process errors such as alignment errors can be effectively prevented to ensure component quality.

以下將繼續以圖1H為例,對本發明之非揮發性記憶體的結構加以說明。The structure of the non-volatile memory of the present invention will be described below by taking FIG. 1H as an example.

請參照圖1H,非揮發性記憶體包括閘極結構124、摻雜區116、第二間隙壁118以及接觸窗插塞122。閘極結構124配置於基底100上。摻雜區116配置於相鄰兩閘極結構124之間的基底100中。第二間隙壁118配置於閘極結構124之側壁上。接觸窗插塞122配置於相鄰兩第二間隙壁118之間。Referring to FIG. 1H, the non-volatile memory includes a gate structure 124, a doped region 116, a second spacer 118, and a contact plug 122. The gate structure 124 is disposed on the substrate 100. The doped region 116 is disposed in the substrate 100 between the adjacent two gate structures 124. The second spacers 118 are disposed on sidewalls of the gate structures 124. The contact window plug 122 is disposed between the adjacent two second spacers 118.

基底100例如是半導體基底,如N型或P型之矽基底、三五族半導體基底等。基底100上例如是配置有墊層102a。墊層102a例如是位於閘極結構124與基底100之間,且位於第二間隙壁118與基底100之間。墊層102a的材料例如是氧化矽。在一實施例中,基底100上還配置有介電層120。介電層120例如是覆蓋閘極結構124與第二間隙壁118,且接觸窗插塞122例如是配置於介電層120中。介電層120的材料例如是氧化矽。The substrate 100 is, for example, a semiconductor substrate such as an N-type or P-type germanium substrate, a tri-five semiconductor substrate, or the like. For example, a pad layer 102a is disposed on the substrate 100. The pad layer 102a is, for example, between the gate structure 124 and the substrate 100 and between the second spacers 118 and the substrate 100. The material of the underlayer 102a is, for example, cerium oxide. In an embodiment, the substrate 100 is further provided with a dielectric layer 120. The dielectric layer 120 covers, for example, the gate structure 124 and the second spacers 118, and the contact plug 122 is disposed, for example, in the dielectric layer 120. The material of the dielectric layer 120 is, for example, ruthenium oxide.

各閘極結構124包括控制閘極112b、閘介電層110與二個第一間隙壁108。控制閘極112b配置於基底100上,且控制閘極的兩側具有二個凹陷部126。也就是說,控制閘極112b的頂部面積例如是大於底部面積,而凹陷部126是配置在控制閘極112b下方靠近閘介電層110的兩側位置。控制閘極112b的材料例如是摻雜多晶矽。閘介電層110配置於控制閘極122b與墊層102a之間。閘介電層110的材料例如是氧化矽。第一間隙壁108分別配置於凹陷部126中。在一實施例中,第一間隙壁108與控制閘極112b相接觸。第一間隙壁108的材料可以是會使電荷陷入於其中的材料,其例如是氮化矽、鉭氧化矽、鈦酸鍶矽或鉿氧化矽等。在一實施例中,各閘極結構124更包括頂蓋層112a,配置於控制閘極112b上。頂蓋層112a的材料可以為氧化物,例如是摻雜多晶矽的氧化物。Each gate structure 124 includes a control gate 112b, a gate dielectric layer 110 and two first spacers 108. The control gate 112b is disposed on the substrate 100, and has two recessed portions 126 on both sides of the control gate. That is, the top area of the control gate 112b is, for example, greater than the bottom area, and the recess 126 is disposed at a position below the control gate 112b near the gate dielectric layer 110. The material of the control gate 112b is, for example, doped polysilicon. The gate dielectric layer 110 is disposed between the control gate 122b and the pad layer 102a. The material of the gate dielectric layer 110 is, for example, hafnium oxide. The first spacers 108 are respectively disposed in the recesses 126. In an embodiment, the first spacer 108 is in contact with the control gate 112b. The material of the first spacers 108 may be a material that traps charges therein, such as tantalum nitride, tantalum oxide, barium titanate or tantalum oxide. In an embodiment, each of the gate structures 124 further includes a cap layer 112a disposed on the control gate 112b. The material of the cap layer 112a may be an oxide such as an oxide doped with polysilicon.

在一實施例中,非揮發性記憶體更包括高溫氧化層106’,配置在閘極結構124與第二間隙壁118之間,並配置於第一間隙壁108與墊層102a之間。配置在閘極結構124側壁的高溫氧化層106’例如是可作為保護第一間隙壁108與控制閘極112b之用。In one embodiment, the non-volatile memory further includes a high temperature oxide layer 106' disposed between the gate structure 124 and the second spacers 118 and disposed between the first spacers 108 and the pad layer 102a. The high temperature oxide layer 106' disposed on the sidewall of the gate structure 124 can be used, for example, to protect the first spacer 108 and the control gate 112b.

第二間隙壁118配置在位於摻雜區116上方的墊層102a上。在一實施例中,第二間隙壁118的蝕刻選擇性與介電層120的蝕刻選擇性不同。第二間隙壁118的材料例如是氮化矽。The second spacers 118 are disposed on the pad layer 102a above the doped regions 116. In an embodiment, the etch selectivity of the second spacers 118 is different from the etch selectivity of the dielectric layer 120. The material of the second spacers 118 is, for example, tantalum nitride.

接觸窗插塞122例如是自對準接觸窗插塞而配置在相鄰兩第二間隙壁118之間的摻雜區116上,並與摻雜區118相接觸。接觸窗插塞122的材料例如是鎢、銅、鋁或其他合適之金屬。The contact window plug 122 is, for example, a self-aligned contact window plug disposed on the doped region 116 between the adjacent two second spacers 118 and in contact with the doped region 118. The material of the contact window plug 122 is, for example, tungsten, copper, aluminum or other suitable metal.

綜上所述,本發明之非揮發性記憶體的製造方法利用圖案化罩幕層的開口配置定義閘極結構預形成的位置,再於開口中形成第一間隙壁及作為控制閘極的導體層,並藉由對導體層進行平坦化製程,因此可有效減小記憶胞的尺寸。而且,本發明之方法在閘極結構的側壁上形成第二間隙壁,並在相鄰兩第二間隙壁之間形成自對準接觸窗,因此可有效防止製程誤差所造成的缺陷,以確保元件品質。In summary, the method for manufacturing a non-volatile memory of the present invention defines a pre-formed position of the gate structure by using an opening configuration of the patterned mask layer, and then forms a first spacer and a conductor as a control gate in the opening. The layer is formed by planarizing the conductor layer, thereby effectively reducing the size of the memory cell. Moreover, the method of the present invention forms a second spacer on the sidewall of the gate structure and forms a self-aligned contact window between the adjacent two spacers, thereby effectively preventing defects caused by process errors and ensuring Component quality.

本發明之非揮發性記憶體藉由在控制閘極兩側配置凹陷部,並在凹陷部中配置第一間隙壁,因此記憶胞會具有較小的尺寸。The non-volatile memory of the present invention has a small size by arranging a depressed portion on both sides of the control gate and arranging the first spacer in the depressed portion.

此外,本發明之非揮發性記憶體及其製造方法可以應用在現有的半導體元件中,特別是可用於嵌入式(embedded)非揮發性記憶體的製程中,並能夠與現有的邏輯製程相整合,製程簡單且可以減少光罩的使用,降低製造成本。In addition, the non-volatile memory of the present invention and the method of fabricating the same can be applied to existing semiconductor components, particularly in the process of embedded non-volatile memory, and can be integrated with existing logic processes. The process is simple and can reduce the use of the mask and reduce the manufacturing cost.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100...基底100. . . Base

102、102a...墊層102, 102a. . . Cushion

104...圖案化罩幕層104. . . Patterned mask layer

105、114...開口105, 114. . . Opening

106、106’...高溫氧化層106, 106’. . . High temperature oxide layer

108...第一間隙壁108. . . First spacer

110...閘介電層110. . . Gate dielectric layer

112...導體層112. . . Conductor layer

112a...頂蓋層112a. . . Roof layer

112b...控制閘極112b. . . Control gate

116...摻雜區116. . . Doped region

118...第二間隙壁118. . . Second spacer

120...介電層120. . . Dielectric layer

120a...接觸窗開口120a. . . Contact window opening

122...接觸窗插塞122. . . Contact window plug

124...閘極結構124. . . Gate structure

126...凹陷部126. . . Depression

圖1A至圖1H是依照本發明之一實施例之非揮發性記憶體的製造流程剖面示意圖。1A through 1H are schematic cross-sectional views showing a manufacturing process of a non-volatile memory according to an embodiment of the present invention.

100...基底100. . . Base

102a...墊層102a. . . Cushion

106’...高溫氧化層106’. . . High temperature oxide layer

108...第一間隙壁108. . . First spacer

110...閘介電層110. . . Gate dielectric layer

112...導體層112. . . Conductor layer

112a...頂蓋層112a. . . Roof layer

112b...控制閘極112b. . . Control gate

114...開口114. . . Opening

116...摻雜區116. . . Doped region

118...間隙壁118. . . Clearance wall

120...介電層120. . . Dielectric layer

120a...接觸窗開口120a. . . Contact window opening

122...接觸窗插塞122. . . Contact window plug

124...閘極結構124. . . Gate structure

126...凹陷部126. . . Depression

Claims (17)

一種非揮發性記憶體的製造方法,包括:提供一基底;於該基底上形成一圖案化罩幕層,且該圖案化罩幕層具有多個開口;於各該些開口中的該圖案化罩幕層之側壁上形成多個第一間隙壁;於各該些開口中的相鄰兩第一間隙壁之間的該基底上形成一閘介電層;於基底上形成一導體層,至少填滿該些開口並覆蓋該些第一間隙壁;對該導體層進行一平坦化製程,以形成多個閘極結構;移除該圖案化罩幕層;於相鄰兩閘極結構之間的該基底中形成一摻雜區;於該些閘極結構之側壁上形成多個第二間隙壁,且該些第二間隙壁未被該導體層所覆蓋;於各該些閘極結構與各該些第二間隙壁之間形成一高溫氧化層,部分該高溫氧化層位於該些閘極結構下方,且該高溫氧化層是形成於該些閘極結構形成之前;以及於相鄰兩第二間隙壁之間形成一接觸窗插塞。 A method of fabricating a non-volatile memory, comprising: providing a substrate; forming a patterned mask layer on the substrate, and the patterned mask layer has a plurality of openings; the patterning in each of the openings Forming a plurality of first spacers on sidewalls of the mask layer; forming a gate dielectric layer on the substrate between adjacent ones of the plurality of openings; forming a conductor layer on the substrate, at least Filling the openings and covering the first spacers; performing a planarization process on the conductor layer to form a plurality of gate structures; removing the patterned mask layer; between adjacent gate structures a doped region is formed in the substrate; a plurality of second spacers are formed on sidewalls of the gate structures, and the second spacers are not covered by the conductor layer; and the gate structures are Forming a high temperature oxide layer between each of the second spacers, a portion of the high temperature oxide layer is located under the gate structures, and the high temperature oxide layer is formed before the gate structures are formed; A contact window plug is formed between the two gap walls. 如申請專利範圍第1項所述之非揮發性記憶體的製造方法,於進行該平坦化製程之後,更包括進行一氧化製程,以使該導體層的上半部形成氧化物。 The method for manufacturing a non-volatile memory according to claim 1, after performing the planarization process, further comprising performing an oxidation process to form an oxide in an upper portion of the conductor layer. 如申請專利範圍第1項所述之非揮發性記憶體的 製造方法,於形成該圖案化罩幕層之後與形成該些第一間隙壁之前,於該基底上順應性地形成該高溫氧化層。 Non-volatile memory as described in claim 1 In the manufacturing method, the high temperature oxide layer is conformally formed on the substrate after forming the patterned mask layer and before forming the first spacers. 如申請專利範圍第1項所述之非揮發性記憶體的製造方法,於形成該圖案化罩幕層之後與形成該些第一間隙壁之前,更包括:進行一原位蒸汽生成(in-situ steam generation,ISSG)製程;以及進行一濕式浸泡(wet dip)製程。 The method for manufacturing a non-volatile memory according to the first aspect of the invention, after forming the patterned mask layer and before forming the first spacers, further comprising: performing an in-situ steam generation (in- Situ steam generation, ISSG) process; and a wet dip process. 如申請專利範圍第1項所述之非揮發性記憶體的製造方法,其中形成該接觸窗插塞的方法包括:於該基底上形成一介電層;於該介電層中形成一接觸窗開口;以及於該接觸窗開口中填入一導體材料層。 The method of manufacturing the non-volatile memory of claim 1, wherein the method of forming the contact plug comprises: forming a dielectric layer on the substrate; forming a contact window in the dielectric layer Opening; and filling a contact material window with a layer of conductive material. 如申請專利範圍第5項所述之非揮發性記憶體的製造方法,其中該介電層的蝕刻選擇性與該第二間隙壁的蝕刻選擇性不同。 The method of fabricating a non-volatile memory according to claim 5, wherein the etching selectivity of the dielectric layer is different from the etching selectivity of the second spacer. 如申請專利範圍第1項所述之非揮發性記憶體的製造方法,其中該些第一間隙壁的頂面高度低於該圖案化罩幕層的頂面高度。 The method for manufacturing a non-volatile memory according to claim 1, wherein a top surface height of the first spacers is lower than a top surface height of the patterned mask layer. 如申請專利範圍第1項所述之非揮發性記憶體的製造方法,其中該些第一間隙壁的材料包括氮化矽。 The method for manufacturing a non-volatile memory according to claim 1, wherein the material of the first spacers comprises tantalum nitride. 如申請專利範圍第1項所述之非揮發性記憶體的製造方法,其中該些第二間隙壁的材料包括氮化矽。 The method for manufacturing a non-volatile memory according to claim 1, wherein the material of the second spacers comprises tantalum nitride. 一種非揮發性記憶體,包括:多個閘極結構,配置於一基底上,各該些閘極結構包括: 一控制閘極,配置於該基底上,該控制閘極的兩側具有二第一間隙壁;以及一閘介電層,配置於該控制閘極與該基底之間;多個摻雜區,分別配置於相鄰兩閘極結構之間的該基底中;多個第二間隙壁,分別配置於各該些閘極結構之側壁上,且該些第二間隙壁未被該控制閘極所覆蓋;一高溫氧化層,配置於各該些閘極結構與各該些第二間隙壁之間,且部分該高溫氧化層位於該些閘極結構下方;以及多個接觸窗插塞,分別配置於相鄰兩第二間隙壁之間。 A non-volatile memory comprising: a plurality of gate structures disposed on a substrate, each of the gate structures comprising: a control gate is disposed on the substrate, the control gate has two first spacers on both sides thereof; and a gate dielectric layer disposed between the control gate and the substrate; a plurality of doped regions, Arranging respectively in the substrate between two adjacent gate structures; a plurality of second spacers respectively disposed on sidewalls of each of the gate structures, and the second spacers are not configured by the control gate Covering a high temperature oxide layer disposed between each of the gate structures and each of the second spacers, and a portion of the high temperature oxide layer is located under the gate structures; and a plurality of contact window plugs are respectively disposed Between adjacent two second gap walls. 如申請專利範圍第10項所述之非揮發性記憶體,其中各該些閘極結構更包括一頂蓋層,配置於該控制閘極上。 The non-volatile memory of claim 10, wherein each of the gate structures further comprises a cap layer disposed on the control gate. 如申請專利範圍第10項所述之非揮發性記憶體,更包括一介電層,配置於該基底上,且該些接觸窗插塞配置於該介電層中。 The non-volatile memory of claim 10, further comprising a dielectric layer disposed on the substrate, and the contact plugs are disposed in the dielectric layer. 如申請專利範圍第12項所述之非揮發性記憶體,其中該介電層的蝕刻選擇性與該第二間隙壁的蝕刻選擇性不同。 The non-volatile memory of claim 12, wherein the etching selectivity of the dielectric layer is different from the etching selectivity of the second spacer. 如申請專利範圍第10項所述之非揮發性記憶體,其中各該些第一間隙壁與該控制閘極相接觸。 The non-volatile memory of claim 10, wherein each of the first spacers is in contact with the control gate. 如申請專利範圍第10項所述之非揮發性記憶體,其中各該些接觸窗插塞為自對準接觸窗插塞。 The non-volatile memory of claim 10, wherein each of the contact window plugs is a self-aligned contact window plug. 如申請專利範圍第10項所述之非揮發性記憶 體,其中該些第一間隙壁的材料包括氮化矽。 Non-volatile memory as described in claim 10 The body, wherein the materials of the first spacers comprise tantalum nitride. 如申請專利範圍第10項所述之非揮發性記憶體,其中該些第二間隙壁的材料包括氮化矽。 The non-volatile memory of claim 10, wherein the material of the second spacers comprises tantalum nitride.
TW098108039A 2009-03-12 2009-03-12 Non-volatile memory and method for fabricating the same TWI447860B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098108039A TWI447860B (en) 2009-03-12 2009-03-12 Non-volatile memory and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098108039A TWI447860B (en) 2009-03-12 2009-03-12 Non-volatile memory and method for fabricating the same

Publications (2)

Publication Number Publication Date
TW201034128A TW201034128A (en) 2010-09-16
TWI447860B true TWI447860B (en) 2014-08-01

Family

ID=44855410

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098108039A TWI447860B (en) 2009-03-12 2009-03-12 Non-volatile memory and method for fabricating the same

Country Status (1)

Country Link
TW (1) TWI447860B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316323B1 (en) * 2000-03-21 2001-11-13 United Microelectronics Corp. Method for forming bridge free silicide by reverse spacer
US20050087802A1 (en) * 2003-10-23 2005-04-28 Park Jeong H. Semiconductor devices having dual spacers and methods of fabricating the same
TW200611377A (en) * 2004-09-29 2006-04-01 Promos Technologies Inc Self-aligned non-volatile memory and method of forming the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316323B1 (en) * 2000-03-21 2001-11-13 United Microelectronics Corp. Method for forming bridge free silicide by reverse spacer
US20050087802A1 (en) * 2003-10-23 2005-04-28 Park Jeong H. Semiconductor devices having dual spacers and methods of fabricating the same
TW200611377A (en) * 2004-09-29 2006-04-01 Promos Technologies Inc Self-aligned non-volatile memory and method of forming the same

Also Published As

Publication number Publication date
TW201034128A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
US7371638B2 (en) Nonvolatile memory cells having high control gate coupling ratios using grooved floating gates and methods of forming same
KR100763337B1 (en) Semiconductor device having buried gate line and method of fabricating the same
US7659159B2 (en) Method of manufacturing a flash memory device
TWI514519B (en) Integrated circuit structure and method of fabricating the same
US8216938B2 (en) Method for forming semiconductor device
CN110061001B (en) Semiconductor element and manufacturing method thereof
KR20210105048A (en) Semiconductor devices
CN107808882B (en) Semiconductor integrated circuit structure and manufacturing method thereof
US20120252186A1 (en) Semiconductor device and method for forming the same
US20220077152A1 (en) Semiconductor devices
US10971508B2 (en) Integrated circuit and method of manufacturing the same
US20230290727A1 (en) Semiconductor devices and methods of manufacturing the same
KR20130006903A (en) Isolation layer structures and methods of forming the same, semiconductor devices having the same, and methods of manufacturing the semiconductor devices
US9023726B1 (en) Method of fabricating semiconductor device
TWI685085B (en) Memory device and method of manufacturing the same
CN108831890B (en) Preparation method of three-dimensional memory
US7713820B2 (en) Method for manufacturing non-volatile memory
KR100889313B1 (en) Method for manufacturing semiconductor device
US20230099289A1 (en) Semiconductor memory structure and fabrication method thereof
US8084320B2 (en) Non-volatile memory and method for fabricating the same
TWI447860B (en) Non-volatile memory and method for fabricating the same
CN110246841B (en) Semiconductor element and manufacturing method thereof
TWI508232B (en) Non-volatile memory cell and method of the same
CN110534150B (en) Memory device and method of manufacturing the same
KR20120076913A (en) Method for fabricating a contact plug in semiconductor device having buried gate