TWI443996B - 用於編碼針對下鏈傳輸之上鏈確認的方法及裝置 - Google Patents

用於編碼針對下鏈傳輸之上鏈確認的方法及裝置 Download PDF

Info

Publication number
TWI443996B
TWI443996B TW96122171A TW96122171A TWI443996B TW I443996 B TWI443996 B TW I443996B TW 96122171 A TW96122171 A TW 96122171A TW 96122171 A TW96122171 A TW 96122171A TW I443996 B TWI443996 B TW I443996B
Authority
TW
Taiwan
Prior art keywords
ack
data blocks
data
transmission
sequence
Prior art date
Application number
TW96122171A
Other languages
English (en)
Other versions
TW200816681A (en
Inventor
Bong Hoe Kim
Young Woo Yun
Ki Jun Kim
Eun Sun Kim
Joon Kui Ahn
Suk Hyon Yoon
Dong Youn Seo
Hak Seong Kim
Jung Hoon Lee
In Jae Jung
Original Assignee
Lg Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020060054563A external-priority patent/KR101265596B1/ko
Priority claimed from KR1020060054564A external-priority patent/KR101253162B1/ko
Priority claimed from KR1020060074636A external-priority patent/KR101285379B1/ko
Application filed by Lg Electronics Inc filed Critical Lg Electronics Inc
Publication of TW200816681A publication Critical patent/TW200816681A/zh
Application granted granted Critical
Publication of TWI443996B publication Critical patent/TWI443996B/zh

Links

Description

用於編碼針對下鏈傳輸之上鏈確認的方法及裝置
本發明係關於無線通信,具體而言,係關於對下鏈傳輸之上鏈確認編碼。
一種多載波通信機制透過多個正交的副載波來傳輸資料。此等機制之實例通常需要較高的資料傳輸率,其包括無線局域網(LAN)以及行動網際網路技術。典型的多載波通信機制包括正交分頻多工(OFMD)、離散傅立葉轉換轉換-展頻-正交分頻多工(DFT-S-OFDM或DFT-展頻-OFDM)(也可稱作SC-FDMA),以及正交分頻多工存取(OFDMA)。雖然OFDM和OFDMA藉由保持副載波的正交性可達到較高的傳輸速率,然而此等技術通常具有較高的峰值對均值功率比(PAPR)。舉例而言,DFT-S-OFDMA係一種可被實施以克服PAPR問題的技術。藉由在產生OFDM訊號之前首先利用DFT矩陣將訊號在頻域上擴展,可實現DFT-S-OFDMA技術。然後可將該等已被展頻之訊號調變,並以吾人熟知的利用傳統OFDM技術之方式將其傳輸。現將描述此技術。
第1圖係描述根據傳統DFT-S-OFDMA系統產生傳輸訊號之流程圖。根據方塊110和120,典型的DFT-S-OFDM無線通信系統在產生OFDM訊號之前利用DFT矩陣將訊號展頻。考慮一等式,其中“s”係輸入資料符號,“x”係在頻域上擴展之資料,以及“Nb ”係對於特定使用者之副載波數目。在此情況下,可藉由利用如下等式得到擴展資料“x”: 其中係一用來擴展該輸入資料符號的Nb xNb DFT矩陣。
根據方塊130、140及150,擴展向量“x”示出為根據一副載波對映技術對映至一副載波,然後透過一反離散傅立葉轉換(IDFT)模組被轉換至一時域,以得到一用於傳輸到接收實體之訊號。可利用以下方式得到該傳輸訊號“y”: 其中F N×N 係一NxN DFT矩陣,用來將一頻域訊號轉換至一時域訊號。連同一插入的循環字首(方塊160)將以此方式產生的訊號“y”傳輸。
然後在多個載波系統的上鏈傳輸資料、導引及控制資訊,例如包括該DFT-S-OFDM系統。可將控制資訊劃分為與資料解調變相關的資料相關控制資訊,以及與資料解調變無關的非資料相關控制資訊。
資料相關控制資訊包括需要用來重構由使用者設備(UE)傳輸的資料之控制資訊。例如,資料相關控制資訊可包括與傳輸格式相關的資訊,或與混合自動重復請求(HARQ)相關的格式或資訊。該資料相關的控制資訊量可根據一上鏈資料排程機制而調整。
在另一態樣,非資料相關控制資訊係下鏈傳輸所需要的控制資訊。例如,該非資料相關控制資訊可包括用於HARQ操作的確認(ACK)或非確認(NACK)資訊,以及用於該下鏈的鏈接調整的通道品質指示器(CQI)。
在上鏈多載波或單載波FDMA系統中,可將控制資訊劃分為用於解調變使用者資料之資料相關控制資訊,和用於下鏈傳輸之非資料相關控制資訊。OFDM之基本原理包括將一具有較高資料傳輸率之資料流劃分為複數個資料流,該等複數個資料流之每一個具有較低的資料傳輸率,然後利用複數個載波同時傳輸該等資料流。將該等載波之每一個稱為一副載波。由於該等OFDM載波之間存在正交性,所以如果該等載波之頻率分量彼此重疊,傳輸終端仍能檢測該等頻率分量。
經由一串列-平行轉換器將具有較高資料傳輸率之資料流轉換為複數個具有較低資料傳輸率之資料流。將該等被轉換為平行的資料流之每一個與一相應的副載波相乘,將所得乘積加到一起,然後傳輸到接收終端。
可藉由IDFT將由串列-平行轉換器產生之平行資料流作為複數個副載波傳輸。藉由利用反快速傅立葉轉換(IFFT)可有效地實施IDFT。
隨著具有較低資料傳輸率之副載波的符號保持時間增大,由多路徑延時擴展引起之相對訊號差將在時域減小。藉由在OFDM符號之間插入比通道延時擴展更長的保護間隔,可降低符號間干擾。如果OFDM訊號之一部分被複製到該保護間隔,並被配置在符號的開始部分,則OFDM符號被循環地擴展從而被保護。
當在上鏈中傳輸控制資訊時,如果UE給非資料相關控制資訊分配足夠數目之副載波,則用於資料傳輸的頻率資源的量將減少。因此此技術導致大量副載波不能夠被分配,因此影響了在頻域內實現多樣增益的能力。
一典型的UE在上鏈中在非資料相關的控制資訊之間分別傳輸ACK/NACK以及CQI訊號。舉例而言,UE以一特定的時間週期傳輸ACK/NACK訊號、CQI訊號,以及此等訊號二者。然而,當處理非資料相關的控制資訊時,傳統多載波系統通常不在此等訊號之間做區分。此阻止了對頻率資源的高效利用。
如果在DFT-S-OFDM通信系統的上鏈中利用一單一離散傅立葉轉換(DFT)來傳輸ACK/NACK以及CQI訊號,則通常大量使用者共用該相同的資源單元。例如,如果一使用者傳輸ACK/NACK訊號,而另一使用者利用相同的資源單元傳輸CQI訊號,則對於一基地台而言,其將不能夠解調該等兩個使用者的ACK/NACK以及CQI訊號。
本發明的特徵及優點將在下文中闡述,部分依照說明書內容可立即明白,或透過實施本發明便能理解。透過在此書面說明及其申請專利範圍,以及隨附圖式中特別指出的結構,將實現並獲得本發明的目的以及其他優點。
根據本發明一實施例,一種用於對下鏈傳輸之上鏈確認編碼的方法包括接收複數個資料區塊,從而使該等資料區塊之每一個包括一相關的循環冗餘檢查(CRC)。該方法更包括藉由檢查該等資料區塊之每一個的CRC來確定該等資料區塊之每一個的接收狀態,以及產生一指示所有該等資料區塊的接收狀態之回應序列。
根據本發明一特徵,該等資料區塊包括一主傳輸區塊和一副傳輸區塊。
根據本發明另一特徵,該回應序列係一離散回應序列。
根據本發明另一特徵,該方法更包括產生該回應序列,作為一指示所有該等資料區塊的接收狀態之單一回應序列。
根據本發明另一特徵,從節點B接收該等資料區塊。
根據本發明一態樣,該狀態可係一確認(ACK),其識別一已經無錯誤接收之資料區塊,或者係一否定確認(NACK),其識別一已經錯誤接收之資料區塊。
根據本發明另一態樣,該方法更包括利用QPSK調變來調變該回應序列。
根據本發明另一態樣,該方法更包括將該回應序列傳輸到節點B。
根據本發明另一態樣,下鏈傳輸包括多輸入多輸出(MIMO)傳輸。
根據本發明一特徵,該方法更包括平行接收該等資料區塊。
根據本發明另一特徵,該下鏈傳輸包括分時雙工(TDD)傳輸。
根據本發明另一特徵,該方法更包括或者串列地接收該等資料區塊或者平行接收該等資料區塊。
根據本發明一替代實施例,一種用於接收對下鏈傳輸之編碼上鏈確認的方法包括平行傳輸複數個資料區塊,從而該等資料區塊之每一個包括一相關的循環冗餘檢查(CRC)。該方法更包括接收一指示所有該等資料區塊之接收狀態的單一回應序列。
根據本發明另一替代實施例,一種用於對下鏈傳輸之上鏈確認編碼的可攜式裝置包括一接收器及一處理器,該接收器被配置以接收複數個資料區塊,從而使該等資料區塊之每一個包括一相關的循環冗餘檢查(CRC),該處理器被配置以通過檢查該等資料區塊之每一個的CRC來確定該等資料區塊之每一個的接收狀態。該可攜式裝置更包括一發送器,其用於傳輸一指示所有該等資料區塊之接收狀態的回應序列。
根據本發明另一實施例,一種在無線通訊系統中可操作並且被設置以接收對下鏈傳輸之編碼上鏈確認的傳輸實體,其包括一傳輸器及一接收器,該傳輸器用於平行傳輸複數個資料區塊,從而使該等資料區塊之每一個包括一相關的循環冗餘檢查(CRC),該接收器用於接收一指示所有該等資料區塊之接收狀態的單一回應序列。
根據本發明另一實施例,一種用於對下鏈傳輸之上鏈確認編碼的方法包括:接收複數個資料區塊,從而使該等資料區塊之每一個包括一相關的循環冗餘檢查(CRC),透過檢查該等資料區塊之每一個的CRC來確定該等資料區塊之每一個的接收狀態,以及根據該等狀態產生一回應位元。該方法更包括將該回應位元映射到一固定長度的序列以產生一對映序列,在一上鏈傳輸中傳輸該對映序列,並且以一預定時間週期重復該對映及傳輸。
藉由參考附圖之對實施例的詳細描述,於熟習此項技術者將容易理解本發明之此等及其他實施例,本發明並不侷限於任何所公開的特定實施例。
在以下詳細描述中,將參考所附圖式,該等圖式作為本發明之部分,並以說明本發明具體實施例方式示出。本技術領域內普通技術人員應理解可利用其他實施例,可作結構上、電氣上以及過程上的更改而不背離本發明之範疇。在所有圖式中,儘可能用相同參考數字來指示相同或類似部件。
結合一UE將描述各實施例。但是,此說明亦可用於其他類型無線終端,例如行動終端、行動台及其類似物。
在上鏈中擴展控制資訊向量
第2A-2C圖係根據本發明一實施例,說明在一DFT-S-OFDM無線通訊系統中可操作的一上鏈傳輸實體中的各元件。首先考慮在此一通訊系統中,將UE設置為傳輸實體。該UE可接收並區分例如ACK/NACK、通道品質指示器(CQI)之控制資訊以及其他類型非資料相關控制資訊。此控制資訊與資料解調變不相關。通常,一ACK/NACK係一向量,其包括基於插入到下鏈訊號之循環冗餘碼(cyclic redundancy codes,CRC)數目的一或多個位元。該CQI係一向量,其通常包括複數個位元以將一通道品質狀態報告給例如一相關基地台或節點B。CQI有助於在基地台下鏈排程。藉由非限制實例,將描述以下實施例,其中ACK/NACK向量大小為“1”且CQI向量大小為“m”。
第2A圖示出在上鏈中之一UE傳輸的集中擴展該控制資訊向量(透過DFT後大小為1+m)以獲得大小為n位元(n=1+m)的擴展向量(X’ACK+CQI ),在大小為1的ACK/NACK向量與大小為m的CQI向量之間不作區分。另一操作在透過副載波對映得到的向量(X’ACK+CQI )上執行反快速傅立葉轉換(IFFT),以得到傳輸時間資訊(yACK+CQI )。
在此情況下,如果使用相同的資源區塊,一UE傳輸一ACK/NACK,而另一UE傳輸CQI,則接收基地台難於選擇IDFT用於解擴展向量X’ACK+CQI ,該向量透過從向量X’ACK+CQI 中去除每一副載波而得到。可藉由基地台透過一快速傅立葉轉換(FFT)得到向量X’ACK+CQI ,該快速傅立葉轉換對應在傳輸端執行的IFFT。由UE傳輸的訊號在向量X”ACK+CQI 和向量X’ACK+CQI 中典型地不加區分地擴展。此係因為如果兩個或多個UE使用相同的資源區塊,則可能有必要在用來分析從該等UE接收到的訊號的IDFT之間加以區分。
第2B圖示出根據本發明之一替代實施例在一DFT-S-OFDM無線通訊系統中用於上鏈傳輸的另一配置。設置為根據此圖式傳輸的UE區分並接收各種類型的控制資訊(如以上敍述)。在此實例中,在將此等參數對映至相應副載波之前,該UE擴展ACK/NACK及CQI控制資訊。因為採用不同DFT對大小為1的ACK/NACK向量(XACK )以及大小為m的CQI向量(XCQI )進行擴展,因此其擴展向量(X’ACK )及(X’CQI )大小分別為1和m,亦包括ACK/NACK資訊及CQI資訊。
擴展向量(X’ACK )及(X’CQI )被示出對映到相應副載波,該等向量經過IFFT並隨後傳輸到該基地台。根據此實施例,如果一個UE傳輸一ACK/NACK,且另一UE利用相同的資源區塊傳輸CQI,則該基地台可容易地選擇IDFT用於解擴展向量X’ACK 及X’CQI ,該等向量係分別從向量X”ACK 及X”CQI 中移除到副載波而得到。可在基地台透過一FFT(其對應在傳輸端執行的IFFT)得到該等向量X”ACK 及X”CQI ,所示出情況係該UE。
第2B圖係在諸如ACK/NACK及CQI之控制資訊之間區分的實例。但使用該示出之技術可類似區分其他類型資訊。例如,還可將此圖式之技術運用到此場合,其中兩個或多個控制訊號(或資訊)被接收,並在被對映至一頻率資源用於透過上鏈傳輸之前,採用不同DFT擴展。此允許接收上鏈訊號的接收實體透過從頻率資源解對映的控制資訊在傳輸的兩個或更多類型控制資訊之間區分。
第2B圖之實施例利用分離的DFT擴展控制資訊,但本發明亦可能採用及構想替代實施例。例如,分離DFT過程可替代性地包括任何過程,只要此等過程允許實體接收上鏈訊號以在不同類型控制資訊之間區分。
第2C圖示出根據本發明一替代實施例在DFT-S-OFDM無線通訊系統中為上鏈傳輸的另一配置。在此實施例中,該傳輸UE例如直接將ACK/NACK控制資訊對映至一副載波。此實現不需執行DFT,結果可得到向量X”ACK 。第2C圖更示出使用DFT轉換CQI控制資訊,然後將結果擴展向量X’CQI 對映至一副載波以得到向量X”CQI
通常,對應ACK/NACK資訊的向量大小小於對應CQI資訊的向量大小。因此由擴展對應ACK/NACK資訊的向量所得到效果相對較小。此實施例被簡化,省略對ACK/NACK訊號的DFT處理。但是,此實施例達成與第2B圖情況類似的效果,因為該基地台可在已經經過FFT的資訊項之間正確區分。如果需要,第2C圖之實施例可替代性包括任意分離過程,而非該分離的DFT擴展,假定此過程允許接收實體在不同控制資訊之間區分。
第2C圖中的實施例可更包括一用於改良峰值均值功率比(PAPR)性能的結構。例如,如果ACK/NACK訊號直接對映至一沒有DFT的副載波,其然後經過IFFT以用於傳輸,在DFT及IFFT之間的補償效果可降級PAPR性能(相對於可能由第2B圖達到的性能)。因此,根據第2C圖設置的UE可選擇一指定的副載波用於改良PAPR性能,並然後將ACK/NACK訊號對映到所選擇的副載波。
第3A圖描述在一DFT-S-OFDM無線通訊系統中之一採用分時多工(TDM)之上鏈子訊框格式。第3B圖描述在一DFT-S-OFDM無線通訊系統中之一採用分頻多工(FDM)之上鏈子訊框格式。
概言之,在DFT-S-OFDM無線通訊系統中的ACK/NACK控制資訊可由一位元或者相對較少數目位元來表示。因此,由於在無線通道中存在各種因素,其位元錯誤率(BER)可能受到某種程度降級。在DFT-S-OFDM無線通訊系統中典型的多工方法包括TDM(第3A圖)及FDM(第3B圖)。因此,根據一實施例之傳輸UE將典型地重復傳輸ACK/NACK資訊以改良BER。
考慮其中由幾個UE使用TDM的情況。在此一情形中,可在一於一指定頻率上之子訊框(例如第3A圖的LB #3)中分配的一長區塊(LB)中重復傳輸ACK/NACK資訊。此配置將典型地改良BER特性。
可藉由在一頻帶上順序傳輸ACK/NACK資訊,或者藉由將ACK/NACK資訊對映至一指定序列,可實現在一指定頻率上重復傳輸。可根據需要在此ACK/NACK資訊上執行DFT。如需要,還可利用區塊編碼重復傳輸ACK/NACK資訊。
現考慮利用FDM來多工從多個UE傳輸的資訊的情況。在此情形下,可在於一子訊框(例如第3B圖中的LB #1-LB #6)中的多個LB中重復傳輸ACK/NACK資訊。此配置將也可典型地改良BER特性。在某些情況下,可回應下鏈資訊使用多個天線傳輸多個ACK/NACK。在一實施例中,ACK/NACK訊號的數目等於插入到下鏈資料中的CRC數目(如上所述)。
一UE可作為回應傳輸(上鏈)對應所接收CRC數量的一定數目的ACK/NACK訊號,其中一CRC被插入透過在下鏈中的每一天線傳輸的資訊之每一部分。如果UE以此方式傳輸複數個ACK/NACK,則該UE還可以一指定數目次數重復傳輸該等ACK/NACK訊號。此等操作可用來改良所傳輸的ACK/NACK訊號的BER特性。
例如,考慮ACK/NACK訊號的數目為M。該等M個ACK/NACK訊號可表示為ACK/NACK1 ,ACK/NACK2 ,...,ACK/NACKM ,指定的次為K。在此情況下,可根據下列順序重復傳輸ACK/NACK訊號。
{(ACK/NACK1-1 ,ACK/NACK1-2 ,...ACK/NACK1-K ),{(ACK/NACK2-1 ,ACK/NACK2-2 ,...ACK/NACK2-K ),...,(ACK/NACKM-1 ,ACK/NACKM-2 ,...ACK/NACKM-K )}.
根據一替代技術,可根據以下順序重復傳輸ACK/NACK訊號:{(ACK/NACK1-1 ,ACK/NACK2-1 ,...ACK/NACKM-1 ),{(ACK/NACK1-2 ,ACK/NACK2-2 ,...ACK/NACKM-2 ),...,(ACK/NACK1-K ,ACK/NACK2-K ,...ACK/NACKM-K )}.
第4A及4B圖為描述根據本發明一實施例在DFT-S-OFDM無線通訊系統中一傳輸UE操作中減小BER的技術的方塊圖。首先考慮傳輸端利用多個天線傳輸多個ACK/NACK訊號的情況。在此情況下,該傳輸端可藉由利用例如第4A及4B圖中示出的技術對此等訊號執行區塊編碼,而可傳輸該等ACK/NACK訊號。
現參考第4A圖,其示出一種技術,在傳輸之前,首先使用分離的DFT對ACK/NACK及CQI訊號展頻。在第4B圖中示出一種替代技術。在此圖中,將ACK/NACK直接對映到一副載波,而不透過DFT對此等訊號展頻。但是,第4B圖的實施例包括在將此訊號利用DFT展頻後將CQI訊號對映到一副載波。
不需要直接傳輸用於改良ACK/NACK訊號的PAPR及BER特性的多個ACK/NACK,而可替代地對映至待被傳輸的一指定序列。根據一技術,可決定用於對映的一指定序列。可選擇一序列以及對映至該序列的複數個ACK/NACK。如需要,可根據其PAPR及BER特性選擇該序列作為指定序列用於對映。另一選項包括在使用諸如BPSK或QPSK的傳統調變技術調變此等訊號後,傳輸ACK/NACK。
第5圖係一方塊圖,描述一種根據本發明一實施例選擇一待分配的副載波。此技術基於ACK/NACK及CQI資訊的傳輸狀態以及何時傳輸此資訊而選擇副載波。
在上鏈中為非資料相關控制資訊分配足夠大量的副載波可減少需要用來傳輸UE資料的副載波數量。ACK/NACK及CQI資訊可分離傳輸,如上所述。但是,當ACK/NACK及CQI資訊都被傳輸時,如果也執行副載波分配,則可有效分配頻率資源。在對僅傳輸ACK/NACK資訊、僅傳輸CQI資訊或者同時傳輸ACK/NACK及CQI的三種情況不作區分的情形下,尤其如此。
因此,根據本發明一實施例之傳輸UE可在非資料相關控制資訊中區分並接收ACK/NACK及CQI資訊,以識別每一ACK/NACK及CQI資訊是否被傳輸。基於此識別,UE可分配一適用於以下每一情況的副載波:其中僅傳輸ACK/NACK資訊,或者其中僅傳輸CQI資訊,或者其中ACK/NACK及CQI資訊都被傳輸。此實施例於非資料相關控制資訊中在ACK/NACK及CQI資訊之間區別,以識別每一ACK/NACK及CQI資訊是否被傳輸。此實施例有效管理頻率資源,並允許為傳輸分配增加的頻率資源量,藉此達成頻率多樣。
各實施例之優點包括在與資料解調變不相關的非資料相關控制資訊中,UE區分ACK/NACK及CQI資訊,並且在此資訊對映至頻率資源之前將其獨立處理。此允許基地台容易地處理接收到的控制資訊,甚至當該基地台從多個UE透過相同資源區塊分離地接收ACK/NACK及CQI資訊亦如此。而且,當採用OFDM時於一指定時間週期或者當採用TDM時於一指定頻率,藉由在該上鏈重復傳輸ACK/NACK資訊可達成對ACK/NACK資訊的BER特性之改良。
當傳輸多個ACK/NACK訊號時,藉由對傳輸的ACK/NACK訊號處理亦可達成對PAPR及/或BER特性之改良。此訊號實例包括區塊編碼、對映至指定序列以及透過BPSK或QPSK調變。
分配頻率資源
其他替代性實施例關於在上鏈多載波或單載波(SC)FDMA系統中為ACK/NACK傳輸分配頻率資源。第6圖示出一上鏈子訊框格式。在此圖中,將一長區塊(LB)用於資料及控制資訊傳輸,將一短區塊(SB)用於導引及資料傳輸。
可將UE的上鏈傳輸區分為以下情況:-UE資料、導引、資料相關控制;-UE資料、導引、資料相關控制,非資料相關控制;及-導引、非資料相關控制。
可採用例如第7圖及第8圖示出的各種多工技術將此等情況多工。第6圖的子訊框格式包括將資料相關控制資訊與非資料相關控制資訊與UE資料多工,並同時多工幾個UE的非質料相關控制資訊。
在第7圖中,雖然資料相關控制資訊和UE資料被多工,但為傳輸幾個UE的非資料相關控制資訊決定一預定時頻域。如果存在UE資料,非資料相關控制資訊示出為在為UE資料傳輸的頻帶上傳輸,而非在決定用於UE資料傳輸的非資料相關控制資訊的頻帶上傳輸。此技術的一優點係可保持SC-FDMA特性。
如第7及第8圖示出,以相同方式執行UE資料與非資料相關控制之頻帶分配。特別地,當UE資料對應局部化分配時,也將該局部化分配適用到非資料相關控制。但是,在非資料相關控制資訊中ACK/NACK具有一個位元大小,因此不能被通道編碼。因此,對ACK/NACK資料執行叠代以得到指定錯誤率。
第9A-9C圖描述之實施例係關於在一SC-FDMA/OFDMA(及其變體)中的上鏈中為ACK/NACK訊號傳輸分配頻率資源。概言之,在上鏈中分配頻率資源有兩個技術。第一技術係以在整個頻率帶中相同間隔配置傳輸資料的分佈式方法(第9圖)。第二技術係在一指定頻率帶中配置傳輸資料的局部化方法(第9B、9C圖)。
儘管ACK/NACK訊號典型大小為1位元,可執行叠代此訊號以得到指定錯誤率。例如,考慮經由N個資源單元(RU)傳輸來自叠代的ACK/NACK訊號。在傳輸透過N個RU利用局部化方法叠代的ACK/NACK訊號中,若該ACK/NACK小於由該等N個RU佔用的頻率資源,則還可實現兩個附加方法。一技術將一叠代的ACK/NACK訊號分配到連續頻率資源,而另一技術利用例如平均間隔在N個RU上配置ACK/NACK訊號。因此,可將用於ACK/NACK傳輸的分配資源概括如下:-分佈的;-局部化的;-完全局部化的;以及-在分配的頻率資源中分佈。
多碼字ACK/NACK
另一實施例在一行動通訊系統中係關於HARQ,具體言之,係關於在一多碼字(MCW)類型MIMO無線系統中傳輸ACK/NACK訊號。如以下將討論,此實施例適用於寬範圍應用,例如包括利用多個MCW類型傳輸及接收天線傳輸ACK/NACK訊號。
概言之,可利用多個傳輸及接收天線來在行動通訊系統中提高資料傳輸率。可使用兩個重要技術達成使用多天線之資料傳輸。首先,可以一傳輸多樣格式傳輸資料。在此情況下,雖然不提高資料傳輸率,但可提高接收訊號的訊號雜訊比(SNR),以達成穩定操作。此係因為經由幾個天線傳輸相同資料。在此情況下,同時傳輸幾個獨立的資料流可提高資料傳輸率。在一具有低SNR區域,此傳輸多樣傳輸係有效的,而在一具有高SNR區域,空間多工傳輸係有效的。
第10A圖及第10B圖係描述設置用於MIMO無線行動通訊系統之SCW及MCW傳輸終端。應理解,在某些情況下,可同時傳輸複數個資料流。例如,可藉由一個通道編碼器執行編碼,然後將資料劃分為複數個資料流。此技術通常稱為利用單碼字(SCW)傳輸。
第11圖為根據本發明一實施例之ACK/NACK傳輸裝置的方塊圖。此實例提供用於傳輸多個資料流的技術,該等多個資料流包括經由一通道編碼器單獨編碼複數個資料流,然後經由複數個傳輸及接收天線傳輸編碼資料。此技術通常稱為用多碼字(MCW)傳輸。
SCW技術包括編碼一將被分割的區塊。因為將一用於錯誤檢查的CRC附加到每一區塊,因此一接收器典型地將只傳輸一個ACK/NACK訊號。另一方面,利用MCW,可編碼幾個區塊並然後變成資料流。如果在每一區塊後附加CRC,則應為每一資料流傳輸ACK/NACK訊號。
概言之,MCW能夠得到比SCW更高的資料傳輸率。因此,通常使用MCW,儘管待傳輸的ACK/NACK資訊亦增加。但是,在MCW為每一資料流傳輸一ACK/NACK訊號場合下,接收器將為傳輸複數個ACK/NACK獲得無線電資源。此控制資訊增加會減少用於資料傳輸的無線電資源,導致系統效率降級。
現將描述本發明之各態樣和實施例。概言之,此等實例包括在MCW類型MIMO天線系統中用於傳輸ACK/NACK訊號的裝置。例如一用於在一MCW類型MIMO無線系統中傳輸ACK/NACK訊號的裝置,藉由該裝置透過保持一較高資料傳輸率,可減少待被傳輸的ACK/NACK訊號數量。
本發明之一態樣包括在無線通訊系統中採用複數個MCW類型傳輸和接收天線傳輸一ACK/NACK。各種操作包括產生複數個ACK/NACK,其對應在經由複數個天線接收的複數個資料流中插入的一定數目的錯誤偵測碼,並藉由組合複數個ACK/NACK產生一ACK/NACK,以及經由該天線傳輸該所產生的ACK/NACK。
本發明之另一態樣包括產生複數個ACK/NACK,其對應在經由複數個天線接收的複數個資料流中插入的一定數目的錯誤偵測碼,並對該等ACK/NACK分組。該方法更包括藉由將複數個分組的ACK/NACK組合到複數個此組,而在每一組中產生一ACK/NACK,並經由該天線傳輸該所產生的ACK/NACK。
本發明之一態樣包括,在該分組操作中,根據對應資料流類型將複數個該等ACK/NACK分組。
本發明之另一態樣將該錯誤偵測碼作為一CRC碼。
本發明之另一態樣包括經由複數個傳輸天線在一時間槽中傳輸該所接收的資料流。
本發明之再一態樣包括藉由一邏輯與(AND)操作,組合該等複數個ACK/NACK。
在一實施例中,用於在無線通訊系統中採用複數個MCW類型傳輸及接收天線傳輸ACK/NACK的裝置包括一錯誤檢查單元,其產生複數個ACK/NACK,該等ACK/NACK對應在經由複數個天線接收的複數個資料流中插入的一定數目的錯誤偵測碼。該裝置更包括訊號組合單元,其藉由組合複數個ACK/NACK而產生一ACK/NACK;並包括一訊號傳輸單元,其經由該天線傳輸所產生的ACK/NACK。
在本發明之另一態樣,一裝置包括一將複數個ACK/NACK分組的控制單元;一訊號組合單元,其藉由將複數個該等分組的ACK/NACK組合到複數個組而產生一每一組之ACK/NACK;並包括一訊號傳輸單元,其經由該天線傳輸所產生的ACK/NACK。
本發明之一態樣,該控制單元根據對應資料流類型將該等複數個ACK/NACK分組。
本發明之一態樣使用該錯誤偵測碼作為一CRC碼,經由複數個傳輸天線在一時間槽中傳輸所接收的資料流,且該訊號組合單元藉由一邏輯與操作,組合該等複數個ACK/NACK。
再參考第11圖,一接收天線包括複數個天線。當獨立資料經由複數個天線傳輸,而達成一較高資料傳輸率時,一接收終端的天線數量應該等於或大於傳輸終端的天線數量。第11圖示出n個天線以指示接收到n個資訊流。
根據由傳輸終端所執行的通道編碼技術,解碼藉由複數個天線接收的資訊(例如,在第11圖中n資訊)。一CRC檢查單元然後利用CRC執行一錯誤檢查,該CRC包括在解碼的每一個資訊流中。執行此CRC檢查的結果為,如果存在一錯誤,則該CRC檢查單元產生NACK。如果沒有錯誤,則CRC檢查單元產生一ACK。因此,如果平行接收到n個不同資訊流,則將傳輸n個ACK/NACK。在此情況下,可將該等n個接收的資料流假定為經由n個傳輸天線在一時間槽中傳輸的資料流。如果需要,可同時處理在某個時間槽中的資訊流。
第11圖示出輸入到一組合器中待組合為一個ACK/NACK的n個ACK/NACK。例如,可將n個ACK/NACK組合為一個ACK/NACK。執行一邏輯與操作以組合此等訊號為一個ACK/NACK。特別地,考慮n個ACK/NACK,諸如ACK/NACK1,ACK/NACK2,...,ACK/NACKn。組合的ACK/NACK可根據下式表示:ACK/NACK(Combined)=ACK/NACK1 ∩ ACK/NACK2 ∩...∩ ACK/NACKn
其中如果成功接收資料,ACK/NACK1到ACK/NACKn中每一值為1。否則,此等ACK/NACK中的每一者具有值0。
如果組合的ACK/NACK指示1,則此可指所有n資料被成功接收。如果該組合的ACK/NACK指示0,則其指示n資料中至少之一沒有被成功接收。因此,可有效分配用於控制資訊傳輸的一頻率資源。
第12圖為根據本發明之另一實施例的一ACK/NACK傳輸裝置的方塊圖。在此實施例中,將一控制單元增加到如第11圖示出的設置中,並示出複數個組合器。
在第12圖中,由CRC檢查單元分別產生的n個ACK/NACK被輸入到一控制單元。該控制單元然後將該等輸入的ACK/NACK分組為複數個組。此等組可根據接收的資料流的類型分類。例如,如果資料的一規定部分在檢查一成功資料接收中係重要的,並且需要分離處理,則其可被分離地分組。作為替代,可將此等ACK/NACK劃分為規定數量的組,以適當地選擇待傳輸的控制資訊的長度,而不管所接收資料的類型。
如上所述,藉由複數個組合器組合該等分組的ACK/NACK訊號以產生每一組的一ACK/NACK。通常,對應一具體組的ACK/NACK可包括一單一ACK/NACK。在此方面,處理一對應ACK/NACK,其處理方式與另一已經過組合操作而沒有透過用於該ACK/NACK訊號組合的分離操作的方式相同。
進一步考慮,由以上原則所選擇的組的數量可等於或小於m,並且因此可得到m個ACK/NACK。將該等m個ACK/NACK輸入到一傳輸單元,並然後經由一天線傳輸。
已經關於該錯誤偵測碼(利用CRC碼實現)對第11圖及第12圖中的該等實施例說明。作為替代,可使用一隨機錯誤偵測碼(其係由一接收終端請求的一訊號)來通知一資料傳輸是否成功。
各實施例採用一接收終端來以SCW位準傳輸ACK/NACK,儘管採用MCW具有相比SCW更高的資料傳輸率。作為替代,如果傳輸n個資料流低於一特定關鍵計數,則不加組合地傳輸一對該等n個資料流之每一個指示傳輸是否成功的ACK/NACK,而非重復傳輸所有n個資料流。作為替代,考慮指定資料傳輸失敗一定次數的情況,其假定可單獨區分複數個接收的資料流。獨立不加組合地傳輸用於指示指定資料流傳輸是否成功的ACK/NACK資訊,而組合並傳輸其餘ACK/NACK訊號。
應理解一ACK/NACK係一控制資訊之實例,其指示由一傳輸終端傳輸的資料是否被一接收終端成功地接收。ACK/NACK通常用於HARQ。但是,例如一執行上述功能之隨機訊號可用來替代ACK/NACK。
在上鏈中之副載波對映
各附加實施例關於對映在上鏈中的副載波。特別地,此等實施例包括利用複數個副載波在分配在一無線通訊系統中上鏈的頻率資料中配置傳輸資料,及一實現此配置的傳輸器。
第13圖描述對一數目副載波的局部化分配。在此圖式中,局部化分配指經由一規定數目副載波(其分佈地相鄰於一預定頻帶)在為該上鏈分配的一頻率資源之整個頻帶上傳輸的使用者資料。僅藉由輸入0到該等剩餘副載波,而經由副載波在一預定頻帶上傳輸使用者資料。
根據該局部分配,僅使用一上鏈頻率資源的部分頻帶。但是,如果其由一包括預定數目的副載波的資源傳輸被傳輸資料,則該傳輸資料趨於在資源單元的一預定區域內密集排佈,該資源單元分配至該頻率資源的一部分頻帶。
第13B圖描述一定數目副載波的分佈式分配。在此圖式中,分佈式分配指經由副載波傳輸的使用者資料均勻地在一頻率資源(為該上鏈分配)的整個頻帶中分佈。藉由將0輸入該等剩餘副載波,該系統可僅使用分佈式分配的指定副載波傳輸使用者資料。
該分佈式分配可在該上鏈頻率資源的整個頻帶上分佈地傳輸資料,以提高頻率多樣。因此,分佈式分配對通道影響有較強的抵抗能力,此係有利的。但是,由於在使用一短區塊傳輸一導引中的導引間隔相比使用一長區塊傳輸一導引中的導引間隔要較寬,因此通道估計性能可能會降級。
總言之,各實施例包括在一分配的局部頻帶中為傳輸資料分佈地配置副載波和一支援該配置的傳輸器。使用局部化的分配可使通道影響最小化。
本發明之一態樣包括為傳輸資料分佈地配置副載波以及一支援此配置的傳輸器。根據局部分配,將一預定數目的副載波限定在一起用於分佈配置。
另一實施例關於在上鏈中配置副載波的方法,其中將用於資料傳輸的副載波配置在一為該上鏈分配的頻率資源中。一操作包括在為該上鏈分配的頻率資源的一個局部頻帶中為資料傳輸配置副載波,以使該等副載波對該局部頻帶的整個部分等空間分佈。
根據一特徵,該傳輸資料係利用指定位元重復編碼的一控制訊號。
在另一特徵中,經由N(N=1,2,3,...)個資源單元傳輸該傳輸資料,每一單元具有一指定數目的副載波,及其中該等副載波的配置方式為:在為該上鏈分配的頻率資源的該局部頻帶中配置該等N個資源單元,並在由該等N個資源單元佔用的整個頻帶中的相等空間分佈該等副載波。
在另一態樣中,一種在該上鏈中配置副載波的方法(其中用於資料傳輸的副載波在為該上鏈分配的頻率資源中配置)包括:為該資料傳輸將副載波分組,分組方式為在為該上鏈分配的頻率資源中的整個頻帶中至少兩個副載波,其中該分組的副載波以等空間分佈。
另一特徵係關於經由N(N=1,2,3,...)個資源單元傳輸的傳輸資料,每一單元具有一指定數目的副載波,且其中該等副載波的配置方式為:在為該上鏈分配的頻率資源中的整個頻帶上以相等空間分佈N個資源單元。該方法更包括:以至少兩個副載波將該等副載波分組,並在由該等N個資源單元的每一個中配置該等分組的副載波。
在又一態樣中,一裝置包括一副載波配置模組,其在為該上鏈分配的頻率資源的一局部頻帶中為資料傳輸配置副載波,其中對該局部頻帶的整個部分以相等空間分佈該等副載波。
在一特徵中,經由N(N=1,2,3,...)個資源單元傳輸該傳輸資料,每一單元具有一指定數目的副載波,且其中該等副載波的配置方式為:在為該上鏈分配的頻率資源中的局部頻帶上配置該等N個資源單元,並且在由該等N個資源單元佔用的整個頻帶中以相等空間分佈該等副載波。
在另一態樣,一種在該上鏈中配置副載波的傳輸裝置包括一副載波配置模組,其在為該上鏈分配的頻率資源的整個頻帶中將為資料傳輸的副載波分組為至少兩個副載波,其中該等分組的副載波以相等空間分佈。
第14圖為一方塊圖,描述用OFDM進行上鏈傳輸的方法。在方塊210,串列輸入一較高資料傳輸率資料流(或資料符號),並透過一串列平行轉換器轉換為複數個具有較低資料傳輸率的資料流。每一平行轉換的資料流由一個對應的副載波透過一副載波對映器多工(方塊220),並然後由IDTF轉換到時域訊號(方塊230)。方塊240在該時域訊號中插入一循環字首以防止通道干擾。再將該訊號轉換為串列訊號,並然後傳輸到一接收終端(方塊250)。
應理解在一利用複數個正交副載波執行調變的系統中,OFDMA指如下情況:其中藉由將對不同使用者,可實現一多向近接(multiple access)方法。OFDMA為不同使用者提供頻率資源,例如副載波。因為頻率資源被獨立地提供至複數個使用者,因此其相互之間沒有重復。
因為在副載波之間保持正交性,因此可得到較高資料傳輸率。關於峰值均值功率比(PAPR)可能出現問題,為使此問題影響最小或者有效避免此問題,使用DFT矩陣在頻域中執行展頻。此操作典型在產生OFDM訊號之前執行。展頻的結果由OFDM調變以得到單載波傳輸。此情況可稱為DFT-S-OFDMA。
第15圖為描述根據DFT-S-OFDMA產生傳輸訊號的流程圖。該技術在多方面類似於在第1圖示出之技術,因此方塊310-340大體上對應第1圖的方塊110-140。其中一個區別在於在平行/串列轉換方塊360之前示出插入循環字首(方塊350)。
在一使用OFDM或DFT-S-OFDMA的多載波系統中,在該上鏈中傳輸使用者設備資料、導引、控制資訊及類似物。如果在該上鏈傳輸使用者設備,則在該下鏈傳輸對應控制資訊。利用該對應控制資訊,分配一傳輸頻帶或決定一資料傳送格式。
有兩種普通類型的導引訊號。使用一CQ導引來量測通道品質以執行UE排程和自適應調變及編碼。也可使用一資料導引用於資料傳輸中的通道估計及資料解調變。該資料導引係在一對應域上傳輸的導引。控制資訊可包括與資料相關的控制資訊及與資料無關的控制資訊,如上所述。以上提到的UE資料、導引和控制資訊可經由一具有預定結構的子訊框傳輸。一實例包括由3GPP LTE建議的用於上鏈的FDD子訊框。在第3圖中描述一合適子訊框。
再參考第3A圖,示出一循環字首(CP)插入到各區域之間以避免區塊內干擾。在此配置中,該長區塊(LB)用於傳輸上鏈資料或控制資訊,且該短區塊(SB)用於傳輸上鏈資料或一導引。
一種多工化該子訊框之方法首先包括多工該UE資料、導引及資料相關控制資訊。用於多工之另一方法包括多工該UE資料、導引、資料解調變相關的控制資訊,以及與資料解調變不相關的控制資訊。一用於多工的第三方法包括多工該導引及資料解調變非相關的控制資訊。
再參考第7圖,對一指定使用者的資料解調變相關的控制資訊及資料解調變非相關控制資訊示出為與一對應使用者的UE資料多工,並且同時,將用於其他使用者的資料解調變非相關控制資訊多工在一起。此導致每一資源區塊包括相同種類的上鏈資料。
再參考第8圖,對於一指定使用者的資料解調變相關的控制資訊與UE資料被多工,但對多個使用者(包括該指定使用者)的資料解調變非相關的控制資訊經由一單獨提供的預先決定的時間-頻率域(在第8圖中示出的斜線區域)傳輸。由該等子訊框中承載的各種資料,例如在第7圖及第8圖中示出的,可在時域中多工,以保持DFT-S-OFDM具有低PAPR的優點。
因為對一指定使用者的UE資料及資料解調變非相關控制資訊被多工,並為該相同子訊框傳輸,所以將同種頻率分配應用到該UE資料及資料解調變非相關控制資訊係常見的。特別地,如果將局部化分配應用到UE資料,則應該將其也應用到資料解調變非相關控制資訊。
如前面敍述,可藉由一相對較少的位元數目來表示ACK/NACK。例如UE可重復傳輸ACK/NACK,用於錯誤率增強。此例如可使用前述的關於第3A圖及第3B圖的各種技術來達成。
應注意,可經由資源單元(其係一束規定數目連續副載波)傳輸該重復的ACK/NACK。該資源單元通常包括25個長區塊頻率間隔,其不表示為一顯著限制。作為替代,該資源單元可包括其他長度(例如15、12、10等等)的長區塊頻率間隔。普通資源單元的大小可表示為:RU=25*15 KHz(LB)=375 KHz
因此,在上述頻率分配技術中的局部化分配係表徵為:N個資源單元連續地分配至一部分頻帶。在所述頻率分配方法中的分佈式分配係表徵為:N個資源單元係不連續的且在整個頻帶上均勻分配。
在局部化分配中,分配給用於ACK/NACK訊號傳輸的副載波之頻率資源少於由N個資源單元佔用的頻率資源。作為一實例,第16圖示出用於資源單元及ACK/NACK傳輸的副載波分佈。特別地,將N個資源單元連續地分配至一上鏈頻率資源的部分頻帶。在包括在該等N個資源單元中的副載波中的用於重復傳輸ACK/NACK訊號的副載波可被密集地配置在由該等N個資源單元所佔用的頻率資源的指定頻帶中(在第16圖的中間頻帶)。此情況可稱為完全(pure)局部化分配。
如上所述,局部化分配易於受到通道影響,因為資料在一相鄰通道上傳輸。完全局部化分配更容易受到通道影響,因為包含在N個資源單元中的傳輸對象的副載波密集地佈置於一指定頻帶,而且該等N個資源單元相互鄰近。
為改良此等弱點,可採用增強局部化分配(在分配的頻率資源中分佈)。第17圖提供一利用增強局部化分配配置副載波實例。此技術將分佈分配適用到包括在N個資源單元中的傳輸對象的副載波,同時將局部化分配運用到該等N個資源單元。特別地,實際上用於傳輸ACK/NACK訊號的副載波均勻間隔並且在整個頻率資源中不連續配置。
第18圖示出用於ACK/NACK訊號傳輸的副載波傳輸。可利用該分佈分配達成頻率多樣。當由一短區塊承載一導引時,相比一使用長區塊,導引間隔更寬。此配置不佳,因為通道估計性能可能降級。藉由將用於ACK/NACK訊號傳輸的副載波分組為複數個組(每組至少包括兩個副載波),可達成能夠增強通道估計性能的增強分佈分配。然後配置此等組,而非配置單一副載波。
第19A和第19B圖描述使用增強分佈分配的副載波配置,其中將一對副載波設置為一組。在第19A圖中,因為每一副載波使用一長區塊承載一ACK/NACK訊號,在組成該對應組的一對副載波之間存在一間隔(例如15KHz)達到該長區塊的頻率間隔。
為將一ACK/NACK訊號傳輸至一接收終端,應將用於在傳輸和接收終端之間對映同步之導引資訊傳輸到接收終端。因為不需要為每一副載波傳輸導引資訊,所以本實施例實現一個為一對分組副載波傳輸的導引。由一短區塊承載該導引訊號。因為一短區塊的頻帶(例如30KHz)大體上為一長區塊的兩倍,其符合該技術,即對每一對用於ACK/NACK訊號傳輸的副載波,傳輸一個導引。
第19B圖示出用於導引資訊傳輸的副載波的頻率資源分配。考慮將用於ACK/NACK訊號傳輸副載波分組為3個副載波單元一組的情況,由一個組佔用的頻率帶(15 KHz * 3=45 KHz)不等於由為導引傳輸的副載波所佔用的頻率帶(30KHz)。因此,此等組之間保持30 KHz的間隙係必要的(第20A圖)。如第20B圖所示,因為用於導引資訊傳輸的副載波應該每60KHz配置,使用一導引的通道估計性能被降級,與將一組設置為一對副載波的情形不同。
如在前面描述所提到,藉由OFDM傳輸終端的一合適副載波對映器(第14圖的方塊220)或OFDM傳輸終端的副載波對映器(第15圖的方塊330)典型地執行該增強的局部化分配或增強的分佈分配。作為替代,可藉由一管理每一頻率資源分配的副載波配置模組執行該增強的局部化分配或該增強的分佈分配。
局部化分配可允許在局部分配的資源單元中有效利用頻率資源並配置用於傳輸資料的副載波。因此,此配置相比現有系統對通道影響有更好的防護性能。關於分佈分配的另一優點係避免通道影響。此實施例結合一預定數目用於傳輸的副載波,並分佈地配置該等副載波。因此,相比傳統的系統,可減少通道估計降級。
儘管使用本文描述的示例操作序列可實現本發明之實施例,但還可執行附加的或少數的操作。而且,應理解所示及所描述該等操作順序僅係示例性質,且不需要單一順序操作。
前述實施例及優點僅係示例性且不應解釋為限制本發明。本發明說明可容易地運用到其他類型裝置和製程。本發明描述係有意為說明性,而非限制本發明之申請專利範圍。熟悉此項技術者可理解諸多替代物、修改及變化。
在結合隨附圖式考慮以下對較佳實施例的描述之後,本發明的上述及其他態樣、特徵以及優點將變得更加清楚,其中:第1圖係描述根據傳統DFT-S-OFDMA系統產生傳輸訊號之流程圖;第2A圖示出在上鏈中傳輸之UE集中擴展控制資訊向量以獲得一擴展向量;第圖2B圖示出根據本發明的替代實施例之在DFT-S-OFDM無線通信系統中用於上鏈傳輸之另一配置;第2C圖示出根據本發明的替代實施例之在DFT-S-OFDM無線通信系統中用於上鏈傳輸之另一配置;第3A圖描述在DFT-S-OFDM無線通信系統利用分時多工(TDM)之上鏈子訊框格式;第3B圖描述在DFT-S-OFDM無線通信系統利用分頻多工(FDM)之上鏈子訊框格式;第4A圖及第4B圖係描述根據本發明之實施例用以在傳輸UE時(在DFT-S-OFDM無線通信系統中操作該UE)降低BER之技術的方塊圖;第5圖係描述根據本發明之實施例選擇待分配之副載波之方法的方塊圖;第6圖示出一上鏈子訊框格式;第7及第8圖描述上鏈多工機制。第9A-9C圖描述關於為在SC-FDMA/OFDMA系統的上鏈中傳輸的ACK/NACK訊號分配頻率資源的實施例;第10A及10B圖係描述之SCW及MCW傳輸終端的方塊圖,該等傳輸終端被設置以用於MIMO無線行動通信系統;第11圖係根據本發明之實施例的ACK/NACK傳輸裝置之方塊圖;第12圖係根據本發明之另一實施例的ACK/NACK傳輸裝置之方塊圖;第13A圖描述對多個副載波的局部化分配;第13B圖描述對多個副載波的分佈式分配;第14圖係描述一種用於採用OFDM的上鏈傳輸之方法的方塊圖;第15圖係描述根據DFT-S-OFDMA產生傳輸訊號的流程圖;第16圖提供一緊密配置副載波之實例;第17圖提供一利用增強的局部化分配之副載波配置的實例;第18圖示出用於ACK/NACK訊號傳輸之副載波分佈;第19A及第19B圖描述利用增強的分佈分配之副載波配置,其中一對副載波被設置作為一組;以及第20A及第20B圖描述進一步的副載波配置。

Claims (40)

  1. 一種用於回應於下鏈傳輸的傳輸上鏈確認的方法,該方法包括:由一接收實體從一傳輸實體藉接收複數資料區塊,其中該等資料區塊之每一者包括一相關循環冗餘檢查(CRC);藉由檢查該等每等區塊之每一者的該CRC,而為該等複數資料區塊之每一者決定接收狀態;以及根據該接收狀態產生至少一個回應位元;對映該至少一個回應位元至一固定長度序列,以產生一對映序列,該對映序列指示所有該等複數資料區塊之該接收狀態;在一上鏈傳輸中,從該接收實體傳輸該對映序列至該傳輸實體;以及以一預定次數重復該傳輸。
  2. 如申請專利範圍第1項所述之方法,其中該等複數資料區塊包括一主傳送區塊及一副傳送區塊。
  3. 如申請專利範圍第1項所述之方法,其中該對映序列係一離散回應序列。
  4. 如申請專利範圍第1項所述之方法,更包括:產生該對映序列以作為一單回應序列,其指示所有該等資料區塊的該接收狀態。
  5. 如申請專利範圍第1項所述之方法,其中該傳輸實體係一節點B。
  6. 如申請專利範圍第1項所述之方法,其中該接收狀態係:一確認(ACK),其識別一已經被無錯誤接收的資料區塊;或一否定確認(NACK),其識別一已經接收具有一錯誤的資料區塊。
  7. 如申請專利範圍第1項所述之方法,更包括:利用QPSK調變對該對映序列調變。
  8. 如申請專利範圍第1項所述之方法,其中該傳輸實體係一節點B。
  9. 如申請專利範圍第1項所述之方法,其中該等下鏈傳輸包括多輸入多輸出(MIMO)傳輸。
  10. 如申請專利範圍第9項所述之方法,更包括:平行接收該等複數資料區塊。
  11. 如申請專利範圍第1項所述之方法,其中該等下鏈傳輸包括分時雙工(TDD)傳輸。
  12. 如申請專利範圍第11項所述之方法,更包括:順序接收該等複數資料區塊。
  13. 如申請專利範圍第11項所述之方法,更包括和:平行接收該等複數資料區塊。
  14. 一種接收回應於下鏈傳輸的上鏈確認的方法,該方法包括:由一傳輸實體傳輸複數資料區塊至一接收實體,其中該等複數資料區塊之每一者包括一相關循環冗餘檢查(CRC);以及接收一對映序列,其指示所有該等複數資料區塊之接 收狀態,其中藉由在該接收實體端對映至少一個回應位元至一固定長度序列而產生該對映序列,且該對映序列在一上鏈傳輸中傳輸,在該接收實體端,以一預定次數重復傳輸該對映序列,其中係根據該等資料區塊之每一者之接收狀態,藉由在該接收實體中檢查該等資料區塊之每一者的該CRC而產生該至少一個回應位元。
  15. 如申請專利範圍第14項所述之方法,其中該等複數資料區塊包括一主傳送區塊及一副傳送區塊。
  16. 如申請專利範圍第14項所述之方法,其中該傳輸實體係一節點B。
  17. 如申請專利範圍第14項所述之方法,其中該接收狀態係:一確認(ACK),其識別一已經被無錯誤接收的資料區塊;或一否定確認(NACK),其識別一已經接收具有一錯誤的資料區塊。
  18. 如申請專利範圍第14項所述之方法,其中利用QPSK調變對該對映序列調變。
  19. 如申請專利範圍第14項所述之方法,其中該等下鏈傳輸包括多輸入多輸出(MIMO)傳輸。
  20. 如申請專利範圍第14項所述之方法,其中該等下鏈傳輸包括分時雙工(TDD)傳輸。
  21. 一種用於回應於下鏈傳輸的傳輸上鏈確認可攜式裝置,該可攜式裝置包括: 一接收器,其設置以從一傳輸實體接收複數資料區塊,其中該等資料區塊之每一者包括一相關循環冗餘檢查(CRC);一處理器,其設置以:藉由檢查該等資料區塊之每一者的該CRC,為該等資料區塊之每一者決定接收狀態;根據該接收狀態產生至少一個回應位元;對映該至少一個回應位元至一固定長度序列以產生一對映序列,該對映序列指示所有該等複數資料區塊之該接收狀態;一傳輸器,用於在一上鏈傳輸中傳輸該對映序列至該傳輸實體,其中以一預定次數重復傳輸該對映序列。
  22. 如申請專利範圍第21項所述之可攜式裝置,其中該等複數資料區塊包括一主傳送區塊及一副傳送區塊。
  23. 如申請專利範圍第21項所述之可攜式裝置,其中該對映序列係一離散回應序列。
  24. 如申請專利範圍第21項所述之可攜式裝置,其中該處理器更被設置為:產生該對映序列作為一單一回應序列,其指示所有該等資料區塊的接收狀態。
  25. 如申請專利範圍第21項所述之可攜式裝置,其中該傳輸實體係一節點B。
  26. 如申請專利範圍第21項所述之可攜式裝置,其 中該接收狀態係:一確認(ACK),其識別一已經被無錯誤接收的資料區塊;或一否定確認(NACK),其識別一已經接收具有一錯誤的資料區塊。
  27. 如申請專利範圍第21項所述之可攜式裝置,其中該處理器更設置為:利用QPSK調變對該對映序列調變。
  28. 如申請專利範圍第21項所述之可攜式裝置,其中該傳輸實體係一節點B。
  29. 如申請專利範圍第21項所述之可攜式裝置,其中該等下鏈傳輸包括多輸入多輸出(MIMO)傳輸。
  30. 如申請專利範圍第29項所述之可攜式裝置,其中該接收器更設置為:平行接收該等複數資料區塊。
  31. 如申請專利範圍第21項所述之可攜式裝置,其中該等下鏈傳輸包括分時雙工(TDD)傳輸。
  32. 如申請專利範圍第31項所述之可攜式裝置,其中該接收器更設置為:順序接收該等複數資料區塊。
  33. 如申請專利範圍第31項所述之可攜式裝置,其中該接收器更設置為:平行接收該等複數資料區塊。
  34. 一種可在一無線通訊系統中操作並且被設置為接收回應於下鏈傳輸的上鏈確認的傳輸實體,該傳輸實體包括: 一傳輸器,用於傳輸複數資料區塊至一接收實體,其中該等複數資料區塊之每一者包括一相關循環冗餘檢查(CRC);以及一接收器,用於接收一對映序列,其指示所有該等複數資料區塊接收狀態,其中該對映序列藉由在該接收實體中對映至少一個回應位元至一固定長度序列而產生,且該對映序列在一上鏈傳輸中傳輸,在該接收實體中,以一預定次數重復傳輸該對映序列,其中該至少一個回應位元,係根據該等資料區塊之每一者之接收狀態,藉由在該接收實體中檢查該等資料區塊之每一者的該CRC而產生。
  35. 如申請專利範圍第34項所述之傳輸實體,其中該等複數資料區塊包括一主傳送區塊及一副傳送區塊。
  36. 如申請專利範圍第34項所述之傳輸實體,其中該傳輸實體係一節點B。
  37. 如申請專利範圍第34項所述之傳輸實體,其中該接收狀態係:一確認(ACK),其識別一已經被無錯誤接收的資料區塊;或一否定確認(NACK),其識別一已經接收具有一錯誤的資料區塊。
  38. 如申請專利範圍第34項所述之傳輸實體,其中該對映序列利用QPSK調變對該對映序列調變。
  39. 如申請專利範圍第34項所述之傳輸實體,其中該等下鏈傳輸包括多輸入多輸出(MIMO)傳輸。
  40. 如申請專利範圍第34項所述之傳輸實體,其中該等下鏈傳輸包括分時雙工(TDD)傳輸。
TW96122171A 2006-06-16 2007-06-20 用於編碼針對下鏈傳輸之上鏈確認的方法及裝置 TWI443996B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US80505906P 2006-06-16 2006-06-16
KR1020060054563A KR101265596B1 (ko) 2006-06-16 2006-06-16 다중코드워드 방식의 mimo 무선통신 시스템에서긍정/부정 응답 신호를 전송하는 방법 및 장치
KR1020060054564A KR101253162B1 (ko) 2006-06-16 2006-06-16 무선통신 시스템 상향링크에서의 제어정보 전송방법,제어정보 전송장치 및 dft-s-ofdm 방식 무선통신시스템의 사용자 기기
KR1020060074636A KR101285379B1 (ko) 2006-06-16 2006-08-08 상향 링크에서의 부 반송파 배치 방법 및 이를 구현하는송신 장치

Publications (2)

Publication Number Publication Date
TW200816681A TW200816681A (en) 2008-04-01
TWI443996B true TWI443996B (zh) 2014-07-01

Family

ID=44769172

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96122171A TWI443996B (zh) 2006-06-16 2007-06-20 用於編碼針對下鏈傳輸之上鏈確認的方法及裝置

Country Status (3)

Country Link
JP (1) JP5685564B2 (zh)
DK (1) DK2033354T3 (zh)
TW (1) TWI443996B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017070913A1 (zh) * 2015-10-30 2017-05-04 华为技术有限公司 信号发送的方法、设备及系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251146A (ja) * 1995-03-13 1996-09-27 Toshiba Corp データ伝送制御システム
JP2000244460A (ja) * 1999-02-24 2000-09-08 Nec Corp 伝送路誤り符号付加・検出装置
JP2000259526A (ja) * 1999-03-08 2000-09-22 Toshiba Microelectronics Corp シリアルインターフェース回路
KR100837351B1 (ko) * 2002-04-06 2008-06-12 엘지전자 주식회사 이동통신 시스템의 무선링크 파라미터 갱신 방법
JP2004194021A (ja) * 2002-12-12 2004-07-08 Mitsubishi Electric Corp 位相補償復調器
KR100735346B1 (ko) * 2004-05-04 2007-07-04 삼성전자주식회사 향상된 상향 링크 전용 채널에서 harq 동작을 고려한tti 변경 방법 및 장치
JP2005328525A (ja) * 2004-05-04 2005-11-24 Samsung Electronics Co Ltd 上りリンクパケット伝送システムにおけるソフトハンドオーバー端末機の最適のスケジューリングセルを選択するための方法及び装置
US7882412B2 (en) * 2004-10-05 2011-02-01 Sanjiv Nanda Enhanced block acknowledgement
JP4592396B2 (ja) * 2004-11-17 2010-12-01 パナソニック株式会社 通信システムおよび通信装置
JP2007116637A (ja) * 2005-10-24 2007-05-10 Fujitsu Ltd 無線通信方法及び無線通信システム並びに受信装置及び送信装置

Also Published As

Publication number Publication date
DK2033354T3 (da) 2013-04-22
JP2012253821A (ja) 2012-12-20
JP5685564B2 (ja) 2015-03-18
TW200816681A (en) 2008-04-01

Similar Documents

Publication Publication Date Title
US8320434B2 (en) Encoding uplink acknowledgments to downlink transmissions
JP6298017B2 (ja) 無線通信システムにおける制御情報送信方法及び装置
KR100971680B1 (ko) 단일 반송파 주파수 분할 다중 접속 시스템에서 다중 응답신호 송신 장치 및 방법
KR101090911B1 (ko) 업링크 제어 시그날링을 위한 시퀀스 변조를 제공하는 장치, 방법 및 컴퓨터 프로그램 제품
US9131465B2 (en) Methods and apparatus for mapping control channels to resources in OFDM systems
KR101253162B1 (ko) 무선통신 시스템 상향링크에서의 제어정보 전송방법,제어정보 전송장치 및 dft-s-ofdm 방식 무선통신시스템의 사용자 기기
KR101589600B1 (ko) 직교 주파수 분할 다중 접속 방식의 이동통신 시스템에서 하향링크 데이터 채널에 대한 상향링크 응답 채널 송수신 방법 및 장치
KR20090056777A (ko) 무선통신 시스템에서 ack/nack 신호 전송방법
TWI443996B (zh) 用於編碼針對下鏈傳輸之上鏈確認的方法及裝置
KR101137350B1 (ko) 다수의 부 반송파를 이용하는 통신 시스템에 있어서, 전송제어 방법 및 장치
WO2009050649A2 (en) Subcarrier assignment for re-transmissions