TWI436098B - 建構高解析度影像之系統及方法 - Google Patents

建構高解析度影像之系統及方法 Download PDF

Info

Publication number
TWI436098B
TWI436098B TW099144144A TW99144144A TWI436098B TW I436098 B TWI436098 B TW I436098B TW 099144144 A TW099144144 A TW 099144144A TW 99144144 A TW99144144 A TW 99144144A TW I436098 B TWI436098 B TW I436098B
Authority
TW
Taiwan
Prior art keywords
modulated
image
light intensity
light
intensity adjuster
Prior art date
Application number
TW099144144A
Other languages
English (en)
Other versions
TW201226974A (en
Inventor
Sen Yih Chou
Chia Hung Cho
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW099144144A priority Critical patent/TWI436098B/zh
Priority to US13/087,626 priority patent/US8581979B2/en
Publication of TW201226974A publication Critical patent/TW201226974A/zh
Application granted granted Critical
Publication of TWI436098B publication Critical patent/TWI436098B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/951Computational photography systems, e.g. light-field imaging systems by using two or more images to influence resolution, frame rate or aspect ratio

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

建構高解析度影像之系統及方法
本揭露係關於一種影像擷取之系統及方法,係關於一種建構高解析度影像之系統及方法。
在目前光學量測系統中,若待測物表面材質、結構或粗糙程度的分佈不均,將造成反射光或散射光的強弱差異過大,此時就需使用具有高動態範圍的單點式取像裝置,以求能正確的解析反射光強度。然而,採用單點式取像裝置量測時,若需做大範圍量測時,則需要精準控制的機械位移。另一方面,待測範圍越大所需之量測時間越長,其將造成量測上的不便。
Moiré疊紋干涉術目前可有效地被應用於尺度大於10微米(μm)的3D形貌檢測。由於Moiré疊紋干涉術被大量用在物體3D形貌檢測,其解析度取決於偵測到的條紋精細度。傳統上為加強偵測條紋的能力,會使用一些特別的條紋編碼技術(例如DeBruijn空間編碼技術、Gray時間編碼技術等技術),加強條紋精細度。由實際應用案例也可以證實這是一個快速有效的形貌檢測方式。但是,如果形貌檢測精度要求準確到數微米以下,Moiré疊紋干涉術就必須要加以改良。
此外,若改採用電荷耦合元件(Charge-Coupled Device ,CCD)感測器或互補式金屬氧化層半導體(Complementary Metal-Oxide-Semiconductor,CMOS)感測器做大範圍影像量 測並使用如白光干涉術等解析度較高的技術時,可能因量測速度無法達到如同Moiré疊紋干涉術般高速量測,因此限制了應用空間。
習知技術中,有數種手段可克服量測速度不足的問題,其中美國專利第6,753,876號揭露一種建構高動態範圍影像之方法。該方法調整不同強度的照明光,截取相對應的影像資料,設定在中間照明光強下所截取資料為標準影像,再分析其中各像素的強度是否超過飽和範圍(Saturation Region)或低於雜訊水平(Noise Floor)。若有超過飽和範圍的像素,則取另一張較低光強的影像且相對應的同一位置像素無飽和現象。隨後,將此較低光強的像素值乘上一相對應的係數,並將此值取代掉標準影像中飽和的像素強度值,藉此得到正確的像素強度值。相反地,若有像素強度低於雜訊水平時,則取另一張較高光強的影像且相對應的同一位置像素未低於雜訊水平。隨後,將此較低光強的像素值乘上一相對應的係數,並將此值取代掉標準影像中低於雜訊水平的像素強度值,藉此得到正確的像素值。雖然習知技術可提高量測速度,但卻無法同時提升影像的解析度。
揭示一建構高解析度影像之系統及其方法,此系統包含分光鏡、光強度調節器、取像模組及影像處理模組。其中,分光鏡用以反射一入射光束並產生一分光光束;光強度調節器用以調變該分光光束之強度而產生一調變光束,該 調變光束包含一預設干擾訊號並照射至一物件而產生一調變影像;取像模組用以取得複數張該調變影像;影像處理模組用以分析該等調變影像而得到一高解析度影像。
揭示一建構高解析度影像之系統,包含分光鏡、取像模組及影像處理模組。分光鏡用以透射包含一預設干擾訊號之一調變光束至一物件而產生一調變影像;取像模組用以取得複數張該調變影像;影像處理模組用以分析該等調變影像而得到一高解析度影像。
揭示一建構高解析度影像之方法,包含下列步驟:提供一光束、一調變光束及一光柵,該光束及該調變光束穿透該光柵照射至一物件,其中該調變光束包含一預設干擾訊號;以該光束及該調變光束照射該物件以取得該物件之複數張調變影像;以及分析該等調變影像得到一高解析度影像。
上文已經概略地敍述本揭露之技術特徵,俾使下文之本揭露詳細描述得以獲得較佳瞭解。構成本揭露之申請專利範圍標的之其它技術特徵將描述於下文。本揭露所屬技術領域中具有通常知識者應可瞭解,下文揭示之概念與特定實施範例可作為基礎而相當輕易地予以修改或設計其它結構或製程而實現與本揭露相同之目的。本揭露所屬技術領域中具有通常知識者亦應可瞭解,這類等效的建構並無法脫離後附之申請專利範圍所提出之本發明的精神和範圍。
根據一實施範例,圖1例示一建構高解析度影像之系統100。系統100包含光源產生裝置102、分光鏡104、光強度調節器106、取像模組108及影像處理模組110。光源產生裝置102用以產生光束。根據本實施例,該光束為一準直光束。分光鏡104用以反射光束而產生一分光光束,該分光光束射入光強度調節器106,使光強度調節器106調變該分光光束之強度而產生一調變光束。具體而言,分光鏡104將光束反射進入光強度調節器106,由於光強度調節器106可將預設干擾訊號藉由調變分光光束強度的方式使分光光束混入預設光強度干擾的訊號而產生調變光束,因此調變光束與分光光束的差異在於調變光束包含預設干擾訊號,而分光光束並無包含任何預設干擾訊號。在此實施例中,調變光束係經由分光鏡104照射至物件112並產生調變影像,因此調變影像係由調變光束單獨照射至物件112而產生。然而調變影像並不以上述實施例為限,亦可利用調變光束及光束共同照射至物件112而產生調變影像。在此實施例中,取像模組108係用以取得複數張調變影像。根據本實施例,取像模組108可使用一電荷耦合元件(Charge-coupled Device,CCD)感測器或一互補式金屬氧化層半導體(Complementary Metal-Oxide-Semiconductor,CMOS)感測器以取得該物件112之調變影像。影像處理模組110用以分析物件112之該等調變影像而得到高解析度影像。
根據一實施範例,圖2例示一建構高解析度影像之系統200。系統200包含光源產生裝置202、分光鏡204、光強度 調節器206、光柵207、取像模組208、控制器209及影像處理模組210。光源產生裝置202同樣係用以產生光束,光束射入分光鏡204後部分穿透分光鏡204而部分光束則經分光鏡204反射而形成分光光束,此分光光束將射入光強度調節器206。在系統200中,光強度調節器206可選自反射式光強度調節器及穿透式光強度調節器。反射式光強度調節器進一步可選自液晶矽板(Liquid Crystal on Silicon,LCoS)元件、數位微型反射鏡元件(Digital Micromirror Device,DMD)及數位光源處理(Digital Light Processing,DLP)裝置。而穿透式光強度調節器則包含液晶元件。在此實施例中,光強度調節器206較佳為反射式光強度調節器中的液晶矽板元件;然而在其他變化實施例中,光強度調節器206亦可因應不同的設計需求,改變為其他相應元件或裝置,甚至改變為穿透式光強度調節器。
如圖2所示之實施例中,分光光束經由光強度調節器206之反射式光強度調節器將預設干擾訊號藉由調變分光光束強度的方式使分光光束混入預設光強度干擾的訊號而產生調變光束。由於反射式光強度調節器不只能調變分光光束,亦可將分光光束反射,因此調變後之調變光束係反射至分光鏡204。分光鏡204則允許部分調變光束通過而照射至光柵207上,光柵207可使穿透的調變光束產生條紋並照射至物件212。
如圖3所示,當調變光束自光柵(圖未示)產生條紋由左側以θs 的角度入射,經由參考面213以θ0 的角度沿著虛線被 取像模組208(如電荷耦合元件)接收。由觀測面上觀測到的條紋寬度為a,物件212出現後觀測到的條紋寬度變化(相位差)為b。藉由公式,可以推導出物件212的高度h。具體而言,控制器209產生光柵位移訊號以控制光柵207位移,當光柵207位移後,經由取像模組208(如電荷耦合元件)接收光柵207位移前與位移後的調變影像傳送至影像處理模組210以建構物件212的相位差b,進而計算出物件212的高度h。
然而若假設光學架構為完美的光學架構,只考慮取像模組208(如電荷耦合元件)的量化誤差,並假設物件212的高度h為10微米,直接將光束(無調變的光束)經由光柵207投射弦波條紋於物件212時,理論計算結果如圖4。可清楚地觀察到量化取像模組208(如電荷耦合元件)的量化誤差將會造成物件212高度h的誤差約為±0.7微米(μm)。造成上述誤差的主要來源是相位差b的解析度太低。為了增加相位差b的解析度,利用光強度調節器206將預設干擾訊號混入分光光束而產生調變光束。在此實施例中,預設干擾訊號較佳為噪訊平均為零的白噪訊(white noise)。利用包含預設干擾訊號的調變光束,當調變光束經過光柵207投射至物件212後,取像模組208可取得調變光束投射至物件212所產生的複數張調變影像。該等調變影像再經由影像處理模組210分析而得到一高解析度的影像。當控制器209控制光柵207位移後,經由上述方式可得另一高解析度的影像,這兩張高解析度的影像可增加相位差b的解析度。高解析度影像張數並不以 上述實施例為限。當相位差b的解析度提升後,如圖5所示,物件212高度h的誤差有效地被限制於±0.1微米左右。
根據一實施範例,圖6A例示一建構高解析度影像之系統300。系統300包含第一光源產生裝置302、第二光源產生裝置303、分光鏡304、取像模組308及影像處理模組310。分光鏡304、取像模組308及影像處理模組310之功效與上述之分光鏡104、取像模組108及影像處理模組110之功效相同。第一光源產生裝置302用以產生調變光束,該調變光束包含預設干擾訊號,預設干擾訊號較佳為白噪訊,白噪訊的噪訊平均為零,由於平均為零,所以對於數位訊號而言,多次取樣所加入的白噪訊將不會使出現訊號偏移。此外,因為白噪訊是在數位化之前加入,所以對數位化之後的多次平均訊號將會趨近真值,減少數位化過程引入的量化雜訊。如圖5所示,系統300可有效地將誤差限制於±0.1微米左右。第二光源產生裝置303可產生一光束,此光束能提供一定光強度的穩定光源。在此實施例中,第二光源產生裝置303之光束可補強第一光源產生裝置302之調變光束的強度;然而若調變光束本身的強度已經足夠時,在其他實施例(圖未示)中,系統亦可省略第二光源產生裝置303。在此實施例中,調變影像係由光束及調變光束共同照射至物件312而產生,然而調變影像並不以上述實施例為限,亦可單獨利用調變光束照射至物件312而產生調變影像。
如圖6A所示,系統300進一步包含光柵307及控制器309,控制器309產生光柵位移訊號以控制光柵307位移,光柵 307本身可讓光束穿透而產生條紋而照射至物件312。透過控制器309使光柵307位移後,影像處理模組310可根據光柵307位移前與光柵307位移之調變影像建構出光柵307位移前及光柵307位移後個別的高解析度影像,進而建構出物件312的精確的相位差b,以精確地推算出物件312的高度h。
如圖6所示之實施例中,第一光源產生裝置302較佳為高頻顫動(dithering)光源產生裝置,其可直接產生上述調變光束。然而在其他變化實施例(如圖6B)中,第一光源產生裝置302亦可包含光源3021及光強度調節器3022,光強度調節器3022可選自反射式強度調節器及穿透式強度調節器。反射式光強度調節器進一步可選自液晶矽板元件、數位微型反射鏡元件及數位光源處理裝置。穿透式光強度調節器則可為液晶元件。因此,第一光源產生裝置302可藉由光源3021所產生的光束及光強度調節器3022調變該光束而產生上述調變光束。根據本實施例,取像模組308可使用電荷耦合元件感測器或互補式金屬氧化層半導體感測器以取得該物件312之調變影像。
根據一實施範例,圖7例示一建構高解析度影像之方法之流程圖。以下搭配圖2、圖6A及圖7說明本實施範例。在步驟701中,提供光束、調變光束及光柵307,該光束及該調變光束穿透該光柵307照射至物件312,其中調變光束包含一預設干擾訊號,該預設干擾訊號較佳為噪訊平均為零之白噪訊,其中該調變光束係使用第一光源產生裝置302(如高頻顫動光源產生裝置)直接產生,而該光束則由第二光 源產生裝置303產生,該光束及該調變光束係透過分光鏡304照射至物件312。在其他變化實施例(如圖2)中,光束可經由分光鏡204反射至光強度調節器206而產生調變光束。而該光強度調節器206可選自反射式光強度調節器或穿透式光強度調節器。反射式光強度調節器進一步可選自液晶矽板元件或數位微型反射鏡元件。若光強度調節器206為穿透式光強度調節器時,光強度調節器206則為液晶元件。
在步驟703中,以光束及調變光束照射物件312以取得物件312之複數張調變影像,調變影像係使用取像模組308而取得。取像模組308可選自電荷耦合元件感測器及互補式金屬氧化層半導體感測器以取得物件312之調變影像。在步驟705中,分析該等調變影像而得到高解析度影像,其中係利用影像處理模組310來分析調變影像。
由於調變光束可於數位化之前加入噪訊平均為零的白噪訊,且噪訊平均為零的白噪訊經過取像模組308多次取樣後,所產生的多次平均訊號將包含小數點後位數,由於小數點後位數將使數位化後的多次平均訊號更趨近真值。由於白噪訊是在數位化之前加入,所以對數位化之後的多次平均訊號將會有效的趨近真值,減少數位化過程引入的量化雜訊,是故影像處理模組310數位化後可得到高解析度影像。
根據一實施範例,圖8顯示一利用高解析度影像推算一物件高度之方法之流程圖。以下搭配圖2、圖6A及圖8說明本實施範例。在步驟801及步驟803皆與上述圖7的步驟701 及步驟703相同,在此不再贅述。步驟805與步驟705之間並無實質差異,都是用來產生高解析度影像,但是步驟805主要是產生第一高解析度影像。步驟807中,控制器209、309位移光柵207、307後,以光束或調變光束照射物件212、312以取得物件212、312之複數張調變影像。在此步驟中,是利用步驟803中的取像模組208、308而取得複數張調變影像。步驟808中,利用影像處理模組310、210分析位移光柵207、307後之該等調變影像,進而得到第二高解析度影像。最後步驟809中,影像處理模組310、210根據第一高解析度影像及第二高解析度影像之間的相位移b而推算出物件的高度h,藉由高解析度影像,系統200、300可精確地推算出物件的高度h,且量測時間並不因此大幅增加。
本揭露之技術內容及技術特點已揭示如上,然而熟悉本項技術之人士仍可能基於本揭露之教示及揭示而作種種不背離本揭露精神之替換及修飾。因此,本發明之保護範圍應不限於實施範例所揭示者,而應包括各種不背離本揭露之替換及修飾,並為以下之申請專利範圍所涵蓋。
100、200、300‧‧‧系統
102、202‧‧‧光源產生裝置
302‧‧‧第一光源產生裝置
3021‧‧‧光源
3022‧‧‧光強度調節器
303‧‧‧第二光源產生裝置
104、204、304‧‧‧分光鏡
106、206‧‧‧光強度調節器
207、307‧‧‧光柵
108、208、308‧‧‧取像模組
209、309‧‧‧控制器
110、210、310‧‧‧影像處理模組
112、212、312‧‧‧物件
213‧‧‧參考面
701、703、705 801、803、805、 807、808、809‧‧‧步驟
b‧‧‧相位差
h‧‧‧高度
圖1顯示一建構高解析度影像之系統實施例之示意圖;圖2顯示一建構高解析度影像之系統實施例之示意圖;圖3顯示調變光束之條紋照射物件之示意圖;圖4顯示一般光束產生的誤差值之示意圖;圖5顯示一本揭露之調變光束縮小誤差值之示意圖;圖6A顯示一建構高解析度影像之系統實施例之示意圖 ;圖6B顯示一建構高解析度影像之系統實施例之示意圖;圖7顯示一建構高解析度影像之方法實施例之流程圖;以及圖8顯示利用高解析度影像推算一物件高度之方法實施例之流程圖。
801、803、805、807、808、809‧‧‧步驟

Claims (26)

  1. 一種建構高解析度影像之系統,包含:一分光鏡,反射一光源產生裝置產生之一光束並產生一分光光束;一光強度調節器,調變該分光光束之強度而產生一調變光束,該調變光束包含一預設干擾訊號而照射至一物件並產生一調變影像;一光柵,該調變光束穿透該光柵產生條紋而照射至該物件;一取像模組,取得複數張該調變影像;一控制器,該控制器產生一光柵位移訊號以控制該光柵位移;以及一影像處理模組,分析該等調變影像而得到一高解析度影像,其中該影像處理模組根據該光柵位移前與該光柵位移後之該等調變影像建構該物件之一相位差。
  2. 根據請求項1所述之系統,其中該光強度調節器係選自一反射式光強度調節器及一穿透式光強度調節器。
  3. 根據請求項2所述之系統,其中該反射式光強度調節器選自液晶矽板(Liquid Crystal On Silicone,LCoS)元件、數位微型反射鏡元件(Digital Micromirror Device,DMD)及數位光源處理(Digital Light Processing,DLP)裝置。
  4. 根據請求項2所述之系統,其中該穿透式光強度調節器包含液晶元件。
  5. 根據請求項1所述之系統,其中該取像模組選自一電荷耦合元件感測器及一互補式金屬氧化層半導體感測器。
  6. 根據請求項1所述之系統,其中該預設干擾訊號為噪訊平均為零之白噪訊(white noise)。
  7. 一種建構高解析度影像之系統,包含:一第一光源產生裝置,產生一調變光束,該調變光束包含一預設干擾訊號;一分光鏡,透射該調變光束至一物件而產生一調變影像;一光柵,該調變光束穿透該光柵產生條紋而照射至該物件;一取像模組,取得複數張該調變影像;一控制器,該控制器產生一光柵位移訊號以控制該光柵位移;以及一影像處理模組,分析該等調變影像而得到一高解析度影像,其中該影像處理模組根據該光柵位移前與該光柵位移後之該等調變影像建構該物件之一相位差。
  8. 根據請求項7所述之系統,進一步包含一第二光源產生裝置,產生一光束,其中該分光鏡反射該光束至該物件。
  9. 根據請求項8所述之系統,其中該分光鏡反射部分該光束至該物件,並使部分該調變光束穿透該分光鏡而照射至該物件。
  10. 根據請求項7所述之系統,其中該第一光源產生裝置包含一顫動(dithering)光源產生裝置,直接產生該調變光束。
  11. 根據請求項7所述之系統,其中該第一光源產生裝置包含一光源及一光強度調節器,該光強度調節器係選自一反射式光強度調節器及一穿透式光強度調節器,該光源產生一光束,該光強度調節器調變該光束而產生該調變光束。
  12. 根據請求項11所述之系統,其中該反射式光強度調節器選自液晶矽板(Liquid Crystal On Silicone,LCoS)元件、數位微型反射鏡元件(Digital Micromirror Device,DMD)及數位光源處理(Digital Light Processing,DLP)裝置。
  13. 根據請求項11所述之系統,其中該穿透式光強度調節器包含液晶元件。
  14. 根據請求項8所述之系統,其中該取像模組選自一電荷耦合元件感測器及一互補式金屬氧化層半導體感測器。
  15. 根據請求項8所述之系統,其中該預設干擾訊號為白噪訊(white noise)。
  16. 一種建構高解析度影像之方法,包含下列步驟:提供一光束、一調變光束及一光柵,該光束及該調變光束穿透該光柵照射至一物件,其中該調變光束包含一預設干擾訊號,該調變光束穿透該光柵產生條紋而照射至該物件;以該光束及該調變光束照射該物件以取得該物件之複數張調變影像;產生一光柵位移訊號以控制該光柵位移;以及分析該等調變影像得到一高解析度影像,其中根據該光柵位移前與該光柵位移後之該等調變影像建構該物件之一相位差。
  17. 根據請求項16所述之方法,其中該光束及該調變光束係透過一分光鏡照射至該物件。
  18. 根據請求項16所述之方法,其中係使用一顫動(dithering)光源產生裝置,直接產生該調變光束。
  19. 根據請求項17所述之方法,其中係使用一光源產生裝置產生該光束。
  20. 根據請求項19所述之方法,其中該光束經由該分光鏡入射至一光強度調節器而產生該調變光束。
  21. 根據請求項20所述之方法,其中該光強度調節器係為一反射式光強度調節器或一穿透式光強度調節器。
  22. 根據請求項21所述之方法,其中該反射式光強度調節器包含一數位微型反射鏡元件或一液晶矽板元件。
  23. 根據請求項21所述之方法,其中該穿透式光強度調節器包含一液晶元件。
  24. 根據請求項16所述之方法,其中係使用一取像模組取得該調變影像。
  25. 根據請求項24所述之方法,其中該取像模組選自一電荷耦合元件感測器及一互補式金屬氧化層半導體感測器。
  26. 根據請求項16所述之方法,其中該預設干擾訊號為白噪訊(white noise)。
TW099144144A 2010-12-16 2010-12-16 建構高解析度影像之系統及方法 TWI436098B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW099144144A TWI436098B (zh) 2010-12-16 2010-12-16 建構高解析度影像之系統及方法
US13/087,626 US8581979B2 (en) 2010-12-16 2011-04-15 System and method for constructing high resolution images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099144144A TWI436098B (zh) 2010-12-16 2010-12-16 建構高解析度影像之系統及方法

Publications (2)

Publication Number Publication Date
TW201226974A TW201226974A (en) 2012-07-01
TWI436098B true TWI436098B (zh) 2014-05-01

Family

ID=46233881

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099144144A TWI436098B (zh) 2010-12-16 2010-12-16 建構高解析度影像之系統及方法

Country Status (2)

Country Link
US (1) US8581979B2 (zh)
TW (1) TWI436098B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI460394B (zh) * 2012-07-20 2014-11-11 Test Research Inc 三維影像量測裝置
US8929644B2 (en) * 2013-01-02 2015-01-06 Iowa State University Research Foundation 3D shape measurement using dithering
TWI604073B (zh) * 2016-08-09 2017-11-01 盟立自動化股份有限公司 適用於有機發光二極體蒸鍍製程並可用以校正影像擷取模組之定位精度之光罩結構

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838428A (en) 1997-02-28 1998-11-17 United States Of America As Represented By The Secretary Of The Navy System and method for high resolution range imaging with split light source and pattern mask
US6980321B2 (en) * 2001-08-20 2005-12-27 Eastman Kodak Company Method and apparatus for printing high resolution images using multiple reflective spatial light modulators
US6753876B2 (en) 2001-12-21 2004-06-22 General Electric Company Method for high dynamic range image construction based on multiple images with multiple illumination intensities
CA2435935A1 (en) 2003-07-24 2005-01-24 Guylain Lemelin Optical 3d digitizer with enlarged non-ambiguity zone
JP2006286079A (ja) 2005-03-31 2006-10-19 Toshiba Corp 光ヘッド及び光ディスク装置
US7990524B2 (en) * 2006-06-30 2011-08-02 The University Of Chicago Stochastic scanning apparatus using multiphoton multifocal source
EP2136233B1 (en) * 2007-04-12 2013-06-12 Nikon Corporation Microscope device

Also Published As

Publication number Publication date
TW201226974A (en) 2012-07-01
US8581979B2 (en) 2013-11-12
US20120154574A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
US20210183085A1 (en) Digital fringe projection and multi-spectral polarization imaging for rapid 3d reconstruction
US20100149551A1 (en) Structured Light Imaging System and Method
US20100195114A1 (en) Three-dimensional shape measuring apparatus, three-dimensional shape measuring method, three-dimensional shape measuring program, and recording medium
US10986328B2 (en) Device, method and system for generating dynamic projection patterns in a camera
US9267790B2 (en) Measuring device of measurement object, calculating device, measurement method, and method for producing item
TWI567364B (zh) 結構光產生裝置、量測系統及其方法
JP2012518791A (ja) コヒーレント照明イメージング・システムにおけるスペックル雑音の低減
EP3801365B1 (en) Device, method and system for generating dynamic projection patterns in a confocal camera
US20080117438A1 (en) System and method for object inspection using relief determination
US8941840B2 (en) Device for optical coherence tomography
KR101562467B1 (ko) 스마트 폰을 이용한 3차원 형상 측정 장치
US10775316B2 (en) Inspection system and inspection method
TWI436098B (zh) 建構高解析度影像之系統及方法
US20210172733A1 (en) Deriving topology information of a scene
US9719777B1 (en) Interferometer with real-time fringe-free imaging
TW201120402A (en) System and method for contructing high dynamic range images
JP2014238299A (ja) 被検物の計測装置、算出装置、計測方法および物品の製造方法
JP3711808B2 (ja) 形状計測装置および形状計測方法
JP2014238298A (ja) 被検物の計測装置、算出装置、計測方法および物品の製造方法
KR101438748B1 (ko) 광 간섭 단층 촬영 장치 및 방법
Lambelet et al. Fast and accurate line scanner based on white light interferometry
JP2007071817A (ja) 二光束干渉計及び同干渉計を用いた被測定物の形状測定方法
JP2014178207A (ja) 形状の計測装置及び計測方法並びに物品の製造方法
JP2987000B2 (ja) 位置情報のコード化方法およびそのコードを用いた3次元計測方法
JP5494758B2 (ja) 形状測定装置