TWI434162B - Voltage regulation system and method - Google Patents

Voltage regulation system and method Download PDF

Info

Publication number
TWI434162B
TWI434162B TW96136463A TW96136463A TWI434162B TW I434162 B TWI434162 B TW I434162B TW 96136463 A TW96136463 A TW 96136463A TW 96136463 A TW96136463 A TW 96136463A TW I434162 B TWI434162 B TW I434162B
Authority
TW
Taiwan
Prior art keywords
voltage
current
current path
input
output
Prior art date
Application number
TW96136463A
Other languages
Chinese (zh)
Other versions
TW200830075A (en
Inventor
Louis Frew
Colin Bates
Original Assignee
Atmel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atmel Corp filed Critical Atmel Corp
Publication of TW200830075A publication Critical patent/TW200830075A/en
Application granted granted Critical
Publication of TWI434162B publication Critical patent/TWI434162B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/263Arrangements for using multiple switchable power supplies, e.g. battery and AC
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • G06F1/305Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations in the event of power-supply fluctuations

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

電壓調整系統及方法Voltage adjustment system and method

各種具體實施例係關於電子系統。Various specific embodiments are directed to electronic systems.

可使用數位及/或類比電路之電子系統(例如微處理器)通常在以一供應電壓供電時操作。許多電子系統設計為從經調節之供應電壓操作,以提供一適於電路之電壓範圍內的電壓。Electronic systems (e.g., microprocessors) that can use digital and/or analog circuits typically operate when powered at a supply voltage. Many electronic systems are designed to operate from a regulated supply voltage to provide a voltage within a voltage range suitable for the circuit.

電壓調整器通常可包含具有一耦合至一電源之輸入與一耦合至一負載之輸出的器件。在操作中,電壓調整器可從電源提取能量並以一調節電壓將能量遞送至負載。通常電源之電壓與負載之電壓可能實質上係各自獨立的,且電壓可能實質上並不相同。在正常操作中,電壓調整器以一額定電壓操作範圍內之電壓操作以供應電流至負載。可指定一些電壓調整器將供應至負載之電壓調整至額定電壓的例如1%、5%、或10%之容許值內。The voltage regulator can typically include a device having an input coupled to a power supply and an output coupled to a load. In operation, the voltage regulator can extract energy from the power source and deliver the energy to the load with a regulated voltage. Typically, the voltage of the power supply and the voltage of the load may be substantially independent, and the voltages may be substantially different. In normal operation, the voltage regulator operates at a voltage within a rated voltage operating range to supply current to the load. Some voltage regulators may be specified to adjust the voltage supplied to the load to within a tolerance of, for example, 1%, 5%, or 10% of the rated voltage.

調整器供應至負載之額定電壓可視受供應之負載類型而定。在一些數位系統中,電壓調整器可供應一例如3.3伏特或5伏特之額定電壓。在一些類比系統中,電壓調整器可供應一例如-5伏特、2.5伏特、5伏特或12伏特之額定電壓。許多其他容許值及/或額定電壓仍係可能的。The rated voltage supplied by the regulator to the load may depend on the type of load being supplied. In some digital systems, the voltage regulator can supply a nominal voltage of, for example, 3.3 volts or 5 volts. In some analog systems, the voltage regulator can supply a nominal voltage of, for example, -5 volts, 2.5 volts, 5 volts, or 12 volts. Many other permissible values and/or voltage ratings are still possible.

電壓調整器可具有各種設計。例如,一些切換式直流變換器可藉由快速將能量儲存進與釋放出一能量儲存元件(如電感器、電容器)來產生一調整輸出電壓。一些切換式電壓調整器拓璞之範例包含充電泵、升壓式、降壓式、降升壓式、反馳式、SEPIC(單端初級電感轉換器)、Cuk(邱克)與順向式轉換器。電壓調整器之另一類型為線性調整器。線性調整器之範例可包含串聯旁路與並聯調整器。The voltage regulator can have a variety of designs. For example, some switched DC converters can generate an adjusted output voltage by quickly storing and releasing energy into an energy storage component (such as an inductor, capacitor). Some examples of switched voltage regulator topologies include charge pump, boost, buck, step-down, flyback, SEPIC (single-ended primary inductor converter), Cuk (Cook) and forward converter. Another type of voltage regulator is a linear regulator. Examples of linear regulators can include series bypass and shunt regulators.

本發明之方法與裝置可提供用於多重輸入電壓調整,其中當輸入電壓之差落在一電壓範圍內時,供應至一輸出節點之電流根據其各別之輸入電壓分流在若干電壓調整器之間。當輸入電壓之差落在該電壓範圍之外時,則流至輸出節點之電流實質上係透過具有最高輸入電壓之電壓調整器所供應。在一些具體實施例中,電壓範圍可(至少部分)由一電晶體閘極至源極臨界電壓特性所定。在一個範例中,一於一組合智慧卡中之雙輸入電壓調整器系統基於各別輸入電壓之間的一相對電壓,從接觸式及/或非接觸式(如電感偶合)電源供應電流。The method and apparatus of the present invention can be provided for multiple input voltage adjustments, wherein when the difference between the input voltages falls within a voltage range, the current supplied to an output node is shunted according to its respective input voltage to a plurality of voltage regulators. between. When the difference in input voltage falls outside of this voltage range, then the current flowing to the output node is substantially supplied through the voltage regulator having the highest input voltage. In some embodiments, the voltage range can be (at least in part) determined by a transistor gate to source threshold voltage characteristic. In one example, a dual input voltage regulator system in a combined smart card supplies current from a contact and/or non-contact (eg, inductively coupled) power supply based on a relative voltage between the respective input voltages.

一些具體實施例可提供一或數個優點。例如,一些具體實施例可實質地減緩可因暫態電力狀態所導致之潛在操作失誤。如此,即可在可用電源之相對強度轉移期間維持強健的效能。在一些具體實施例中,在各個獨立電源輸入之調整器間電流分流之平滑變換可實質地減少或防止例如資料錯誤或其他故障。單一電晶體壓降架構提供低壓降調整能力而不實質地增加電晶體體積。一些具體實施例可實質地防止逆向電流通過連接於非現用電力輸入之調整器。此外,藉由實質地減少或防止逆向(如反饋)電流通過非所選或未耦合至現用電源之調整器電晶體,可在一廣泛範圍之操作狀態中達到低電力操作。在一些具體實施例中藉由選擇提取來自最高可用電源之電力可增強效能。Some embodiments may provide one or several advantages. For example, some embodiments may substantially mitigate potential operational errors that may result from transient power conditions. In this way, robust performance can be maintained during the relative intensity transfer of the available power source. In some embodiments, smoothing of current shunting between regulators of individual independent power inputs can substantially reduce or prevent, for example, data errors or other faults. A single transistor voltage drop architecture provides low dropout regulation capability without substantially increasing the transistor volume. Some embodiments may substantially prevent reverse current from passing through a regulator connected to the inactive power input. In addition, low power operation can be achieved over a wide range of operating conditions by substantially reducing or preventing reverse (e.g., feedback) current through regulator transistors that are not selected or coupled to the active power source. In some embodiments, performance can be enhanced by selectively extracting power from the highest available power source.

一或數個具體實施例之細節係於隨附圖示與以下說明中提出。其它功能、目標與優點將顯見於說明與圖示以及請求項中。The details of one or more specific embodiments are set forth in the accompanying drawings and the description below. Other functions, objectives, and advantages will be apparent from the description and illustration and claims.

圖1顯示一範例系統100,其包含一經配置以從多重(例如獨立)電源接收電力之雙輸入電壓調整器(DIVR)105。DIVR 105分別從輸入節點110、115接收輸入電壓V1、V2,並於一輸出節點125以一調整電壓Vout供應一輸出電流Iout至一器件(例如處理系統120)。在一個具體實施例中,當V1與V2係位於各自之電路相依窗口之內時,DIVR 105從輸入節點110、115兩者提取電流以供應Iout。當V1與V2之差落在該窗口之外時,DIVR 105分別從具有最高電壓輸入V1或V2之輸入節點110或105提取電流以供應Iout。如此,當例如輸入電壓V1、V2獨立地改變時(例如開啟、關閉、增強、減弱),DIVR 105可於輸出節點125供應一輸出電壓Vout,且實質地減少或消除暫態效應。1 shows an example system 100 that includes a dual input voltage regulator (DIVR) 105 configured to receive power from multiple (eg, independent) power sources. The DIVR 105 receives the input voltages V1, V2 from the input nodes 110, 115, respectively, and supplies an output current Iout to a device (e.g., processing system 120) at an output voltage 125 at an adjustment voltage Vout. In one embodiment, when V1 and V2 are within respective circuit dependent windows, DIVR 105 extracts current from both input nodes 110, 115 to supply Iout. When the difference between V1 and V2 falls outside the window, the DIVR 105 extracts current from the input node 110 or 105 having the highest voltage input V1 or V2, respectively, to supply Iout. As such, when, for example, the input voltages V1, V2 are independently changed (eg, turned on, off, boosted, attenuated), the DIVR 105 can supply an output voltage Vout at the output node 125 and substantially reduce or eliminate transient effects.

在一些具體實施例中,DIVR 105可包含一電晶體,其操作以實質地阻擋從輸出節點125到輸入節點110、115之一者的逆向電流。例如,當V1與V2間之差落在電路相依窗口之外時,可實質地阻擋流向具有最低電壓輸入V1、V2之輸入節點110、115的逆向電流。In some embodiments, DIVR 105 can include a transistor that operates to substantially block reverse current from one of output node 125 to one of input nodes 110, 115. For example, when the difference between V1 and V2 falls outside the circuit dependent window, the reverse current flowing to the input nodes 110, 115 having the lowest voltage inputs V1, V2 can be substantially blocked.

系統100分別從透過介面140、145耦合至系統100之外部來源130、135接收電力。在所描繪範例中,系統100從來源130、135接收電力及/或資料。在一些具體實施例中,介面140、145之一者或兩者可將所接收資料信號轉換為電力信號以供應操作電力至處理系統120。在一些範例中,介面140、145之任一者可包含用以耦合至相對應來源130、135之分離或整合的電力及資料埠。System 100 receives power from external sources 130, 135 coupled to system 100 through transmission interfaces 140, 145, respectively. In the depicted example, system 100 receives power and/or data from sources 130, 135. In some embodiments, one or both of the interfaces 140, 145 can convert the received data signals into power signals to supply operational power to the processing system 120. In some examples, any of the interfaces 140, 145 can include separate and integrated power and data to be coupled to the corresponding sources 130, 135.

在所描繪範例中,來源130包含一電源150與一資料介面155,而來源135包含一電源160與一資料介面165。電源150、160可分別透過介面140、145發送電力至系統100。資料介面155、165可藉由分別透過介面140、145發送及/或接收資料來與系統100通訊。In the depicted example, source 130 includes a power source 150 and a data interface 155, and source 135 includes a power source 160 and a data interface 165. Power sources 150, 160 can transmit power to system 100 through interfaces 140, 145, respectively. The data interfaces 155, 165 can communicate with the system 100 by transmitting and/or receiving data through the interfaces 140, 145, respectively.

在不同具體實施例中,介面140、145可經配置接收有線信號及/或無線信號。In various embodiments, the interfaces 140, 145 can be configured to receive wired signals and/or wireless signals.

在一些範例中,系統100可從一纜線介面(如經由一通用序列匯流排(USB)介面)接收電力與資料。在一些範例中,處理系統120可透過相對應介面140、145與來源130、135之任一者或兩者通訊。In some examples, system 100 can receive power and data from a cable interface, such as via a universal serial bus (USB) interface. In some examples, processing system 120 can communicate with either or both of sources 130, 135 through corresponding interfaces 140, 145.

一些具體實施例可整合於智慧卡中。在一些具體實施例中,智慧卡藉由與一適當之讀卡機系統通訊來傳送及/或接收資料。一些卡(通常稱為接觸式卡)在其直接電子連接至讀卡機系統時與讀卡機系統通訊。透過此種直接接觸介面所通訊之資料信號可符合特定通訊協定,例如ISO/IEC 7816或ISO/IEC 7810(ISO指國際標準化組織;IEC指國際電子技術委員會)。其他卡稱為非接觸式卡,可使用RF(射頻)信號與讀卡機系統無線通訊。非接觸式卡所用之RF資料信號可符合特定通訊協定,例如ISO/SEC 14443或ISO/IEC 15693。Some specific embodiments can be integrated into a smart card. In some embodiments, the smart card transmits and/or receives data by communicating with a suitable card reader system. Some cards, commonly referred to as contact cards, communicate with the card reader system as they are directly electronically connected to the card reader system. The data signals communicated through such direct contact interfaces may conform to specific communication protocols, such as ISO/IEC 7816 or ISO/IEC 7810 (ISO refers to the International Organization for Standardization; IEC refers to the International Electrotechnical Commission). Other cards are called contactless cards and can communicate wirelessly with the card reader system using RF (radio frequency) signals. The RF data signals used for contactless cards can conform to specific communication protocols such as ISO/SEC 14443 or ISO/IEC 15693.

各種類型之電源可供應用以操作積體電路卡中之電路的電子電力。例如,一些卡係由積體電力儲存器件(例如電池或大值電容器)所供電。可藉由使接觸式卡與連接於電源之終端直接電子接觸來供電,該電源可為例如整合於讀卡機系統中之電源供應。非接觸式智慧卡可藉由擷取並儲存讀卡機系統所發送之射頻(RF)能量來供電。Various types of power supplies are available to operate the electronic power of the circuits in the integrated circuit card. For example, some cards are powered by integrated power storage devices such as batteries or large value capacitors. The power supply can be powered by direct electronic contact of the contact card with a terminal connected to a power source, such as a power supply integrated into the card reader system. The contactless smart card can be powered by capturing and storing radio frequency (RF) energy transmitted by the card reader system.

混合型智慧卡(有時稱為組合卡)可透過直接電子接觸或RF耦合至讀卡機系統兩種方式中之任一者來交換資料。Hybrid smart cards (sometimes referred to as combo cards) can exchange data either by direct electronic contact or by RF coupling to a card reader system.

在一繪示範例中,介面140可為一接觸式介面,而介面145可為一無線介面。接觸式介面140可從一主要電池、一次要電池及/或公營電力接收電力。無線介面145可藉由例如整流所接收之射頻(RF)信號而使能量可儲存於電池或電容器中來接收電力。In an exemplary embodiment, interface 140 can be a contact interface and interface 145 can be a wireless interface. The contact interface 140 can receive power from a primary battery, primary battery, and/or public power. The wireless interface 145 can receive power by, for example, rectifying the received radio frequency (RF) signal to enable energy to be stored in the battery or capacitor.

電源150、160所提供之電壓可獨立地改變。例如,V1可由接觸式讀卡機器件中之一相對固定的電壓源供應之,且V1在接觸介面140時可能顯現為開啟,而在中斷接觸介面140時顯現為關閉。V2可透過電磁耦合至一非接觸式讀卡機器件而供應之。在此範例中,V2可視天線相對於磁場的方位、與發射器之距離、磁場失真物體(例如金屬及/或失真介質物體)之存在或不存在、信號反射、溼度、與相類者而實質地改變。因此,V2可在小於、實質上接近或大於V1之間改變。The voltages provided by the power supplies 150, 160 can be varied independently. For example, V1 may be supplied by a relatively fixed voltage source in one of the contact card reader devices, and V1 may appear to be on when contacting interface 140 and off when interrupting contact interface 140. V2 can be supplied by electromagnetic coupling to a contactless card reader device. In this example, the V2 visible antenna is oriented relative to the magnetic field, the distance from the emitter, the presence or absence of a magnetically distorted object (such as a metal and/or a distorted medium object), signal reflection, humidity, and the like. Change. Thus, V2 can vary between less than, substantially close to, or greater than V1.

如此,V1與V2間之差有時可在電路相依窗口之內(如0.2 V、0.3 V、0.4 V、0.5 V、0.6 V、0.7 V、0.8 V、0.9 V、1 V等)。有時V1與V2間之差可在電路相依窗口之外。在一個具體實施例中,當V1與V2係在窗口之內時,DIVR 105從電源150、160兩者提取電力。當V1與V2係在窗口之外時,DIVR 105實質上分別從供應最高電壓V1或V2之電源150或160提取電力。Thus, the difference between V1 and V2 can sometimes be within the circuit dependent window (eg 0.2 V, 0.3 V, 0.4 V, 0.5 V, 0.6 V, 0.7 V, 0.8 V, 0.9 V, 1 V, etc.). Sometimes the difference between V1 and V2 can be outside the circuit dependent window. In one embodiment, DIVR 105 draws power from both power sources 150, 160 when V1 and V2 are within the window. When V1 and V2 are outside the window, the DIVR 105 substantially extracts power from the power source 150 or 160 that supplies the highest voltage V1 or V2, respectively.

在一繪示範例中,介面140接收電池電力而介面145接收RF電力。V1初始為不變的而V2初始為無動力的,而使(V1-V2)係在電路相依窗口之外。DIVR 105實質上從輸入節點110提取電流來供應Iout。此外,實質上無電流通過輸入節點115。當RF磁場強度增加(如當介面145被實質上移至接近RF來源135時),V2增加而(V1-V2)則因此減少。當(V1-V2)係在窗口之內時,DIVR 105使用來自輸入節點110、115兩者之電流供應Iout。在某些具體實施例中,從輸入節點110、115所提取之電流量係直接關聯於V1、V2。當RF磁場強度持續增加時,V2可變成大於V1而使(V1-V2)係在窗口之外。當(V1-V2)係在窗口之外且V2>V1時,DIVR 105實質上係從輸入節點151提取電流。有關V1與V2間之差的電流變換範例係參照圖3說明之。In an illustrative example, interface 140 receives battery power and interface 145 receives RF power. V1 is initially invariant and V2 is initially unpowered, leaving (V1-V2) outside the circuit dependent window. The DIVR 105 essentially draws current from the input node 110 to supply Iout. Moreover, substantially no current passes through the input node 115. As the RF field strength increases (as when the interface 145 is substantially moved closer to the RF source 135), V2 increases and (V1-V2) decreases accordingly. When (V1-V2) is within the window, DIVR 105 uses current supply Iout from both input nodes 110, 115. In some embodiments, the amount of current drawn from the input nodes 110, 115 is directly associated with V1, V2. As the RF magnetic field strength continues to increase, V2 can become greater than V1 leaving (V1-V2) outside the window. When (V1-V2) is outside the window and V2 > V1, DIVR 105 essentially draws current from input node 151. A current conversion example relating to the difference between V1 and V2 is explained with reference to FIG.

圖2繪示DIVR 105之範例,該DIVR經配置在電源150、160之相對電壓改變時變換其所供應之電流。DIVR 105包含一電晶體205用以調整輸入節點110所供應之電壓,以及一電晶體210用以調整輸入節點115所供應之電壓。DIVR 105在耦合至輸出節點125之電晶體205、210的汲極終端產生調整器輸出電壓Vout。如圖2所示,輸出電流Iout係從通過電晶體205、210之電流I1、I2所指出之電流路徑任一者或兩者所供應。電流I1、I2係由電晶體205、210之閘極至源極電壓(Vgs)所控制。所供應之閘極電壓係受控制而使Iout持續地在操作期間由I1及/或I2供應之。2 illustrates an example of a DIVR 105 that is configured to shift the current it supplies when the relative voltages of the power supplies 150, 160 change. The DIVR 105 includes a transistor 205 for adjusting the voltage supplied by the input node 110, and a transistor 210 for adjusting the voltage supplied by the input node 115. The DIVR 105 produces a regulator output voltage Vout at the drain terminals of the transistors 205, 210 coupled to the output node 125. As shown in FIG. 2, the output current Iout is supplied from either or both of the current paths indicated by the currents I1, I2 of the transistors 205, 210. Currents I1, I2 are controlled by the gate to source voltage (Vgs) of transistors 205, 210. The supplied gate voltage is controlled such that Iout is continuously supplied by I1 and/or I2 during operation.

DIVR 105包含閘極偏壓電路215、220,分別用以控制電晶體205與電晶體210之閘極電壓。閘極偏壓電路215、220可藉由控制閘極電壓調整Vout。在所描繪範例中,電晶體205、210為p通道增強型金屬氧化物半導體場效電晶體(PMOS)。當Vgs大於電路相依電壓臨界值(Vt)時,可關閉PMOS電晶體205、210且可實質上不導通電流。當Vgs小於Vt時,可開啟PMOS電晶體205、210且可從源極導通一電流至汲極。在不同具體實施例中,Vt可視電晶體與其他電路元件之類型而定。PMOS電晶體之Vt範圍通常可從例如約-4 V到約0 V。The DIVR 105 includes gate bias circuits 215, 220 for controlling the gate voltages of the transistor 205 and the transistor 210, respectively. The gate bias circuits 215, 220 can adjust Vout by controlling the gate voltage. In the depicted example, the transistors 205, 210 are p-channel enhanced metal oxide semiconductor field effect transistors (PMOS). When Vgs is greater than the circuit dependent voltage threshold (Vt), the PMOS transistors 205, 210 can be turned off and the current can be substantially non-conducting. When Vgs is less than Vt, the PMOS transistors 205, 210 can be turned on and a current can be conducted from the source to the drain. In various embodiments, the Vt visible transistor is dictated by the type of other circuit components. The Vt range of the PMOS transistor can typically range from, for example, about -4 V to about 0 V.

閘極偏壓電路215、220控制所供應之閘極電壓以允許在電源150、160之間的變換(如平滑變換)。閘極偏壓電路215係由電壓V1供應之,而閘極偏壓電路220係由電壓V2供應之。在某些狀況中,例如當V1約等於V2時,閘極偏壓電路215、220可供應實質上相同之閘極電壓至電晶體205、210。The gate bias circuits 215, 220 control the supplied gate voltage to allow for a transition (e.g., smooth transition) between the power supplies 150, 160. The gate bias circuit 215 is supplied by the voltage V1, and the gate bias circuit 220 is supplied by the voltage V2. In some cases, such as when V1 is approximately equal to V2, the gate bias circuits 215, 220 can supply substantially the same gate voltage to the transistors 205, 210.

閘極偏壓電路215、220可基於V1與V2間之相對差來控制I1與I2。在操作期間,當電壓V1或V2之任一者相對於閘極電壓係太低以致於無法滿足臨界電壓條件(如Vgs>Vt)時,則相對應電流路徑被關閉。The gate bias circuits 215, 220 can control I1 and I2 based on the relative difference between V1 and V2. During operation, when either voltage V1 or V2 is too low relative to the gate voltage system to meet the threshold voltage condition (eg, Vgs > Vt), the corresponding current path is turned off.

當V1與V2兩者係高於所供應之閘極電壓時,DIVR 105之操作係視V1與V2間之相對差而定。例如,當電壓V1與V2係在窗口之內時,由於Vgs係低於Vt,電晶體205、210可允許電流I1、I2流經過電晶體205、210以供應Iout。電流I1與I2之量基於V1與V2而改變。例如,當V1大於V2時,I1大於I2。當電壓V1與V2係在窗口之外時,Vgs可受控制而使Iout實質上係由具有最高輸入電壓V1、V2之來源150或160供應之。例如,當V1>V2,且V1與V2在窗口之外時,Iout實質上係由來源150供應之。When both V1 and V2 are higher than the supplied gate voltage, the operation of DIVR 105 depends on the relative difference between V1 and V2. For example, when voltages V1 and V2 are within the window, since Vgs is lower than Vt, transistors 205, 210 may allow currents I1, I2 to flow through transistors 205, 210 to supply Iout. The amount of currents I1 and I2 varies based on V1 and V2. For example, when V1 is greater than V2, I1 is greater than I2. When voltages V1 and V2 are outside the window, Vgs can be controlled such that Iout is essentially supplied by source 150 or 160 having the highest input voltages V1, V2. For example, when V1 > V2, and V1 and V2 are outside the window, Iout is essentially supplied by source 150.

閘極偏壓電路215、220分別基於電壓V1、V2與從運算放大器225所接收之一控制信號Vbias來產生閘極電壓。運算放大器225在節點230接收一參考輸入與一回饋輸入。電晶體205、210、閘極偏壓電路215、220與運算放大器225結合形成一回饋電路,用以調整Vout及控制電流路徑內之電流I1、I2。在某些具體實施例中,回饋電路操作以控制電晶體205、210之Vgs,而使DIVR 105在V1與V2位於窗口內時,視Vout而定同時從輸入節點110、115提取電流。基於V1、V2與Vout,回饋電路產生電晶體205、210之閘極偏壓以調整Vout並在電源150、160之電壓改變時平滑地變換通過電晶體205、210之電流。當V1與V2在電壓窗口之外時,回饋電路可控制電晶體205、210之Vgs,而使實質上所有Iout流過耦合至最高可用輸入電壓V1、V2之電晶體。The gate bias circuits 215, 220 generate gate voltages based on the voltages V1, V2 and one of the control signals Vbias received from the operational amplifier 225, respectively. Operational amplifier 225 receives a reference input and a feedback input at node 230. The transistors 205, 210, the gate bias circuits 215, 220 and the operational amplifier 225 combine to form a feedback circuit for adjusting Vout and controlling the currents I1, I2 in the current path. In some embodiments, the feedback circuit operates to control the Vgs of the transistors 205, 210 such that when the V1 and V2 are within the window, the DIVR 105 draws current from the input nodes 110, 115 depending on Vout. Based on V1, V2, and Vout, the feedback circuit generates a gate bias voltage for the transistors 205, 210 to adjust Vout and smoothly transform the current through the transistors 205, 210 as the voltages of the power supplies 150, 160 change. When V1 and V2 are outside the voltage window, the feedback circuit can control the Vgs of the transistors 205, 210 such that substantially all of the Iout flows through the transistors coupled to the highest available input voltages V1, V2.

圖3為繪示當電壓差(V2-V1=△V)在一範圍中改變時之電流變換(例如平滑地)的範例圖表300。圖表300包含一表示△V之量的水平軸305,與一表示通過圖2電晶體205、210之I1、I2的垂直軸310。3 is a diagram 300 showing an example of current transformation (e.g., smooth) when the voltage difference (V2-V1 = ΔV) changes in a range. The graph 300 includes a horizontal axis 305 representing the amount of ΔV, and a vertical axis 310 representing I1, I2 passing through the transistors 205, 210 of FIG.

在圖表300中,線條315、320標繪I1、I2在△V之一範圍內之特性。在DIVR 105中,Iout=I1+I2。在所示範例中,I1與I2在△V之範圍內平滑且持續地改變。例如,在繪圖315、320中並無突然之不連續。如此,Iout係持續地由至少一個電源供應所供應。因此,在一些範例中,DIVR 105可有利地供應輸出電流Iout且實質地減少故障。特別是回應於輸入電壓V1、V2中之變換。例如,當電源160突然被從系統100中移除,而迫使DIVR 105從電源160供應電流變換至從電源150供應電流時,變換可平滑地發生且實質上減少故障。In chart 300, lines 315, 320 plot the characteristics of I1, I2 within a range of ΔV. In DIVR 105, Iout = I1 + I2. In the example shown, I1 and I2 change smoothly and continuously over the range of ΔV. For example, there are no sudden discontinuities in the plots 315, 320. As such, the Iout is continuously supplied by at least one power supply. Thus, in some examples, the DIVR 105 can advantageously supply the output current Iout and substantially reduce the fault. In particular, it responds to the transformation in the input voltages V1, V2. For example, when power supply 160 is suddenly removed from system 100, forcing DIVR 105 to supply current from power supply 160 to supply current from power supply 150, the transformation can occur smoothly and substantially reduce the failure.

如圖3中所示,圖表300顯示操作之三個區域。當△V係在-Vd1與Vd2之間(包含-Vd1與Vd2)的電路相依窗口之內時,DIVR 105操作於區域1。當△V小於-Vd1時,DIVR 105操作於區域2a。當△V大於Vd2時,DIVR 110可操作於區域2b。As shown in Figure 3, chart 300 shows three regions of operation. The DIVR 105 operates in Region 1 when ΔV is within the circuit dependent window between -Vd1 and Vd2 (including -Vd1 and Vd2). When ΔV is less than -Vd1, the DIVR 105 operates in the area 2a. When ΔV is greater than Vd2, DIVR 110 can operate in region 2b.

當DIVR 105操作於區域1時,電源150、160可同時供應Iout。如圖表300所示,DIVR 105提取電流I1及/或I2來供應Iout。在△V=-Vd1,DIVR 105可實質上僅提取I1來供應Iout,而使I1實質上等於Iout。當△V增加時,I2增加而I1減少,而使大約I1+I2=Iout。在△V=Vd2,DIVR 105可實質上僅提取I2來供應Iout,而使I2實質上等於Iout。窗口寬度為從-Vd1到Vd2之範圍。在一些範例中,Vd1與Vd2可為相同(例如|Vd1|=|Vd2|=0.4 V)。在其他範例中,電源150、160之臨界Vd1、Vd2可能不是對稱的。例如,Vd1可為約0.6 V,而Vd2可為約0.4 V。Vd1與Vd2係且可基於電路相依特性(例如電晶體205、210之閘極至源極臨界值)決定。在一繪示範例中,處理參數變動可造成Vt之變動(如約+/-100mV)。各種其他因素亦可造成窗口寬度之變動。在一些範例中,當溫度下降及/或當一PMOS器件之源極至汲極電壓增加時,Vt可能增加。此外,匹配之器件可造成窗口寬度之變動。When DIVR 105 operates in zone 1, power supplies 150, 160 can simultaneously supply Iout. As shown in graph 300, DIVR 105 extracts current I1 and/or I2 to supply Iout. At ΔV=-Vd1, the DIVR 105 can essentially extract only I1 to supply Iout, leaving I1 substantially equal to Iout. When ΔV increases, I2 increases and I1 decreases, causing approximately I1+I2=Iout. At ΔV = Vd2, DIVR 105 may extract only I2 to supply Iout substantially, leaving I2 substantially equal to Iout. The window width is in the range from -Vd1 to Vd2. In some examples, Vd1 and Vd2 may be the same (eg, |Vd1|=|Vd2|=0.4 V). In other examples, the thresholds Vd1, Vd2 of the power supplies 150, 160 may not be symmetrical. For example, Vd1 can be about 0.6 V and Vd2 can be about 0.4 V. Vd1 and Vd2 are tied and can be determined based on circuit dependent characteristics (e.g., gate to source thresholds of transistors 205, 210). In an illustrative example, a change in processing parameters can cause a change in Vt (e.g., about +/- 100 mV). Various other factors can also cause variations in the width of the window. In some examples, Vt may increase as the temperature drops and/or as the source to drain voltage of a PMOS device increases. In addition, matching devices can cause variations in window width.

當DIVR 105操作於區域2a時,電源105供應實質上所有Iout,而耦合至電源160之電流路徑供應極少之電流或不供應電流。在所描繪之範例中,I2在區域2a中實質上為零,但仍維持在非負數。當DIVR 105操作於區域2b時,電源160提供實質上所有Iout,而耦合至電源150之電流路徑供應極少之電流或不供應電流。在所描繪之範例中,I1在區域2b中實質上為零,但仍維持在非負數。When DIVR 105 is operating in region 2a, power supply 105 supplies substantially all of Iout, while the current path coupled to power supply 160 supplies little or no current. In the depicted example, I2 is substantially zero in region 2a, but remains at a non-negative number. When DIVR 105 is operating in region 2b, power supply 160 provides substantially all of Iout, while the current path coupled to power supply 150 supplies little or no current. In the depicted example, I1 is substantially zero in region 2b, but remains at a non-negative number.

如一繪示範例,假定DIVR 105將輸出節點125調整至2.5 V且供應一約1.7mA之負載電流。假設電源150供應V1至一實質之定電壓3.7 V,而V2從0 V躍升至6 V。DIVR 105初始時係操作於區域2a。當V2從0 V躍升至約(3.7-Vd1)V時,DIVR 105繼續操作於區域2a中,而所有Iout實質上係從I1供應之(例如I1實質上為1.7mA,而I2實質上為零且非負數)。當V2與V1係在窗口之內時(例如V2大於(3.7-Vd1)V但小於(3.7+Vd2)V),DIVR 105操作於區域1,且Iout係同時從I1與I2供應之。在所示區域1範例中,當V2增加時,I1之電流減少而I2之電流增加。在不同具體實施例中,當△V位於操作區域1時,I1與I2之和實質上等於Iout。如所顯示,當V2躍升時,I1之電流平滑地(例如單調地)減少而I2之電流平滑地(例如單調地)增加。在某些具體實施例中,例如當V1實質上等於V2時,電源供應150、160實質上平均地分享負載電流(例如I1=I2=850μA)。當V2大於(3.7+Vd2)V時,DIVR 105操作於區域2b,且所有Iout實質上係從I2供應之(例如I2實質上為1.7mA,而I1實質上為零且非負數)。As an illustrative example, assume that DIVR 105 adjusts output node 125 to 2.5 V and supplies a load current of approximately 1.7 mA. It is assumed that the power supply 150 supplies V1 to a substantially constant voltage of 3.7 V, and V2 jumps from 0 V to 6 V. The DIVR 105 initially operates in the area 2a. When V2 jumps from 0 V to approximately (3.7-Vd1)V, DIVR 105 continues to operate in region 2a, while all Iout is essentially supplied from I1 (eg, I1 is substantially 1.7 mA, and I2 is substantially zero And non-negative numbers). When V2 and V1 are within the window (eg, V2 is greater than (3.7-Vd1)V but less than (3.7+Vd2)V), DIVR 105 operates in Region 1, and Iout is supplied from both I1 and I2. In the example of region 1 shown, as V2 increases, the current of I1 decreases and the current of I2 increases. In various embodiments, when ΔV is in operation region 1, the sum of I1 and I2 is substantially equal to Iout. As shown, when V2 jumps, the current of I1 decreases smoothly (e.g., monotonically) and the current of I2 increases smoothly (e.g., monotonically). In some embodiments, such as when V1 is substantially equal to V2, the power supplies 150, 160 share the load current substantially evenly (eg, I1 = I2 = 850 [mu]A). When V2 is greater than (3.7 + Vd2) V, DIVR 105 operates in region 2b, and all Iout is substantially supplied from I2 (eg, I2 is substantially 1.7 mA, while I1 is substantially zero and non-negative).

圖4顯示一範例電路400之概要圖,其具體實施參照圖2說明之DIVR 105。電路400顯示偏壓電路215、220與運算放大器225之額外細節。在一些具體實施例中,可使用分立組件及/或積體組件或任何其組合來具體實施電路400。4 shows an overview of an example circuit 400, the specific implementation of which is described with reference to FIG. Circuit 400 shows additional details of bias circuits 215, 220 and operational amplifier 225. In some embodiments, the circuit 400 can be embodied using discrete components and/or integrated components, or any combination thereof.

如參照圖2所述,DIVR 105在輸出節點125調整輸出電壓Vout並供應電流Iout,且DIVR 105分別從輸入節點110、115提取電流I1、I2。電晶體205、210可基於由閘極偏壓電路215、220所供應之電晶體205、210的閘極電壓,分別控制於第一與第二電流路徑中之電流I1、I2。As described with respect to FIG. 2, DIVR 105 adjusts output voltage Vout at output node 125 and supplies current Iout, and DIVR 105 extracts currents I1, I2 from input nodes 110, 115, respectively. The transistors 205, 210 can control the currents I1, I2 in the first and second current paths, respectively, based on the gate voltages of the transistors 205, 210 supplied by the gate bias circuits 215, 220.

在某些情況下,閘極偏壓電路215、220可供應實質上類似的閘極電壓至電晶體205、210之閘極。閘極電路215、220係分別由電壓V1、V2所供應。如此,由各個閘極偏壓電路215、220所供應之閘極偏壓可視各自相對應之供應電壓V1、V2而定。在所描繪範例中,閘極偏壓電路215、220係回應於來自運算放大器225之控制信號Vbias。在此範例中,閘極偏壓電路215、220在關聯於供應電壓V1、V2之限度內,可回應於Vbias以分別產生閘極電壓至電晶體205、210。In some cases, the gate bias circuits 215, 220 can supply substantially similar gate voltages to the gates of the transistors 205, 210. The gate circuits 215, 220 are supplied by voltages V1, V2, respectively. As such, the gate biases supplied by the respective gate bias circuits 215, 220 may depend on the respective supply voltages V1, V2. In the depicted example, gate bias circuits 215, 220 are responsive to control signal Vbias from operational amplifier 225. In this example, gate bias circuits 215, 220 may be responsive to Vbias to generate gate voltages to transistors 205, 210, respectively, within limits associated with supply voltages V1, V2.

當V1與V2間之差係在窗口之內時(例如圖3中之電壓區域1),閘極偏壓電路215、220經配置允許I1與I2結合來供應Iout。當V1與V2間之差係在窗口之外時(例如圖3中之電壓區域2a與2b),閘極偏壓電路215、220經配置而使實質上所有Iout係透過將其源極耦合至在V1、V2間之較高電壓的電晶體205、210來供應之。When the difference between V1 and V2 is within the window (e.g., voltage region 1 in FIG. 3), the gate bias circuits 215, 220 are configured to allow I1 to be combined with I2 to supply Iout. When the difference between V1 and V2 is outside the window (e.g., voltage regions 2a and 2b in FIG. 3), gate bias circuits 215, 220 are configured such that substantially all of the Iout system is coupled through its source. The higher voltage transistors 205, 210 between V1 and V2 are supplied.

閘極偏壓電路215、220亦可使用Vbias來調整輸出電壓Vout。為產生Vbias,運算放大器225使用一所接收之回饋電壓與一輸入Vref。所接收回饋電壓係直接關聯於Vout。根據Vref與回饋電壓,運算放大器225輸出一電壓Vbias至閘極偏壓電路215、220。基於Vbias、V1與V2,閘極偏壓電路215、220允許電流I1、I2供應Iout,或僅使一個電流路徑能夠供應Iout且實質地阻擋逆向電流。The gate bias circuits 215, 220 can also use Vbias to adjust the output voltage Vout. To generate Vbias, operational amplifier 225 uses a received feedback voltage and an input Vref. The received feedback voltage is directly related to Vout. Based on Vref and the feedback voltage, operational amplifier 225 outputs a voltage Vbias to gate bias circuits 215, 220. Based on Vbias, V1 and V2, the gate bias circuits 215, 220 allow the currents I1, I2 to supply Iout, or only one current path can supply Iout and substantially block the reverse current.

當V1、V2中僅有一個係低於一(例如電路相依)臨界值時,運算放大器225可控制閘極偏壓電路215、220以實質地阻擋電流通過電晶體205或210。可能影響電路相依臨界值之因素包含但不限於用以具體實施閘極偏壓電路215、220之電晶體的特性(例如臨界電壓)與運算放大器225所輸出之控制電壓。在一繪示範例中,假定電晶體205為關閉。電路400可藉由關閉電晶體205來實質地防止逆向電流從輸出節點125流至輸入節點110。如此,輸出電流Iout實質上係由電流I2所支援,且I2不供應一反饋電流通過電晶體205。When only one of V1, V2 is below a (eg, circuit dependent) threshold, operational amplifier 225 can control gate bias circuits 215, 220 to substantially block current flow through transistor 205 or 210. Factors that may affect the circuit dependent threshold include, but are not limited to, the characteristics of the transistor (eg, the threshold voltage) used to implement the gate bias circuits 215, 220 and the control voltage output by the operational amplifier 225. In an illustrative example, it is assumed that the transistor 205 is off. Circuit 400 can substantially prevent reverse current from flowing from output node 125 to input node 110 by turning off transistor 205. Thus, the output current Iout is substantially supported by the current I2, and I2 does not supply a feedback current through the transistor 205.

當V1與V2兩者係高於電路相依臨界值時,閘極偏壓電路215、220可使用運算放大器225所產生之Vbias來控制流經電晶體205、210之電流I1與I2。電流I1、I2可視例如V1與V2間之差係在窗口之內或外而定。When both V1 and V2 are above the circuit dependent threshold, the gate bias circuits 215, 220 can use the Vbias generated by the operational amplifier 225 to control the currents I1 and I2 flowing through the transistors 205, 210. The currents I1, I2 can be determined, for example, by the difference between V1 and V2 within or outside the window.

若V1與V2間之差係在窗口之內,則運算放大器225可控制閘極偏壓電路215、220來使電流路徑兩者能夠經由電晶體205、210導通電流I1、I2。若V1與V2間之差係在窗口之外,則運算放大器225可控制閘極偏壓電路215、220使具有最高電壓之電流路徑能夠實質地供應電流Iout。電流I1、I2之相對振幅可直接關聯於相對電壓V1與V2。在一些範例中,對於一特定差動電壓,當負載電流改變時,電流路徑間之相關電流分流可維持實質上不變。電流I1、I2之比率可在V1與V2間之一電壓差範圍內改變,如圖表300中所示。If the difference between V1 and V2 is within the window, operational amplifier 225 can control gate bias circuits 215, 220 to enable both current paths to conduct currents I1, I2 via transistors 205, 210. If the difference between V1 and V2 is outside the window, operational amplifier 225 can control gate bias circuits 215, 220 to enable the current path with the highest voltage to substantially supply current Iout. The relative amplitudes of the currents I1, I2 can be directly related to the relative voltages V1 and V2. In some examples, for a particular differential voltage, the associated current shunt between the current paths may remain substantially constant as the load current changes. The ratio of currents I1, I2 can vary over a range of voltage differences between V1 and V2, as shown in graph 300.

電路400亦包含一電壓選擇模組450,其在供應電壓V1與V2之間選擇一最高電壓。電壓選擇模組450接收供應電壓並在節點Vselect產生一輸出電壓。在所描繪範例中,輸出電壓供應至偏壓電路215、220之PMOS電晶體的本體終端。Circuit 400 also includes a voltage selection module 450 that selects a maximum voltage between supply voltages V1 and V2. Voltage selection module 450 receives the supply voltage and generates an output voltage at node Vselect. In the depicted example, the output voltage is supplied to the body terminals of the PMOS transistors of the bias circuits 215, 220.

當V1與V2改變時,Vselect之輸出電壓可從兩個供應電壓V1、V2提供實質上可用之最高供應電壓。Vselect可提供實質上最高可用電壓至PMOS電晶體之本體終端。例如,供應最高可用電壓至PMOS器件之基板可例如實質地減少或防止PMOS電晶體內部接面之偶然的順向偏壓。再者,Vselect在一些具體實施例中可促進減少及/或防止逆向電流例如通過一非使用之輸出PMOS器件的源極與基底(source-bulk)之間。電壓選擇模組450之一些範例係參照圖5A-B進一步詳細說明。When V1 and V2 change, the output voltage of Vselect can provide the highest supply voltage that is substantially available from the two supply voltages V1, V2. Vselect can provide substantially the highest available voltage to the body terminal of the PMOS transistor. For example, a substrate that supplies the highest available voltage to the PMOS device can, for example, substantially reduce or prevent accidental forward biasing of the internal junction of the PMOS transistor. Moreover, Vselect may, in some embodiments, facilitate reducing and/or preventing reverse current, such as between a source and a source of a non-use output PMOS device. Some examples of voltage selection module 450 are described in further detail with respect to Figures 5A-B.

圖5A-B顯示具體實施電壓選擇模組450之範例電路500、550。如圖5A中所示,電路500包含兩個分別連接於電壓供應V1與V2之NMOS電晶體505、510。電路500可將V1與V2中較高之電壓供應至一輸出節點Vselect。如參照圖4所說明之範例中,Vselect電壓可供應至例如偏壓電路215、220中之各種PMOS電晶體的基板(例如本體連接)及/或電晶體205、210。在一些具體實施例中,供應最高可用電壓至PMOS基板可實質地防止PMOS電晶體內部接面之偶然的順向偏壓。5A-B show example circuits 500, 550 that implement voltage selection module 450. As shown in FIG. 5A, circuit 500 includes two NMOS transistors 505, 510 that are coupled to voltage supplies V1 and V2, respectively. Circuit 500 can supply the higher of V1 and V2 to an output node Vselect. As in the example illustrated with reference to FIG. 4, the Vselect voltage can be supplied to substrates (e.g., body connections) and/or transistors 205, 210 of various PMOS transistors, such as in bias circuits 215, 220. In some embodiments, supplying the highest available voltage to the PMOS substrate substantially prevents accidental forward biasing of the PMOS transistor internal junction.

在一些具體實施例中,NMOS電晶體505、510可具有實質上為零之Vt。在一些具體實施例中,NMOS電晶體505、510可具有一正臨界電壓(例如Vt高達至少約1 V)。在一些範例中,NMOS電晶體505、510之Vds可直接關聯於Vt。在NMOS電晶體505、510上小的Vt可導出例如一跨越汲極終端與源極終端之小電壓降(Vds)。In some embodiments, NMOS transistors 505, 510 can have a Vt that is substantially zero. In some embodiments, NMOS transistors 505, 510 can have a positive threshold voltage (eg, Vt up to at least about 1 V). In some examples, the Vds of the NMOS transistors 505, 510 can be directly associated with Vt. A small Vt across the NMOS transistors 505, 510 can lead to, for example, a small voltage drop (Vds) across the drain terminal and the source terminal.

在操作中,電壓選擇模組450可在Vselect選擇一介於V1與V2之間的最高電壓。例如,假定Vt實質上為0 V。當V1>V2,Vselect之電壓可能約為V1,而NMOS電晶體510可能關閉,因為NMOS電晶體510之Vds(其為Vselect-V2)小於Vt(其實質上為0 V)。當V2>V1,Vselect之電壓可能約為V2,而NMOS電晶體505可能關閉,因為NMOS電晶體505之Vds(其為Vselect-V1)小於Vt(其實質上為0 V)。In operation, voltage selection module 450 can select a highest voltage between V1 and V2 at Vselect. For example, assume that Vt is essentially 0 V. When V1 > V2, the voltage of Vselect may be approximately V1, and the NMOS transistor 510 may be turned off because the Vds of NMOS transistor 510 (which is Vselect-V2) is less than Vt (which is substantially 0 V). When V2 > V1, the voltage of Vselect may be approximately V2, and NMOS transistor 505 may be turned off because the Vds of NMOS transistor 505 (which is Vselect-V1) is less than Vt (which is substantially 0 V).

如圖5B所示,電路550包含PMOS電晶體555、560。電路550可提供若干優點,例如當使用如具有約為0之Vt的NMOS器件時額外的逆向電流保護。在不同具體實施例中,PMOS器件可幫助達成減少之壓降及/或減少之體積。As shown in FIG. 5B, circuit 550 includes PMOS transistors 555, 560. Circuit 550 can provide several advantages, such as additional reverse current protection when using an NMOS device such as Vt having a voltage of about zero. In various embodiments, the PMOS device can help achieve a reduced voltage drop and/or reduced volume.

另一選擇為可使用電壓選擇模組450之其他具體實施例。例如,可具體實施電壓選擇模組以使用具有實質上為0之Vt的PMOS來選擇一最低輸入電壓做為輸出。Another option is other specific embodiments in which the voltage selection module 450 can be used. For example, a voltage selection module can be implemented to select a minimum input voltage as an output using a PMOS having a Vt of substantially zero.

雖然系統(其可為可攜式)之範例已參照以上圖示說明,仍可於其他應用中採用其他具體實施例,例如其他電路應用、計算應用、網路應用與相類者。Although examples of systems (which may be portable) have been described with reference to the above illustrations, other specific embodiments may be employed in other applications, such as other circuit applications, computing applications, network applications, and the like.

在某些具體實施例中,系統100可從兩個以上之電源獲得電力。例如,使用相同技術之DIVR 105可使用三個或更多之電源來調整Vout。藉由控制各個調整輸入電壓之PMOS電晶體的閘極電壓,DIVR 105可控制在各個電源間之電流分流。當輸入電壓在電壓範圍之外時,輸出電力係由具有最高輸入電壓之電源所供應。此外,藉由適當地施加偏壓於相對應之電晶體,可實質地防止各個多重來源之逆向電流。In some embodiments, system 100 can obtain power from more than two power sources. For example, a DIVR 105 using the same technology can use three or more power supplies to adjust Vout. By controlling the gate voltage of each PMOS transistor that adjusts the input voltage, the DIVR 105 can control the current shunt between the various power supplies. When the input voltage is outside the voltage range, the output power is supplied by the power supply with the highest input voltage. Furthermore, by appropriately applying a bias voltage to the corresponding transistor, the reverse current of each of the multiple sources can be substantially prevented.

在具有兩個以上的電壓調整器之具體實施例中,可使用各種操作模式。例如,DIVR 105可接收來自兩個以上(例如三個或更多之電壓輸入)的輸入節點之電流。各個輸入可由一回應於運算放大器225所產生之Vbias信號的閘極偏壓電路所控制。當一個以上的電壓高於電路相依臨界值時,例如閘極偏壓電路可基於輸入電壓間之相對電壓差來控制流經各個電流路徑之電流量。In a particular embodiment with more than two voltage regulators, various modes of operation can be used. For example, DIVR 105 can receive current from two or more input nodes (eg, three or more voltage inputs). Each input can be controlled by a gate bias circuit responsive to the Vbias signal generated by operational amplifier 225. When more than one voltage is above a circuit dependent threshold, for example, a gate bias circuit can control the amount of current flowing through each current path based on a relative voltage difference between the input voltages.

在一些其他具體實施例中,電流調整器可替代電壓調整器,例如藉由以一電流比較器取代運算放大器電路225(見圖2)並將一參考電流與所遞送之負載電流比較。In some other embodiments, the current regulator can be substituted for the voltage regulator, such as by replacing the operational amplifier circuit 225 (see FIG. 2) with a current comparator and comparing a reference current to the delivered load current.

在一些具體實施例中,DIVR 105可經配置使用對於電路參考電壓(例如接地)為負之電壓供應。例如,DIVR 105可對於此種負電壓使用N通道MOS電晶體。當DIVR 105係由負電壓所供應時,閘極偏壓電路215、220可在輸入電壓間之差係在窗口之外時從具有最低(例如最負)電壓之輸入節點110、115選擇一現用電流。當輸入電壓間之差係在窗口之內時,閘極偏壓電路215、220可允許多重(例如兩者)電流路徑同時支援輸出電流。在一些具體實施例中,線性可能係足以實質避免在窗口中或其邊緣附近操作時之顫抖。在一些具體實施例中,可選擇性地具體實施一選擇窗口功能以暫時將調整器之一者鎖定在其目前狀態(例如以供應所有負載電流Iout)。此種具體實施例可能為有利的,例如若V1來源在V2可能操作之操作點附近提供有限的穩定性或不佳的干擾消除。In some embodiments, DIVR 105 can be configured to use a voltage supply that is negative for a circuit reference voltage (eg, ground). For example, DIVR 105 can use an N-channel MOS transistor for such a negative voltage. When the DIVR 105 is supplied with a negative voltage, the gate bias circuits 215, 220 can select one from the input node 110, 115 having the lowest (eg, most negative) voltage when the difference between the input voltages is outside the window. Current is used. When the difference between the input voltages is within the window, the gate bias circuits 215, 220 can allow multiple (eg, both) current paths to simultaneously support the output current. In some embodiments, the linearity may be sufficient to substantially avoid chattering when operating in or near the edge of the window. In some embodiments, a select window function can be selectively implemented to temporarily lock one of the adjusters in their current state (eg, to supply all load currents Iout). Such a particular embodiment may be advantageous, for example, if the V1 source provides limited stability or poor interference cancellation near the operating point where V2 may operate.

雖然已說明一架構之若干特定功能,仍可合併其他功能以改善效能。例如,其他硬體及軟體可被提供以執行操作,例如網路或其他使用一或數個協定之通訊、無線(例如紅外線)通訊、所儲存之操作能量與電源供應(例如電池)、開關及/或線性電源供應電路、軟體維護(例如自我檢測、升級)。一或數個通訊介面可被提供以支援資料儲存與相關操作。Although some specific features of an architecture have been described, other features can be combined to improve performance. For example, other hardware and software may be provided to perform operations, such as networking or other communication using one or more protocols, wireless (eg, infrared) communication, stored operational energy and power supplies (eg, batteries), switches, and / or linear power supply circuit, software maintenance (such as self-test, upgrade). One or more communication interfaces can be provided to support data storage and related operations.

一些系統可具體實施為一可與本發明之具體實施例一起使用的電腦系統。例如,不同具體實施例可包含數位及/或類比電路、電腦硬體、韌體、軟體或其之組合。Some systems may be embodied as a computer system that can be used with embodiments of the present invention. For example, different embodiments may include digital and/or analog circuits, computer hardware, firmware, software, or combinations thereof.

在不同具體實施例中,系統100可使用適合之通訊方法、設備與技術來通訊。例如,系統100可使用點對點通訊來與相容之器件(例如能夠轉移資料至系統100及/或從系統100轉移資料)通訊,其中訊息係透過一專屬實體連結(例如光纖連結、點對點佈線、雛菊鍊)直接從來源傳送至接收器。系統之組件可經由類比或數位資料通訊之任何形式或媒體來交換資訊,包含通訊網路上以封包為基礎之訊息。通訊網路之範例包含例如LAN(區域網路)、WAN(廣域網路)、MAN(都會網路)、無線及/或光纖網路,以及形成網際網路之電腦與網路。其他具體實施例可藉由廣播至所有或實質上所有藉一通訊網路耦合在一起(例如藉由使用單向射頻(RF)信號)的器件來傳送訊息。另外其他具體實施例可使用可選擇性地與聚焦光學一起使用之定向(即窄束)天線或紅外線信號,來傳送以高指向性為特徵之訊息,例如所發送之RF信號。另外其他具體實施例係可能的,其使用適當的介面與協定例如(此為舉例之方式並非意圖限制)USB 2.0、Firewire、ATA/IDE、RS-232、RS-422、RS-485、802.11 a/b/g、Wi-Fi、乙太網路、IrDA、FDDI(光纖分散式數據介面)、記號環網路或基於分頻、分時或分碼之多工技術。一些具體實施例可選擇性地結合若干功能,例如針對資料完整性之錯誤檢查與校正(ECC),或安全措施如加密(例如WEP)與密碼保護。In various embodiments, system 100 can communicate using suitable communication methods, devices, and techniques. For example, system 100 can use point-to-point communication to communicate with compatible devices (eg, capable of transferring data to and/or transferring data from system 100), wherein the messages are linked through a proprietary entity (eg, fiber optic links, point-to-point wiring, daisies) The chain is transmitted directly from the source to the receiver. The components of the system can exchange information via any form or medium of analog or digital data communication, including packet-based messages on the communication network. Examples of communication networks include, for example, LAN (Regional Network), WAN (Wide Area Network), MAN (Metro Network), wireless and/or fiber optic networks, and computers and networks that form the Internet. Other embodiments may transmit messages by broadcasting to all or substantially all of the devices that are coupled together by a communication network (e.g., by using a one-way radio frequency (RF) signal). Still other embodiments may use an oriented (i.e., narrow beam) antenna or infrared signal that is selectively usable with the focusing optics to convey a message characterized by high directivity, such as the transmitted RF signal. Still other embodiments are possible, using appropriate interfaces and protocols such as, by way of example and not limitation, USB 2.0, Firewire, ATA/IDE, RS-232, RS-422, RS-485, 802.11a /b/g, Wi-Fi, Ethernet, IrDA, FDDI (Fiber Distributed Data Interface), token ring network or multiplex technology based on frequency division, time division or code division. Some embodiments may selectively incorporate several functions, such as error checking and correction (ECC) for data integrity, or security measures such as encryption (eg, WEP) and password protection.

已說明本發明之數個具體實施例。然而,將瞭解可在不背離本發明之精神與範圍的情況下進行各種修正。例如,若所揭示技術之步驟以不同順序實行、若所揭示系統中之組件以不同方式組合、或者若組件以其他組件取代或補充,可達成有利之結果。功能與程序(包含演算法)可實行於硬體、軟體或其組合中,且一些具體實施例可在與所述者不相同之模組或硬體上實行。因此,其他具體實施例係在下列請求項之範圍內。Several specific embodiments of the invention have been described. However, it will be appreciated that various modifications may be made without departing from the spirit and scope of the invention. For example, if the steps of the disclosed technology are carried out in a different order, if the components of the disclosed system are combined in different ways, or if the components are replaced or supplemented with other components, an advantageous result can be achieved. The functions and procedures (including algorithms) may be implemented in hardware, software, or a combination thereof, and some embodiments may be practiced on a different module or hardware than the ones described. Accordingly, other specific embodiments are within the scope of the following claims.

100...系統100. . . system

105...雙輸入電壓調整器(DIVR)105. . . Dual Input Voltage Regulator (DIVR)

110...輸入節點110. . . Input node

115...輸入節點115. . . Input node

120...處理系統120. . . Processing system

125...輸出節點125. . . Output node

130...來源130. . . source

135...來源135. . . source

140...介面140. . . interface

145...介面145. . . interface

150...電源150. . . power supply

155...資料介面155. . . Data interface

160...電源160. . . power supply

165...資料介面165. . . Data interface

205...電晶體205. . . Transistor

210...電晶體210. . . Transistor

215...閘極偏壓電路215. . . Gate bias circuit

220...閘極偏壓電路220. . . Gate bias circuit

225...運算放大器225. . . Operational Amplifier

230...節點230. . . node

300...圖表300. . . chart

305...水平軸305. . . horizontal axis

310...垂直軸310. . . Vertical axis

315...線條/繪圖315. . . Line/drawing

320...線條/繪圖320. . . Line/drawing

400...電路400. . . Circuit

450...電壓選擇模組450. . . Voltage selection module

500...電路500. . . Circuit

505...NMOS電晶體505. . . NMOS transistor

510...NMOS電晶體510. . . NMOS transistor

550...電路550. . . Circuit

555...PMOS電晶體555. . . PMOS transistor

560...PMOS電晶體560. . . PMOS transistor

圖1顯示一範例系統,其包含一經配置以從多重電源接收電力之雙輸入電壓調整器。1 shows an example system that includes a dual input voltage regulator configured to receive power from multiple power sources.

圖2繪示一經配置在多重電源間變換之雙輸入電壓調整器範例。2 illustrates an example of a dual input voltage regulator configured to convert between multiple power supplies.

圖3為一圖表,其顯示當一個電源之電壓相對於另一個電源而改變時電流變換之範例。Fig. 3 is a graph showing an example of current conversion when the voltage of one power source is changed with respect to the other power source.

圖4顯示一範例電路之概要圖,該電路具體實施一使用PMOS與NMOS電晶體之雙輸入電壓調整器。4 shows an overview of an example circuit that implements a dual input voltage regulator using PMOS and NMOS transistors.

圖5A-B顯示一電壓選擇模組之範例具體實施例。5A-B show an exemplary embodiment of a voltage selection module.

在各種圖示中之相同參照符號係指相同元件。The same reference symbols in the various drawings are the same elements.

100...系統100. . . system

105...雙輸入電壓調整器(DIVR)105. . . Dual Input Voltage Regulator (DIVR)

110...輸入節點110. . . Input node

115...輸入節點115. . . Input node

120...處理系統120. . . Processing system

125...輸出節點125. . . Output node

130...來源130. . . source

135...來源135. . . source

140...介面140. . . interface

145...介面145. . . interface

150...電源150. . . power supply

155...資料介面155. . . Data interface

160...電源160. . . power supply

165...資料介面165. . . Data interface

Claims (22)

一種電壓調整(regulation)系統,其包括:一第一電流路徑在一第一供應節點與一輸出節點之間提供一第一電流I1 ;一第二電流路徑在一第二供應節點與該輸出節點之間提供一第二電流I2 ;以及一控制電路,其藉由供應一控制信號至各個電流路徑來調整該輸出節點之電壓,該控制電路係可操作的以在該第一供應節點之電壓與該第二供應節點之電壓之間的差落在一電壓範圍內時,沿著該等電流路徑分流一電流以供應至該等輸出節點,由一功能(function)定義的分流特徵在於由二臨界電壓位準所限制的三個區域包含一第一、第二及第三區域,其中:在該第一區域中I1 >I2 ,在該第二區域中I1 =I2 ,在該第三區域中I1 <I2 ,以及反之則從具有較高電壓之供應節點供應實質上所有該輸出電流。A voltage regulation system includes: a first current path providing a first current I 1 between a first supply node and an output node; a second current path at a second supply node and the output Providing a second current I 2 between the nodes; and a control circuit for adjusting a voltage of the output node by supplying a control signal to each current path, the control circuit being operable to be at the first supply node When the difference between the voltage and the voltage of the second supply node falls within a voltage range, a current is shunted along the current paths for supply to the output nodes, and the shunt characteristic defined by a function is characterized by The three regions limited by the two threshold voltage levels include a first, second and third region, wherein: in the first region I 1 >I 2 , in the second region I 1 =I 2 , In the third region, I 1 <I 2 , and conversely, substantially all of the output current is supplied from a supply node having a higher voltage. 如請求項1之系統,其中當該第二供應節點之電壓增加至該電壓範圍內時,供應至該輸出節點之電流從該第一電流路徑實質上平滑地變換至該第二電流路徑。 The system of claim 1, wherein the current supplied to the output node substantially smoothly transitions from the first current path to the second current path when the voltage of the second supply node increases within the voltage range. 如請求項1之系統,其中當該第一供應節點之電壓增加至該電壓範圍內時,供應至該輸出節點之電流從該第二電流路徑實質上平滑地變換至該第一電流路徑。 The system of claim 1, wherein when a voltage of the first supply node increases within the voltage range, a current supplied to the output node changes substantially smoothly from the second current path to the first current path. 如請求項1之系統,其中該控制電路藉由供應該控制信號來分流該電流以施加偏壓於該等電流路徑中之一個的一電晶體。 The system of claim 1, wherein the control circuit shunts the current by applying the control signal to apply a transistor biased to one of the current paths. 如請求項4之系統,其中該第一電流路徑包括一第一PMOS電晶體,其具有一連接於該第一供應節點之源極終端。 The system of claim 4, wherein the first current path comprises a first PMOS transistor having a source terminal coupled to the first supply node. 如請求項5之系統,其中該第二電流路徑包括一第二PMOS電晶體,其具有一連接於該第二供應節點之源極終端。 The system of claim 5, wherein the second current path comprises a second PMOS transistor having a source terminal coupled to the second supply node. 如請求項6之系統,其中該輸出節點連接於該第一電流路徑中之該第一PMOS電晶體的一汲極終端,與該第二電流路徑中之該第二PMOS電晶體的一汲極終端。 The system of claim 6, wherein the output node is connected to a drain terminal of the first PMOS transistor in the first current path, and a drain of the second PMOS transistor in the second current path terminal. 如請求項7之系統,其中該控制電路提供一偏壓信號以調變該等第一與第二PMOS電晶體。 The system of claim 7, wherein the control circuit provides a bias signal to modulate the first and second PMOS transistors. 如請求項6之系統,進一步包括若干閘極偏壓電路,當該差落在該第二區域時,用以供應實質上相同之電壓至該第一PMOS電晶體之閘極終端與該第二PMOS電晶體之閘極終端。 The system of claim 6, further comprising a plurality of gate bias circuits for supplying substantially the same voltage to the gate terminal of the first PMOS transistor and the first portion when the difference is in the second region The gate terminal of the two PMOS transistors. 如請求項1之系統,進一步包括一智慧卡,其包含一第一電流路徑、一第二電流路徑與一控制器。 The system of claim 1, further comprising a smart card comprising a first current path, a second current path and a controller. 如請求項1之系統,其中該電壓範圍延伸高達至約1伏特。 A system as claimed in claim 1, wherein the voltage range extends up to about 1 volt. 如請求項1之系統,其中該電壓範圍延伸在約0.2伏特與約0.8伏特之間。 The system of claim 1 wherein the voltage range extends between about 0.2 volts and about 0.8 volts. 如請求項1之系統,其中該第一電流路徑與該第二電流路徑各自包括一接面場效電晶體。 The system of claim 1, wherein the first current path and the second current path each comprise a junction field effect transistor. 如請求項1之系統,其中該第一電流路徑與該第二電流路徑各自包括一雙載子接面電晶體。 The system of claim 1, wherein the first current path and the second current path each comprise a dual carrier junction transistor. 一種電壓調整方法,其包括:接收一電壓調整器(regulator)之第一輸入的第一電壓;接收該電壓調整器之第二輸入的第二電壓;調整該電壓調整器之一輸出的電壓;以及當該第一電壓與該第二電壓之間之差落在一電壓範圍之外時,僅從實質上具有一較高輸入電壓之一輸入供應電流至該輸出,而當該第一電壓與該第二電壓之間之差落在該電壓範圍之內時,供應電流至該輸出而使從各該第一及第二輸入所供應之一電流根據其各別輸入之電壓來分流。 A voltage adjustment method includes: receiving a first voltage of a first input of a voltage regulator; receiving a second voltage of the second input of the voltage regulator; and adjusting a voltage output by one of the voltage regulators; And when the difference between the first voltage and the second voltage falls outside a voltage range, the input current is only input from one of the substantially higher input voltages to the output, and when the first voltage is When the difference between the second voltages falls within the voltage range, a current is supplied to the output such that a current supplied from each of the first and second inputs is shunted according to a voltage of its respective input. 如請求項15之方法,其中該電壓範圍實質上視一電晶體之一閘極至源極臨界電壓而定。 The method of claim 15 wherein the voltage range is substantially dependent on a gate to source threshold voltage of a transistor. 如請求項15之方法,其中該電壓範圍包括在一第一觸發器及一第二觸發器之間的一電壓差,其中每一觸發器定義一轉換臨界值,該轉換臨界值係從來自僅有一輸入的供應電流轉換至來自該第一及第二輸入之供應至少一部份電流,該差其係選自由下列電壓所組成之群:約0.1、約0.2、約0.3、約0.4、約0.5、約0.6、約0.7、約0.8、約0.9、與約1.0伏特。 The method of claim 15, wherein the voltage range comprises a voltage difference between a first flip-flop and a second flip-flop, wherein each flip-flop defines a transition threshold, the transition threshold being from only An input supply current is converted to at least a portion of the current from the first and second inputs, the difference being selected from the group consisting of: about 0.1, about 0.2, about 0.3, about 0.4, about 0.5 , about 0.6, about 0.7, about 0.8, about 0.9, and about 1.0 volt. 如請求項15之方法,進一步包括透過與一連接器實體接觸來供應電力至該第一輸入。 The method of claim 15, further comprising supplying power to the first input by contacting a connector entity. 如請求項15之方法,進一步包括透過一無線介面來供應電力至該第二輸入。 The method of claim 15, further comprising supplying power to the second input through a wireless interface. 如請求項15之方法,進一步包括透過一可操作用以接收該第一電壓之介面來轉移資料。 The method of claim 15 further comprising transferring the data through an interface operable to receive the first voltage. 如請求項20之方法,進一步包括透過一可操作用以接收該第二電壓之介面來轉移資料。 The method of claim 20, further comprising transferring the data through an interface operable to receive the second voltage. 如請求項15之方法,進一步包括在該等第一與第二輸入選擇一最高可用電壓,以施加偏壓於該電壓調整器中之一電晶體的一基板。 The method of claim 15 further comprising selecting a highest available voltage at the first and second inputs to apply a substrate biased to one of the voltage regulators.
TW96136463A 2006-10-04 2007-09-28 Voltage regulation system and method TWI434162B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/538,615 US7635925B2 (en) 2006-10-04 2006-10-04 Analog combination regulator

Publications (2)

Publication Number Publication Date
TW200830075A TW200830075A (en) 2008-07-16
TWI434162B true TWI434162B (en) 2014-04-11

Family

ID=38792186

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96136463A TWI434162B (en) 2006-10-04 2007-09-28 Voltage regulation system and method

Country Status (5)

Country Link
US (1) US7635925B2 (en)
CN (1) CN101523327B (en)
DE (1) DE112007002362T5 (en)
TW (1) TWI434162B (en)
WO (1) WO2008042764A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8013473B2 (en) * 2006-09-01 2011-09-06 Atmel Corporation Detector based combination regulator
US7635925B2 (en) 2006-10-04 2009-12-22 Atmel Corporation Analog combination regulator
US7851947B2 (en) * 2007-11-05 2010-12-14 Qualcomm, Incorporated Methods and apparatuses for selectable voltage supply
CN101685333B (en) * 2008-09-25 2011-11-09 鸿富锦精密工业(深圳)有限公司 Electronic device and power connection module thereof
CN102055333B (en) * 2009-11-10 2013-07-31 意法半导体研发(深圳)有限公司 Voltage regulator structure
US20130085887A1 (en) * 2011-10-03 2013-04-04 Wei Zhang Method and system for financial card transaction verification
US9729145B2 (en) * 2012-06-12 2017-08-08 Infineon Technologies Ag Circuit and a method for selecting a power supply
TWI560712B (en) * 2012-08-03 2016-12-01 Mstar Semiconductor Inc Driving circuit and driving method
US9762292B2 (en) * 2013-09-27 2017-09-12 Texas Instruments Incorporated Power harvest architecture for near field communication devices
DE102013222786A1 (en) * 2013-11-08 2015-05-13 Robert Bosch Gmbh Subscriber station for a bus system and method for reducing conducted emissions in a bus system
US20160181817A1 (en) * 2014-05-08 2016-06-23 Mitsubishi Electric Corporation Power-source multiplexing system and power-supplied unit
US9960596B2 (en) * 2015-04-15 2018-05-01 Qualcomm Incorporated Automatic voltage switching circuit for selecting a higher voltage of multiple supply voltages to provide as an output voltage
US9985521B1 (en) * 2017-04-13 2018-05-29 Nanya Technology Corporation Voltage system
CN108733189A (en) * 2018-05-07 2018-11-02 曙光信息产业股份有限公司 A kind of voltage regulating device and method
US10969809B2 (en) * 2018-08-02 2021-04-06 Microchip Technology Incorporated Dual input LDO voltage regulator
CN110504741A (en) * 2018-09-14 2019-11-26 深圳市文鼎创数据科技有限公司 A kind of power supply switch circuit of smart card and smart card
CN110119179B (en) * 2019-05-08 2020-08-07 思瑞浦微电子科技(苏州)股份有限公司 Floating high-voltage selection circuit applied to multiple high-voltage sources
TWI717838B (en) * 2019-09-18 2021-02-01 宏碁股份有限公司 Power supply device
TWI746319B (en) * 2020-12-17 2021-11-11 致新科技股份有限公司 Switch unit
EP4235500A1 (en) 2022-02-25 2023-08-30 STMicroelectronics razvoj polprevodnikov d.o.o. Ic card regulator
FR3140683A1 (en) * 2022-10-05 2024-04-12 STMicroelectronics (Alps) SAS Electronic device

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3935364C1 (en) * 1989-10-24 1990-08-23 Angewandte Digital Elektronik Gmbh, 2051 Brunstorf, De
NL194144C (en) * 1993-09-15 2001-07-03 Ericsson Inc Power supply system for a plug-in module.
BR9404627A (en) * 1994-11-28 1997-03-04 Brasilia Telecom Reader head arrangement for two types of data cards
EP0736828A3 (en) 1995-04-06 1997-11-12 Seiko Epson Corporation Battery driven electronic apparatus and method of controlling power supply in the apparatus
US5777903A (en) * 1996-01-22 1998-07-07 Motorola, Inc. Solar cell powered smart card with integrated display and interface keypad
FR2750227B1 (en) 1996-06-19 1998-09-04 Inside Technologies DEVICE FOR STABILIZING THE SUPPLY VOLTAGE OF A MICROCIRCUIT
FR2752076B1 (en) * 1996-08-05 1998-09-11 Inside Technologies ELECTRICAL SUPPLY SYSTEM FOR MICROCIRCUIT WITH MIXED OPERATION, WITH OR WITHOUT CONTACT
KR19980082461A (en) * 1997-05-07 1998-12-05 문정환 Voltage regulating circuit of semiconductor memory device
US5889431A (en) * 1997-06-26 1999-03-30 The Aerospace Corporation Current mode transistor circuit method
JP2000014043A (en) * 1998-06-05 2000-01-14 Internatl Business Mach Corp <Ibm> Uninterruptive power supply
US6327635B1 (en) 1999-03-30 2001-12-04 Qlogic Corporation Add-on card with automatic bus power line selection circuit
FR2798014B1 (en) * 1999-08-31 2002-03-29 St Microelectronics Sa SUPPLY CIRCUIT WITH VOLTAGE SELECTOR
US6177783B1 (en) * 1999-09-13 2001-01-23 Adc Telecommunications, Inc. Current balancing for voltage regulator having inputs from multiple power supplies
US6724588B1 (en) * 1999-09-22 2004-04-20 Dell Usa L.P. Power supply selector
US6150803A (en) * 2000-03-28 2000-11-21 Linear Technology Corporation Dual input, single output power supply
US6642631B1 (en) * 2000-10-17 2003-11-04 Semiconductor Components Industries Llc Circuit and method of direct duty cycle current sharing
WO2002071325A1 (en) * 2001-03-02 2002-09-12 Sony Corporation Chip for noncontact reader/writer having function for managing power supply
CA2475357A1 (en) * 2002-02-22 2003-08-28 G W Pharma Limited Dose dispensing system and apparatus
US6965219B2 (en) * 2002-06-28 2005-11-15 Microsemi Corporation Method and apparatus for auto-interleaving synchronization in a multiphase switching power converter
US6892147B2 (en) * 2003-04-18 2005-05-10 Dell Products L.P. Information handling system including a power management apparatus capable of independently switching between a primary and secondary battery
US6995599B2 (en) * 2003-08-26 2006-02-07 Texas Instruments Incorporated Cross-conduction blocked power selection comparison/control circuitry with NTC (negative temperature coefficient) trip voltage
KR100560768B1 (en) * 2003-09-05 2006-03-13 삼성전자주식회사 Dual interface integrated circuit card
US6933772B1 (en) * 2004-02-02 2005-08-23 Freescale Semiconductor, Inc. Voltage regulator with improved load regulation using adaptive biasing
JP2005218020A (en) 2004-02-02 2005-08-11 Fujitsu Frontech Ltd Ic card reader
US6979983B2 (en) * 2004-04-28 2005-12-27 Faraday Technology Corp. Voltage regulator
GB2416605A (en) * 2004-07-26 2006-02-01 Wolfson Ltd Dual power bus for battery powered device
US7402986B2 (en) * 2004-07-26 2008-07-22 Wolfson Microelectronics Plc Power supply circuit for portable battery powered device
KR100909960B1 (en) * 2004-12-28 2009-07-29 삼성전자주식회사 Power supply voltage control device and method in multiple interface card
US7635925B2 (en) 2006-10-04 2009-12-22 Atmel Corporation Analog combination regulator

Also Published As

Publication number Publication date
TW200830075A (en) 2008-07-16
US20080084195A1 (en) 2008-04-10
WO2008042764A1 (en) 2008-04-10
DE112007002362T5 (en) 2009-08-20
CN101523327B (en) 2013-05-08
US7635925B2 (en) 2009-12-22
CN101523327A (en) 2009-09-02

Similar Documents

Publication Publication Date Title
TWI434162B (en) Voltage regulation system and method
US10423179B2 (en) Low drop out regulator compatible with type C USB standard
US7821242B2 (en) Constant voltage circuit and method of controlling ouput voltage of constant voltage circuit
US20160147239A1 (en) Linear regulator having a closed loop frequency response based on a decoupling capacitance
US8004863B2 (en) Circuit device and method of providing feedback across an isolation barrier
CN1905341B (en) Power overload detection method and structure therefor
US20130084799A1 (en) Antenna Driver Circuit for NFC Reader Applications
CN113517892B (en) High-efficiency current source/current slot DAC
US10003305B2 (en) Apparatus and method for modulating supply for a power amplifier
US9812894B2 (en) Power switching circuit, semiconductor integrated circuit, radio apparatus, radio system, and power switching method
US20080161073A1 (en) Radio frequency integrated circuit
EP3311477B1 (en) Power supplier, power supply system, and voltage adjustment method
US20200267018A1 (en) Low-power wake-up circuit for controller area network (can) transceiver
CN1332351C (en) Contactless ic card
US8497668B2 (en) Power control system and power amplification system using the same
US7898230B2 (en) Low drop out voltage regulator circuit assembly
US20180301943A1 (en) Wireless power receiver apparatus
US20200412348A1 (en) Cable voltage drop compensation
EP1003256B1 (en) Laser driver
US10985592B2 (en) Dynamic regulation of wireless charging system
US7786697B2 (en) Battery charger system
US8315588B2 (en) Resistive voltage-down regulator for integrated circuit receivers
Park et al. Multi-channel LED driver with self-optimized active current regulator
JP2008270558A (en) Method for adjusting light receiving module