TWI433449B - Method and apparatus for estimating the step-size of an adaptive equalizer - Google Patents

Method and apparatus for estimating the step-size of an adaptive equalizer Download PDF

Info

Publication number
TWI433449B
TWI433449B TW098100266A TW98100266A TWI433449B TW I433449 B TWI433449 B TW I433449B TW 098100266 A TW098100266 A TW 098100266A TW 98100266 A TW98100266 A TW 98100266A TW I433449 B TWI433449 B TW I433449B
Authority
TW
Taiwan
Prior art keywords
generating
signal
parameter
delay
sample
Prior art date
Application number
TW098100266A
Other languages
Chinese (zh)
Other versions
TW200943693A (en
Inventor
Philip J Pietraski
Mihaela C Beluri
Alpaslan Demir
Original Assignee
Interdigital Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Tech Corp filed Critical Interdigital Tech Corp
Publication of TW200943693A publication Critical patent/TW200943693A/en
Application granted granted Critical
Publication of TWI433449B publication Critical patent/TWI433449B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/159Applications of delay lines not covered by the preceding subgroups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70701Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation featuring pilot assisted reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03598Algorithms
    • H04L2025/03681Control of adaptation
    • H04L2025/03687Control of adaptation of step size

Description

適應性等化器步長估測方法及裝置Adaptive equalizer step estimation method and device

本發明係有關控制被併入如無線傳送/接收單元(WTRU)之收發器中之適應性等化器。更特別是,本發明係有關以被建立於該收發器及另一收發器間之頻道表觀速度(也就是頻道脈衝響應改變之觀察及/或測量速率)為基礎更新該適應性等化器所使用至少一濾波器分接點係數。The present invention relates to an adaptive equalizer that is incorporated into a transceiver such as a wireless transmit/receive unit (WTRU). More particularly, the present invention relates to updating the adaptive equalizer based on the channel apparent speed (i.e., the observed and/or measured rate of channel impulse response changes) established between the transceiver and another transceiver. At least one filter tap coefficient is used.

如正規化最小均方(NLMS)為基礎接收器之適應性等化器為基礎接收器,係可提供如雷克(Rake)接收器上之分頻雙工(FDD)高速下鏈封包存取(HSDPA)或分碼多重存取(CDMA)2000演進發展資料語音(EV-DV)之高資料速率服務之優越效能。典型正規化最小均方接收器係包含具有一等化器濾波器及一分接點係數產生器之一適應性等化器,用以產生被用來更新該等化器濾波器之濾波係數之分接點係數。等化器濾波器通常為有限脈衝響應(FIR)濾波器。For example, a normalized least mean square (NLMS)-based receiver adaptive equalizer-based receiver provides cross-frequency duplex (FDD) high-speed downlink packet access on a Rake receiver. The superior performance of high data rate services (HSDPA) or code division multiple access (CDMA) 2000 Evolutionary Data Voice (EV-DV). A typical normalized minimum mean square receiver includes an adaptive equalizer having an equalizer filter and a tap coefficient generator for generating filter coefficients used to update the equalizer filter Tap coefficient. The equalizer filter is typically a finite impulse response (FIR) filter.

適應性等化演算法中之適應性步長參數μ(“mu”)可控制等化器濾波器收斂速率。適應性步長參數μ係為影響適應性等化器效能之一門檻參數。應性步長參數μ通常於等化器濾波器操作之前被定義或以決定性方式被改變。步長係為嘗試收斂至某些點之迭代(迴路)演算法,如最小均方(LMS),正規化最小均方中之各步驟大小。大步長有助於短期間適應性等化器收斂(以盡量精確方式),但若步長較小,適應性等化器會收斂地更精確。因此,快速及精確收斂之間係存在置換關係。收斂速度及精確間之理想平衡係視演算法嘗試多快收斂至該點而定。收斂時間係與適應性步長參數μ反向相關。因此,有了較大步長,收斂可被快速獲得。The adaptive step size parameter μ ("mu") in the adaptive equalization algorithm controls the equalizer filter convergence rate. The adaptive step size parameter μ is a threshold parameter that affects the performance of the adaptive equalizer. The adaptive step size parameter μ is typically defined or changed in a decisive manner prior to the equalizer filter operation. The step size is an iterative (loop) algorithm that attempts to converge to certain points, such as Least Mean Square (LMS), which normalizes the size of each step in the least mean square. Large step sizes help the short-term adaptive equalizer converge (in the most accurate way possible), but if the step size is small, the adaptive equalizer will converge more accurately. Therefore, there is a permutation relationship between fast and precise convergence. The ideal balance between convergence speed and precision depends on how fast the visual algorithm tries to converge to that point. The convergence time is inversely related to the adaptive step size parameter μ. Therefore, with larger steps, convergence can be obtained quickly.

然而,大步長可能產生錯誤調整誤差,其會影響適應性等化器之原始位元錯誤率(BER)效能。因為所使用步長約為最接近者,向量上各點可能達到預期點,所以錯誤調整誤差因最小均方收斂而永遠不會被完全達成。However, large step sizes may result in false adjustment errors that affect the original bit error rate (BER) performance of the adaptive equalizer. Since the step size used is approximately the closest, the points on the vector may reach the expected point, so the error adjustment error will never be fully achieved due to the minimum mean square convergence.

本發明係為控制被併入收發器(如無線傳送/接收單元)之適應性等化器步長之步長估測器。步長估測器可以被建立於該收發器及另一收發器間之頻道表觀速度為基礎來更新該適應性等化器所使用至少一適應性等化器分接點。步長估測器可包含一速度估測器,一信號雜訊比(SNR)平均器及一步長映射單元。速度估測器係被用來估測頻道表觀速度(也就是頻道脈衝響應改變之觀察及/或測量速率)。信號雜訊比平均器可產生共同引導頻道(CPICH)信號雜訊比估測。步長映射單元可使用該速度估測及共同引導頻道信號雜訊比估測來產生被適應性等化器用來更新濾波分接點係數之步長參數μ及濾波分接點漏洩因子參數α。The present invention is a step size estimator that controls the adaptive equalizer step size incorporated into a transceiver, such as a wireless transmit/receive unit. The step size estimator can update at least one adaptive equalizer tap point used by the adaptive equalizer based on the apparent speed of the channel established between the transceiver and the other transceiver. The step size estimator can include a speed estimator, a signal to noise ratio (SNR) averager, and a one step length mapping unit. The velocity estimator is used to estimate the apparent velocity of the channel (i.e., the observed and/or measured rate of channel impulse response changes). The signal noise ratio averager can generate a common pilot channel (CPICH) signal noise ratio estimate. The step size mapping unit can use the speed estimation and the common pilot channel signal noise ratio estimation to generate a step parameter μ and a filter tap point leakage factor parameter α used by the adaptive equalizer to update the filtered tap point coefficients.

此後,當被稱為“無線傳送/接收單元”名詞係包含但不限於使用者設備(UE),行動台,固定或行動用戶單元,呼叫器,或可操作於無線環境中之任何其他類型元件。Hereinafter, the term "wireless transmitting/receiving unit" is used to include, but is not limited to, user equipment (UE), mobile stations, fixed or mobile subscriber units, pagers, or any other type of components operable in a wireless environment. .

此後,當被稱為“收發器”名詞者係包含但不限於基地台,無線傳送/接收單元,B節點,存取點(AP)或接收信號自或傳送信號至另一收發器之任何其他無線通信裝置。Hereinafter, the term "transceiver" is used to include, but is not limited to, a base station, a WTRU, a Node B, an access point (AP), or any other that receives a signal from or transmits a signal to another transceiver. Wireless communication device.

此後,當被稱為“表觀頻道速度”及“頻道表觀速度”名詞者係包含但不限於被建立於第一收發器(如無線傳送/接收單元,基地台,或類似者)及至少一其他收發器間之頻道脈衝響應改變之觀察及/或測量速率。頻道脈衝響應改變可能因一個或更多收發器移動,發生於至少一收發器中之振盪器誤差,及至少一收發器操作中之環境中之物體移動所產生。Hereinafter, when referred to as "apparent channel speed" and "channel apparent speed" nouns include, but are not limited to, being established in a first transceiver (such as a wireless transmission/reception unit, a base station, or the like) and at least The observed and/or measured rate of channel impulse response changes between other transceivers. Channel impulse response changes may result from movement of one or more transceivers, oscillator errors occurring in at least one transceiver, and movement of objects in an environment in at least one transceiver operation.

本發明特性可被併入積體電路(IC),或被配置於包含複數互連組件之電路中。The features of the invention may be incorporated into an integrated circuit (IC) or in a circuit comprising a plurality of interconnected components.

本發明控制適應性等化器之步長適應。適應步長μ係視頻道改變速率(如與無線傳送/接收單元速度相關之Doppler展頻)及頻道信號雜訊比而定。針對快速頻道,較佳使用較大步長來促使適應性等化器快速追蹤頻道變異。相反地,針對較慢頻道,較低步長被預期降低錯誤調整誤差而改善適應性等化器效能。The invention controls the step adaptation of the adaptive equalizer. The adaptation step size μ is the video channel change rate (such as Doppler spread spectrum related to the WTRU speed) and the channel signal noise ratio. For fast channels, it is better to use larger steps to encourage the adaptive equalizer to quickly track channel variations. Conversely, for slower channels, lower step sizes are expected to reduce false adjustment errors and improve adaptive equalizer performance.

適應性步長參數μ視信號雜訊比而定係使信號雜訊比下,適應性步長參數μ值傾向較高,而低信號雜訊比下,適應性步長參數μ通常很小。附加輸入亦可適當使用(如適應性濾波器中之延遲展頻及主動分接點數)。本發明係被用來經由表觀頻道速度維持收斂速度及精確度間之理想平衡。The adaptive step size parameter μ-view signal noise ratio is determined by the signal-to-noise ratio, and the adaptive step size parameter μ value tends to be higher. At the low signal-to-noise ratio, the adaptive step size parameter μ is usually small. Additional inputs can also be used as appropriate (eg delay spread spectrum and active tap points in adaptive filters). The present invention is used to maintain an ideal balance between convergence speed and accuracy via apparent channel speed.

第1A圖係為包含依據本發明一實施例配置之表觀頻道速度估測器101之步長估測器100例方塊圖。1A is a block diagram of an example of a step size estimator 100 comprising an apparent channel velocity estimator 101 configured in accordance with an embodiment of the present invention.

參考第1B圖,步長估測器100可控制被併入第一收發器150中之適應性等化器50之步長。適應性等化器50所使用之至少一濾波器分接點係數102係以被建立於第一收發器150及第二收發器160間之頻道155之表觀速度為基礎來更新。適應性濾波器50包含一等化器分接點更新單元10,一有限脈衝響應濾波器12及一更新向量產生器16。步長估測器100提供一步長μ(“mu”)參數142及一濾波器分接點漏洩因子α至等化器分接點更新單元10。反過來,等化器分接點更新單元10產生等化器濾波器分接點係數102,其被饋送至步長估測器100及有限脈衝響應濾波器12。Referring to FIG. 1B, the step size estimator 100 can control the step size of the adaptive equalizer 50 that is incorporated into the first transceiver 150. The at least one filter tap coefficient 102 used by the adaptive equalizer 50 is updated based on the apparent speed of the channel 155 established between the first transceiver 150 and the second transceiver 160. The adaptive filter 50 includes an equalizer tap point update unit 10, a finite impulse response filter 12 and an update vector generator 16. The step size estimator 100 provides a one step length μ ("mu") parameter 142 and a filter tap point leakage factor a to the equalizer tap point update unit 10. Conversely, the equalizer tap update unit 10 generates an equalizer filter tap coefficient 102 that is fed to the step size estimator 100 and the finite impulse response filter 12.

當第二收發器160於頻道155上傳送信號至第一收發器150時,該被傳送信號係於抵達第一收發器150之適應性等化器50中之有限脈衝響應濾波器12之前被頻道155訛用(或修改)。有限脈衝響應濾波器12可濾波信號並界定濾波脈衝響應,其係於有限脈衝響應濾波器12之被等化輸出14被饋送至更新向量產生器16之後,藉由等化器分接點更新單元10所產生之等化器濾波器分接點係數102界定。更新向量產生器16可產生包含被饋送至等化器分接點更新單元10以更新等化器濾波器分接點係數102之向量之誤差信號18。When the second transceiver 160 transmits a signal to the first transceiver 150 on the channel 155, the transmitted signal is routed to the finite impulse response filter 12 in the adaptive equalizer 50 of the first transceiver 150. 155 use (or modify). The finite impulse response filter 12 may filter the signal and define a filtered impulse response that is after the equalized output 14 of the finite impulse response filter 12 is fed to the update vector generator 16 by the equalizer tap point update unit The resulting equalizer filter tap coefficient 102 is defined. The update vector generator 16 may generate a vector containing the equalizer filter tap point coefficient 102 that is fed to the equalizer tap point update unit 10 to update the equalizer filter tap point coefficient 102. Error signal 18.

如第1A圖所示,步長估測器100包含一表觀頻道速度估測器101,一步長映射單元140,及一信號雜訊比平均器145。如第1B圖所示,表觀頻道速度估測器101可估計被建立於包含步長估測器100之第一收發器150及第二收發器160間之頻道155速度。等化器濾波器分接點係數102係藉由等化器分接點更新單元10被輸入表觀頻道速度估測器101。等化器濾波器分接點係數102係為被乘上適應性濾波器50中之輸入樣本序列之複數值。等化器分接點更新單元10之輸出係藉由找出兩向量之內乘積來產生。一向量係為等化器分接點更新單元10內之被分接延遲線(TDL)狀態(輸出),而另一向量係為等化器分接點更新單元10所使用之等化器濾波器分接點係數102(或其共軛)之向量。As shown in FIG. 1A, the step size estimator 100 includes an apparent channel speed estimator 101, a one-step mapping unit 140, and a signal noise ratio averager 145. As shown in FIG. 1B, the apparent channel speed estimator 101 can estimate the channel 155 speed established between the first transceiver 150 and the second transceiver 160 including the step size estimator 100. The equalizer filter tap coefficient 102 is input to the apparent channel speed estimator 101 by the equalizer tap point updating unit 10. The equalizer filter tap coefficient 102 is a complex value that is multiplied by the input sample sequence in the adaptive filter 50. The output of the equalizer tap point update unit 10 is generated by finding the product within the two vectors. One vector is the tapped delay line (TDL) state (output) in the equalizer tap point update unit 10, and the other vector is the equalizer filter used by the equalizer tap point update unit 10. A vector of tap coefficients 102 (or their conjugates).

參考第1A圖,表觀頻道速度估測器101包含一分接點係數擷取器104,一角度計算器108,一被分接延遲線116,一相位差函數產生器120,一平均濾波器124,一正規化單元128,一延遲計算器132及一速度映射單元136。Referring to FIG. 1A, the apparent channel velocity estimator 101 includes a tap coefficient extractor 104, an angle calculator 108, a tapped delay line 116, a phase difference function generator 120, and an averaging filter. 124, a normalization unit 128, a delay calculator 132 and a speed mapping unit 136.

依據本發明,速度資訊係被擷取自等化器分接點更新單元10所使用之濾波係數歷史資料。此程序係因等化器分接點更新單元10適應性估測最小均方差(MMSE)解來偵測如引導信號之參考信號而可行。如此做,最終等化器分接點更新單元10會接近頻道反向。速度估計係藉由可追蹤反映頻道改變速率(也就是其表觀速度)之等化器分接點更新單元10所使用之一個或更多濾波分接點值改變速率來執行。According to the present invention, the speed information is retrieved from the filter coefficient history data used by the equalizer tap point updating unit 10. This procedure is feasible because the equalizer tap point update unit 10 adaptively estimates the minimum mean square error (MMSE) solution to detect a reference signal such as a pilot signal. In doing so, the final equalizer tap update unit 10 will approach the channel reversal. The speed estimate is performed by tracking one or more filtered tap value change rates used by the equalizer tap update unit 10 that reflects the channel change rate (i.e., its apparent speed).

分接點係數擷取器104可從被接收自等化器分接點更新單元10之等化器濾波器分接點係數102擷取至少一分接點係數,並傳送被擷取分接點係數106至角度計算器108。The tap coefficient extractor 104 can extract at least one tap coefficient from the equalizer filter tap coefficient 102 received from the equalizer tap point update unit 10, and transmit the extracted tap point Coefficient 106 to angle calculator 108.

典型頻道脈衝響應通常可藉由(分離)延遲及度量脈衝之有限組來特徵化。這些脈衝各位置係被稱為路徑(也就是“多路徑”頻道組成)。相對第一有效分接點(FSP)之各該路徑之位置及平均功率係決定等化器分接點權重之位置及大小。A typical channel impulse response can typically be characterized by a (separated) delay and a finite set of metric pulses. Each location of these pulses is referred to as a path (ie, a "multipath" channel). The position and average power of each of the paths relative to the first effective tap point (FSP) determine the position and size of the equalizer tap point weight.

被擷取分接點係數106可為對應第一有效分接點,最有效路徑(MSP),若干分接點平均或任何其他路徑之係數。被擷取分接點係數106包含複數,且具有一振幅及一相位(或相同地角度值)。角度計算器108僅輸出被擷取分接點係數106之相位110至被分接延遲線116及相位差函數產生器120。The extracted tap coefficient 106 may be a coefficient corresponding to the first valid tap point, the most efficient path (MSP), the number of tap points, or any other path. The extracted tap coefficient 106 includes a complex number and has an amplitude and a phase (or the same angular value). The angle calculator 108 outputs only the phase 110 of the tap point coefficient 106 that is captured to the tapped delay line 116 and the phase difference function generator 120.

被分接延遲線116全長可大於N(也就是並非所有延遲均必須具有分接點)。被分接延遲線116長度必須至少D(N),其對應具有來自被分接延遲線116輸入之最長延遲之分接點。從被分接延遲線116輸入至輸出n(0<n<N+1)之延遲將為D(n)。被分接延遲線116係從該輸入轉移資料經由第一時脈週期上之下一延遲組成而至接續時脈週期上之下一延遲組成。被分接延遲線116係以類似移位暫存器方式操作。The length of the tapped delay line 116 can be greater than N (i.e., not all delays must have tap points). The length of the tapped delay line 116 must be at least D(N), which corresponds to the tap point having the longest delay from the input of the tapped delay line 116. The delay from input to tapped delay line 116 to output n (0 < n < N + 1) will be D(n). The tapped delay line 116 is comprised of the input transition data consisting of a delay below the first clock cycle and a delay below the successive clock cycle. The tapped delay line 116 operates in a similar shift register mode.

包含N延遲值D(1)...D(N)之延遲114向量D(k)係被輸入被分接延遲線116。被分接延遲線116係依據延遲114之向量及被擷取分接點係數106之相位110來產生N延遲樣本118,X(i-D(k)),k=1...N。指標變數“i”係被當作時間指標且隨後被壓縮。The delay 114 vector D(k) including the N delay values D(1)...D(N) is input to the tapped delay line 116. The tapped delay line 116 generates an N-delayed sample 118, X(i-D(k)), k=1...N, based on the vector of the delay 114 and the phase 110 of the tapped point coefficient 106. The indicator variable "i" is taken as a time indicator and then compressed.

相位差函數產生器120可以被分接延遲線116所輸出之各N延遲樣本118及角度計算器108所輸出之相位110來產生自我相關狀相位差函數之N樣本。更明確說,N相位差函數值122係被產生,一用於延遲114向量之各組成。較佳函數係為|pi -|phase (1)-phase (n )||,其中|x|=x之絕對值,但其他該函數可被使用。The phase difference function generator 120 can be tapped by the N-delay samples 118 output by the delay line 116 and the phase 110 output by the angle calculator 108 to generate N samples of the self-correlation phase difference function. More specifically, the N phase difference function value 122 is generated, one for delaying the respective components of the 114 vector. The preferred function is | pi -| phase (1) - phase ( n )||, where |x| = the absolute value of x, but other functions can be used.

平均濾波器124可平均N相位差函數值122大小來產生具有複數組成,avg_phase_dif(k),k=1...N之平均相位差函數向量126。平均濾波器124本質上係為固定低通濾波器,如移動平均濾波器或簡單無線脈衝(IIR)濾波器組。The averaging filter 124 may average the N phase difference function value 122 to produce an average phase difference function vector 126 having a complex composition, avg_phase_dif(k), k=1...N. The averaging filter 124 is essentially a fixed low pass filter, such as a moving average filter or a simple wireless pulse (IIR) filter bank.

正規化單元128可正規化平均相位差函數向量126組成來產生具有複數組成之正規化相位差函數向量130。測量係被正規化為小延遲下之測量函數值。平均相位差函數向量126中之第一組成係被用來分割平均相位差函數向量126中之所有組成來完成該正規化處理。平均相位差函數向量126中之第一組成係對應被分接延遲線116中之最小延遲,其係較佳被選擇使相位110及N延遲樣本118第一組成間之任何相位差僅因雜訊而不因頻道改變來補償因雜訊產生之隨機相位改變。The normalization unit 128 may normalize the average phase difference function vector 126 composition to produce a normalized phase difference function vector 130 having a complex composition. The measurement system is normalized to a measurement function value at a small delay. The first component of the average phase difference function vector 126 is used to divide all of the components in the average phase difference function vector 126 to complete the normalization process. The first component of the average phase difference function vector 126 corresponds to the minimum delay in the tapped delay line 116, which is preferably selected such that any phase difference between the first component of the phase 110 and the N delay sample 118 is due only to noise. The random phase change due to noise is not compensated for by channel changes.

例如,該正規化係藉由第一組成除上平均相位差函數向量126各組成如下:norm_phase_dif(k)=avg_phase_dif(k)/avg_phase_dif(1),k=1...N,其中avg_phase_dif係為平均相位差函數值之向量。For example, the normalization is composed of the first component divided by the average phase difference function vector 126 as follows: norm_phase_dif(k)=avg_phase_dif(k)/avg_phase_dif(1), k=1...N, where avg_phase_dif is The vector of the average phase difference function value.

正規化相位差函數向量130各組成接著藉由延遲計算器132與門檻相較於門檻處產生一延遲。正規化相位差函數向量130係為對應亦遞減之曲線樣本(至少接近原點)以1.0開始之遞減數字向量(至少前兩個)。The components of the normalized phase difference function vector 130 then generate a delay by the delay calculator 132 compared to the threshold. The normalized phase difference function vector 130 is a decrementing number vector (at least the first two) starting with 1.0 for a correspondingly decreasing curve sample (at least close to the origin).

延遲計算器132之目的係估測曲線跨越等於門檻之值之距離(時間/延遲表示)。若該門檻值大於正規化相位差函數向量130中之最小值,則該估測係使用線性內插來執行。若門檻小於正規化相位差函數向量130中之最小值,則該估測係使用線性外插來執行。輸出134係為曲線跨越門檻之位置(延遲)。該門檻值係以類似第4圖所示之曲線為基礎根據經驗來決定。The purpose of the delay calculator 132 is to estimate the distance (time/delay representation) across the value of the threshold. If the threshold is greater than the minimum of the normalized phase difference function vector 130, then the estimate is performed using linear interpolation. If the threshold is less than the minimum of the normalized phase difference function vector 130, then the estimate is performed using linear extrapolation. Output 134 is the position (delay) of the curve across the threshold. The threshold is determined empirically based on a curve similar to that shown in Figure 4.

門檻延遲134係依據預定映射函數藉由速度映射單元136被映射至速度估測138。步長估測器100中之信號雜訊比平均器145可以共同引導頻道信號雜訊比輸入147為基礎來產生共同引導頻道信號雜訊比估測146,並將該共同引導頻道信號雜訊比估測146傳送至步長映射單元140。速度估測138及共同引導頻道信號雜訊比估測146接著被步長映射單元140映射至步長μ參數142及濾波器分接點漏洩因子α參數144給等化器分接點更新單元10。Threshold delay 134 is mapped to speed estimate 138 by velocity mapping unit 136 in accordance with a predetermined mapping function. The signal noise ratio averager 145 in the step size estimator 100 can collectively direct the channel signal noise ratio input 147 to generate a common pilot channel signal noise ratio estimate 146, and the common pilot channel signal noise ratio The estimate 146 is passed to the step size mapping unit 140. The speed estimate 138 and the common pilot channel signal noise ratio estimate 146 are then mapped by the step size mapping unit 140 to the step size μ parameter 142 and the filter tap point leakage factor a parameter 144 to the equalizer tap point update unit 10. .

來自速度及信號雜訊比之映射係根據經驗來決定。此係藉由各種速度及信號雜訊比之步長μ(“mu”)參數142及濾波器分接點漏洩因子α參數144各種值來模擬接收器效能。各速度及信號雜訊比下,μ及α值係藉由選擇最佳化效能知這些值(如最低塊錯誤率(BER)或最高產出)來決定。一旦{速度,信號雜訊比}及{μ,α}間之關係被決定用於模擬點,更通用函數可藉由傳統兩因次(2-D)曲線配適技術來找出。參考查找表(LUT)或兩者,一旦方程式被建立,則映射程序可直接藉由執行該方程式(或其近似)來實施。The mapping from speed and signal to noise ratio is determined empirically. The receiver performance is simulated by various speed and signal noise ratio step ("mu") parameters 142 and filter tap leakage factor alpha parameters 144 various values. For each speed and signal-to-noise ratio, the μ and alpha values are determined by selecting the optimal performance (such as the lowest block error rate (BER) or the highest output). Once the relationship between {speed, signal noise ratio} and {μ,α} is determined for the analog point, the more general function can be found by the traditional two-factor (2-D) curve adaptation technique. Referring to the lookup table (LUT) or both, once the equation is established, the mapping procedure can be implemented directly by executing the equation (or its approximation).

濾波器分接點漏洩因子α係被定義如下:The filter tap point leakage factor α is defined as follows:

其中α標示無分接點漏洩。當不預期計算濾波器分接點漏洩因子α時(也就是其為“選擇性”),α剛好被設定為1。以速度估測138及共同引導頻道信號雜訊比估測146為基礎,μ參數142及α參數144係被選擇。Where α indicates no tap point leakage. When the filter tap point leakage factor α is not expected to be calculated (that is, it is "selective"), α is set to exactly one. Based on the speed estimate 138 and the common pilot channel signal noise ratio estimate 146, the μ parameter 142 and the alpha parameter 144 are selected.

同屬最小均方演算法中之濾波係數適應可被寫入:The filter coefficient adaptation in the same mean mean square algorithm can be written:

其中向量表示等化器分接點更新單元10所使用之濾波係數目前值,表示等化器分接點更新單元10所使用之濾波係數新值,而向量表示被產生當作等化器分接點更新單元10之最小均方演算法部分之誤差信號。等化器分接點更新單元10可產生具有L組成之向量信號之濾波器分接點係數102,其中L等於分接點數。Where vector Representing the current value of the filter coefficient used by the equalizer tap point update unit 10, Representing the new value of the filter coefficient used by the equalizer tap point update unit 10, and the vector The error signal is generated as part of the minimum mean square algorithm of the equalizer tap update unit 10. The equalizer tap point update unit 10 can generate a filter tap point coefficient 102 having a vector signal of L composition, where L is equal to the number of tap points.

第2圖係為包含依據本發明另一實施例之步長估測器200例方塊圖。步長估計係使用共同引導頻道信號雜訊比估測及表觀頻道速度估測來執行,其係以目前頻道狀況為基礎被映射至步長μ及濾波器分接點漏洩因子α。共同引導頻道信號雜訊比估測及表觀頻道速度估測可經由單路徑或路徑組合(也就是第一有效分接點,最有效路徑或類似者)來獲得。Figure 2 is a block diagram of an example of a step size estimator 200 in accordance with another embodiment of the present invention. The step size estimation is performed using a common pilot channel signal noise ratio estimate and an apparent channel speed estimate, which is mapped to the step size μ and the filter tap point leakage factor a based on the current channel conditions. The common pilot channel signal noise ratio estimation and apparent channel speed estimation can be obtained via a single path or path combination (ie, the first effective tap point, the most efficient path, or the like).

參考第2圖,步長估測器200包含一共同引導頻道信號雜訊比估測器202,一表觀頻道速度估測器204,一步長映射單元140,一延遲緩衝器214,一加法器215,一內插器216及一編碼追蹤迴路(CTL)222。Referring to FIG. 2, the step size estimator 200 includes a common pilot channel signal noise ratio estimator 202, an apparent channel speed estimator 204, a one-step mapping unit 140, a delay buffer 214, and an adder. 215, an interpolator 216 and a code tracking loop (CTL) 222.

共同引導頻道信號雜訊比估測器202可以被與目前被追蹤之路徑校準之準時樣本序列218為基礎來產生共同引導頻道信號雜訊比估測203。步長估測器200可接收通常被以兩倍(2×)主採樣速率(也就是晶片速率)採樣之樣本210。步長估測器200可從該被接收樣本210擷取準時樣本序列218及早先與後來樣本序列217。各被擷取流係具有晶片速率樣本。The common pilot channel signal noise ratio estimator 202 can be generated based on the on-time sample sequence 218 of the currently tracked path to generate a common pilot channel signal noise ratio estimate 203. The step size estimator 200 can receive samples 210 that are typically sampled at twice the (2 x) primary sampling rate (i.e., wafer rate). The step size estimator 200 can extract the on-time sample sequence 218 and the earlier and subsequent sample sequences 217 from the received sample 210. Each of the extracted flow lines has a wafer rate sample.

被估計共同引導頻道信號雜訊比估測203係被映射單元140依據預定映射函數映射至步長μ參數142。表觀頻道速度估測器204可以準時樣本序列218為基礎來產生速度估測205。速度估測205亦被映射單元140用於映射至濾波器分接點漏洩因子α參數144。表觀頻道速度估測器204之一配置例係結合第3圖被說明如下。The estimated common pilot channel signal noise ratio estimate 203 is mapped by the mapping unit 140 to the step size parameter 142 in accordance with a predetermined mapping function. The apparent channel velocity estimator 204 can generate a velocity estimate 205 based on the on-time sample sequence 218. The speed estimate 205 is also used by the mapping unit 140 to map to the filter tap point leakage factor a parameter 144. One configuration example of the apparent channel speed estimator 204 is explained below in conjunction with FIG.

被接收樣本210係藉由脈衝成型(接收器根升餘弦(RRC))濾波器以兩倍晶片速率輸出來產生。被接收樣本210對於提供因表觀頻道速度所產生之振幅及相位變異資訊至步長估測器200很重要。步長估測器200亦可接收第一有效分接點位置資訊212,其可藉由已具有頻道脈衝響應之數據機來供應。步長估測器200鎖定路徑位置來估測對應表觀頻道速度。The received sample 210 is generated by pulse shaping (receiver root raised cosine (RRC)) filter at twice the wafer rate output. The received sample 210 is important to provide amplitude and phase variation information due to apparent channel velocity to the step size estimator 200. The step size estimator 200 can also receive the first valid tap location information 212, which can be supplied by a modem that already has a channel impulse response. The step size estimator 200 locks the path position to estimate the corresponding apparent channel speed.

延遲緩衝器214,加法器215,內插器216及編碼追蹤迴路222係形成步長估測器200中之延遲鎖定迴路(DLL),藉此編碼追蹤迴路222可內部創造被接收樣本210之早先與後來樣本序列217間之誤差信號。編碼追蹤迴路222中之誤差信號可經由內插器216驅動分數延遲使其被迫使達到平均零。該分數延遲包含採樣速率倍數中之延遲(也就是有關採樣速率之整數延遲)。例如,若編碼追蹤迴路222創造兩樣本之累積延遲,則輸入資料流係被2樣本延遲。該分數延遲可提供誤差量至內插器216使準時樣本序列218可被以零時點偏置對參考信號(如全球行動電信系統(UTMS)中之共同引導頻道)設定。該分數延遲可採用+/-採樣速率,如-0.1,0.2,0.4Tc間之任何值,其中Tc為晶片速率。Delay buffer 214, adder 215, interpolator 216 and code tracking loop 222 form a delay locked loop (DLL) in step size estimator 200, whereby code tracking loop 222 can internally create the received sample 210 earlier. An error signal between the subsequent sample sequence 217. The error signal in the code tracking loop 222 can drive the fractional delay via the interpolator 216 to force it to average zero. The fractional delay includes the delay in the multiple of the sampling rate (ie, the integer delay with respect to the sampling rate). For example, if the code tracking loop 222 creates a cumulative delay of two samples, the input data stream is delayed by 2 samples. The fractional delay can provide an amount of error to interpolator 216 that enables the on-time sample sequence 218 to be set at zero time offset to a reference signal, such as a common pilot channel in a Global Mobile Telecommunications System (UTMS). The fractional delay may be +/- a sampling rate, such as any value between -0.1, 0.2, 0.4 Tc, where Tc is the wafer rate.

早先與後來樣本序列217係於編碼追蹤迴路222處被與亂碼序列產生相關。編碼追蹤迴路222可以該相關結果來產生內插器指標信號220及緩衝器位址信號224(也就是整數倍數樣本延遲)。指標信號226係藉由加法器215將給定第一有效分接點位置信號212及緩衝器位址信號224加總來產生。延遲緩衝器214係以指標信號226為基礎針對被追蹤路徑(如第一有效分接點)校準被接收樣本210於特定解之內(如晶片解)。延遲緩衝器214必須大得足以追蹤移動路徑。The earlier and subsequent sample sequences 217 are associated with the garbled sequence at the code tracking loop 222. The code tracking loop 222 can generate the interpolator indicator signal 220 and the buffer address signal 224 (i.e., integer multiple sample delay) from the correlation result. The indicator signal 226 is generated by summing the given first active tap position signal 212 and the buffer address signal 224 by adder 215. The delay buffer 214 calibrates the received samples 210 within a particular solution (eg, a wafer solution) for the tracked path (eg, the first valid tap point) based on the indicator signal 226. The delay buffer 214 must be large enough to track the path of movement.

內插器216可從延遲緩衝器214接收被延遲樣本219並以+/-0.125Tc或更少增量於+/-0.5Tc內轉移被延遲樣本219。若被延遲樣本219之被累積轉移超過0.5Tc(如0.625Tc),則內插器216將經由內插器指標信號220執行分數轉移0.125Tc,而緩衝器位址信號224被增加1(也就是0.5Tc)。Interpolator 216 can receive delayed samples 219 from delay buffer 214 and transfer delayed samples 219 within +/- 0.5 Tc in +/- 0.125 Tc or less. If the accumulated transition of the delayed sample 219 exceeds 0.5 Tc (e.g., 0.625 Tc), the interpolator 216 will perform a fractional shift of 0.125 Tc via the interpolator indicator signal 220, and the buffer address signal 224 is incremented by one (ie, 0.5Tc).

內插器216及編碼追蹤迴路222係被用來追蹤第一有效分接點,最有效路徑或任何其他路徑。準時樣本序列218係藉由追蹤該被追蹤路徑之移動來產生。第一有效分接點位置資訊212係藉由經由延遲緩衝器214延遲被接收樣本210(也就是整數調整),及/或經由內插器216推進被接收樣本210(也就是分數調整)經由編碼追蹤迴路222來追蹤。內插器216可從編碼追蹤迴路222接收內插器指標信號220,並產生準時樣本序列218及早先與後來樣本序列217。編碼追蹤迴路222創造被映射入指向預定內插器權重(係數)之指標之分數誤差,其針對分數樣本延遲控制分數延遲及/或從編碼追蹤迴路222領先被接收樣本210。Interpolator 216 and code tracking loop 222 are used to track the first valid tap point, the most efficient path, or any other path. The on-time sample sequence 218 is generated by tracking the movement of the tracked path. The first valid tap location information 212 is encoded by delaying the received samples 210 (i.e., integer adjustments) via the delay buffer 214 and/or by advancing the received samples 210 (i.e., fractional adjustments) via the interpolator 216. Tracking loop 222 to track. Interpolator 216 can receive interpolator indicator signal 220 from code tracking loop 222 and generate on-time sample sequence 218 and previous and subsequent sample sequences 217. The code tracking loop 222 creates a fractional error that is mapped into an indicator that points to a predetermined interpolator weight (coefficient) that controls the fractional delay for the fractional sample delay and/or leads the received sample 210 from the encoded tracking loop 222.

延遲緩衝器214大小係為時點飄移及第一有效分接點更新速率之函數。時點飄移係為基地台及無線傳送/接收單元間之頻率偏移所產生之移動。表觀頻道速度亦產生頻率偏移。因此,路徑似乎正移動。例如,數據機具有基地台之同步化資訊及頻道脈衝響應知識(路徑位置),並以該路徑位置設定編碼追蹤迴路222(也就是針對給定第一有效分接點位置信號212開始採樣)。若該給定路徑移動,編碼追蹤迴路222遵循它直到超過多樣本延遲或領先之緩衝限制為止。然而,若第一有效分接點位置資訊於編碼追蹤迴路222碰撞緩衝器邊界之前被適時更新,則編碼追蹤迴路222可毫無困難地遵循路徑。The delay buffer 214 size is a function of the time drift and the first effective tap update rate. The time drift is the movement caused by the frequency offset between the base station and the WTRU. The apparent channel speed also produces a frequency offset. Therefore, the path seems to be moving. For example, the data machine has base station synchronization information and channel impulse response knowledge (path location) and sets the code tracking loop 222 with the path location (i.e., begins sampling for a given first active tap location signal 212). If the given path moves, the code tracking loop 222 follows it until a multi-sample delay or leading buffer limit is exceeded. However, if the first valid tap location information is updated as appropriate before the code tracking loop 222 hits the buffer boundary, the code tracking loop 222 can follow the path without difficulty.

第3圖係為被用於第2圖之步長估測器200之表觀頻道速度估測器204例方塊圖。表觀頻道速度估測器204包含一控制迴路301,一亂碼產生器304,複數共軛單元308,326,乘法器312,331,333,一解展頻器316,一可變延遲單元322,一固定延遲單元330及一速度映射單元374。Figure 3 is a block diagram of an example of an apparent channel speed estimator 204 used in the step size estimator 200 of Figure 2. The apparent channel speed estimator 204 includes a control loop 301, a garbled generator 304, complex conjugate units 308, 326, multipliers 312, 331, 333, a despreader 316, and a variable delay unit 322. A fixed delay unit 330 and a speed mapping unit 374.

依據本實施例,目前符號及延遲符號之間達成第2圖步長估測器200之延遲緩衝器214中之目標相位所需之延遲量係經由控制迴路301來估測。控制迴路301可產生延遲值320當作速度函數。延遲值320接著藉由速度映射單元374被映射為一速度。According to this embodiment, the amount of delay required to achieve the target phase in the delay buffer 214 of the second step estimator 200 between the current symbol and the delay symbol is estimated via the control loop 301. Control loop 301 can generate delay value 320 as a function of speed. The delay value 320 is then mapped to a speed by the velocity mapping unit 374.

來自第2圖之步長估測器200之準時樣本序列218係被饋送至乘法器312之第一輸入。亂碼產生器304可產生被饋送至複數共軛單元308之亂碼306。複數共軛單元308接著產生被饋送至乘法器312之第二輸入之亂碼共軛310。準時樣本序列218被乘上亂碼共軛310以產生解波樣本序列314。解波樣本序列314係被解展頻器316解展頻,而符號序列318此後被產生。The on-time sample sequence 218 from the step size estimator 200 of FIG. 2 is fed to the first input of the multiplier 312. The garbled generator 304 can generate garbled 306 that is fed to the complex conjugate unit 308. The complex conjugate unit 308 then produces a garbled conjugate 310 that is fed to the second input of the multiplier 312. The on-time sample sequence 218 is multiplied by the garbled conjugate 310 to produce a sequence of desampled samples 314. The demodulated sample sequence 314 is despread by the despreader 316, and the symbol sequence 318 is thereafter generated.

符號序列318係被輸入可變延遲單元322,複數共軛單元326及固定延遲單元330。複數共軛單元326可產生目前符號之複數共軛328。可變延遲單元322可依據延遲值320來延遲符號序列318並產生第一延遲符號序列324。固定延遲單元330可延遲符號序列達一符號持續期間並產生第二延遲符號序列332。The symbol sequence 318 is input to the variable delay unit 322, the complex conjugate unit 326, and the fixed delay unit 330. Complex conjugate unit 326 can generate a complex conjugate 328 of the current symbol. Variable delay unit 322 may delay symbol sequence 318 based on delay value 320 and generate first delayed symbol sequence 324. Fixed delay unit 330 may delay the sequence of symbols for a symbol duration and generate a second sequence of delay symbols 332.

目前符號之複數共軛328係被乘法器331乘上第一延遲符號序列324以產生第一延遲共軛信號334。目前符號之複數共軛328亦被乘法器333乘上第二延遲符號序列332以產生第二延遲共軛信號336。The complex conjugate 328 of the current symbol is multiplied by the first delay symbol sequence 324 by a multiplier 331 to produce a first delayed conjugate signal 334. The complex conjugate 328 of the current symbol is also multiplied by the second delayed symbol sequence 332 by the multiplier 333 to produce a second delayed conjugate signal 336.

控制迴路301包含可選映射單元338,340,控制迴路344,348,368,加法器355,364,一除法器356及一限幅器372。控制迴路301可以該第一及第二延遲共軛信號334,336為基礎輸出延遲值320,其實部分係被可選映射單元338,340選擇性映射至被映射值342,346(+1或-1)。被延遲共軛信號334係為可變延遲值324為基礎之自我相關輸出。被延遲共軛信號336係為有關一符號延遲332之自我相關值。信號334及336係被可選映射單元338,340選擇性映射,且接著於正規化發生之前被迴路濾波器344,348平順化。Control loop 301 includes optional mapping units 338, 340, control loops 344, 348, 368, adders 355, 364, a divider 356, and a limiter 372. The control loop 301 can output the delay value 320 based on the first and second delayed conjugate signals 334, 336, and the portion is selectively mapped by the optional mapping unit 338, 340 to the mapped value 342, 346 (+1 or - 1). The delayed conjugate signal 334 is a self-correlation output based on a variable delay value 324. The delayed conjugate signal 336 is an autocorrelation value associated with a symbol delay 332. Signals 334 and 336 are selectively mapped by optional mapping units 338, 340 and then smoothed by loop filters 344, 348 before normalization occurs.

正規化處理係為任何例中確保不同信號雜訊比中之速度重複能力所需。若正規化不被執行,則第3圖中之被濾波共軛信號350可能不提供0及1之間值。若映射單元338,340不被使用,則延遲共軛信號334,336係被迴路濾波器344,348直接濾波。Normalization is required to ensure speed repeatability in different signal-to-noise ratios in any case. If normalization is not performed, the filtered conjugate signal 350 in FIG. 3 may not provide a value between 0 and 1. If the mapping units 338, 340 are not used, the delayed conjugate signals 334, 336 are directly filtered by the loop filters 344, 348.

最終正規化值範圍係從0至1。可被施加至第3圖之可變延遲單元322之最小延遲係永遠大於一符號延遲,其為固定延遲單元330之精確延遲。因此,正規化產生0及1之間範圍之值。參考位準值可以商數結果信號360值為基礎來決定。如第4及5圖中說明者,基本處理將創造第3圖中之商數結果信號360反應。被迴路濾波器344產生之被濾波共軛信號350係被饋送至除法器356之第一輸入。被迴路濾波器348產生之被濾波共軛信號352係經由可加總小固定值354以避免被零除而產生總和結果信號358之加法器355被饋送至除法器356之第二輸入。除法器356可以總和結果信號358除被濾波共軛信號350來產生商數結果信號360。此為被用來避免因信號雜訊比設定而產生變異之正規化處理。The final normalized value range is from 0 to 1. The minimum delay that can be applied to the variable delay unit 322 of FIG. 3 is always greater than one symbol delay, which is the precise delay of the fixed delay unit 330. Therefore, normalization produces values in the range between 0 and 1. The reference level value can be determined based on the quotient result signal 360 value. As illustrated in Figures 4 and 5, the basic process will create a quotient result signal 360 response in Figure 3. The filtered conjugate signal 350 generated by loop filter 344 is fed to a first input of divider 356. The filtered conjugate signal 352 generated by the loop filter 348 is fed to the second input of the divider 356 via a adder 355 that can sum the small fixed values 354 to avoid division by zero to produce a sum result signal 358. Divider 356 can sum the resulting signal 358 in addition to the filtered conjugate signal 350 to produce a quotient result signal 360. This is a normalization process that is used to avoid variations due to signal noise ratio settings.

因為相關係藉由使用已知序列(也就是共同引導頻道信號)來執行,被相關信號之信號雜訊比位準將直接影響被計算相關。參考/相關值信號362係被加法器364從商數結果信號360扣除。Since the phase relationship is performed by using a known sequence (ie, a common pilot channel signal), the signal to noise ratio level of the associated signal will directly affect the calculated correlation. The reference/correlation value signal 362 is subtracted from the quotient result signal 360 by the adder 364.

當映射單元338,340創造如第4圖說明之0或1及第5圖中之部分時,正規化會迫使商數結果信號360介於0及1之範圍之間。若0及1映射考慮最小硬體被實施,則因為曲線創造永遠小於0.7之值,依據第4圖,0.7參考位準將為最佳值。當映射產生+1及-1時,則較小之參考值可取代0.7被使用。然而,例如使用0.4映射+1及-1係需第3圖之更多硬體322,而速度映射單元374必須被更新各不同參考位準。因此,值0.7係為映射產生經由迴路濾波器368及限幅器372被饋送產生延遲值320之差分結果信號366之較佳值。Normalization forces the quotient result signal 360 to be between 0 and 1 when the mapping unit 338, 340 creates portions of 0 or 1 and 5 as illustrated in FIG. If the 0 and 1 mappings consider that the minimum hardware is implemented, then since the curve creation is always less than 0.7, the 0.7 reference level will be the best value according to Figure 4. When the mapping produces +1 and -1, then a smaller reference value can be used instead of 0.7. However, for example, using 0.4 mappings +1 and -1 requires more hardware 322 of Figure 3, and speed mapping unit 374 must be updated with different reference levels. Thus, a value of 0.7 is a preferred value for mapping to produce a difference result signal 366 that is fed via loop filter 368 and limiter 372 to produce a delay value 320.

迴路濾波器368係被用來降低控制迴路301中之雜訊影響。限幅器372之限幅很合理,因為不需估測250kmh以上及3kmh以下之速度。同時,限幅可降低速度映射單元374之硬體大小。參考/相關值362係為控制迴路301嘗試收斂至之目標值。Loop filter 368 is used to reduce the effects of noise in control loop 301. The limiter of the limiter 372 is very reasonable because it is not necessary to estimate the speed above 250 kmh and below 3 kmh. At the same time, the clipping can reduce the hardware size of the speed mapping unit 374. The reference/correlation value 362 is the target value at which the control loop 301 attempts to converge.

第4圖顯示針對第3圖之表觀頻道速度估測器204之符號延遲對不同速度相關之圖形關係例。第4圖中之相關值係對應第3圖無雜訊模擬之商數結果信號360。如第4圖所示,自我相關曲線以較小延遲較高速度跨越參考位準0.7,以較大延遲較漫速度通過參考位準。當適當延遲被創造於延遲320處時,目的係獲得第3圖中之差分結果信號366之零平均值。為了確保零平均值並使控制迴路301收斂,參考415(也就是0.7相關)必須被擷取。Fig. 4 shows an example of the relationship of the symbol delays for the different speeds for the apparent channel velocity estimator 204 of Fig. 3. The correlation value in Fig. 4 corresponds to the quotient result signal 360 of the no-noise simulation in Fig. 3. As shown in Figure 4, the autocorrelation curve crosses the reference level of 0.7 with a small delay and a higher speed, and passes the reference level with a larger delay and a longer speed. When a suitable delay is created at delay 320, the goal is to obtain a zero average of the difference result signal 366 in FIG. To ensure a zero mean and cause the control loop 301 to converge, reference 415 (ie, 0.7 correlation) must be retrieved.

因此,速度係與延遲量成反比來設定正規化自我相關為參考位準415。達成0.7正規化自我相關值所需之符號延遲係首先被反向,接著被乘上一因子來產生速度估測205。Therefore, the speed system is inversely proportional to the amount of delay to set the normalized self-correlation to the reference level 415. The symbol delay required to achieve 0.7 normalized autocorrelation values is first reversed and then multiplied by a factor to produce a velocity estimate 205.

第3圖之表觀頻道速度估測器204之控制迴路301一定不可調整為局部最大。例如第4圖所示250kmh曲線,具有最小符號延遲之最大值405係為1.0。同時,相同曲線週期性具有局部最大及最小值(如值0.6係為35符號延遲值下之局部最大410)。如第4圖所示,由於非常高雜訊及/或干擾位準,若第3圖所示第一估測延遲320具有接近250kmh之值35之符號延遲,則迴路調整為35之符號延遲值並估測較250kmh為慢之60kmh速度。參考/相關值362係被選擇使第4圖之速度相關自我相關值不通過多延遲點中之0.7參考位準。延遲值320係依據預定映射函數藉由速度映射單元374映射至速度估測205。The control loop 301 of the apparent channel speed estimator 204 of Fig. 3 must not be adjusted to be locally maximal. For example, the 250 kmh curve shown in Fig. 4 has a minimum value of 405 with a minimum symbol delay of 405. At the same time, the same curve periodically has local maximum and minimum values (eg, the value of 0.6 is the local maximum 410 under the 35-symbol delay value). As shown in Fig. 4, due to the very high noise and/or interference level, if the first estimated delay 320 shown in Fig. 3 has a symbol delay of 35, which is close to 250 kmh, the loop is adjusted to a symbol delay value of 35. It is estimated that the speed is 60kmh slower than 250kmh. The reference/correlation value 362 is selected such that the velocity-dependent autocorrelation value of Figure 4 does not pass the 0.7 reference level of the multi-delay point. The delay value 320 is mapped to the speed estimate 205 by the velocity mapping unit 374 in accordance with a predetermined mapping function.

本發明係建立在Doppler頻譜之自我相關函數係為第0順序Bessel函數之基礎上。Bessel行為允許相關之值被設定估測延遲量來達成目前符號及延遲符號間之預期相關。如第4圖所示,當延遲值增加且無線傳送/接收單元速度增加時,符號間之相關通常會降低。藉由迫使延遲鎖分隔之符號間之相關收斂至目標值,延遲量可藉由預定映射函數被映射至一速度。該目標值係被設定為較圖上局部峰值為高之0.7。如第4圖所示,自控制迴路301到達收斂之後,映射函數可被定義,收斂處之延遲值可被映射至對應速度。The invention is based on the fact that the self-correlation function of the Doppler spectrum is the 0th order Bessel function. The Bessel behavior allows the associated value to be set to estimate the amount of delay to achieve the expected correlation between the current symbol and the delay symbol. As shown in Fig. 4, as the delay value increases and the WTRU speed increases, the correlation between symbols generally decreases. By forcing the correlation between the symbols of the delay lock separation to converge to the target value, the amount of delay can be mapped to a velocity by a predetermined mapping function. The target value is set to be 0.7 higher than the local peak on the graph. As shown in FIG. 4, after the control loop 301 reaches convergence, the mapping function can be defined, and the delay value at the convergence can be mapped to the corresponding speed.

第3圖之可選映射單元338,340可使用0及1或+1/-1映射。第4圖描繪0及1映射。The optional mapping units 338, 340 of Figure 3 may use 0 and 1 or +1/-1 mapping. Figure 4 depicts the 0 and 1 mappings.

第5圖顯示針對第3圖之表觀頻道速度估測器204之符號延遲對不同信號雜訊比相關之圖形關係例。第5圖中之相關值係對應商數結果信號360,參考/相關值362及進行中處理之自我相關值局部峰值之間差異。例如,0或1映射之delta於35符號延遲處具有0.7-0.6=0.1;而針對+1/-1映射,delta變為0.7-0.2=0.5,其具有抗雜訊變動之較大免疫力。Figure 5 shows an example of the graphical relationship for the symbol delay of the apparent channel velocity estimator 204 of Figure 3 for different signal to noise ratios. The correlation values in Figure 5 correspond to the difference between the quotient result signal 360, the reference/correlation value 362, and the local peak of the self-correlation value being processed. For example, a 0 or 1 mapped delta has 0.7-0.6 = 0.1 at a 35-symbol delay; and for a +1/-1 mapping, a delta becomes 0.7-0.2 = 0.5, which has a large immunity against noise fluctuations.

雖然本發明已以較佳實施例做說明,但熟練技術人士將明瞭以下申請專利範圍所描述之本發明範疇內之其他變異。While the invention has been described in terms of the preferred embodiments, those skilled in the <RTIgt;

18...誤差信號18. . . Error signal

106...被擷取分接點係數106. . . Pick-up point coefficient

110...相位110. . . Phase

118...延遲樣本118. . . Delayed sample

122...相位差函數值122. . . Phase difference function value

126...平均相位差函數向量126. . . Average phase difference function vector

215、355、364...加法器215, 355, 364. . . Adder

130...正規化相位差函數向量130. . . Normalized phase difference function vector

219...延遲樣本219. . . Delayed sample

306...亂碼306. . . Garbled

310...亂碼共軛310. . . Garbled conjugate

312、331、333...乘法器312, 331, 333. . . Multiplier

314...解波樣本序列314. . . Wave sample sequence

318...符號序列318. . . Symbol sequence

324、332...第一延遲符號序列324, 332. . . First delay symbol sequence

328...複數共軛328. . . Complex conjugate

334、336...延遲共軛信號334, 336. . . Delayed conjugate signal

342、346...映射值342, 346. . . Map value

354...可加總小固定值354. . . Can add a small fixed value

358...總和結果信號358. . . Sum result signal

360...商數結果信號360. . . Quotient result signal

362...參考/相關值362. . . Reference/correlation value

366...差分結果信號366. . . Differential result signal

CH...共同引導頻道CH. . . Common channel

L...分接點數L. . . Number of taps

SNR...信號雜訊比SNR. . . Signal noise ratio

μ...步長參數μ. . . Step parameter

α...濾波分接點漏洩因子參數α. . . Filter tap point leakage factor parameter

第1A圖係為包含依據本發明一實施例配置之表觀頻道速度估測器之步長估測器例方塊圖;1A is a block diagram of an example of a step size estimator including an apparent channel velocity estimator configured in accordance with an embodiment of the present invention;

第1B圖係為與表觀頻道速度估測器執行表觀頻道速度估測於一頻道上之另一收發器通信之收發器系統圖,其包含第1A圖之步長估測器。Figure 1B is a diagram of a transceiver system that performs an apparent channel speed estimation on another channel communication with another channel on the apparent channel speed estimator, including the step size estimator of Figure 1A.

第2圖係為包含依據本發明另一實施例之步長估測器例方塊圖;Figure 2 is a block diagram showing an example of a step size estimator according to another embodiment of the present invention;

第3圖係為被用於第2圖之步長估測器之表觀頻道速度估測器例方塊圖;Figure 3 is a block diagram showing an example of an apparent channel velocity estimator used in the step size estimator of Figure 2;

第4圖顯示針對第3圖之表觀頻道速度估測器之符號延遲對不同速度相關之圖形關係例。Figure 4 shows an example of the graphical relationship of the symbol delays for the apparent velocity estimators of Fig. 3 for different speeds.

第5圖顯示針對第3圖之表觀頻道速度估測器之符號延遲對不同信號雜訊比相關之圖形關係例。Figure 5 shows an example of the graphical relationship for the symbol delay of the apparent channel velocity estimator in Fig. 3 for different signal to noise ratios.

106...被擷取分接點係數106. . . Pick-up point coefficient

110...相位110. . . Phase

118...延遲樣本118. . . Delayed sample

122...相位差函數值122. . . Phase difference function value

126...平均相位差函數向量126. . . Average phase difference function vector

130...正規化相位差函數向量130. . . Normalized phase difference function vector

CPICH...共同引導頻道CPICH. . . Common channel

L...分接點數L. . . Number of taps

SNR...信號雜訊比SNR. . . Signal noise ratio

μ...步長參數μ. . . Step parameter

α...濾波分接點漏洩因子參數α. . . Filter tap point leakage factor parameter

Claims (11)

一種用於控制一適應性等化器之步長的步長估測器,包括:一延遲鎖定迴路(DLL),用於以一接收的樣本及至少一路徑的位置資訊為基礎而產生一樣本序列;一共同引導頻道(CPICH)信號雜訊比(SNR)估測器,用於以該樣本序列為基礎而產生一CPICH SNR估測;及一步長映射單元,用於將該CPICH SNR估測映射至至少一參數,該至少一參數是用來更新被該適應性等化器使用的至少一濾波器分接點係數。 A step size estimator for controlling the step size of an adaptive equalizer, comprising: a delay locked loop (DLL) for generating a uniform based on a received sample and location information of at least one path a sequence; a common pilot channel (CPICH) signal to noise ratio (SNR) estimator for generating a CPICH SNR estimate based on the sample sequence; and a one-step mapping unit for estimating the CPICH SNR Mapping to at least one parameter, the at least one parameter is for updating at least one filter tap coefficient used by the adaptive equalizer. 如申請專利範圍第1項的步長估測器,更包括:一頻道速度估測器,用於以該樣本序列為基礎而估測一頻道的一表觀速度,其中該步長映射單元使用該頻道的該表觀速度與該CPICH SNR估測以產生該至少一參數。 The step size estimator of claim 1, further comprising: a channel speed estimator for estimating an apparent speed of a channel based on the sample sequence, wherein the step size mapping unit is used The apparent speed of the channel is estimated with the CPICH SNR to produce the at least one parameter. 如申請專利範圍第1項的步長估測器,其中該至少一參數包括一步長參數。 The step size estimator of claim 1, wherein the at least one parameter comprises a one-step length parameter. 如申請專利範圍第1項的步長估測器,其中該至少一參數包括一濾波器分接點漏洩因子參數。 The step size estimator of claim 1, wherein the at least one parameter comprises a filter tap point leakage factor parameter. 如申請專利範圍第1項的步長估測器,其中該DLL包括:一延遲緩衝器,用於以該接收的樣本為基礎而產生延遲樣本;一內插器,用於轉移該延遲樣本、產生早先及後來時間序列、以及產生一準時樣本序列;一編碼追蹤迴路,用於產生一內插指標信號及一緩衝器位址信號;以及一加法器,用於藉由加總一給定第一有效路徑(FSP)位置信號及該緩衝器位址信號而產生一指標信號,其中該延遲緩衝器是以 該指標信號為基礎而校準接收的樣本以用於在一特定解內的追蹤FSP。 The step size estimator of claim 1, wherein the DLL comprises: a delay buffer for generating a delayed sample based on the received sample; and an interpolator for transferring the delayed sample, Generating an earlier and subsequent time series, and generating a quasi-sample sequence; a code tracking loop for generating an interpolated indicator signal and a buffer address signal; and an adder for summing a given number a valid path (FSP) position signal and the buffer address signal to generate an indicator signal, wherein the delay buffer is The indicator signal is used to calibrate the received samples for tracking FSP within a particular solution. 一種用於控制一適應性等化器之步長的方法,包括:以一接收的樣本及至少一路徑的位置資訊為基礎而產生一樣本序列;以該樣本序列為基礎而產生一共同引導頻道(CPICH)信號雜訊比(SNR)估測;及映射該CPICH SNR估測至至少一參數,該至少一參數是用來更新被該適應性等化器使用的至少一濾波器分接點係數。 A method for controlling a step size of an adaptive equalizer, comprising: generating an identical sequence based on a received sample and location information of at least one path; generating a common pilot channel based on the sample sequence (CPICH) signal to noise ratio (SNR) estimation; and mapping the CPICH SNR estimate to at least one parameter for updating at least one filter tap coefficient used by the adaptive equalizer . 如申請專利範圍第6項的方法,更包括:以該樣本序列為基礎而估測一頻道的一表觀速度;以及使用該頻道的該表觀速度與該CPICH SNR估測以產生該至少一參數。 The method of claim 6, further comprising: estimating an apparent speed of a channel based on the sample sequence; and using the apparent speed of the channel and the CPICH SNR estimate to generate the at least one parameter. 如申請專利範圍第6項的方法,其中該至少一參數包括一步長參數。 The method of claim 6, wherein the at least one parameter comprises a one-step length parameter. 如申請專利範圍第6項的方法,其中該至少一參數更包括一濾波器分接點漏洩因子參數。 The method of claim 6, wherein the at least one parameter further comprises a filter tap point leakage factor parameter. 如申請專利範圍第6項的方法,其中產生該樣本序列包括:以該接收的樣本為基礎而產生一延遲樣本;轉移該延遲樣本、產生早先及後來時間序列、以及產生一準時樣本序列;產生一內插指標信號及一緩衝器位址信號;以及藉由加總一給定第一有效路徑(FSP)位置信號及該緩衝器位址信號而產生一指標信號,其中以該指標信號為基礎而校準該接收的樣本以用於在一特定解內的追蹤FSP。 The method of claim 6, wherein generating the sample sequence comprises: generating a delayed sample based on the received sample; transferring the delayed sample, generating an early and subsequent time series, and generating a punctual sample sequence; generating An interpolating indicator signal and a buffer address signal; and generating an indicator signal by summing a given first valid path (FSP) position signal and the buffer address signal, wherein the indicator signal is based The received samples are calibrated for tracking FSPs within a particular solution. 一種用於控制一適應性等化器之步長的積體電路,包括:一延遲鎖定迴路(DLL),用於以一接收的樣本及至少一路徑的位置資訊為基礎而產生一樣本序列;一共同引導頻道(CPICH)信號雜訊比(SNR)估測器,用於以該樣本序列為基礎而產生一CPICH SNR估測;及一步長映射單元,用於將該CPICH SNR估測映射至至少一參數,該至少一參數是用來更新被該適應性等化器使用的至少一濾波器分接點係數。An integrated circuit for controlling the step size of an adaptive equalizer includes: a delay locked loop (DLL) for generating the same sequence based on a received sample and position information of at least one path; a common pilot channel (CPICH) signal to noise ratio (SNR) estimator for generating a CPICH SNR estimate based on the sample sequence; and a one-step mapping unit for mapping the CPICH SNR estimate to At least one parameter is used to update at least one filter tap coefficient used by the adaptive equalizer.
TW098100266A 2004-11-08 2005-10-21 Method and apparatus for estimating the step-size of an adaptive equalizer TWI433449B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US62586904P 2004-11-08 2004-11-08
US11/238,469 US7496138B2 (en) 2004-11-08 2005-09-29 Method and apparatus for estimating the step-size of an adaptive equalizer

Publications (2)

Publication Number Publication Date
TW200943693A TW200943693A (en) 2009-10-16
TWI433449B true TWI433449B (en) 2014-04-01

Family

ID=36316330

Family Applications (3)

Application Number Title Priority Date Filing Date
TW098100266A TWI433449B (en) 2004-11-08 2005-10-21 Method and apparatus for estimating the step-size of an adaptive equalizer
TW094136994A TWI296461B (en) 2004-11-08 2005-10-21 Method and apparatus for estimating the step-size of an adaptive equalizer
TW095115811A TW200717998A (en) 2004-11-08 2005-10-21 Method and apparatus for estimating the step-size of an adaptive equalizer

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW094136994A TWI296461B (en) 2004-11-08 2005-10-21 Method and apparatus for estimating the step-size of an adaptive equalizer
TW095115811A TW200717998A (en) 2004-11-08 2005-10-21 Method and apparatus for estimating the step-size of an adaptive equalizer

Country Status (10)

Country Link
US (2) US7496138B2 (en)
EP (2) EP2602963A1 (en)
JP (1) JP2008519557A (en)
KR (2) KR20070094973A (en)
CN (1) CN101288228B (en)
CA (1) CA2586703A1 (en)
MX (1) MX2007005532A (en)
NO (1) NO20072745L (en)
TW (3) TWI433449B (en)
WO (1) WO2006052404A2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070261082A1 (en) * 2003-08-22 2007-11-08 Interuniversitair Microelektronica Centrum (Imec) Method for operating a multi-media wireless system in a multi-user environment
US20060114836A1 (en) 2004-08-20 2006-06-01 Sofie Pollin Method for operating a combined multimedia -telecom system
US8228952B2 (en) * 2003-08-22 2012-07-24 Imec Method for operating a telecom system
WO2005099205A1 (en) * 2004-03-08 2005-10-20 Thomson Licensing Method and apparatus for robust automatic frequency control in cdma systems with constant pilot signals
US7532667B2 (en) * 2004-11-05 2009-05-12 Interdigital Technology Corporation Pilot-directed and pilot/data-directed equalizers
JP4945955B2 (en) * 2005-08-19 2012-06-06 ソニー株式会社 Tap coefficient design method and tap coefficient design apparatus
US7746970B2 (en) * 2005-11-15 2010-06-29 Qualcomm Incorporated Method and apparatus for filtering noisy estimates to reduce estimation errors
ATE538537T1 (en) * 2006-07-03 2012-01-15 St Ericsson Sa ADAPTIVE FILTER FOR CHANNEL ESTIMATION WITH ADAPTIVE STEP SIZE
KR100822817B1 (en) * 2006-10-31 2008-04-18 삼성전자주식회사 Receiver and method for implementing timing synchronization in ofdm scheme
GB0703275D0 (en) * 2007-02-20 2007-03-28 Skype Ltd Method of estimating noise levels in a communication system
US8170087B2 (en) * 2007-05-10 2012-05-01 Texas Instruments Incorporated Correlation coprocessor
JP5152325B2 (en) * 2007-08-17 2013-02-27 日本電気株式会社 Method and system for channel estimation in orthogonal frequency division multiplexing
US20090129281A1 (en) * 2007-11-21 2009-05-21 Interuniversitair Microelektronica Centrum (Imec) Quality-energy scalability technique for tracking systems
US8843181B2 (en) * 2009-05-27 2014-09-23 Qualcomm Incorporated Sensor uses in communication systems
CN102447689B (en) * 2010-09-30 2015-05-20 腾讯科技(深圳)有限公司 Information updating prompt method and network client side
US8890580B2 (en) 2010-10-11 2014-11-18 Rambus Inc. Methods and circuits for reducing clock jitter
JP5496418B2 (en) * 2011-05-10 2014-05-21 三菱電機株式会社 Adaptive equalizer, acoustic echo canceller device and active noise control device
JP2013135328A (en) * 2011-12-26 2013-07-08 Tokai Rika Co Ltd Digital receiver
US9559875B2 (en) * 2012-05-09 2017-01-31 Northrop Grumman Systems Corporation Blind equalization in a single carrier wideband channel
US9380519B2 (en) 2013-03-13 2016-06-28 Qualcomm Incorporated Using motion to improve local wireless network connectivity
US9380520B2 (en) 2013-03-13 2016-06-28 Qualcomm Incorporated Using motion to improve local wireless network connectivity
US9020085B1 (en) * 2013-03-14 2015-04-28 Pmc-Sierra Us, Inc. Method and apparatus for sampling point optimization
US9479360B2 (en) 2014-06-27 2016-10-25 Samsung Electronics Co., Ltd Receiver apparatus and reception method in wireless communication system
JP6488818B2 (en) * 2015-03-27 2019-03-27 アイシン精機株式会社 Vehicle height adjustment device
US9838072B1 (en) * 2015-06-24 2017-12-05 Marvell International Ltd. Systems and methods to mitigate electro-magnetic interference in single twisted-pair-based communication systems
US9882709B2 (en) * 2016-05-10 2018-01-30 Macom Connectivity Solutions, Llc Timing recovery with adaptive channel response estimation
CN108462481B (en) * 2018-03-05 2022-10-21 成都优艾维智能科技有限责任公司 Proportional LMP (local mean-path-Point) filtering method based on parameter adjustment under mu-law function
CN110113033B (en) * 2019-04-08 2023-03-24 长春理工大学光电信息学院 Pulse data compression sampling method
CN113093534B (en) * 2021-03-12 2022-05-27 华中科技大学 Adaptive step size adjustment maximum locking method and system for optical parameter control
CN117471499B (en) * 2023-12-26 2024-03-26 中国人民解放军国防科技大学 Satellite navigation time domain self-adaptive high-precision anti-interference method and device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3038790B2 (en) * 1990-04-27 2000-05-08 日本電気株式会社 Equalizer
JPH04208707A (en) * 1990-11-21 1992-07-30 Mitsubishi Electric Corp Adaptive equalizer
JP2770626B2 (en) * 1991-11-29 1998-07-02 日本電気株式会社 Adaptive receiver
US5818876A (en) * 1993-02-01 1998-10-06 Motorola, Inc. Method and apparatus of adaptive maximum likelihood sequence estimation using a variable convergence step size
JPH09294095A (en) * 1996-04-26 1997-11-11 Oki Electric Ind Co Ltd Adaptive equalizer
US6389084B1 (en) * 1998-08-07 2002-05-14 Lucent Technologies Inc. Apparatus and method for equalizing a signal independent of the impact of doppler frequency
US6456648B1 (en) * 2001-10-01 2002-09-24 Interdigital Technology Corporation Code tracking loop with automatic power normalization
US6865588B2 (en) * 2002-01-03 2005-03-08 Intel Corporation Adaptive filtering with tap leakage using error filtering
US6738608B2 (en) * 2002-02-12 2004-05-18 Qualcomm Incorporated Frequency-timing control loop for wireless communication systems
US7197094B2 (en) * 2002-06-18 2007-03-27 Ralink Technology, Inc. Symbol-based decision feedback equalizer (DFE) with maximum likelihood sequence estimation for wireless receivers under multipath channels
US7266146B2 (en) * 2002-06-18 2007-09-04 Ralink Technology, Inc. Symbol-based decision feedback equalizer (DFE) optimal equalization method and apparatus with maximum likelihood sequence estimation for wireless receivers under multipath channels
CN1265659C (en) * 2003-03-19 2006-07-19 英华达股份有限公司 Method for estimating dynamic path length
US20050129105A1 (en) * 2003-12-11 2005-06-16 Aris Papasakellariou Determination of the adaption coefficient for adaptive equalizers in communication systems based on the estimated signal-to-noise ratio and the mobile speed

Also Published As

Publication number Publication date
WO2006052404A3 (en) 2007-02-22
CN101288228A (en) 2008-10-15
EP1810402A2 (en) 2007-07-25
WO2006052404A2 (en) 2006-05-18
CN101288228B (en) 2010-10-06
TW200717998A (en) 2007-05-01
KR20070094973A (en) 2007-09-27
TWI296461B (en) 2008-05-01
KR20070085943A (en) 2007-08-27
EP1810402A4 (en) 2011-09-28
EP2602963A1 (en) 2013-06-12
US7724817B2 (en) 2010-05-25
US7496138B2 (en) 2009-02-24
TW200943693A (en) 2009-10-16
US20090129458A1 (en) 2009-05-21
KR100912055B1 (en) 2009-08-12
JP2008519557A (en) 2008-06-05
MX2007005532A (en) 2007-07-13
TW200627786A (en) 2006-08-01
CA2586703A1 (en) 2006-05-18
US20060098766A1 (en) 2006-05-11
NO20072745L (en) 2007-08-02

Similar Documents

Publication Publication Date Title
TWI433449B (en) Method and apparatus for estimating the step-size of an adaptive equalizer
KR100888413B1 (en) Adaptive equalizer with a dual-mode active taps mask generator and a pilot reference signal amplitude control unit
US7167506B2 (en) Method and rake receiver for phasor estimation in communication systems
KR101019853B1 (en) Method and apparatus for filtering noisy estimates to reduce estimation errors
US6647077B1 (en) Multipath parameter estimation in spread-spectrum communications systems
US7054396B2 (en) Method and apparatus for multipath signal compensation in spread-spectrum communications systems
CA2501108A1 (en) Optimum interpolator method and apparatus for digital timing adjustment
US7301990B2 (en) Equalization of multiple signals received for soft handoff in wireless communication systems
KR20050084186A (en) Decision feed forward equalizer system and method
JP4183683B2 (en) Early-rate synchronizer with low timing jitter
US8565359B2 (en) Refinement of channel estimation with a bank of filters
JPH05292139A (en) Receiver estimating maximum likelihood series
JPH05292138A (en) Receiver estimating maximum likelihood series

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees