TWI427775B - Semiconductor integrated circuit device and method of manufacturing a semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device and method of manufacturing a semiconductor integrated circuit device Download PDF

Info

Publication number
TWI427775B
TWI427775B TW99140837A TW99140837A TWI427775B TW I427775 B TWI427775 B TW I427775B TW 99140837 A TW99140837 A TW 99140837A TW 99140837 A TW99140837 A TW 99140837A TW I427775 B TWI427775 B TW I427775B
Authority
TW
Taiwan
Prior art keywords
buried diffusion
contact
contact layer
layer
charge storage
Prior art date
Application number
TW99140837A
Other languages
Chinese (zh)
Other versions
TW201222791A (en
Inventor
Yu Fong Huang
Tzung Ting Han
Wen Pin Lu
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW99140837A priority Critical patent/TWI427775B/en
Publication of TW201222791A publication Critical patent/TW201222791A/en
Application granted granted Critical
Publication of TWI427775B publication Critical patent/TWI427775B/en

Links

Description

半導體積體電路裝置及其製造方法Semiconductor integrated circuit device and method of manufacturing same

本發明係關於形成積體電路裝置的製程,特別是關於形成具有一記憶陣列的積體電路裝置之製程。The present invention relates to a process for forming an integrated circuit device, and more particularly to a process for forming an integrated circuit device having a memory array.

在半導體產業中,現今的趨勢是持續不斷地增加裝置的密度。為了達成高密度,持續不斷地努力在半導體晶圓上縮小這些裝置的尺寸至次微米層級。然而,會因為如此的電路微縮而產生許多問題。In the semiconductor industry, the trend today is to continuously increase the density of the device. In order to achieve high density, there is an ongoing effort to reduce the size of these devices to sub-micron levels on semiconductor wafers. However, many problems arise due to such circuit miniaturization.

半導體製程包括前段製程,其包括形成電晶體於一晶圓中的製程。舉例而言,前段製程可以包括形成垂直通道的製程。許多不同的製程可以成功地減少如此結構的間距,允許在前段製程中所形成結構的微縮。The semiconductor process includes a front-end process that includes a process of forming a transistor in a wafer. For example, the front stage process can include a process of forming a vertical channel. Many different processes can successfully reduce the pitch of such structures, allowing for the miniaturization of the structures formed in the front-end process.

半導體製程也包括一晶圓製造的後段製程。此後段製程通常也稱為生產線的後段製程(BEOL),且通常包括產生於前段製程中所形成的電晶體間產生金屬內連線。此後段製程也包括於金屬內連線之間形成絕緣結構。The semiconductor process also includes a post-process of wafer fabrication. The latter stage process is also commonly referred to as the back end of the line (BEOL) and typically involves the creation of metal interconnects between the transistors formed in the front stage process. The subsequent process also includes forming an insulating structure between the metal interconnects.

雖然許多不同的製程可以成功地微縮在前段製程中所形成結構,如此的製程卻無法將後段製程中所形成的結構進行微縮。舉例而言,雖然許多不同的製程已知可以成功地微縮在前段製程中所形成的垂直通道之間的間距,如此的製程卻無法成功地將在後段製程中的接觸窗及金屬內連線之間的間距進行微縮。因此,無法將在後段製程中所形成的結構進行微縮限制了整體積體電路裝置的微縮能力。Although many different processes can successfully shrink the structure formed in the front-end process, such a process cannot shrink the structure formed in the back-end process. For example, although many different processes are known to successfully shrink the spacing between vertical channels formed in the front-end process, such processes cannot successfully contact the contact windows and metal interconnects in the back-end process. The spacing between them is reduced. Therefore, the miniaturization of the structure formed in the back-end process cannot limit the miniaturization capability of the entire bulk circuit device.

因此,需要提供一種製造積體電路的新方案以允許達到所需的微縮尺寸,特別是對後段製程中所形成的接觸窗及金屬結構進行微縮。Accordingly, it is desirable to provide a new approach to fabricating integrated circuits to allow for the desired miniature size, particularly for the contact windows and metal structures formed in the back end process.

本發明係揭露一種製造一半導體積體電路之系統、佈局及方法,其可以改善對許多不同後段製程結構中所需的微縮,例如是接觸窗及其他金屬內連線結構。此完成結構包括至少一矽化物薄膜,例如矽化鎢(WSix )及一自動對準矽化物薄膜,例如矽化鈷(CoSix )及矽化鎳(NiSix )於一埋藏擴散層之上。如此的結構允許在例如是半導體記憶裝置的半導體裝置中之許多改善。舉例而言,本發明所揭露的系統及方法降低半導體記憶裝置中位元線結構的片電阻而不需要先前技術中避免位元線負載問題所使用的接觸窗連續接出法。而是將接觸窗直接與位元線的一端連接,且可以達成後段製程間距的放鬆及較小的記憶陣列面積。SUMMARY OF THE INVENTION The present invention is directed to a system, arrangement and method for fabricating a semiconductor integrated circuit that can improve the required shrinkage in many different back end process structures, such as contact windows and other metal interconnect structures. The completed structure includes at least one germanide film, such as tungsten germanium (WSi x ) and a self-aligned germanide film, such as cobalt telluride (CoSi x ) and nickel telluride (NiSi x ), over a buried diffusion layer. Such a structure allows for many improvements in semiconductor devices such as semiconductor memory devices. For example, the systems and methods disclosed herein reduce the sheet resistance of a bit line structure in a semiconductor memory device without the need for a contact window continuous take-off method used in the prior art to avoid bit line load problems. Rather, the contact window is directly connected to one end of the bit line, and the relaxation of the back-end process spacing and the smaller memory array area can be achieved.

根據本發明的某些實施例,一種半導體積體電路裝置,包含一半導體基板,一第一埋藏擴散區域於該半導體基板之上,及一第一接觸層於該第一埋藏擴散區域之上。該第一接觸層包含矽化物材料及自動對準矽化物材料之至少一者。此半導體積體電路裝置也包含一記憶閘極結構於該第一接觸層的至少一部分之上。According to some embodiments of the present invention, a semiconductor integrated circuit device includes a semiconductor substrate, a first buried diffusion region over the semiconductor substrate, and a first contact layer over the first buried diffusion region. The first contact layer comprises at least one of a telluride material and a self-aligned telluride material. The semiconductor integrated circuit device also includes a memory gate structure over at least a portion of the first contact layer.

在某些實施例中,該第一接觸層包含矽化物材料,且其中該矽化物材料包含鎢。In certain embodiments, the first contact layer comprises a germanide material, and wherein the germanide material comprises tungsten.

在某些實施例中,該第一接觸層包含自動對準矽化物材料,且其中該自動對準矽化物材料包含鎳和鈷至少一者。In certain embodiments, the first contact layer comprises an auto-alignment telluride material, and wherein the auto-alignment telluride material comprises at least one of nickel and cobalt.

在某些實施例中,此半導體積體電路裝置更包含一電荷儲存層,舉例而言,氧化矽-氮化矽-氧化矽(ONO)層形成於第一接觸層的至少一部份之上。In some embodiments, the semiconductor integrated circuit device further includes a charge storage layer, for example, a tantalum oxide-tantalum nitride-anthracene oxide (ONO) layer is formed on at least a portion of the first contact layer .

在某些實施例中,該第一接觸層經由一垂直接觸結構與一位元線連接。In some embodiments, the first contact layer is connected to the one bit line via a vertical contact structure.

在某些實施例中,此半導體積體電路裝置更包含一第二埋藏擴散區域及一電荷儲存層,其中該電荷儲存層延伸介於該第一埋藏擴散區域與該第二埋藏擴散區域之間。在某些如此的實施例中,此半導體積體電路裝置更包含一第二接觸層於該第二埋藏擴散區域之上。在某些如此的實施例中,該電荷儲存層延伸介於該第一接觸層與該第二接觸層之間。此外,該第二接觸層包含自動對準矽化物材料,其包含例如鎳和鈷至少一者。In some embodiments, the semiconductor integrated circuit device further includes a second buried diffusion region and a charge storage layer, wherein the charge storage layer extends between the first buried diffusion region and the second buried diffusion region . In some such embodiments, the semiconductor integrated circuit device further includes a second contact layer over the second buried diffusion region. In some such embodiments, the charge storage layer extends between the first contact layer and the second contact layer. Additionally, the second contact layer comprises an auto-alignment telluride material comprising at least one of, for example, nickel and cobalt.

根據本發明之另一目的,提供一種製造一半導體積體電路裝置的方法,該方法包含形成一第一埋藏擴散區域於一半導體基板之上;形成一第一接觸層於該第一埋藏擴散區域之上,該第一接觸層包含矽化物材料及自動對準矽化物材料之至少一者;以及形成一記憶閘極結構於該第一接觸層的至少一部分之上。According to another aspect of the present invention, a method of fabricating a semiconductor integrated circuit device includes forming a first buried diffusion region over a semiconductor substrate; forming a first contact layer in the first buried diffusion region Above, the first contact layer comprises at least one of a telluride material and a self-aligned telluride material; and a memory gate structure is formed over at least a portion of the first contact layer.

在某些實施例中,該第一接觸層包含矽化物材料,且其中該矽化物材料包含鎢。In certain embodiments, the first contact layer comprises a germanide material, and wherein the germanide material comprises tungsten.

在某些實施例中,該第一接觸層包含自動對準矽化物材料,且其中該自動對準矽化物材料包含鎳和鈷至少一者。In certain embodiments, the first contact layer comprises an auto-alignment telluride material, and wherein the auto-alignment telluride material comprises at least one of nickel and cobalt.

在某些實施例中,此方法更包含形成一電荷儲存層,舉例而言,包括氧化矽-氮化矽-氧化矽(ONO)層形成於第一接觸層的至少一部份之上。In some embodiments, the method further includes forming a charge storage layer, for example, comprising a tantalum oxide-tantalum nitride-anthracene oxide (ONO) layer formed over at least a portion of the first contact layer.

在某些實施例中,此方法更包含形成一垂直接觸結構將該第一接觸層與一位元線連接。In some embodiments, the method further includes forming a vertical contact structure to connect the first contact layer to the one bit line.

在某些實施例中,此方法更包含形成一第二埋藏擴散區域及一電荷儲存層,其中該電荷儲存層延伸介於該第一埋藏擴散區域與該第二埋藏擴散區域之間。在某些如此的實施例中,此方法更包含形成一第二接觸層於該第二埋藏擴散區域之上。在某些如此的實施例中,該電荷儲存層延伸介於該第一接觸層與該第二接觸層之間。此外,該第二接觸層包含自動對準矽化物材料,其包含例如鎳和鈷至少一者。In some embodiments, the method further includes forming a second buried diffusion region and a charge storage layer, wherein the charge storage layer extends between the first buried diffusion region and the second buried diffusion region. In some such embodiments, the method further includes forming a second contact layer over the second buried diffusion region. In some such embodiments, the charge storage layer extends between the first contact layer and the second contact layer. Additionally, the second contact layer comprises an auto-alignment telluride material comprising at least one of, for example, nickel and cobalt.

根據本發明之再一目的,提供一種半導體記憶裝置的佈局,該佈局包含一第一複數條位元線於一第一方向上延伸;一第二複數條位元線於一大致與該第一方向平行之方向延伸,該第二複數條位元線包含放置於介於該第一複數條位元線間的位元線;一第一複數個埋藏擴散區域於一大致與該第一方向平行之方向延伸;一第一複數個接觸層於各自的該第一複數個埋藏擴散區域之上,該第一複數個接觸層中的接觸層包含矽化物材料及自動對準矽化物材料之至少一者;以及複數個記憶閘極結構於一大致與該第一方向垂直之一第二方向延伸,複數個記憶閘極結構形成於該第一複數個接觸層中接觸層的至少一部分之上。According to still another object of the present invention, a layout of a semiconductor memory device is provided, the layout comprising a first plurality of bit lines extending in a first direction; a second plurality of bit lines being substantially associated with the first Extending in a direction parallel to the direction, the second plurality of bit lines includes bit lines disposed between the first plurality of bit lines; a first plurality of buried diffusion regions are substantially parallel to the first direction Extending in a direction; a first plurality of contact layers are disposed on the respective first plurality of buried diffusion regions, and the contact layer in the first plurality of contact layers comprises at least one of a telluride material and a self-aligned telluride material And a plurality of memory gate structures extending in a second direction substantially perpendicular to the first direction, the plurality of memory gate structures being formed on at least a portion of the contact layer of the first plurality of contact layers.

在某些實施例中,該第一複數個接觸層中的接觸層包含矽化物材料,且其中該矽化物材料包含鎢。In some embodiments, the contact layer in the first plurality of contact layers comprises a germanide material, and wherein the germanide material comprises tungsten.

在某些實施例中,該第一複數個接觸層中的接觸層包含自動對準矽化物材料,且其中該自動對準矽化物材料包含鎳和鈷至少一者。In some embodiments, the contact layer in the first plurality of contact layers comprises an auto-alignment telluride material, and wherein the auto-alignment telluride material comprises at least one of nickel and cobalt.

在某些實施例中,此佈局更包含一電荷儲存層,舉例而言,包括氧化矽-氮化矽-氧化矽(ONO)層形成於第一複數個接觸層中接觸層的至少一部份之上。In some embodiments, the layout further includes a charge storage layer, including, for example, a tantalum oxide-tantalum nitride-anthracene oxide (ONO) layer formed in at least a portion of the contact layer of the first plurality of contact layers Above.

在某些實施例中,該第一複數個接觸層中的接觸層經由各自的垂直接觸結構而與該第一複數條位元線中各自的位元線連接。In some embodiments, the contact layers of the first plurality of contact layers are connected to respective ones of the first plurality of bit lines via respective vertical contact structures.

在某些實施例中,此佈局更包含一第二複數個埋藏擴散區域於一大致與該第一方向平行之方向延伸;以及複數個電荷儲存層。其中該電荷儲存層延伸介於該第一複數個埋藏擴散區域中各自的第一埋藏擴散區域與該第二複數個埋藏擴散區域中各自的第二埋藏擴散區域之間。In some embodiments, the layout further includes a second plurality of buried diffusion regions extending in a direction substantially parallel to the first direction; and a plurality of charge storage layers. The charge storage layer extends between each of the first buried diffusion regions of the first plurality of buried diffusion regions and the second buried diffusion region of the second plurality of buried diffusion regions.

在某些實施例中,此佈局更包含一第二複數個接觸層於該第二複數個埋藏擴散區域中各自的第二埋藏擴散區域之上。在某些如此的實施例中,該複數個電荷儲存層中的電荷儲存層延伸介於該第一複數個接觸層中各自的第一接觸層與該第二複數個接觸層中各自的第二接觸層之間。此外,該第二複數個接觸層中的接觸層包含自動對準矽化物材料,且其中該自動對準矽化物材料包含鎳和鈷至少一者。In some embodiments, the layout further includes a second plurality of contact layers over respective second buried diffusion regions of the second plurality of buried diffusion regions. In some such embodiments, the charge storage layer of the plurality of charge storage layers extends between a respective first contact layer of the first plurality of contact layers and a second of the second plurality of contact layers Between the contact layers. Additionally, the contact layer in the second plurality of contact layers comprises a self-aligned telluride material, and wherein the auto-aligned telluride material comprises at least one of nickel and cobalt.

本發明之目的,特徵,和實施例,會在下列實施方式的章節中搭配圖式被描述。The objects, features, and embodiments of the present invention will be described in the accompanying drawings.

請參閱第1圖,顯示根據本發明第一實施例之利用矽化物方案達成後段間距放鬆的佈局上視圖。第1圖係顯示一範例氮化物唯讀記憶體記憶陣列100的一部分之佈局上視圖,其包括第一複數條位元線102延伸至各自的複數頂位元線電晶體(頂BLT),及第二複數條位元線104延伸至各自的複數底位元線電晶體(底BLT)。第一複數條位元線102平行地延伸且位於複數個上方埋藏擴散佈植區域106之上。第二複數條位元線104平行地延伸且位於複數個下方埋藏擴散佈植區域108之上。第一複數個接觸窗110,其構成範例垂直接觸結構,垂直地延伸介於各自的第一複數條位元線102及複數個上方埋藏擴散佈植區域106之間。第二複數個接觸窗112,其也構成範例垂直接觸結構,垂直地延伸介於各自的第二複數條位元線104及複數個下方埋藏擴散佈植區域108之間。接觸窗110、112可以由金屬材料形成,舉例而言,包含鎢或銅。此外,雖然並未於第1圖中顯示,但是可以由以下第2到9圖的描述中明瞭,矽化物接觸窗118也可以延伸於各自的上方埋藏擴散佈植區域106之上且與其平行。複數個閘極結構115,其包括各自的多晶矽閘極結構114及字元線117延伸通過記憶陣列100中介於位元線102和104及上方和下方埋藏擴散佈植區域106和108且至少與其大致垂直。Referring to Fig. 1, there is shown a top view of a layout for achieving a back-segment relaxation using a telluride scheme in accordance with a first embodiment of the present invention. 1 is a top plan view showing a portion of an exemplary nitride read-only memory memory array 100 including a first plurality of bit lines 102 extending to respective complex top bit line transistors (top BLT), and The second plurality of bit lines 104 extend to respective complex bottom bit line transistors (bottom BLT). The first plurality of bit lines 102 extend in parallel and are located above the plurality of buried diffusion implant regions 106. The second plurality of bit lines 104 extend in parallel and are located above a plurality of buried buried implant regions 108. A first plurality of contact windows 110, which constitute an exemplary vertical contact structure, extend vertically between respective first plurality of bit lines 102 and a plurality of upper buried diffusion implant regions 106. A second plurality of contact windows 112, which also form an exemplary vertical contact structure, extend vertically between respective second plurality of bit lines 104 and a plurality of lower buried diffusion implant regions 108. The contact windows 110, 112 may be formed of a metallic material, for example, comprising tungsten or copper. Moreover, although not shown in FIG. 1, it can be seen from the description of Figures 2 through 9 below that the telluride contact window 118 can also extend over and be parallel to the respective upper buried diffusion implanted regions 106. A plurality of gate structures 115 including respective polysilicon gate structures 114 and word lines 117 extending through the bit lines 102 and 104 in the memory array 100 and burying the diffusion implant regions 106 and 108 above and below and at least substantially vertical.

第2圖係顯示記憶陣列100沿著第1圖的剖線II-II方向之剖面圖,且第3圖係顯示記憶陣列100沿著第1圖的剖線III-III方向之剖面圖。第2圖及第3圖顯示一具有上方埋藏擴散佈植區域106及下方埋藏擴散佈植區域108形成於其中的基板116。矽化物接觸窗118形成於上方埋藏擴散佈植區域106之上。此上方埋藏擴散佈植區域106經由各自的矽化物接觸窗118而與各自的接觸窗110連接,且下方埋藏擴散佈植區域108與各自的接觸窗112連接。一層間介電(ILD)區域120形成介於每一個接觸窗110與接觸窗112之間。一氧化矽-氮化矽-氧化矽(ONO)結構122延伸介於上方和下方埋藏擴散佈植區域106和108之間,沿著基板116的垂直通道之側壁。此氧化矽-氮化矽-氧化矽(ONO)結構122可以作為此記憶陣列100中一記憶胞的電荷儲存層。Fig. 2 is a cross-sectional view showing the memory array 100 taken along the line II-II of Fig. 1, and Fig. 3 is a cross-sectional view showing the memory array 100 taken along the line III-III of Fig. 1. 2 and 3 show a substrate 116 having an upper buried diffusion implant region 106 and a lower buried diffusion implant region 108 formed therein. A telluride contact window 118 is formed over the buried diffusion implanted region 106. The upper buried diffusion implant regions 106 are connected to the respective contact windows 110 via respective germanide contact windows 118, and the lower buried diffusion implant regions 108 are connected to the respective contact windows 112. An interlayer dielectric (ILD) region 120 is formed between each of the contact windows 110 and the contact window 112. The niobium oxide-tantalum nitride-anthracene oxide (ONO) structure 122 extends between the upper and lower buried diffusion implant regions 106 and 108 along the sidewalls of the vertical channels of the substrate 116. The yttria-tantalum nitride-anthracene oxide (ONO) structure 122 can serve as a charge storage layer for a memory cell in the memory array 100.

一個製造第1圖到第3圖所示的記憶陣列結構的製程實施例會搭配第4圖到第10圖來描述。第4圖到第9圖顯示形成記憶陣列100的中間結構,而第10圖顯示形成此記憶陣列100的製程流程圖。必須注意的是,第4圖到第6圖中的中間結構係與第7圖到第9圖中的最終結構相同,只是沿著不同的方向進行剖面。A process embodiment for fabricating the memory array structure shown in Figures 1 through 3 will be described in conjunction with Figures 4 through 10. 4 to 9 show the intermediate structure forming the memory array 100, and Fig. 10 shows a process flow chart for forming the memory array 100. It must be noted that the intermediate structures in Figures 4 through 6 are identical to the final structures in Figures 7 through 9, except that the profiles are taken in different directions.

請參閱第4圖,顯示用來形成上方埋藏擴散佈植區域106的層形成於基板116之上。Referring to FIG. 4, a layer for forming the upper buried diffusion implant region 106 is formed over the substrate 116.

第4圖顯示用來形成上方埋藏擴散佈植區域106的層形成於基板116之上。雖然沒有顯示,半導體裝置及其他層也可以形成於基板116之上或之內。舉例而言,邏輯電晶體可以使用傳統的方法形成於基板116之中。不同結構的圖案化可以使用已知的微影製程,例如光學微影製程來完成。4 shows that a layer for forming the upper buried diffusion implant region 106 is formed over the substrate 116. Although not shown, the semiconductor device and other layers may be formed on or in the substrate 116. For example, a logic transistor can be formed in the substrate 116 using conventional methods. Patterning of different structures can be accomplished using known lithography processes, such as optical lithography processes.

一上方埋藏擴散佈植層106,其一部分之後會變成上方埋藏擴散佈植區域106,可以利用例如是離子佈植技術形成。之後,一矽化物層118,其一部分之後會變成矽化物接觸窗118,形成於此上方埋藏擴散佈植層106之上,可以使用例如根據已知的製程,例如是化學氣相沈積(CVD)、物理氣相沈積(PVD)、熱成長或其組合,沈積一矽化物之矽化鎢(WSix )材料形成。之後形成一硬式幕罩層124於矽化物層118之上。舉例而言,此硬式幕罩層可以是利用化學氣相沈積(CVD)、物理氣相沈積(PVD)、熱成長或其組合等沈積技術所形成的氧化材料。The diffusion implant layer 106 is buried on top of it, and a portion thereof then becomes an upper buried diffusion implant region 106, which can be formed by, for example, ion implantation techniques. Thereafter, a germanide layer 118, a portion of which later becomes a germanide contact window 118 formed over the buried diffusion implant layer 106, may be used, for example, according to known processes, such as chemical vapor deposition (CVD). , physical vapor deposition (PVD), thermal growth, or a combination thereof, depositing a telluride tungsten germanium (WSi x ) material. A hard mask layer 124 is then formed over the vapor layer 118. For example, the hard mask layer can be an oxidized material formed using deposition techniques such as chemical vapor deposition (CVD), physical vapor deposition (PVD), thermal growth, or combinations thereof.

請參閱第5圖,一旦形成硬式幕罩層124之後,一微影製程可以用來圖案化及形成垂直通道126。此形成垂直通道126的製程可以包括一系列的一個或多個蝕刻製程。舉例而言,在某些實施例中,一底部抗反射層(BARC)可以形成並搭配選擇性蝕刻製程,因此允許一個或多個自動對準結構形成。如第5圖所示,此蝕刻包括蝕刻通過硬式幕單層124並直到基板116,因此形成垂直通道126。Referring to FIG. 5, once the hard mask layer 124 is formed, a lithography process can be used to pattern and form the vertical vias 126. This process of forming vertical channels 126 can include a series of one or more etching processes. For example, in some embodiments, a bottom anti-reflective layer (BARC) can be formed and matched with a selective etch process, thus allowing one or more auto-alignment structures to be formed. As shown in FIG. 5, this etching includes etching through the hard mask monolayer 124 and up to the substrate 116, thus forming a vertical via 126.

之後,請參閱第6圖,形成下方埋藏擴散佈植區域108於基板116之上裸露於垂直通道126以外的區域。此下方埋藏擴散佈植區域108可以利用例如是離子佈植技術形成。此下方埋藏擴散佈植區域108的形成之前,先形成一氧化層128,其是利用例如牽涉到中性基氧化製程的方式,以保護垂直通道126。Thereafter, referring to FIG. 6, a region in which the buried diffusion implant region 108 is exposed on the substrate 116 outside the vertical channel 126 is formed. This underlying buried diffusion implant region 108 can be formed using, for example, ion implantation techniques. Prior to the formation of the buried diffusion implanted region 108 below, an oxide layer 128 is formed which protects the vertical vias 126 by, for example, involving a neutral radical oxidation process.

之後,請參閱第7圖,其是沿著第1圖的剖線VII-VII方向之剖面圖。與第6圖中的剖面相較,在第7圖中,ONO結構122及包括多晶矽閘極結構114與字元線117的閘極結構115係先形成。首先,多餘的氧化材料,例如硬式幕罩層124及氧化層128,使用氧化物清潔製程除去。此ONO結構122然後形成於矽化物接觸窗118,垂直通道126的側壁以及下方埋藏擴散佈植區域108之上。此ONO結構122可以利用已知的製程形成包括一下方氧化矽層122A,一氮化矽層122B形成於下方氧化矽層122A之上,及一上方氧化矽層122C形成於氮化矽層122B之上。一熱氧化製程可以用來形成下方氧化矽層122A及上方氧化矽層122C,而一沈積製程,例如一化學氣相沈積(CVD)則可以用來形成氮化矽層122B。Next, please refer to Fig. 7, which is a cross-sectional view taken along the line VII-VII of Fig. 1. In contrast to the cross-section in FIG. 6, in FIG. 7, the ONO structure 122 and the gate structure 115 including the polysilicon gate structure 114 and the word line 117 are formed first. First, excess oxidizing material, such as hard mask layer 124 and oxide layer 128, is removed using an oxide cleaning process. This ONO structure 122 is then formed over the germanide contact window 118, the sidewalls of the vertical channel 126, and the buried diffusion implant region 108 below. The ONO structure 122 can be formed by a known process including an underlying hafnium oxide layer 122A, a tantalum nitride layer 122B is formed on the lower hafnium oxide layer 122A, and an upper hafnium oxide layer 122C is formed on the tantalum nitride layer 122B. on. A thermal oxidation process can be used to form the lower hafnium oxide layer 122A and the upper hafnium oxide layer 122C, and a deposition process, such as a chemical vapor deposition (CVD), can be used to form the tantalum nitride layer 122B.

此外,在第7圖中顯示的包括多晶矽閘極結構114之閘極結構115是形成於ONO結構122之上,及一字元線117形成於多晶矽閘極結構114之上。此多晶矽閘極結構114包括多晶矽材料,而字元線117包括例如是矽化鎢(WSix )的金屬材料。如第10圖中所示,在形成包括多晶矽閘極結構114及字元線117之閘極結構115的製程中,可以包括一系列的沈積和微影製程,舉例而言,沈積四乙氧基矽烷(TEOS)以及沈積一多晶矽硬式幕罩以作為形成多晶矽閘極結構114及字元線117的定義和微影/蝕刻製程之用。In addition, the gate structure 115 including the polysilicon gate structure 114 shown in FIG. 7 is formed over the ONO structure 122, and a word line 117 is formed over the polysilicon gate structure 114. The polysilicon gate structure 114 includes a polysilicon material, and the word line 117 includes a metal material such as tungsten germanium (WSi x ). As shown in FIG. 10, in the process of forming the gate structure 115 including the polysilicon gate structure 114 and the word line 117, a series of deposition and lithography processes may be included, for example, deposition of tetraethoxy groups. The decane (TEOS) and the deposited polysilicon hard mask are used as a definition and lithography/etching process for forming the polysilicon gate structure 114 and the word line 117.

之後,層間介電層(ILD)區域120、接觸窗110、112及位元線102、104則可以形成以達成如第8和9圖中所示的結構,其分別與第2和3圖中所示的剖面圖對應。可以理解的是,可以使用一個或多個微影製程可達成所欲之層間介電層(ILD)區域120、接觸窗110、112及位元線102、104的安排。舉例而言,微影及蝕刻製程可以用來除去一部分的層間介電層(ILD)區域120及ONO結構122以允許矽化物接觸窗118直接與接觸窗110連接,且也允許接觸窗112直接與下方埋藏擴散佈植區域108連接。Thereafter, the interlayer dielectric layer (ILD) region 120, the contact windows 110, 112, and the bit lines 102, 104 may be formed to achieve the structures as shown in Figures 8 and 9, respectively, in Figures 2 and 3, respectively. The cross-sectional views shown correspond. It will be appreciated that the arrangement of the desired interlayer dielectric (ILD) region 120, contact windows 110, 112, and bit lines 102, 104 can be achieved using one or more lithography processes. For example, a lithography and etching process can be used to remove a portion of the interlayer dielectric (ILD) region 120 and the ONO structure 122 to allow the germanide contact window 118 to be directly connected to the contact window 110, and also to allow the contact window 112 to directly The buried diffusion implanted area 108 is connected below.

第8和9圖分別顯示沿著第1圖的剖線II-II方向和III-III方向之完成結構的剖面圖。金屬化製程可以用來形成層間介電層(ILD)區域120、接觸窗110、112和位元線102、104以達成所需的記憶陣列100結構,例如第1~3圖中所示的。Figures 8 and 9 respectively show cross-sectional views of the completed structure along the II-II and III-III directions of the first drawing. The metallization process can be used to form interlayer dielectric (ILD) regions 120, contact windows 110, 112, and bit lines 102, 104 to achieve the desired memory array 100 structure, such as shown in Figures 1-3.

第10圖顯示根據一實施例形成此記憶陣列100的製程歸納流程圖,其可以形成如第1~9圖中所示的記憶陣列100結構。方塊152顯示一範例製程流程其可以用來形成如第4~5圖中所示的結構,包括形成上方埋藏擴散佈植區域106、矽化物接觸窗118、以及垂直通道126。方塊154顯示一範例製程流程其可以用來形成如第6圖中所示的結構以及某些第7圖中所示的結構,包括形成下方埋藏擴散佈植區域108以及ONO結構122。方塊156顯示一範例製程流程其可以用來形成如第7圖中所示的結構,包括形成包括多晶矽閘極結構114與字元線117的閘極結構115。於方塊156的製程之後,金屬化製程可以如方塊158所指示的形成以完成第1~3圖中所示的結構。也可以使用其他的替代製程,舉例而言,包括牽涉其他型態記憶裝置的替代實施例。Figure 10 shows a process summary flow diagram for forming such a memory array 100 in accordance with an embodiment, which may form the memory array 100 structure as shown in Figures 1-9. Block 152 shows an exemplary process flow that can be used to form the structure as shown in FIGS. 4-5, including forming an upper buried diffusion implant region 106, a telluride contact window 118, and a vertical channel 126. Block 154 shows an exemplary process flow that can be used to form the structure as shown in FIG. 6 and some of the structures shown in FIG. 7, including forming a buried buried implant region 108 and an ONO structure 122. Block 156 shows an exemplary process flow that can be used to form the structure as shown in FIG. 7, including forming a gate structure 115 including a polysilicon gate structure 114 and a word line 117. After the process of block 156, the metallization process can be formed as indicated by block 158 to complete the structure shown in Figures 1-3. Other alternative processes may also be used, including, for example, alternative embodiments involving other types of memory devices.

請參閱第11圖,顯示根據本發明第二實施例之利用矽化物方案達成後段間距放鬆的佈局上視圖。第11圖係顯示一記憶陣列200的一部分之佈局上視圖,其包括第一複數條位元線202延伸至各自的複數頂位元線電晶體(頂BLT),及第二複數條位元線204延伸至各自的複數底位元線電晶體(底BLT)。第一複數條位元線202平行地延伸且位於複數個上方埋藏擴散佈植區域206之上。第二複數條位元線204平行地延伸且位於複數個下方埋藏擴散佈植區域208之上。第一複數個接觸窗120,其構成範例垂直接觸結構,垂直地延伸介於各自的第一複數條位元線202及複數個上方埋藏擴散佈植區域206之間。第二複數個接觸窗212,其也構成範例垂直接觸結構,垂直地延伸介於各自的第二複數條位元線204及複數個下方埋藏擴散佈植區域208之間。接觸窗210、212可以由金屬材料形成,舉例而言,包含鎢或銅。此外,雖然並未於第11圖中顯示,但是可以由以下第12到21圖的描述中明瞭,矽化物接觸窗218也可以延伸於各自的上方埋藏擴散佈植區域206之上且與其平行。複數個閘極結構215,其包括各自的多晶矽閘極結構214及字元線217延伸通過記憶陣列200中介於位元線202和204及上方和下方埋藏擴散佈植區域206和208且至少與其大致垂直。Referring to Fig. 11, there is shown a top view of a layout for achieving a rear-span spacing relaxation using a telluride scheme in accordance with a second embodiment of the present invention. 11 is a top plan view showing a portion of a memory array 200 including a first plurality of bit lines 202 extending to respective complex top bit line transistors (top BLT), and a second plurality of bit lines 204 extends to respective complex bottom bit line transistors (bottom BLT). The first plurality of bit lines 202 extend in parallel and are located above the plurality of buried diffusion implant regions 206. The second plurality of bit lines 204 extend in parallel and are located above a plurality of buried buried implant regions 208. A first plurality of contact windows 120, which constitute an exemplary vertical contact structure, extend vertically between respective first plurality of bit lines 202 and a plurality of upper buried diffusion implant regions 206. A second plurality of contact windows 212, which also form an exemplary vertical contact structure, extend vertically between respective second plurality of bit lines 204 and a plurality of lower buried diffusion implant regions 208. The contact windows 210, 212 may be formed of a metallic material, for example, comprising tungsten or copper. Moreover, although not shown in FIG. 11, it can be seen from the description of Figures 12 through 21 below that the telluride contact window 218 can also extend over and be parallel to the respective upper buried diffusion implanted regions 206. A plurality of gate structures 215 including respective polysilicon gate structures 214 and word lines 217 extending through the bit lines 202 and 204 in the memory array 200 and buried diffusion implant regions 206 and 208 above and below and at least substantially vertical.

第12圖係顯示記憶陣列200沿著第11圖的剖線XII-XII方向之剖面圖,且第13圖係顯示記憶陣列200沿著第11圖的剖線XIII-XIII方向之剖面圖。第112圖及第3圖顯示一具有上方埋藏擴散佈植區域206及下方埋藏擴散佈植區域208形成於其中的基板216。矽化物接觸窗218形成於上方埋藏擴散佈植區域206之上,且也位於下方埋藏擴散佈植區域208之上。此上方埋藏擴散佈植區域206經由各自的矽化物接觸窗218而與各自的接觸窗210連接,且下方埋藏擴散佈植區域208經由各自的矽化物接觸窗218而與各自的接觸窗212連接。一層間介電(ILD)區域120形成介於每一個接觸窗210之間及每一個接觸窗212之間。一氧化矽-氮化矽-氧化矽(ONO)結構222延伸介於上方和下方埋藏擴散佈植區域206和208之間,沿著基板216的垂直通道之側壁。此氧化矽-氮化矽-氧化矽(ONO)結構222可以作為一記憶體閘極結構,更特定的是此記憶陣列200中一記憶胞的ONO閘介電層堆疊。Fig. 12 is a cross-sectional view showing the memory array 200 taken along the line XII-XII of Fig. 11, and Fig. 13 is a cross-sectional view showing the memory array 200 taken along the line XIII-XIII of Fig. 11. 112 and 3 show a substrate 216 having an upper buried diffusion implant region 206 and a lower buried diffusion implant region 208 formed therein. The telluride contact window 218 is formed over the upper buried diffusion implant region 206 and also above the buried diffusion implant region 208. The upper buried diffusion implant regions 206 are connected to the respective contact windows 210 via respective germanium contact windows 218, and the lower buried diffusion implant regions 208 are connected to the respective contact windows 212 via respective germanium contact windows 218. An interlayer dielectric (ILD) region 120 is formed between each of the contact windows 210 and between each of the contact windows 212. The niobium oxide-tantalum nitride-anthracene oxide (ONO) structure 222 extends between the upper and lower buried diffusion implant regions 206 and 208 along the sidewalls of the vertical channels of the substrate 216. The yttria-tantalum nitride-on-oxide (ONO) structure 222 can serve as a memory gate structure, more specifically an ONO gate dielectric layer stack of a memory cell in the memory array 200.

一個製造第11圖到第13圖所示的記憶陣列結構的製程實施例會搭配第14圖到第22圖來描述。第14圖到第21圖顯示形成記憶陣列200的中間結構,而第22圖顯示形成此記憶陣列200的製程流程圖。必須注意的是,第14圖到第18圖中的中間結構係與第19圖到第21圖中的最終結構相同,只是沿著不同的方向進行剖面。A process embodiment for fabricating the memory array structure shown in Figures 11 through 13 will be described with reference to Figures 14 through 22. 14 through 21 show the intermediate structure forming the memory array 200, and Fig. 22 shows a process flow chart for forming the memory array 200. It must be noted that the intermediate structure in Figs. 14 to 18 is the same as the final structure in Figs. 19 to 21 except that the cross section is taken in different directions.

請參閱第14圖,形成一硬式幕罩層224於基板216之上。舉例而言,此硬式幕罩層224可以是利用化學氣相沈積(CVD)、物理氣相沈積(PVD)、熱成長或其組合等沈積技術所形成的氧化材料。一旦形成硬式幕罩層224之後,一微影製程可以用來圖案化及形成垂直通道226。此形成垂直通道226的製程可以包括一系列的一個或多個蝕刻製程。舉例而言,在某些實施例中,一底部抗反射層(BARC)可以形成並搭配選擇性蝕刻製程,因此允許一個或多個自動對準結構形成。Referring to FIG. 14, a hard mask layer 224 is formed over the substrate 216. For example, the hard mask layer 224 can be an oxidized material formed using deposition techniques such as chemical vapor deposition (CVD), physical vapor deposition (PVD), thermal growth, or combinations thereof. Once the hard mask layer 224 is formed, a lithography process can be used to pattern and form the vertical channels 226. This process of forming vertical channels 226 can include a series of one or more etching processes. For example, in some embodiments, a bottom anti-reflective layer (BARC) can be formed and matched with a selective etch process, thus allowing one or more auto-alignment structures to be formed.

之後,如第15圖所示,於形成上方埋藏擴散佈植區域206和下方埋藏擴散佈植區域208之前,先形成一氧化層228,其是利用例如牽涉到中性基氧化製程的方式,以保護垂直通道226。於形成上方埋藏擴散佈植區域206和下方埋藏擴散佈植區域208,以及一氧化層228之前,多餘的硬式幕罩層224可以使用例如氧化物清潔製程除去。再形成一氧化層228,之後再形成上方埋藏擴散佈植區域206和下方埋藏擴散佈植區域208。Thereafter, as shown in FIG. 15, an oxide layer 228 is formed prior to forming the upper buried diffusion implant region 206 and the lower buried diffusion implant region 208, which utilizes, for example, a method involving a neutral radical oxidation process. The vertical channel 226 is protected. The excess hard mask layer 224 can be removed using, for example, an oxide cleaning process prior to forming the upper buried diffusion implant region 206 and the lower buried diffusion implant region 208, and the oxide layer 228. An oxide layer 228 is formed, and then an upper buried diffusion implant region 206 and a lower buried diffusion implant region 208 are formed.

第16圖顯示一用來自上方埋藏擴散佈植區域206以及下方埋藏擴散佈植區域208除去一部分氧化層228的蝕刻製程之結果。一部分的氧化層228仍維持在沿著垂直通道226之側壁。Figure 16 shows the results of an etch process using a buried diffusion implant region 206 from above and a buried diffusion implant region 208 to remove a portion of the oxide layer 228. A portion of the oxide layer 228 remains maintained along the sidewalls of the vertical channel 226.

之後,如第17圖所示,一金屬層218',其一部分之後會變成自動對準矽化物接觸窗218,形成於此下方埋藏擴散佈植層208、垂直通道226側壁之氧化層228以及上方埋藏擴散佈植區域206之上。此金屬層218'可以使用已知沈積製程例如化學氣相沈積(CVD)、物理氣相沈積(PVD)、熱成長或其組合等沈積一矽化物先驅材料(例如鎳或是鈷)材料形成。Thereafter, as shown in FIG. 17, a metal layer 218', a portion of which later becomes an auto-alignment telluride contact window 218, is formed below the buried diffusion implant layer 208, the oxide layer 228 on the sidewall of the vertical via 226, and above. Buried over the implanted area 206. The metal layer 218' can be formed using a known deposition process such as chemical vapor deposition (CVD), physical vapor deposition (PVD), thermal growth, or combinations thereof to deposit a telluride precursor material (eg, nickel or cobalt).

第18圖顯示除去一部分金屬層218'之後的結果,其可以包括快速熱製程。金屬層218'鄰接下方埋藏擴散佈植層208及上方埋藏擴散佈植區域206的部份會與埋藏擴散佈植層206和208中矽發生反應,因此導致生成自動對準的矽化物接觸窗218於下方埋藏擴散佈植層208及上方埋藏擴散佈植區域206之上。Figure 18 shows the results after removing a portion of the metal layer 218', which may include a rapid thermal process. The portion of the metal layer 218' adjacent to the buried diffusion implant layer 208 and the buried diffusion implant region 206 above will react with the germanium in the buried diffusion implant layers 206 and 208, thereby resulting in the formation of a self-aligned germanide contact window 218. The diffusion implant layer 208 is buried below and the buried diffusion implanted region 206 is above.

之後,請參閱第19圖,其是沿著第11圖的剖線XIX-XIX方向之剖面圖。與第18圖中的剖面相較,在第19圖中,ONO結構222及包括多晶矽閘極結構214與字元線217的閘極結構215係先形成。首先,多餘的氧化層228材料,使用氧化物清潔(CLN)製程除去。此ONO結構222然後形成於矽化物接觸窗218(於下方埋藏擴散佈植層208及上方埋藏擴散佈植區域206兩者之上)及沿著垂直通道226的側壁。此ONO結構222可以利用已知的製程形成包括一下方氧化矽層222A,一氮化矽層222B形成於下方氧化矽層222A之上,及一上方氧化矽層222C形成於氮化矽層222B之上。一熱氧化製程可以用來形成下方氧化矽層222A及上方氧化矽層222C,而一沈積製程,例如一化學氣相沈積(CVD)則可以用來形成氮化矽層222B。Thereafter, please refer to Fig. 19, which is a cross-sectional view taken along the line XIX-XIX of Fig. 11 . In contrast to the cross-sectional view of Fig. 18, in Fig. 19, the ONO structure 222 and the gate structure 215 including the polysilicon gate structure 214 and the word line 217 are formed first. First, the excess oxide layer 228 material is removed using an oxide cleaning (CLN) process. The ONO structure 222 is then formed on the telluride contact window 218 (on both the buried diffusion implant layer 208 and the buried buried spread implant region 206) and along the sidewalls of the vertical via 226. The ONO structure 222 can be formed by a known process including an underlying hafnium oxide layer 222A, a tantalum nitride layer 222B is formed over the lower hafnium oxide layer 222A, and an upper hafnium oxide layer 222C is formed on the tantalum nitride layer 222B. on. A thermal oxidation process can be used to form the lower hafnium oxide layer 222A and the upper hafnium oxide layer 222C, and a deposition process, such as a chemical vapor deposition (CVD), can be used to form the tantalum nitride layer 222B.

此外,在第19圖中顯示的包括多晶矽閘極結構214之閘極結構215是形成於ONO結構222之上,及一字元線217形成於多晶矽閘極結構214之上。此多晶矽閘極結構214包括多晶矽材料,而字元線217包括例如是矽化鎢(WSix )的金屬材料。如第22圖中所示,在形成包括多晶矽閘極結構214及字元線217之閘極結構215的製程中,可以包括一系列的沈積和微影製程,舉例而言,沈積四乙氧基矽烷(TEOS)以及沈積一多晶矽硬式幕罩以作為形成多晶矽閘極結構214及字元線217的定義和微影/蝕刻製程之用。In addition, the gate structure 215 including the polysilicon gate structure 214 shown in FIG. 19 is formed over the ONO structure 222, and a word line 217 is formed over the polysilicon gate structure 214. The polysilicon gate structure 214 includes a polysilicon material, and the word line 217 includes a metal material such as tungsten germanium (WSi x ). As shown in FIG. 22, in the process of forming the gate structure 215 including the polysilicon gate structure 214 and the word line 217, a series of deposition and lithography processes may be included, for example, deposition of tetraethoxy groups. The decane (TEOS) and the deposited polysilicon hard mask are used as a definition and lithography/etching process for forming the polysilicon gate structure 214 and the word line 217.

之後,層間介電層(ILD)區域220、接觸窗210、212及位元線202、204則可以形成以達成如第20和21圖中所示的結構,其分別與第12和13圖中所示的剖面圖對應。可以理解的是,可以使用一個或多個微影製程可達成所欲之層間介電層(ILD)區域220、接觸窗210、212及位元線202、204的安排。舉例而言,微影及蝕刻製程可以用來除去一部分的層間介電層(ILD)區域220及ONO結構222以允許矽化物接觸窗218直接與接觸窗210連接,且也允許接觸窗212直接與下方埋藏擴散佈植區域208連接。Thereafter, the interlayer dielectric layer (ILD) region 220, the contact windows 210, 212, and the bit lines 202, 204 may be formed to achieve the structure as shown in FIGS. 20 and 21, respectively, in FIGS. 12 and 13 The cross-sectional views shown correspond. It will be appreciated that the arrangement of the desired interlayer dielectric (ILD) region 220, contact windows 210, 212, and bit lines 202, 204 can be achieved using one or more lithography processes. For example, the lithography and etching process can be used to remove a portion of the interlayer dielectric (ILD) region 220 and the ONO structure 222 to allow the germanium contact window 218 to be directly connected to the contact window 210, and also to allow the contact window 212 to directly The buried diffusion implanted region 208 is connected below.

第20和21圖分別顯示沿著第11圖的剖線XII-XII方向和XIII-XIII方向之完成結構的剖面圖。金屬化製程可以用來形成層間介電層(ILD)區域220、接觸窗210、212和位元線202、204以達成所需的記憶陣列200結構,例如第11~13圖中所示的。Figures 20 and 21 respectively show cross-sectional views of the completed structure along the XII-XII direction and the XIII-XIII direction of the eleventh figure. The metallization process can be used to form interlayer dielectric (ILD) regions 220, contact windows 210, 212, and bit lines 202, 204 to achieve the desired memory array 200 structure, such as shown in Figures 11-13.

第22圖顯示根據一實施例形成此記憶陣列200的製程歸納流程圖,其可以形成如第11~21圖中所示的記憶陣列200結構。方塊252顯示一範例製程流程其可以用來形成如第14~16圖中所示的結構,包括形成上方埋藏擴散佈植區域206、下方埋藏擴散佈植層208、以及垂直通道226。方塊254顯示一範例製程流程其可以用來形成如第17和18圖中所示的結構以及某些第19圖中所示的結構,包括形成矽化物接觸窗218以及ONO結構222。方塊256顯示一範例製程流程其可以用來形成如第19圖中所示的結構,包括形成多晶矽閘極結構214。於方塊256的製程之後,金屬化製程可以如方塊258所指示的形成以完成第11~13圖中所示的結構。也可以使用其他的替代製程,舉例而言,包括牽涉其他型態記憶裝置的替代實施例。Figure 22 shows a process summary flow for forming such a memory array 200 in accordance with an embodiment which can form the memory array 200 structure as shown in Figures 11-21. Block 252 shows an exemplary process flow that can be used to form the structure as shown in Figures 14-16, including forming an upper buried diffusion implant region 206, a buried buried diffusion implant layer 208, and a vertical channel 226. Block 254 shows an exemplary process flow that can be used to form the structures as shown in FIGS. 17 and 18 and some of the structures shown in FIG. 19, including the formation of the telluride contact window 218 and the ONO structure 222. Block 256 shows an exemplary process flow that can be used to form the structure as shown in FIG. 19, including forming a polysilicon gate structure 214. After the process of block 256, the metallization process can be formed as indicated by block 258 to complete the structure shown in Figures 11-13. Other alternative processes may also be used, including, for example, alternative embodiments involving other types of memory devices.

因此,本發明係揭露一種半導體積體電路裝置及其製造方法,其允許提供許多改良的微縮後段結構,其可以包括接觸窗以及其他金屬內連接結構。此完成結構包括至少一矽化物薄膜,例如矽化鎢(WSix )及一自動對準矽化物薄膜,例如矽化鈷(CoSix )及矽化鎳(NiSix )於一埋藏擴散層之上。雖然此處所揭露的實施例中係以氮化物唯讀記憶體記憶裝置做說明,替代實施例中也可以包括牽涉其他型態的記憶裝置。舉例而言,本發明實施例也可以使用於埋藏擴散型態的記憶裝置。舉例而言,一替代實施例中可以包括埋藏擴散型態的記憶裝置,其包括具有平面通道、垂直通道及/或具有實體隔離結構之垂直通道的N位元記憶胞。此外,替代實施例中也可以包括一能隙工程矽-氧化矽-氮化矽-氧化矽-矽(BE-SONOS)或是奈米結晶層來取代ONO結構222。Accordingly, the present invention is directed to a semiconductor integrated circuit device and method of fabricating the same that allows for the provision of a number of improved miniature back-end structures that may include contact windows and other metal interconnect structures. The completed structure includes at least one germanide film, such as tungsten germanium (WSi x ) and a self-aligned germanide film, such as cobalt telluride (CoSi x ) and nickel telluride (NiSi x ), over a buried diffusion layer. Although the embodiments disclosed herein are illustrated with a nitride read-only memory memory device, alternative embodiments may include memory devices that involve other types. For example, embodiments of the present invention may also be used in a buried diffusion memory device. For example, an alternative embodiment can include a buried diffusion type memory device that includes N-bit memory cells having planar channels, vertical channels, and/or vertical channels with solid isolation structures. In addition, an alternative embodiment may include a band gap engineered yttrium-yttria-yttria-yttria-yttrium oxide-BE-SONOS or a nanocrystalline layer in place of the ONO structure 222.

雖然本發明係已參照實施例來加以描述,然本發明創作並未受限於其詳細描述內容。替換方式及修改樣式係已於先前描述中所建議,且其他替換方式及修改樣式將為熟習此項技藝之人士所思及。特別是,所有具有實質上相同於本發明之構件結合而達成與本發明實質上相同結果者,皆不脫離本發明之精神範疇。因此,所有此等同的替換方式及修改樣式係意欲落在本發明於隨附申請專利範圍及其均等物所界定的範疇之中。Although the present invention has been described with reference to the embodiments, the present invention is not limited by the detailed description thereof. Alternatives and modifications are suggested in the foregoing description, and other alternatives and modifications will be apparent to those skilled in the art. In particular, all combinations of components that are substantially identical to the invention can achieve substantially the same results as the present invention without departing from the spirit of the invention. Therefore, all such equivalents and modifications are intended to be within the scope of the invention as defined by the appended claims and their equivalents.

100、200...記憶陣列100, 200. . . Memory array

102、104、202、204...位元線102, 104, 202, 204. . . Bit line

106、206...上方埋藏擴散佈植區域106, 206. . . Buried diffused planting area

108、208...下方埋藏擴散佈植(LDF)區域108, 208. . . Buried diffusion implant (LDF) area below

110、112、210、212...接觸窗110, 112, 210, 212. . . Contact window

114、214...多晶矽線114,214. . . Polycrystalline germanium

116、216...基板116,216. . . Substrate

118...矽化物接觸窗118. . . Telluride contact window

120、220...層間介電層120, 220. . . Interlayer dielectric layer

122、222...ONO結構122, 222. . . ONO structure

124、224...硬式幕單層124, 224. . . Hard curtain single layer

126、226...垂直通道126, 226. . . Vertical channel

128、228...氧化層128, 228. . . Oxide layer

218'...金屬層218'. . . Metal layer

218...自動對準矽化物接觸窗218. . . Automatic alignment of the telluride contact window

本發明係由申請專利範圍所界定。這些和其它目的,特徵,和實施例,會在下列實施方式的章節中搭配圖式被描述,其中:The invention is defined by the scope of the patent application. These and other objects, features, and embodiments are described in the following sections of the accompanying drawings, in which:

第1圖係顯示一範例氮化物唯讀記憶體(NROM)記憶陣列的一部分之佈局上視圖。Figure 1 is a top plan view showing a portion of an exemplary nitride read only memory (NROM) memory array.

第2圖係顯示記憶陣列沿著第1圖的剖線II-II方向之剖面圖。Fig. 2 is a cross-sectional view showing the memory array along the line II-II of Fig. 1.

第3圖係顯示記憶陣列沿著第1圖的剖線III-III方向之剖面圖。Fig. 3 is a cross-sectional view showing the memory array along the line III-III of Fig. 1;

第4圖到第9圖顯示形成第1~3圖中記憶陣列之中間結構的剖面圖。4 to 9 are cross-sectional views showing the intermediate structure of the memory array in Figs. 1 to 3.

第10圖顯示根據第1圖到第9圖的實施例形成此記憶陣列的製程流程圖。Fig. 10 is a flow chart showing the process of forming the memory array according to the embodiment of Figs. 1 to 9.

第11圖係顯示另一範例氮化物唯讀記憶體(NROM)記憶陣列的一部分之佈局上視圖。Figure 11 is a top plan view showing a portion of another exemplary nitride read only memory (NROM) memory array.

第12圖係顯示記憶陣列沿著第11圖的剖線XII-XII方向之剖面圖。Figure 12 is a cross-sectional view showing the memory array along the line XII-XII of Figure 11;

第13圖係顯示記憶陣列沿著第11圖的剖線XIII-XIII方向之剖面圖。Figure 13 is a cross-sectional view showing the memory array along the line XIII-XIII of Figure 11;

第14圖到第21圖顯示形成第11~13圖中記憶陣列之中間結構的剖面圖。Figs. 14 to 21 show cross-sectional views showing the intermediate structure of the memory array in Figs. 11 to 13.

第22圖顯示根據第14圖到第21圖的實施例形成此記憶陣列的製程流程圖。Fig. 22 is a flow chart showing the process of forming the memory array according to the embodiment of Figs. 14 to 21.

102、104...位元線102, 104. . . Bit line

106...上方埋藏擴散佈植區域106. . . Buried diffused planting area

108...下方埋藏擴散佈植(LDF)區域108. . . Buried diffusion implant (LDF) area below

110、112...接觸窗110, 112. . . Contact window

116...基板116. . . Substrate

118...矽化物接觸窗118. . . Telluride contact window

120...層間介電層120. . . Interlayer dielectric layer

122...ONO結構122. . . ONO structure

Claims (27)

一種半導體積體電路裝置,包含:一半導體基板;一第一埋藏擴散區域於該半導體基板之上;一第一接觸層於該第一埋藏擴散區域之上,該第一接觸層包含矽化物材料及自動對準矽化物材料之至少一者;一記憶閘極結構於該第一接觸層的至少一部分之上;以及一第二埋藏擴散區域及一電荷儲存層,其中該電荷儲存層延伸介於該第一埋藏擴散區域與該第二埋藏擴散區域之間。 A semiconductor integrated circuit device comprising: a semiconductor substrate; a first buried diffusion region over the semiconductor substrate; a first contact layer over the first buried diffusion region, the first contact layer comprising a germanide material And automatically aligning at least one of the mash material; a memory gate structure over at least a portion of the first contact layer; and a second buried diffusion region and a charge storage layer, wherein the charge storage layer extends between The first buried diffusion region is between the second buried diffusion region. 如申請專利範圍第1項所述之半導體積體電路裝置,其中該第一接觸層包含矽化物材料,且其中該矽化物材料包含鎢。 The semiconductor integrated circuit device of claim 1, wherein the first contact layer comprises a vaporized material, and wherein the germanide material comprises tungsten. 如申請專利範圍第1項所述之半導體積體電路裝置,其中該第一接觸層包含自動對準矽化物材料,且其中該自動對準矽化物材料包含鎳和鈷至少一者。 The semiconductor integrated circuit device of claim 1, wherein the first contact layer comprises an auto-alignment telluride material, and wherein the auto-alignment telluride material comprises at least one of nickel and cobalt. 如申請專利範圍第1項所述之半導體積體電路裝置,其中該第一接觸層經由一垂直接觸結構與一位元線連接。 The semiconductor integrated circuit device of claim 1, wherein the first contact layer is connected to the one-dimensional line via a vertical contact structure. 如申請專利範圍第1項所述之半導體積體電路裝置,其中該電荷儲存層位於一垂直通道的側壁。 The semiconductor integrated circuit device of claim 1, wherein the charge storage layer is located on a sidewall of a vertical channel. 如申請專利範圍第1項所述之半導體積體電路裝置,更包含一第二接觸層於該第二埋藏擴散區域之上。 The semiconductor integrated circuit device of claim 1, further comprising a second contact layer over the second buried diffusion region. 如申請專利範圍第5項所述之半導體積體電路裝置,其中該電荷儲存層延伸介於該第一接觸層與該第二接觸層之間。 The semiconductor integrated circuit device of claim 5, wherein the charge storage layer extends between the first contact layer and the second contact layer. 如申請專利範圍第6項所述之半導體積體電路裝置,其中該第二接觸層包含自動對準矽化物材料。 The semiconductor integrated circuit device of claim 6, wherein the second contact layer comprises an auto-alignment telluride material. 如申請專利範圍第8項所述之半導體積體電路裝置,其中該自動對準矽化物材料包含鎳和鈷至少一者。 The semiconductor integrated circuit device of claim 8, wherein the self-aligned telluride material comprises at least one of nickel and cobalt. 一種製造一半導體積體電路裝置的方法,該方法包含:形成一第一埋藏擴散區域於一半導體基板之上;形成一第一接觸層於該第一埋藏擴散區域之上,該第一接觸層包含矽化物材料及自動對準矽化物材料之至少一者;形成一記憶閘極結構於該第一接觸層的至少一部分之上;以及形成一第二埋藏擴散區域及一電荷儲存層,其中該電荷儲存層延伸介於該第一埋藏擴散區域與該第二埋藏擴散區域之間。 A method of fabricating a semiconductor integrated circuit device, the method comprising: forming a first buried diffusion region over a semiconductor substrate; forming a first contact layer over the first buried diffusion region, the first contact layer Forming at least one of a telluride material and a self-aligned telluride material; forming a memory gate structure over at least a portion of the first contact layer; and forming a second buried diffusion region and a charge storage layer, wherein the The charge storage layer extends between the first buried diffusion region and the second buried diffusion region. 如申請專利範圍第10項所述之方法,其中該第一接觸層包含矽化物材料,且其中該矽化物材料包含鎢。 The method of claim 10, wherein the first contact layer comprises a vaporized material, and wherein the vaporized material comprises tungsten. 如申請專利範圍第10項所述之方法,其中該第一接觸層包含自動對準矽化物材料,且其中該自動對準矽化物材料包含鎳和鈷至少一者。 The method of claim 10, wherein the first contact layer comprises an autoalignment telluride material, and wherein the autoalignment telluride material comprises at least one of nickel and cobalt. 如申請專利範圍第10項所述之方法,更包含:形成一垂直接觸結構與該第一接觸層連接; 形成一位元線經由該垂直接觸結構與該第一接觸層連接。 The method of claim 10, further comprising: forming a vertical contact structure connected to the first contact layer; Forming a one-dimensional line is connected to the first contact layer via the vertical contact structure. 如申請專利範圍第11項所述之方法,其中該電荷儲存層位於一垂直通道的側壁。 The method of claim 11, wherein the charge storage layer is located on a sidewall of a vertical channel. 如申請專利範圍第11項所述之方法,更包含形成一第二接觸層於該第二埋藏擴散區域之上。 The method of claim 11, further comprising forming a second contact layer over the second buried diffusion region. 如申請專利範圍第15項所述之方法,其中該電荷儲存層延伸介於該第一接觸層與該第二接觸層之間。 The method of claim 15, wherein the charge storage layer extends between the first contact layer and the second contact layer. 如申請專利範圍第15項所述之方法,其中該第二接觸層包含自動對準矽化物材料。 The method of claim 15, wherein the second contact layer comprises a self-aligning telluride material. 如申請專利範圍第17項所述之方法,其中該自動對準矽化物材料包含鎳和鈷至少一者。 The method of claim 17, wherein the self-aligning telluride material comprises at least one of nickel and cobalt. 一種半導體記憶裝置的佈局,包含:一第一複數條位元線於一第一方向上延伸;一第二複數條位元線於一大致與該第一方向平行之方向延伸,該第二複數條位元線包含放置於介於該第一複數條位元線間的位元線;一第一複數個埋藏擴散區域於一大致與該第一方向平行之方向延伸;一第一複數個接觸層於各自的該第一複數個埋藏擴散區域之上,該第一複數個接觸層中的接觸層包含矽化物材料及自動對準矽化物材料之至少一者; 複數個記憶閘極結構於一大致與該第一方向垂直之一第二方向延伸,複數個記憶閘極結構形成於該第一複數個接觸層中接觸層的至少一部分之上;一第二複數個埋藏擴散區域於一大致與該第一方向平行之方向延伸;以及複數個電荷儲存層;其中該電荷儲存層延伸介於該第一複數個埋藏擴散區域中各自的第一埋藏擴散區域與該第二複數個埋藏擴散區域中各自的第二埋藏擴散區域之間。 A layout of a semiconductor memory device includes: a first plurality of bit lines extending in a first direction; a second plurality of bit lines extending in a direction substantially parallel to the first direction, the second plurality The bit line includes a bit line disposed between the first plurality of bit lines; a first plurality of buried diffusion regions extending in a direction substantially parallel to the first direction; a first plurality of contacts And a layer of the first plurality of buried diffusion regions, wherein the contact layer of the first plurality of contact layers comprises at least one of a telluride material and a self-aligned telluride material; a plurality of memory gate structures extending in a second direction substantially perpendicular to the first direction, a plurality of memory gate structures being formed over at least a portion of the first plurality of contact layers; a second plurality a buried diffusion region extending in a direction substantially parallel to the first direction; and a plurality of charge storage layers; wherein the charge storage layer extends between each of the first plurality of buried diffusion regions and the first buried diffusion region Between each of the second plurality of buried diffusion regions in the second buried diffusion region. 如申請專利範圍第19項所述之半導體記憶裝置的佈局,其中該第一複數個接觸層中的接觸層包含矽化物材料,且其中該矽化物材料包含鎢。 The layout of the semiconductor memory device of claim 19, wherein the contact layer of the first plurality of contact layers comprises a germanide material, and wherein the germanide material comprises tungsten. 如申請專利範圍第19項所述之半導體記憶裝置的佈局,其中該第一複數個接觸層中的接觸層包含自動對準矽化物材料,且其中該自動對準矽化物材料包含鎳和鈷至少一者。 The semiconductor memory device of claim 19, wherein the contact layer of the first plurality of contact layers comprises a self-aligned germanide material, and wherein the self-aligned germanide material comprises at least nickel and cobalt One. 如申請專利範圍第19項所述之半導體記憶裝置的佈局,其中該第一複數個接觸層中的接觸層經由各自的垂直接觸結構而與該第一複數條位元線中各自的位元線連接。 The layout of the semiconductor memory device of claim 19, wherein the contact layers of the first plurality of contact layers and the respective bit lines of the first plurality of bit lines are via respective vertical contact structures connection. 如申請專利範圍第19項所述之半導體記憶裝置的佈局,其中該電荷儲存層位於各自垂直通道的各自側壁。 The layout of the semiconductor memory device of claim 19, wherein the charge storage layer is located on a respective sidewall of the respective vertical channel. 如申請專利範圍第19項所述之半導體記憶裝置的佈局,更包含一第二複數個接觸層於該第二複數個埋藏擴散區域中各自的第二埋藏擴散區域之上。 The layout of the semiconductor memory device of claim 19, further comprising a second plurality of contact layers over respective second buried diffusion regions of the second plurality of buried diffusion regions. 如申請專利範圍第24項所述之半導體記憶裝置的佈局,其中該複數個電荷儲存層中的電荷儲存層延伸介於該第一複數個接觸層中各自的第一接觸層與該第二複數個接觸層中各自的第二接觸層之間。 The layout of the semiconductor memory device of claim 24, wherein the charge storage layer of the plurality of charge storage layers extends between the first contact layer and the second plurality of the first plurality of contact layers Between the respective second contact layers in the contact layers. 如申請專利範圍第24項所述之半導體記憶裝置的佈局,其中該第二複數個接觸層中的接觸層包含自動對準矽化物材料。 The layout of the semiconductor memory device of claim 24, wherein the contact layer of the second plurality of contact layers comprises a self-aligned telluride material. 如申請專利範圍第26項所述之半導體記憶裝置的佈局,其中該自動對準矽化物材料包含鎳和鈷至少一者。The layout of the semiconductor memory device of claim 26, wherein the self-aligned telluride material comprises at least one of nickel and cobalt.
TW99140837A 2010-11-25 2010-11-25 Semiconductor integrated circuit device and method of manufacturing a semiconductor integrated circuit device TWI427775B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99140837A TWI427775B (en) 2010-11-25 2010-11-25 Semiconductor integrated circuit device and method of manufacturing a semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99140837A TWI427775B (en) 2010-11-25 2010-11-25 Semiconductor integrated circuit device and method of manufacturing a semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
TW201222791A TW201222791A (en) 2012-06-01
TWI427775B true TWI427775B (en) 2014-02-21

Family

ID=46725327

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99140837A TWI427775B (en) 2010-11-25 2010-11-25 Semiconductor integrated circuit device and method of manufacturing a semiconductor integrated circuit device

Country Status (1)

Country Link
TW (1) TWI427775B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9466730B2 (en) 2014-01-17 2016-10-11 Vanguard International Semiconductor Corporation Semiconductor device and method for fabricating the same
TWI557916B (en) * 2014-04-25 2016-11-11 世界先進積體電路股份有限公司 Semiconductor device and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050139901A1 (en) * 2003-12-27 2005-06-30 Dongbuanam Semiconductor Inc. Non-volatile memory device and fabricating method thereof
US20060081891A1 (en) * 2004-10-20 2006-04-20 Nec Electronics Corporation Nonvolatile semiconductor memory capable of storing data of two bits or more per cell
US20090072303A9 (en) * 2002-06-21 2009-03-19 Micron Technology, Inc. Nrom memory cell, memory array, related devices and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090072303A9 (en) * 2002-06-21 2009-03-19 Micron Technology, Inc. Nrom memory cell, memory array, related devices and methods
US20050139901A1 (en) * 2003-12-27 2005-06-30 Dongbuanam Semiconductor Inc. Non-volatile memory device and fabricating method thereof
US20060081891A1 (en) * 2004-10-20 2006-04-20 Nec Electronics Corporation Nonvolatile semiconductor memory capable of storing data of two bits or more per cell

Also Published As

Publication number Publication date
TW201222791A (en) 2012-06-01

Similar Documents

Publication Publication Date Title
US20220328518A1 (en) Methods for forming multilayer horizontal nor-type thin-film memory strings
US9514976B2 (en) Trench isolation implantation
CN102891148B (en) Structures and methods for single gate non-volatile memory device
US7435648B2 (en) Methods of trench and contact formation in memory cells
US6891271B2 (en) Non-volatile memory device
EP1237192A2 (en) Twin monos memory cell and corresponding fabrication method
US8592978B2 (en) Method of fabricating semiconductor device and the semiconductor device
US5073510A (en) Fabrication method of contact window in semiconductor device
US20060011971A1 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
US9240418B2 (en) Wordline resistance reduction method and structure in an integrated circuit memory device
KR100871754B1 (en) Method for manufacturing semiconductor memory device
US20110086470A1 (en) Additional metal routing in semiconductor devices
US20080251824A1 (en) Semiconductor memory device and manufacturing method thereof
TWI427775B (en) Semiconductor integrated circuit device and method of manufacturing a semiconductor integrated circuit device
US6787417B2 (en) Method of fabricating semiconductor device
US7067374B2 (en) Manufacturing methods and structures of memory device
US8188550B2 (en) Integrated circuit structure with electrical strap and its method of forming
US9666588B2 (en) Damascene non-volatile memory cells and methods for forming the same
US7968404B2 (en) Semiconductor device and fabrication method therefor
KR20080013001A (en) Semiconductor device and fabrication method thereof
US9147692B2 (en) Method for forming separate narrow lines, method for fabricating memory structure, and product thereof
US20080093652A1 (en) Semiconductor device and method of manufacturing same
US8466064B2 (en) Semiconductor integrated circuit device and method of manufacturing a semiconductor integrated circuit device
JP2001284557A (en) Producing method for non-volatile semiconductor memory device
US20230337416A1 (en) Semiconductor structure and method for preparing same