TWI427707B - Method for fabricating mos transistors - Google Patents

Method for fabricating mos transistors Download PDF

Info

Publication number
TWI427707B
TWI427707B TW97130677A TW97130677A TWI427707B TW I427707 B TWI427707 B TW I427707B TW 97130677 A TW97130677 A TW 97130677A TW 97130677 A TW97130677 A TW 97130677A TW I427707 B TWI427707 B TW I427707B
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor substrate
source
fluorine
forming
Prior art date
Application number
TW97130677A
Other languages
Chinese (zh)
Other versions
TW201007850A (en
Inventor
Kuo Chih Lai
yi wei Chen
Nien Ting Ho
Teng Chun Tsai
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW97130677A priority Critical patent/TWI427707B/en
Publication of TW201007850A publication Critical patent/TW201007850A/en
Application granted granted Critical
Publication of TWI427707B publication Critical patent/TWI427707B/en

Links

Description

製作金氧半導體電晶體的方法Method for fabricating a MOS transistor

本發明是關於一種製作金氧半導體電晶體的方法,尤指一種在製作矽化金屬前形成一具有含氟介面層的方法。The present invention relates to a method of fabricating a MOS transistor, and more particularly to a method of forming a fluorinated interfacial layer prior to fabrication of a deuterated metal.

在半導體積體電路的製程中,金氧半導體(metal-oxide-semiconductor,MOS)電晶體是一種極重要的電子元件,而隨著半導體元件的尺寸越來越小,MOS電晶體的製程步驟也有許多的改進,以製造出體積小而高品質的MOS電晶體。In the process of semiconductor integrated circuit, metal-oxide-semiconductor (MOS) transistor is a very important electronic component, and as the size of semiconductor component becomes smaller and smaller, the manufacturing process of MOS transistor also has Many improvements have been made to produce small, high quality MOS transistors.

習知的MOS電晶體製程是在半導體基底上形成閘極結構之後,再於閘極結構相對兩側的基底中形成輕摻雜汲極結構(lightly doped drain,LDD)。接著於閘極結構側邊形成側壁子(spacer),並以此閘極結構及側壁子做為遮罩,進行離子植入步驟,以於半導體基底中形成源極/汲極區。而為了要將電晶體的閘極、源極與汲極適當電連接於電路中,因此需要形成接觸插塞(contact plug)來進行導通。通常接觸插塞的材質為鎢(W)、鋁、銅等金屬導體,然其與閘極結構、源極/汲極區等多晶或單晶矽等材質之間的直接導通並不理想;因此為了改善金屬插塞與閘極結構、源極/汲極區之間的歐米接觸(Ohmi contact),通常會在閘極結構、源極/ 汲極區的表面再形成一金屬矽化物(silicide)。The conventional MOS transistor process is to form a lightly doped drain (LDD) in a substrate on opposite sides of the gate structure after forming a gate structure on the semiconductor substrate. Then, a spacer is formed on the side of the gate structure, and the gate structure and the sidewall are used as a mask, and an ion implantation step is performed to form a source/drain region in the semiconductor substrate. In order to properly electrically connect the gate, source and drain of the transistor to the circuit, it is necessary to form a contact plug for conduction. Generally, the material of the contact plug is a metal conductor such as tungsten (W), aluminum or copper, but direct conduction between a material such as a gate structure, a source/drain region, or a single crystal germanium is not preferable; Therefore, in order to improve the Ohmi contact between the metal plug and the gate structure and the source/drain region, it is usually in the gate structure, source/ A metal silicide is formed on the surface of the bungee region.

目前大多是利用自對準金屬矽化物(self-aligned silicide,salicide)製程來形成金屬矽化物;亦即在形成源極/汲極區之後,再形成一由鈷(Co)、鈦(Ti)、鎳(Ni)等構成的金屬層並覆蓋於源極/汲極區與閘極結構上方,然後進行一快速升溫退火(rapid thermal anneal,RTA)製程使金屬層與閘極結構、源極/汲極區中的矽反應,形成金屬矽化物來降低源極/汲極區的片電阻(sheet resistance)。At present, most of them use a self-aligned silicide (salicide) process to form a metal telluride; that is, after forming a source/drain region, a cobalt (Co), titanium (Ti) is formed. a metal layer composed of nickel (Ni) and the like, covering the source/drain region and the gate structure, and then performing a rapid thermal anneal (RTA) process to make the metal layer and the gate structure and source/ The ruthenium reaction in the drain region forms a metal ruthenium to reduce the sheet resistance of the source/drain regions.

然而,以這個方式形成金屬矽化物也會產生一些問題,例如在形成金屬矽化物時,金屬層中的金屬原子會擴散進矽基底中並消耗掉源極/汲極區中的矽來完成,不但原本源極/汲極區中的晶格結構會遭到破壞,甚至會導致源極/汲極區和矽基底之間的PN接合與矽化金屬層間之距離過近而破壞部分源極/汲極區的部分結構,尤其在超淺介面(ultra shallow junction,USJ)的設計中,甚至會造成金屬矽化物與基底直接接觸,進而導致元件失效的狀況。However, the formation of metal telluride in this manner also causes problems, such as when metal halides are formed, metal atoms in the metal layer diffuse into the germanium substrate and consume the germanium in the source/drain regions to complete. Not only the lattice structure in the original source/drain region will be destroyed, but also the distance between the PN junction between the source/drain region and the germanium substrate and the germanium metal layer is too close to destroy some of the source/deuterium. Part of the structure of the polar region, especially in the design of the ultra shallow junction (USJ), may even cause direct contact between the metal telluride and the substrate, which may lead to component failure.

請參照第1圖與第2圖,第1圖與第2圖為習知製作一具有自對準金屬矽化物之金氧半導體電晶體的製程示意圖。如第1圖所示,首先提供一半導體基底60,然後在半導體基底60上形成一由閘極介電層62與閘極導電層64所 構成的閘極結構66,且閘極66頂部另設有一由氮化矽或氧化矽等介電材料所構成的頂保護層(圖未示)。接著進行一離子植入步驟,以於閘極結構66兩側的半導體基底60中形成輕摻雜源極/汲極70。隨後於閘極結構66的側壁形成襯墊層67與側壁子68,並進行另一離子植入步驟,以於側壁子68兩側的半導體基底60中形成源極/汲極區域72。然後進行一濕式清洗製程,去除閘極結構66與源極/汲極區域72表面之不純顆粒或原生氧化物,並進行一除水氣(degas)步驟來移除因濕式清洗製程所形成之多餘水氣。隨後,於半導體基底60表面濺鍍一金屬層74,例如一鎳金屬層,並覆蓋在閘極64、側壁子68、以及半導體基底60表面。接著如第2圖所示,進行一快速升溫退火製程(RTA),使金屬層74與源極/汲極區域72接觸的部分反應成矽化金屬層76。最後再利用一選擇性濕式蝕刻,例如以NH4 OH/H2 O2 /H2 O或H2 SO4 /H2 O2 的混合溶液來去除未反應成金屬矽化物的金屬層74。Please refer to FIG. 1 and FIG. 2 . FIG. 1 and FIG. 2 are schematic diagrams showing a process for fabricating a gold-oxygen semiconductor transistor having a self-aligned metal telluride. As shown in FIG. 1, a semiconductor substrate 60 is first provided, and then a gate structure 66 composed of a gate dielectric layer 62 and a gate conductive layer 64 is formed on the semiconductor substrate 60, and the top of the gate 66 is separately provided. There is a top protective layer (not shown) composed of a dielectric material such as tantalum nitride or hafnium oxide. An ion implantation step is then performed to form the lightly doped source/drain 70 in the semiconductor substrate 60 on either side of the gate structure 66. Substrate layer 67 and sidewall spacers 68 are then formed on the sidewalls of gate structure 66 and another ion implantation step is performed to form source/drain regions 72 in semiconductor substrate 60 on either side of sidewall spacer 68. A wet cleaning process is then performed to remove impure particles or native oxide on the surface of the gate structure 66 and the source/drain regions 72, and a degas removal step is performed to remove the wet cleaning process. Excess water. Subsequently, a metal layer 74, such as a nickel metal layer, is sputtered over the surface of the semiconductor substrate 60 and overlies the gate 64, the sidewall spacers 68, and the surface of the semiconductor substrate 60. Next, as shown in FIG. 2, a rapid thermal annealing process (RTA) is performed to react a portion of the metal layer 74 in contact with the source/drain region 72 into a deuterated metal layer 76. Finally, a selective wet etching is used, for example, a mixed solution of NH 4 OH/H 2 O 2 /H 2 O or H 2 SO 4 /H 2 O 2 to remove the metal layer 74 which is not reacted into the metal halide.

如上所述,為了避免電晶體的設計因元件積集度的增加而縮小之後所衍生的MOS短通道效應(short channel effects),並改善積體電路的內連線電阻值(interconnect resistance),因此必須縮小電晶體之源極與汲極的接合深度(junction depth)來製作含有金屬矽化物之電晶體。然而在源極與汲極的接合深度縮小的同時,若薄化源極與汲極上的 金屬矽化物的厚度,則可能會造成過高的內連線電阻值(interconnect resistance)與接觸電阻(contact resistance);但是若維持源極與汲極上的金屬矽化物在一定厚度,則可能會導致源極/汲極區72和矽基底60之間的PN接合與矽化金屬層76間之距離過近而使MOS電晶體發生誘發接合漏電(junction leakage)。而且在進行矽化金屬反應前之濕式清洗製程所使用的溶劑亦會對閘極與側壁子之間的襯墊層造成侵蝕,使後續進行矽化金屬反應時,矽化金屬更容易接近通道區域,而產生所謂「矽化鎳導通(nickel silicide piping)」效應。As described above, in order to avoid the MOS short channel effects derived from the reduction in the design of the transistor due to the increase in the degree of component accumulation, and to improve the interconnect resistance of the integrated circuit, The junction depth of the source and the drain of the transistor must be reduced to produce a transistor containing a metal telluride. However, while the junction depth between the source and the drain is reduced, if the source and the drain are thinned The thickness of the metal telluride may cause excessive interconnect resistance and contact resistance; however, if the metal telluride on the source and drain is maintained at a certain thickness, it may result in The distance between the PN junction between the source/drain region 72 and the germanium substrate 60 and the germanium metal layer 76 is too close to cause junction leakage of the MOS transistor. Moreover, the solvent used in the wet cleaning process before the deuteration metal reaction also causes erosion of the liner layer between the gate and the sidewall, so that the subsequent deuteration metal reaction makes the deuterated metal more accessible to the channel region. A so-called "nickel silicide piping" effect is produced.

除此之外,部份之金屬矽化物的熱穩定性(thermal stability)不佳,即使還未進行快速升溫退火處理之前,一開始在金屬濺鍍製程中形成的初鍍膜(as-deposition)也會由於產生電漿之PVD反應室之製程溫度較高,或因為金屬沈積前之除水氣步驟的高溫度而形成呈多晶狀(polycrystalline)結構的金屬矽化物,亦即當溫度太高或高溫處理時間稍長時,金屬矽化物就會發生團塊化(agglomeration)的現象,變成一塊塊不相聯的團狀物,導致片電阻(sheet resistance)的上升,甚至在後續之高溫製程中發生轉換,消耗過多的矽,而在淺接面上造成尖突(spiking)的現象或形成高電阻率(resistivity)的結構,例如低電阻率之矽化鎳(NiSi)型態(約小於20μΩ-cm)會被轉變成高電阻率 的二矽化鎳(NiSi2 )型態(約50μΩ-cm)。In addition, the thermal stability of some metal halides is not good, and the as-deposition formed in the metal sputtering process is not even before the rapid temperature annealing treatment. A metal telluride having a polycrystalline structure may be formed due to a higher process temperature of the PVD reaction chamber in which the plasma is generated, or because of the high temperature of the water removal step before the metal deposition, that is, when the temperature is too high or When the high temperature treatment time is slightly longer, the metal telluride will agglomerate and become a piece of unconnected mass, resulting in an increase in sheet resistance, even in the subsequent high temperature process. Conversion occurs, excessive enthalpy is consumed, and spiking occurs on the shallow joint or a structure that forms a high resistivity, such as a low resistivity nickel (NiSi) type (about less than 20 μΩ - Cm) will be converted into a high resistivity nickel (NiSi 2 ) type (about 50 μΩ-cm).

本發明之主要目的是提供一種製作金氧半導體電晶體的方法,以改善習知在製作具有金屬矽化物的電晶體時容易產生矽化鎳導通或金屬矽化物發生團塊化等情形。SUMMARY OF THE INVENTION A primary object of the present invention is to provide a method for fabricating a MOS transistor to improve the conventional formation of a nickel halide conduction or a metal sulphide agglomeration when a transistor having a metal ruthenium is produced.

本發明之較佳實施例是提供一種製作金氧半導體電晶體的方法,包含有下列步驟。首先提供一半導體基底,其具有一閘極結構於上,且閘極結構具有一閘極介電層以及一閘極導電層。接著形成一源極/汲極區域於半導體基底中,並進行一清洗步驟以去除半導體基底表面的氧化物。然後利用一氧化劑對半導體基底表面進行一氧化製程,以形成一氧化層於半導體基底表面。然後利用一含氟電漿對半導體基底進行一表面處理,使含氟電漿與該氧化層反應而形成一含氟介面層,並接著沈積一金屬層於半導體基底上。最後對半導體基底進行一熱處理以形成一矽化金屬層。A preferred embodiment of the present invention provides a method of fabricating a MOS transistor comprising the following steps. First, a semiconductor substrate is provided having a gate structure thereon, and the gate structure has a gate dielectric layer and a gate conductive layer. A source/drain region is then formed in the semiconductor substrate and a cleaning step is performed to remove oxides from the surface of the semiconductor substrate. An oxidizing agent is then used to oxidize the surface of the semiconductor substrate to form an oxide layer on the surface of the semiconductor substrate. The semiconductor substrate is then surface treated with a fluorine-containing plasma to react the fluorine-containing plasma with the oxide layer to form a fluorine-containing interface layer, and then a metal layer is deposited on the semiconductor substrate. Finally, a heat treatment is performed on the semiconductor substrate to form a deuterated metal layer.

本發明主要在進行金屬矽化物製程前先利用一清洗步驟完全去除半導體基底表面的原生氧化物,然後再進行一氧化製程,使半導體基底表面形成一氧化層。接著對此氧化層進行一電漿處理,使氧化層轉化為一含氟介面層,然後再進行後續的金屬矽化物製程。由於含氟介面層中的氟 原子可在矽化金屬反應時使矽化金屬不至過於接近通道區域,本發明可藉由此含氟介面層來改善矽化金屬製程中容易產生導通或團塊化的情形。The invention mainly removes the native oxide on the surface of the semiconductor substrate by a cleaning step before performing the metal telluride process, and then performs an oxidation process to form an oxide layer on the surface of the semiconductor substrate. The oxide layer is then subjected to a plasma treatment to convert the oxide layer into a fluorine-containing interface layer, followed by a subsequent metal halide process. Due to fluorine in the fluorine-containing interface layer The atom can make the deuterated metal not too close to the channel region when the deuterated metal reacts, and the present invention can improve the situation in which the conduction or agglomeration is easily generated in the deuterated metal process by using the fluorine-containing interfacial layer.

請參照第3圖至第7圖,第3圖至第7圖為本發明較佳實施例製作一金氧半導體電晶體的製程示意圖。如第3圖所示,首先提供一半導體基底100,例如一晶圓(wafer)或矽覆絕緣(SOI)基底等,該基底上或基底中可針對不同產品需求與製程設計而包含有閘極、源極/汲極區域、絕緣區域、字元線或電阻等結構,在本發明第3圖至第7圖之最佳實施例中是以MOS電晶體的閘極結構與源極/汲極區域進行說明。如第3圖所示,閘極結構106包含有一閘極介電層102以及一閘極導電層104。閘極介電層102可由矽氧化合物、氮化合物、氮氧化合物、金屬氧化物等中之一者或多者所構成,而閘極104則是由摻雜多晶矽(doped polysilicon)、金屬矽化物或金屬等導電材料所構成。閘極104頂部另設有一頂保護層124,且頂保護層124是由氮化矽或氧化矽等介電材料所構成。Please refer to FIG. 3 to FIG. 7 . FIG. 3 to FIG. 7 are schematic diagrams showing a process for fabricating a MOS transistor according to a preferred embodiment of the present invention. As shown in FIG. 3, a semiconductor substrate 100 is first provided, such as a wafer or a silicon-on-insulator (SOI) substrate, etc., which may include gates for different product requirements and process designs on or in the substrate. The structure of the source/drain region, the insulating region, the word line or the resistor, etc., in the preferred embodiment of the third to seventh embodiments of the present invention, the gate structure and the source/drain of the MOS transistor The area is explained. As shown in FIG. 3, the gate structure 106 includes a gate dielectric layer 102 and a gate conductive layer 104. The gate dielectric layer 102 may be composed of one or more of a silicon oxide compound, a nitrogen compound, a nitrogen oxide compound, a metal oxide, etc., and the gate 104 is doped polysilicon, metal telluride. Or a conductive material such as metal. A top protective layer 124 is further disposed on the top of the gate 104, and the top protective layer 124 is formed of a dielectric material such as tantalum nitride or tantalum oxide.

隨後進行一輕摻雜離子佈植製程,利用閘極104做為一遮罩,將一輕摻雜質(圖未示)植入閘極104旁相對兩側的半導體基底100內,以形成一源極/汲極延伸(source/drain extension,SDE)或輕摻雜源極/汲極110。而植入的雜質類型則與MOS的類型有關;若是NMOS會植入N型雜質如磷或砷,若是PMOS會植入P型雜質如硼。應注意,在源極/汲極延伸或輕摻雜源極/汲極形成前,可利用沈積與蝕刻製程在閘極結構106的周圍側壁形成選擇性的側壁子(圖未示);因此在進行輕摻雜離子佈植製程時,會利用閘極104與此選擇性的側壁子來做為遮罩而植入雜質。Subsequently, a lightly doped ion implantation process is performed, and a lightly doped material (not shown) is implanted into the semiconductor substrate 100 on opposite sides of the gate 104 to form a mask. Source/drain extension (source/drain) Extension, SDE) or lightly doped source/drain 110. The type of impurity implanted is related to the type of MOS; if the NMOS is implanted with N-type impurities such as phosphorus or arsenic, if the PMOS is implanted with P-type impurities such as boron. It should be noted that a selective sidewall (not shown) may be formed on the surrounding sidewalls of the gate structure 106 using a deposition and etching process prior to source/drain extension or lightly doped source/drain formation; When performing a lightly doped ion implantation process, the gate 104 and the selective sidewalls are used as a mask to implant impurities.

接著利用沉積與蝕刻製程,於閘極結構106周圍側壁形成一選擇性的襯墊層107,例如一矽氧層,以及一由氮矽化合物所組成的單一側壁子或複數側壁子108。其中,襯墊層107與側壁子108的材料可為任何絕緣材料。Next, a selective liner layer 107, such as an oxygen layer, and a single sidewall or a plurality of sidewalls 108 composed of a nitrogen ruthenium compound are formed on the sidewalls of the gate structure 106 by a deposition and etching process. The material of the backing layer 107 and the sidewall spacers 108 may be any insulating material.

接著進行一重摻雜離子佈植製程,利用閘極104與側壁子108做為遮罩,將一重摻雜質(圖未示)植入半導體基底100內,以於半導體基底100中形成一摻雜濃度較高的源極/汲極區域112。與輕摻雜源極與汲極110的植入雜質類型相同,NMOS會植入N型雜質如磷或砷,PMOS會植入P型雜質如硼。緊接著進行一高溫回火(thermal annealing)製程,利用1000至1050℃的高溫來活化半導體基底100內的摻雜質,並同時修補在各離子佈植製程中受損之半導體基底100表面的晶格結構。Then, a heavily doped ion implantation process is performed, and a heavily doped substance (not shown) is implanted into the semiconductor substrate 100 by using the gate 104 and the sidewall spacers 108 as a mask to form a doping in the semiconductor substrate 100. A higher concentration source/drain region 112. Unlike the implanted impurity type of the lightly doped source and the drain 110, the NMOS implants an N-type impurity such as phosphorus or arsenic, and the PMOS implants a P-type impurity such as boron. A high temperature tempering process is then performed to activate the doping in the semiconductor substrate 100 using a high temperature of 1000 to 1050 ° C, and simultaneously repair the crystal on the surface of the semiconductor substrate 100 damaged in each ion implantation process. Grid structure.

熟知此項技術者應瞭解,雖然本發明以上列方式詳細敘述側壁子、輕摻雜源極/汲極、源極/汲極的形成,但本發明並不限於此。所有能夠形成側壁子、輕摻雜源極/汲極、源極/汲極的製造方式皆項包含於本發明之範疇。例如,側壁子、輕摻雜源極/汲極、源極/汲極的形成順序可改變。在一實施例中,可先形成單一或複數側壁子、接著形成輕摻雜源極/汲極,最後去除該單一側壁子或複數側壁子之最外層而進行源極/汲極的植入。在另一實施例中,除了原本的側壁子、輕摻雜源極/汲極、源極/汲極的形成之外,更可在形成源極/汲極之前先於閘極結構的兩側形成溝槽並以磊晶方式在溝槽中成長NMOS、PMOS各自所需的材料如SiC、SiGe。It should be understood by those skilled in the art that although the above aspects of the present invention describe in detail the formation of the sidewall, lightly doped source/drain, source/drain, the invention is not limited thereto. All manufacturing methods capable of forming a sidewall, a lightly doped source/drain, and a source/drain are included in the scope of the present invention. For example, the order in which the sidewalls, the lightly doped source/drain, and the source/drain are formed may vary. In one embodiment, a single or a plurality of sidewalls may be formed first, followed by formation of a lightly doped source/drain, and finally the outermost layer of the single sidewall or plurality of sidewalls may be removed for source/drain implantation. In another embodiment, in addition to the original sidewall, lightly doped source/drain, source/drain formation, the source/drain may be formed on both sides of the gate structure before forming the source/drain A trench is formed and a material such as SiC or SiGe required for NMOS and PMOS is grown in the trench in an epitaxial manner.

隨後進行一清洗步驟,利用氟化氫(hydrogen fluoride,HF)等清洗溶液完全清除殘留於源極/汲極區域112表面的原生氧化物(native oxide)與其他不純物質(impurities),並可選擇性進行一除水氣(degas)步驟來移除因清洗步驟所形成之多餘水氣。然後如第4圖所示,利用一氧化劑(oxidant)對半導體基底100表面進行一氧化製程,以形成一氧化層120於半導體基底100表面。根據本發明之較佳實施例,本發明在進行氧化製程時主要是利用氨水與過氧化氫混合物(ammonium peroxide mixture,APM)或過氧化氫(H2 O2 )等氧化劑對半導體基底100表面進行氧化處理,以於半導體 基底100表面形成一厚度約介於5埃至20埃的氧化層120,且形成的氧化層120主要是由二氧化矽(SiO2 )所構成。應注意,在此步驟中的製程條件如溫度、氧化劑濃度、氧化時間等可加以控制,以形成品質良好且具有預期厚度的氧化層120。Subsequently, a cleaning step is performed to completely remove the native oxide and other impurities remaining on the surface of the source/drain region 112 by using a cleaning solution such as hydrogen fluoride (HF), and can selectively perform A degas removal step is performed to remove excess moisture formed by the cleaning step. Then, as shown in FIG. 4, the surface of the semiconductor substrate 100 is subjected to an oxidation process using an oxidant to form an oxide layer 120 on the surface of the semiconductor substrate 100. According to a preferred embodiment of the present invention, the present invention mainly utilizes an oxidizing agent such as ammonia water mixture (APM) or hydrogen peroxide (H 2 O 2 ) to conduct the surface of the semiconductor substrate 100 during the oxidation process. The oxidation treatment is performed to form an oxide layer 120 having a thickness of about 5 angstroms to 20 angstroms on the surface of the semiconductor substrate 100, and the formed oxide layer 120 is mainly composed of cerium oxide (SiO 2 ). It should be noted that the process conditions such as temperature, oxidant concentration, oxidation time, and the like in this step can be controlled to form the oxide layer 120 of good quality and having a desired thickness.

如第5圖所示,接著利用一含氟電漿對半導體基底100進行一表面處理,使含氟電漿與氧化層120反應而形成一含氟介面層(fluorine-containing layer)122。在本較佳實施例中,本發明會先提供三氟化氮(NF3 )及氨氣(NH3 )等反應氣體,然後將此反應氣體進行電漿解離,以產生氟化銨(NH4 F)與氟化氫合氟化銨(NH4 F.HF)的混合氣體。接著利用氟化銨(NH4 F)與氟化氫合氟化銨(NH4 F.HF)的混合氣體來對半導體基底100表面的氧化層(SiO2 )120進行一表面處理,使上述含氟電漿與氧化層120反應,以於半導體基底100表面形成一由氟矽酸銨((NH4 )2 SiF6 )所構成的含氟介面層122。應注意,此電漿可以在處理室中以現場(in-situ)方式形成而直接與處理室中半導體基底100反應;或此電漿可以利用遠端電漿源所形成,接著被輸送至處理室中與半導體基底100反應。又,此反應可於低溫的情況下進行,如室溫。依據本發明之較佳實施例,本發明即可利用此含氟介面層中的氟原子來避免後續形成的金屬矽化物產生導通(piping)或團塊化的情形。As shown in FIG. 5, the semiconductor substrate 100 is then surface treated with a fluorine-containing plasma to react the fluorine-containing plasma with the oxide layer 120 to form a fluorine-containing layer 122. In the preferred embodiment, the present invention first provides a reaction gas such as nitrogen trifluoride (NF 3 ) and ammonia (NH 3 ), and then the plasma is dissociated by plasma to produce ammonium fluoride (NH 4 ). F) a mixed gas with hydrogen fluoride ammonium fluoride (NH 4 F.HF). Then, a surface of the oxide layer (SiO 2 ) 120 on the surface of the semiconductor substrate 100 is subjected to a surface treatment using a mixed gas of ammonium fluoride (NH 4 F) and hydrogen fluoride ammonium fluoride (NH 4 F. HF) to make the fluorine-containing electricity. The slurry reacts with the oxide layer 120 to form a fluorine-containing interface layer 122 composed of ammonium fluoroantimonate ((NH 4 ) 2 SiF 6 ) on the surface of the semiconductor substrate 100. It should be noted that this plasma may be formed in an in-situ manner in the processing chamber to directly react with the semiconductor substrate 100 in the processing chamber; or the plasma may be formed using a remote plasma source and then transported to a process. The chamber reacts with the semiconductor substrate 100. Further, the reaction can be carried out at a low temperature such as room temperature. In accordance with a preferred embodiment of the present invention, the present invention utilizes fluorine atoms in the fluorine-containing interface layer to avoid the occurrence of piging or agglomeration of subsequently formed metal halides.

接著如第6圖所示,可選擇性利用現場(in-situ)沈積的方式,控制物理氣相沉積(PVD)反應室內的製程溫度在150℃以下,然後於半導體基底100上濺鍍一金屬層114,並覆蓋於閘極結構106、側壁子108以及半導體基底100表面的含氟介面層122。其中,金屬層114可選自鎢、鈷、鈦、鎳、鉑、鈀、鉬等或上述金屬的合金。另需注意的是,本發明可在形成金屬層114之前以額外的蝕刻製程或直接以去除氧化層120的清洗步驟來同時去除閘極導電層104頂部的頂保護層124,此皆屬本發明所涵蓋的範圍。Then, as shown in FIG. 6, the in-situ deposition method can be selectively used to control the process temperature in the physical vapor deposition (PVD) reaction chamber below 150 ° C, and then a metal is sputtered on the semiconductor substrate 100. The layer 114 covers the gate structure 106, the sidewall spacers 108, and the fluorine-containing interface layer 122 on the surface of the semiconductor substrate 100. The metal layer 114 may be selected from the group consisting of tungsten, cobalt, titanium, nickel, platinum, palladium, molybdenum, etc., or an alloy of the above metals. It should be noted that the present invention can simultaneously remove the top protective layer 124 on the top of the gate conductive layer 104 by an additional etching process or directly by the cleaning step of removing the oxide layer 120 before forming the metal layer 114. The scope covered.

然後持續維持PVD反應室內的製程溫度低於150℃,並選擇性地沈積一由鈦或氮化鈦所組成的遮蓋層116於金屬層114表面。由於部份金屬矽化物在形成之後,例如Nisi等常會造成極大的接面漏電流,因此本發明可在金屬層114形成後再覆蓋一遮蓋層116於金屬層114上,除了可避免快速升溫退火(RTA)製程中的氧原子擴散進入,又可同時改善在元件隔離區邊緣的材料應力。Then, the process temperature in the PVD reaction chamber is continuously maintained below 150 ° C, and a mask layer 116 composed of titanium or titanium nitride is selectively deposited on the surface of the metal layer 114. Since a part of the metal telluride is formed, for example, Nisi or the like often causes a large junction leakage current, the present invention can cover a capping layer 116 on the metal layer 114 after the metal layer 114 is formed, except that rapid temperature rising annealing can be avoided. The diffusion of oxygen atoms in the (RTA) process can simultaneously improve the material stress at the edge of the element isolation region.

接著如第7圖所示,進行一熱處理,例如一快速升溫退火製程(RTA),將半導體基底100加熱至大約200~400℃。在進行加熱步驟的同時,任何與金屬層114所接觸到的閘極104以及源極/汲極區域112表面將會反應並形成矽化金屬層118。然後於快速升溫退火處理後,再利用典型的濕 蝕刻化學溶液,例如氨水、過氧化氫、鹽酸、硫酸、硝酸、以及醋酸等混和溶液來進行一蝕刻步驟,用以移除未反應的金屬層114及遮蓋層116。至此即完成本發明較佳實施例製作一具有矽化金屬層的金氧半導體電晶體結構。Next, as shown in FIG. 7, a heat treatment, such as a rapid thermal annealing process (RTA), is performed to heat the semiconductor substrate 100 to about 200 to 400 °C. While the heating step is being performed, any of the gate 104 and source/drain regions 112 that are in contact with the metal layer 114 will react and form a deuterated metal layer 118. Then after the rapid temperature annealing treatment, the typical wet is used. An etching solution such as ammonia water, hydrogen peroxide, hydrochloric acid, sulfuric acid, nitric acid, and acetic acid is etched to perform an etching step for removing the unreacted metal layer 114 and the capping layer 116. Thus, a preferred embodiment of the present invention has been completed to fabricate a MOS transistor crystal structure having a deuterated metal layer.

應注意,上述之含氟電漿處理步驟、金屬層114的濺鍍步驟、遮蓋層116的濺鍍步驟及熱處理步驟可在同一叢集(cluster)之不同處理室中進行,意即,在毋需破真空的情況下便可完成此三個步驟,因此減少了基底暴露於外界髒污、水氣的機會。It should be noted that the above-mentioned fluorine-containing plasma treatment step, the sputtering step of the metal layer 114, the sputtering step of the mask layer 116, and the heat treatment step can be performed in different processing chambers of the same cluster, that is, in the case of These three steps can be completed under vacuum, thus reducing the chance of the substrate being exposed to external dirt and moisture.

值得注意的是,上述實施例是以含氟介面層122形成後直接在含氟介面層122上形成矽化金屬為例。換句話說,上述實施例在形成含氟介面層122與後續金屬層沈積之間並不會進行任何額外的製程。但本發明不侷限於這種作法,本發明又可在含氟介面層122形成後先進行一加熱製程例如熱板加熱、燈具加熱或利用其他加熱元件所進行的加熱製程,利用高溫將含氟介面層122中的氟原子驅入(drive-in)半導體基底100中,並藉由此驅入動作直接調整氟原子的所在位置,隨後再進行所需的矽化金屬層沈積與另一快速升溫退火製程,此製程方法與順序均屬本發明所涵蓋的範圍。應注意,上述之含氟電漿處理步驟、含氟介面層形成後的加熱步驟、金屬層114的濺鍍步驟、遮蓋層 116的濺鍍步驟及快速升溫步驟可在同一叢集(cluster)之不同處理室中進行,意即,在毋需破真空的情況下便可完成此三個步驟,因此減少了基底暴露於外界髒污、水氣的機會。此外,含氟介面層122的厚度及驅入半導體基底100之氟原子含量也會隨著氧化層120的厚度而隨之提整。舉例來說,當新增氧化層120的厚度增加時,後續形成之含氟介面層122的厚度也會隨之提升。而當含氟介面層122的厚度隨之增加時,則可驅入至半導體基底100中的氟原子含量也會隨著提升。It should be noted that the above embodiment is exemplified by forming a vaporized metal directly on the fluorine-containing interface layer 122 after the fluorine-containing interface layer 122 is formed. In other words, the above embodiment does not perform any additional process between forming the fluorine-containing interface layer 122 and subsequent metal layer deposition. However, the present invention is not limited to this method. In the present invention, after the fluorine-containing interface layer 122 is formed, a heating process such as hot plate heating, lamp heating, or a heating process using other heating elements may be performed, and the fluorine is used at a high temperature. The fluorine atoms in the interface layer 122 are driven-in the semiconductor substrate 100, and the position of the fluorine atoms is directly adjusted by the driving action, and then the desired deuterated metal layer deposition and another rapid temperature annealing are performed. The process, the process method and the sequence are all covered by the present invention. It should be noted that the above-described fluorine-containing plasma treatment step, the heating step after formation of the fluorine-containing interface layer, the sputtering step of the metal layer 114, and the hiding layer The sputtering step and the rapid temperature increasing step of 116 can be performed in different processing chambers of the same cluster, that is, the three steps can be completed without breaking the vacuum, thereby reducing the exposure of the substrate to the external environment. The opportunity of pollution and moisture. In addition, the thickness of the fluorine-containing interface layer 122 and the fluorine atom content driven into the semiconductor substrate 100 are also adjusted along with the thickness of the oxide layer 120. For example, as the thickness of the additional oxide layer 120 increases, the thickness of the subsequently formed fluorine-containing interface layer 122 also increases. When the thickness of the fluorine-containing interface layer 122 is increased, the fluorine atom content that can be driven into the semiconductor substrate 100 is also increased.

綜上所述,本發明主要在進行金屬矽化物製程前先利用一清洗步驟完全去除半導體基底表面的原生氧化物,然後再進行一氧化製程,使半導體基底表面形成一氧化層。接著對此氧化層進行一電漿處理,使氧化層轉化為一含氟介面層,然後再進行後續的金屬矽化物製程。由於含氟介面層中的氟原子可在矽化金屬反應時使矽化金屬不至過於接近通道區域,並同時保護矽化金屬層受到除水氣高溫的影響,因此本發明可藉由此含氟介面層來有效改善矽化金屬製程中容易產生導通或團塊化的情形。In summary, the present invention mainly removes the native oxide on the surface of the semiconductor substrate by a cleaning step before performing the metal telluride process, and then performs an oxidation process to form an oxide layer on the surface of the semiconductor substrate. The oxide layer is then subjected to a plasma treatment to convert the oxide layer into a fluorine-containing interface layer, followed by a subsequent metal halide process. Since the fluorine atom in the fluorine-containing interface layer can make the deuterated metal not too close to the channel region when the deuterated metal reacts, and at the same time protect the deuterated metal layer from the high temperature of the deionized water, the present invention can thereby pass through the fluorine-containing interfacial layer To effectively improve the situation in which the lead metal or the agglomeration is prone to occur in the process of deuterated metal.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

60‧‧‧半導體基底60‧‧‧Semiconductor substrate

62‧‧‧閘極介電層62‧‧‧ gate dielectric layer

64‧‧‧閘極導電層64‧‧‧ gate conductive layer

66‧‧‧閘極結構66‧‧‧ gate structure

67‧‧‧襯墊層67‧‧‧ liner

68‧‧‧側壁子68‧‧‧ Sidewall

70‧‧‧輕摻雜源極/汲極70‧‧‧Lightly doped source/drain

72‧‧‧源極/汲極區域72‧‧‧Source/bungee area

74‧‧‧金屬層74‧‧‧metal layer

76‧‧‧矽化金屬層76‧‧‧Deuterated metal layer

100‧‧‧半導體基底100‧‧‧Semiconductor substrate

102‧‧‧閘極介電層102‧‧‧ gate dielectric layer

104‧‧‧閘極導電層104‧‧‧ gate conductive layer

106‧‧‧閘極結構106‧‧‧ gate structure

107‧‧‧襯墊層107‧‧‧ liner

108‧‧‧側壁子108‧‧‧ Sidewall

110‧‧‧輕摻雜源極/汲極110‧‧‧Lightly doped source/dip

112‧‧‧源極/汲極區域112‧‧‧Source/bungee area

114‧‧‧金屬層114‧‧‧metal layer

116‧‧‧遮蓋層116‧‧‧ Covering layer

118‧‧‧矽化金屬層118‧‧‧Deuterated metal layer

120‧‧‧氧化層120‧‧‧Oxide layer

122‧‧‧含氟介面層122‧‧‧Fluidated interface layer

124‧‧‧頂保護層124‧‧‧Top protective layer

第1圖與第2圖為習知製作一金氧半導體電晶體的製程示意圖。Fig. 1 and Fig. 2 are schematic views showing the process of fabricating a MOS transistor.

第3圖至第7圖為本發明較佳實施例製作一金氧半導體電晶體的製程示意圖。3 to 7 are schematic views showing a process for fabricating a MOS transistor according to a preferred embodiment of the present invention.

100‧‧‧半導體基底100‧‧‧Semiconductor substrate

102‧‧‧閘極介電層102‧‧‧ gate dielectric layer

104‧‧‧閘極104‧‧‧ gate

106‧‧‧閘極結構106‧‧‧ gate structure

107‧‧‧襯墊層107‧‧‧ liner

108‧‧‧側壁子108‧‧‧ Sidewall

110‧‧‧輕摻雜汲極110‧‧‧Lightly doped bungee

112‧‧‧源極/汲極區域112‧‧‧Source/bungee area

118‧‧‧矽化金屬層118‧‧‧Deuterated metal layer

122‧‧‧含氟介面層122‧‧‧Fluidated interface layer

Claims (14)

一種製作金氧半導體電晶體的方法,包含:提供一半導體基底,其具有一閘極結構,該閘極結構具有一閘極介電層與一閘極導電層;形成一源極/汲極區域於該半導體基底中;進行一清洗步驟以去除該半導體基底表面之氧化物;利用一氧化劑對該半導體基底表面進行一氧化製程,以形成一氧化層於該半導體基底表面;在形成該氧化層之後,利用一含氟電漿針對該氧化層反應而形成一含氟介面層;沈積一金屬層於該半導體基底上;以及對該半導體基底進行一熱處理以形成一矽化金屬層。 A method of fabricating a MOS transistor, comprising: providing a semiconductor substrate having a gate structure having a gate dielectric layer and a gate conductive layer; forming a source/drain region In the semiconductor substrate; performing a cleaning step to remove oxides on the surface of the semiconductor substrate; performing an oxidation process on the surface of the semiconductor substrate with an oxidizing agent to form an oxide layer on the surface of the semiconductor substrate; after forming the oxide layer Forming a fluorine-containing interfacial layer by reacting a fluorine-containing plasma with the oxide layer; depositing a metal layer on the semiconductor substrate; and subjecting the semiconductor substrate to a heat treatment to form a deuterated metal layer. 如申請專利範圍第1項所述之方法,其中該閘極結構另包含一側壁子設於該閘極導電層周圍。 The method of claim 1, wherein the gate structure further comprises a sidewall disposed around the gate conductive layer. 如申請專利範圍第1項所述之方法,其中該清洗步驟係利用氟化氫(HF)所達成。 The method of claim 1, wherein the washing step is carried out using hydrogen fluoride (HF). 如申請專利範圍第1項所述之方法,其中該氧化劑包含有氨水與過氧化氫混合物(APM)或過氧化氫(H2 O2 )。The method of claim 1, wherein the oxidizing agent comprises a mixture of ammonia water and hydrogen peroxide (APM) or hydrogen peroxide (H 2 O 2 ). 如申請專利範圍第1項所述之方法,其中該氧化層之厚 度係介於5埃至20埃。 The method of claim 1, wherein the oxide layer is thick The degree is between 5 angstroms and 20 angstroms. 如申請專利範圍第1項所述之方法,其中該含氟電漿之反應氣體包含三氟化氮(NF3 )及氨氣(NH3 )。The method of claim 1, wherein the reaction gas of the fluorine-containing plasma comprises nitrogen trifluoride (NF 3 ) and ammonia (NH 3 ). 如申請專利範圍第1項所述之方法,其中該金屬層包含鎢、鈷、鈦、鎳、鉑、鈀、鉬或上述金屬的合金。 The method of claim 1, wherein the metal layer comprises tungsten, cobalt, titanium, nickel, platinum, palladium, molybdenum or an alloy of the above metals. 如申請專利範圍第1項所述之方法,其中於形成該含氟介面層之後及沈積該金屬層之前,另包含進行一加熱製程。 The method of claim 1, wherein the forming of the fluorine-containing interface layer and before depositing the metal layer further comprises performing a heating process. 如申請專利範圍第1項所述之方法,其中形成矽化金屬層之該加熱處理為快速升溫退火處理。 The method of claim 1, wherein the heat treatment for forming the deuterated metal layer is a rapid temperature annealing treatment. 如申請專利範圍第1項所述之方法,其中形成該源極/汲極之步驟更包含一植入步驟。 The method of claim 1, wherein the step of forming the source/drain further comprises an implanting step. 如申請專利範圍第1項所述之方法,其中形成該源極/汲極之步驟更包含:在該閘極結構的兩側形成凹槽;及以一材料填滿該凹槽。 The method of claim 1, wherein the step of forming the source/drain further comprises: forming a groove on both sides of the gate structure; and filling the groove with a material. 如申請專利範圍第11項所述之方法,其中該填滿步驟更包含以現場摻雜摻質之方式磊晶成長該材料。 The method of claim 11, wherein the filling step further comprises epitaxially growing the material by doping the dopant in the field. 如申請專利範圍第11項所述之方法,其中該填滿步驟更包含:磊晶成長該材料;及植入摻質。 The method of claim 11, wherein the filling step further comprises: epitaxially growing the material; and implanting the dopant. 如申請專利範圍第1項所述之方法,其中該清洗步驟另包含完全或部分去除該氧化物。 The method of claim 1, wherein the cleaning step further comprises completely or partially removing the oxide.
TW97130677A 2008-08-12 2008-08-12 Method for fabricating mos transistors TWI427707B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97130677A TWI427707B (en) 2008-08-12 2008-08-12 Method for fabricating mos transistors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97130677A TWI427707B (en) 2008-08-12 2008-08-12 Method for fabricating mos transistors

Publications (2)

Publication Number Publication Date
TW201007850A TW201007850A (en) 2010-02-16
TWI427707B true TWI427707B (en) 2014-02-21

Family

ID=44827232

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97130677A TWI427707B (en) 2008-08-12 2008-08-12 Method for fabricating mos transistors

Country Status (1)

Country Link
TW (1) TWI427707B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077750A (en) * 1998-10-27 2000-06-20 Lg Semicon Co., Ltd. Method for forming epitaxial Co self-align silicide for semiconductor device
US20070238321A1 (en) * 2006-04-10 2007-10-11 Takuya Futase Method of manufacturing semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077750A (en) * 1998-10-27 2000-06-20 Lg Semicon Co., Ltd. Method for forming epitaxial Co self-align silicide for semiconductor device
US20070238321A1 (en) * 2006-04-10 2007-10-11 Takuya Futase Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
TW201007850A (en) 2010-02-16

Similar Documents

Publication Publication Date Title
KR0135163B1 (en) Manufacturing method of mos transistor with shallow
US6500720B2 (en) Method of manufacturing semiconductor device
US7569457B2 (en) Method of fabricating semiconductor device
US20060011996A1 (en) Semiconductor structure including silicide regions and method of making same
JP4146859B2 (en) Manufacturing method of semiconductor device
US7803702B2 (en) Method for fabricating MOS transistors
US6300206B1 (en) Method for manufacturing semiconductor device
US8273631B2 (en) Method of fabricating n-channel metal-oxide semiconductor transistor
US20070059878A1 (en) Salicide process
KR100685898B1 (en) method for manufacturing of semiconductor device
US6545326B2 (en) Method of fabricating semiconductor device
TWI427707B (en) Method for fabricating mos transistors
TWI509708B (en) Method for fabricating mos transistor
JP4152265B2 (en) Manufacturing method of semiconductor device
US20060057853A1 (en) Thermal oxidation for improved silicide formation
KR20030055391A (en) A method for forming a silicide layer of a semiconductor device
US7169655B2 (en) Field effect transistors and methods for manufacturing field effect transistors
JP2009094395A (en) Semiconductor device and its manufacturing method
KR100765617B1 (en) Salicidation method for semiconductor manufacturing
TWI480957B (en) Method of fabricating n-channel metal-oxide semiconductor transistor
KR100565755B1 (en) Method for manufacturing of semiconductor device
JPH07249761A (en) Semiconductor device and its fabrication
KR100613585B1 (en) Method For Manufacturing Semiconductor Devices
JPH07147402A (en) Manufacture of semiconductor device
TW201117301A (en) Method for fabricating MOS transistor