TWI426603B - Hole-based ultra-deep photodiode in a cmos image sensor and a process thereof - Google Patents

Hole-based ultra-deep photodiode in a cmos image sensor and a process thereof Download PDF

Info

Publication number
TWI426603B
TWI426603B TW99141774A TW99141774A TWI426603B TW I426603 B TWI426603 B TW I426603B TW 99141774 A TW99141774 A TW 99141774A TW 99141774 A TW99141774 A TW 99141774A TW I426603 B TWI426603 B TW I426603B
Authority
TW
Taiwan
Prior art keywords
type
ultra
deep
image sensor
region
Prior art date
Application number
TW99141774A
Other languages
Chinese (zh)
Other versions
TW201225268A (en
Inventor
Yang Wu
Feixia Yu
Original Assignee
Himax Imaging Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Himax Imaging Inc filed Critical Himax Imaging Inc
Priority to TW99141774A priority Critical patent/TWI426603B/en
Publication of TW201225268A publication Critical patent/TW201225268A/en
Application granted granted Critical
Publication of TWI426603B publication Critical patent/TWI426603B/en

Links

Description

互補式金屬氧化物半導體影像感測器之電洞型超深光二極體及其製程方法Hole-type ultra-deep light diode of complementary metal oxide semiconductor image sensor and manufacturing method thereof

本發明係有關一種互補式金屬氧化物半導體(CMOS)影像感測器,特別是關於一種應用於汽車之CMOS影像感測器的電洞型超深光二極體。
The present invention relates to a complementary metal oxide semiconductor (CMOS) image sensor, and more particularly to a cavity type ultra-deep light diode for use in a CMOS image sensor of an automobile.

互補式金屬氧化物半導體(CMOS)影像感測器普遍應用於行動電話之相機、網路攝影機、監視攝影機、玩具或醫療設備。CMOS影像感測器還可應用於嚴厲的環境,例如汽車應用,由於其嚴厲的操作環境,因此對於影像感測器是非常苛求的。為了應用於汽車,必須解決CMOS影像感測器的一些問題。Complementary metal oxide semiconductor (CMOS) image sensors are commonly used in mobile phone cameras, webcams, surveillance cameras, toys or medical devices. CMOS image sensors can also be used in harsh environments, such as automotive applications, which are very demanding for image sensors due to their harsh operating environment. In order to be applied to a car, some problems of the CMOS image sensor must be solved.

第一,為了讓汽車於夜間能夠獲得更多細節訊息以進行判定,影像感測器必須具有較高的靈敏度或信號雜訊比(SNR)。First, in order for the car to get more detailed information at night to make a decision, the image sensor must have a higher sensitivity or signal to noise ratio (SNR).

第二,由於汽車的操作溫度會高於一般應用,例如行動電話之相機,因此需要較低的暗電流,用以維持高動態範圍,降低暗信號非均勻性(dark signal non-uniformity, DSNU)及降低暗信號脈衝雜訊(shot noise)。Second, since the operating temperature of the car is higher than that of a general application, such as a camera for a mobile phone, a lower dark current is required to maintain a high dynamic range and reduce dark signal non-uniformity (DSNU). And reduce dark signal pulse noise.

第三,由於夜間的路面場景屬於高動態範圍型式,因此CMOS影像感測器於超亮區域需要良好的外溢(blooming)控制,以防止其周圍較暗區域受到超亮區域之外溢電荷而沖淡。對於傳統一些高動態範圍機制,由於其光二極體的累加(integration)時間不同,因此較長累加之光二極體會破壞較短累加之光二極體的訊息。Third, since the road surface scene at night is of a high dynamic range type, the CMOS image sensor requires good bloom control in the super bright area to prevent the dark areas around it from being overcharged by the extra bright areas. For some traditional high dynamic range mechanisms, due to the different integration time of the photodiode, the longer accumulated photodiode will destroy the message of the shorter accumulated photodiode.

第四,由於汽車尾燈及交通號誌具有較強的紅光成分,因此紅光訊息對於汽車應用是很重要的。再者,為了作出更佳的判定,影像感測器需要收集可見光譜之外的紅外光及近紅外光訊息。Fourth, because the taillights and traffic signs have strong red light components, red light information is very important for automotive applications. Furthermore, in order to make a better decision, the image sensor needs to collect infrared light and near-infrared light information outside the visible spectrum.

傳統CMOS影像感測器的每一像素係以電子來表示信號,且像素中的電晶體皆為N型金屬氧化物半導體(NMOS)電晶體。於像素中,光子所產生的電洞及電子分別儲存於光二極體的P側及N側。於曝光後,NMOS傳送閘僅傳送電子至N型浮動擴散(floating diffusion, FD)節點,再由FD接面電容將電子轉換為電壓信號。該電壓信號接著由後續電路傳遞至像素的輸出。Each pixel of a conventional CMOS image sensor expresses a signal electronically, and the transistors in the pixel are all N-type metal oxide semiconductor (NMOS) transistors. In the pixel, holes and electrons generated by photons are stored on the P side and the N side of the photodiode, respectively. After exposure, the NMOS transfer gate only transmits electrons to the N-type floating diffusion (FD) node, which converts the electrons into a voltage signal. This voltage signal is then passed by the subsequent circuit to the output of the pixel.

為了改善上述的暗電流及外溢問題,因而揭露如第一圖所示的電洞型光二極體,可參考Eric Stevens等人所發表之“Low-Crosstalk and Low-Dark-Current CMOS Image-Sensor technology Using a Hole-Based Detector”, 2008年IEEE International Solid-State Circuits Conference, 60-61。In order to improve the above-mentioned dark current and overflow problems, the hole type photodiode as shown in the first figure is disclosed. For reference, "Low-Crosstalk and Low-Dark-Current CMOS Image-Sensor technology" by Eric Stevens et al. Using a Hole-Based Detector", IEEE International Solid-State Circuits Conference 2008, 60-61.

第一圖所示之電洞型光二極體較傳統電子型CMOS影像感測器更能抑制暗電流。其中,P型基底10可作為外溢電洞的排放區,以轉移出基底(bulk)暗電流。此外,藉由Si/SiO2 介面處之摻質(dopant)聚集,例如淺溝槽隔離區(STI)12與N+井14之間,暗電流可大幅降低,此異於電子型CMOS影像感測器會於該處產生摻質分離。另外,由於電洞的遷移率(mobility)小於電子,因此在相同電場及電荷分佈狀況下,電洞型CMOS影像感測器的漂流(drift)電流及擴散電流遠小於電子型CMOS影像感測器。再者,由於接地之P型基底10提供低電位以排放電洞型光二極體所外溢電洞,因而可提供良好外溢控制,亟適用於汽車應用。The hole-type photodiode shown in the first figure is more capable of suppressing dark current than conventional electronic CMOS image sensors. Wherein, the P-type substrate 10 can serve as a discharge area of the overflow hole to transfer the bulk dark current. In addition, the dark current can be greatly reduced by the doping of the dopant at the Si/SiO 2 interface, such as the shallow trench isolation region (STI) 12 and the N+ well 14, which is different from the electronic CMOS image sensing. The device will produce a dopant separation there. In addition, since the mobility of the hole is smaller than that of the electron, the drift current and the diffusion current of the cavity type CMOS image sensor are much smaller than that of the electronic CMOS image sensor under the same electric field and charge distribution. . Moreover, since the grounded P-type substrate 10 provides a low potential to discharge the hole of the hole-type photodiode, it can provide good overflow control and is suitable for automotive applications.

然而,由於N型摻質重於P型摻質,使得電洞型CMOS影像感測器的P型光二極體16之深度受限於N型井18的植入深度。例如,N型磷的原子量為30.97或砷為74.92,而P型硼的原子量為10.81。因此,淺P型光二極體16無法吸收足夠電子-電洞對以涵蓋紅光/近紅外光的吸收區域。另一方面,對於給定深度的P型光二極體16,N型井18的深度將受限於干擾(crosstalk)及外溢控制。如果太深,則擴散電荷會進入鄰近像素,而無法被P型光二極體16所吸收。However, since the N-type dopant is heavier than the P-type dopant, the depth of the P-type photodiode 16 of the hole-type CMOS image sensor is limited by the implantation depth of the N-type well 18. For example, the atomic weight of the N-type phosphorus is 30.97 or the arsenic is 74.92, and the atomic weight of the P-type boron is 10.81. Therefore, the shallow P-type photodiode 16 cannot absorb a sufficient electron-hole pair to cover the absorption region of the red/near-infrared light. On the other hand, for a given depth of P-type photodiode 16, the depth of the N-type well 18 will be limited by crosstalk and spillover control. If it is too deep, the diffusion charge will enter adjacent pixels and cannot be absorbed by the P-type photodiode 16.

因此,亟需提出一種新穎CMOS影像感測器,以改進第一圖所示結構之紅光/近紅外光反應並維持其外溢及干擾控制。Therefore, there is a need to propose a novel CMOS image sensor to improve the red/near-infrared light response of the structure shown in the first figure and maintain its overflow and interference control.

鑑於上述,本發明實施例的目的之一在於提出一種互補式金屬氧化物半導體(CMOS)影像感測器之電洞型超深光二極體的結構及製程,其具有改良之紅光/近紅外光反應、降低之干擾、外溢及較小之暗電流。In view of the above, one of the objects of the embodiments of the present invention is to provide a structure and a process for a cavity type ultra-deep light diode of a complementary metal oxide semiconductor (CMOS) image sensor, which has an improved red/near infrared Photoreaction, reduced interference, spillover and less dark current.

根據本發明實施例,CMOS影像感測器之電洞型超深光二極體包含P型基底、N型磊晶層及超深P型光二極體植入區域。P型基底接地或連接至負電源供給。N型磊晶層成長於P型基底上,且連接至正電源供給。超深P型光二極體植入區域形成於N型磊晶層內。According to an embodiment of the invention, the hole-type ultra-deep light diode of the CMOS image sensor comprises a P-type substrate, an N-type epitaxial layer and an ultra-deep P-type photodiode implantation region. The P-type substrate is grounded or connected to a negative supply. The N-type epitaxial layer is grown on a P-type substrate and connected to a positive power supply. The ultra-deep P-type photodiode implantation region is formed in the N-type epitaxial layer.

為了增強紅光/近紅外光之較長波長反應並降低擴散干擾,第二圖提出之電子型光二極體具有一深N型光二極體20,其可吸收電子-電洞對以涵蓋紅光/近紅外光吸收區域並吸收更多信號。此外,可大量降低位於深N型光二極體20底下的P型磊晶層22之擴散電荷,因此,即可降低進入鄰近像素之擴散電荷。於第一圖中,因外溢排出所降低之干擾卻會造成不良的紅光/近紅外光反應。然而,第二圖則沒有第一圖之外溢排出情形。In order to enhance the longer wavelength response of red/near-infrared light and reduce diffusion interference, the electronic photodiode of the second figure has a deep N-type photodiode 20 that can absorb electron-hole pairs to cover red light. / Near-infrared light absorbs the area and absorbs more signals. In addition, the diffusion charge of the P-type epitaxial layer 22 under the deep N-type photodiode 20 can be largely reduced, and thus, the diffusion charge entering the adjacent pixel can be reduced. In the first figure, the interference caused by the overflow of the overflow will cause a poor red/near-infrared light reaction. However, the second map does not have a spillover of the first map.

為了兼顧第一圖及第二圖之優點,第三圖顯示本發明實施例之互補式金屬氧化物半導體(CMOS)影像感測器之電洞型超深光二極體的剖面圖。圖式僅顯示出主要組成元件,較詳細結構請參閱第四C圖。在本實施例中,”深”或”超深(ultra-deep)”係指大於0.5微米,例如0.5-2微米,在一較佳實施例中則指大於2微米。所揭露之光二極體可適用於嚴厲環境,例如汽車應用,但不以此為限。如第一圖所述,電洞型光二極體可達較低暗電流,因此本實施例之光二極體可符合汽車應用的嚴苛溫度要求。In order to take advantage of the advantages of the first and second figures, the third figure shows a cross-sectional view of a cavity-type ultra-deep light diode of a complementary metal oxide semiconductor (CMOS) image sensor according to an embodiment of the invention. The figure shows only the main components. For a more detailed structure, please refer to the fourth C diagram. In the present embodiment, "deep" or "ultra-deep" means greater than 0.5 microns, such as 0.5-2 microns, and in a preferred embodiment means greater than 2 microns. The disclosed light diodes can be used in harsh environments, such as automotive applications, but are not limited thereto. As described in the first figure, the cavity type photodiode can reach a lower dark current, so the photodiode of the embodiment can meet the severe temperature requirements of automotive applications.

在本實施例中,如同第一圖,P型基底30接地或連接至負電源供給。P型基底30用以排出外溢電洞,此有利於夜間的高動態範圍場景。於一般操作下,P型基底30可降低紅光/近紅外光信號的干擾。關於外溢控制的進一步細節可參考Yasuo Ishihara等人所發表之“Interline CCD Image Sensor with an Antiblooming Structure”, IEEE Transactions on Electron Devices, Vol. ED-31, No. 1, 1984年1月;或G. Agranov等人所發表之“Super Small, Sub 2μm Pixels For Novel CMOS Image Sensors”, International Image Sensor Workshop, 2007年6月7-10日, Ogunquit, Maine USA。In the present embodiment, as in the first figure, the P-type substrate 30 is grounded or connected to a negative power supply. The P-type substrate 30 is used to discharge the overflow holes, which is advantageous for high dynamic range scenes at night. Under normal operation, the P-type substrate 30 can reduce the interference of red/near-infrared light signals. Further details regarding the spillover control can be found in "Interline CCD Image Sensor with an Antiblooming Structure" by Yasuo Ishihara et al., IEEE Transactions on Electron Devices, Vol. ED-31, No. 1, January 1984; or G. "Super Small, Sub 2μm Pixels For Novel CMOS Image Sensors" by Agranov et al., International Image Sensor Workshop, June 7-10, 2007, Ogunquit, Maine USA.

N型磊晶層31形成於P型基底30上,且連接至正電源供給AVDD。深P型光二極體32植入區形成於N型磊晶層31內。由於本實施例使用N型磊晶層31而非如第一圖之N型井,因此不會受到較重N型摻質的植入深度限制。由於P型摻質較輕,因此,相較於傳統電子型光二極體,本實施例之深P型光二極體32植入區可較深,因而能改善信號雜訊比及紅光/近紅外光反應。The N-type epitaxial layer 31 is formed on the P-type substrate 30 and is connected to the positive power supply AVDD. A deep P-type photodiode 32 implant region is formed in the N-type epitaxial layer 31. Since the present embodiment uses the N-type epitaxial layer 31 instead of the N-type well as in the first figure, it is not limited by the implantation depth of the heavier N-type dopant. Since the P-type dopant is lighter, the deep P-type photodiode 32 implantation region of the present embodiment can be deeper than the conventional electronic photodiode, thereby improving signal noise ratio and red light/near. Infrared light reaction.

於N型磊晶層31內形成一隔離區,例如淺溝槽隔離區(STI)33。於淺溝槽隔離區33的側邊及底部形成N+晶胞(cell)隔離層34。相較於第二圖之P型隔離層24,由於N型摻質較重,本實施例之N型隔離層34的熱擴散可大大降低。因此,可小型化隔離層,並留更多空間給光二極體32。藉此,可改善信號吸收及干擾問題。An isolation region, such as a shallow trench isolation region (STI) 33, is formed in the N-type epitaxial layer 31. An N+ cell isolation layer 34 is formed on the sides and the bottom of the shallow trench isolation region 33. Compared with the P-type isolation layer 24 of the second figure, since the N-type dopant is heavy, the heat diffusion of the N-type isolation layer 34 of the present embodiment can be greatly reduced. Therefore, the isolation layer can be miniaturized and more space is left to the photodiode 32. Thereby, signal absorption and interference problems can be improved.

傳送閘35形成於N型磊晶層31上,並位於深P型光二極體32植入區與P型浮動擴散(P+FD)36植入區之間。A transfer gate 35 is formed on the N-type epitaxial layer 31 between the deep P-type photodiode 32 implant region and the P-type floating diffusion (P+FD) 36 implant region.

第四A圖至第四C圖顯示本發明實施例之CMOS影像感測器之電洞型超深光二極體的製程。與第三圖相同的組成元件標示以相同元件符號。各步驟可使用傳統半導體製程技術,其細節予以省略。The fourth to fourth C-pictures show the process of the hole-type ultra-deep light diode of the CMOS image sensor of the embodiment of the present invention. The same constituent elements as those in the third diagram are denoted by the same component symbols. The conventional semiconductor process technology can be used for each step, and the details are omitted.

於第四A圖中,提供P型基底(或簡稱基底)30,再於其上成長一N型磊晶層(或簡稱為磊晶層)31。在本實施例中,磊晶層31的厚度為6微米或大於6微米,但不以此為限。In FIG. 4A, a P-type substrate (or simply a substrate) 30 is provided, and an N-type epitaxial layer (or simply an epitaxial layer) 31 is grown thereon. In this embodiment, the thickness of the epitaxial layer 31 is 6 micrometers or more, but not limited thereto.

接著,仍參閱第四A圖,執行多次深P型光二極體植入,以形成深P型光二極體(或簡稱為光二極體)32植入區。該植入係執行於一遮罩(未顯示於圖式)所定義的區域內。每一次植入可使用不同能量以達到所需輪廓。此外,於每次植入後,可使用熱處理使其輪廓平滑。其輪廓也可根據後續製程步驟之熱處理而決定。接著,形成淺溝槽隔離區33於磊晶層31內。Next, still referring to FIG. 4A, a plurality of deep P-type photodiode implants are performed to form a deep P-type photodiode (or simply photodiode) 32 implant region. The implant is performed in an area defined by a mask (not shown). Different energies can be used for each implant to achieve the desired profile. In addition, heat treatment can be used to smooth the contour after each implantation. The contour can also be determined according to the heat treatment of the subsequent process steps. Next, a shallow trench isolation region 33 is formed in the epitaxial layer 31.

於第四B圖中,於淺溝槽隔離區33的側邊及底部植入晶胞隔離層(或晶胞N型井)34,且於晶胞隔離層34下植入深隔離層(或深N型井)37。此外,於磊晶層31上表層區域植入N型通道38植入區域,其位於深光二極體32植入區上方。上述晶胞隔離層34、深隔離層37及通道38植入區域可依據適當之順序來執行。接著,形成傳送閘35於磊晶層31上。In FIG. 4B, a cell isolation layer (or cell N-well) 34 is implanted on the sides and bottom of the shallow trench isolation region 33, and a deep isolation layer is implanted under the cell isolation layer 34 (or Deep N-type well) 37. In addition, an N-type channel 38 implant region is implanted in the surface region of the epitaxial layer 31, which is located above the implant region of the deep-light diode 32. The cell isolation layer 34, the deep isolation layer 37, and the channel 38 implant region can be performed in an appropriate order. Next, a transfer gate 35 is formed on the epitaxial layer 31.

於第四C圖中,於磊晶層31上表層區域植入梢(pinning)39植入區域。在本實施例中,N型梢39植入區域係位於通道38植入區域內。於通道38植入區域與深光二極體32植入區之間植入P型表面光二極體40植入區域,作為主要電洞型光二極體。在本實施例中,梢39植入區域與通道38植入區域主要係用以抑制暗電流並最佳化傳送閘35。梢39植入區域與表面光二極體40植入區域可依據適當之順序來執行。接著,植入P+浮動擴散36植入區域。In the fourth C diagram, a pinning 39 implant region is implanted on the surface layer region of the epitaxial layer 31. In this embodiment, the N-type tip 39 implant region is located within the implanted region of the channel 38. A P-type surface photodiode 40 implanted region is implanted between the implantation region of the channel 38 and the implant region of the deep-light diode 32 as a main hole-type photodiode. In this embodiment, the tip 39 implant region and the channel 38 implant region are primarily used to suppress dark current and optimize the transfer gate 35. The tip 39 implant region and the surface photodiode 40 implant region can be performed in a suitable order. Next, a P+ floating diffusion 36 implanted region is implanted.

以上所述僅為本發明之較佳實施例而已,並非用以限定本發明之申請專利範圍;凡其它未脫離發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之申請專利範圍內。The above description is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention; all other equivalent changes or modifications which are not departing from the spirit of the invention should be included in the following Within the scope of the patent application.

10‧‧‧P型基底10‧‧‧P type substrate

12‧‧‧淺溝槽隔離區12‧‧‧Shallow trench isolation zone

14‧‧‧N+井14‧‧‧N+ well

16‧‧‧淺P型光二極體16‧‧‧Shallow P-type photodiode

18‧‧‧N型井18‧‧‧N type well

20‧‧‧深N型光二極體20‧‧‧Deep N-type photodiode

22‧‧‧P型磊晶層22‧‧‧P-type epitaxial layer

24‧‧‧P+井24‧‧‧P+ well

30‧‧‧P型基底30‧‧‧P type substrate

31‧‧‧N型磊晶層31‧‧‧N type epitaxial layer

32‧‧‧深P型光二極體32‧‧‧Deep P-type photodiode

33‧‧‧淺溝槽隔離區33‧‧‧Shallow trench isolation zone

34‧‧‧隔離層34‧‧‧Isolation

35‧‧‧傳送閘35‧‧‧Transmission gate

36‧‧‧P+浮動擴散36‧‧‧P+floating diffusion

37‧‧‧深隔離層37‧‧‧Deep isolation

38‧‧‧N型通道38‧‧‧N-channel

39‧‧‧梢(pinning)39‧‧‧ Pinning

40‧‧‧表面光二極體40‧‧‧Surface light diode

第一圖顯示傳統CMOS影像感測器之電洞型光二極體的剖面圖。
第二圖顯示電子型深光二極體。
第三圖顯示本發明實施例之CMOS影像感測器之電洞型超深光二極體的剖面圖。
第四A圖至第四C圖顯示本發明實施例之CMOS影像感測器之電洞型超深光二極體的製程。

The first figure shows a cross-sectional view of a cavity type photodiode of a conventional CMOS image sensor.
The second figure shows an electronic deep-light diode.
The third figure shows a cross-sectional view of a cavity-type ultra-deep light diode of a CMOS image sensor according to an embodiment of the present invention.
The fourth to fourth C-pictures show the process of the hole-type ultra-deep light diode of the CMOS image sensor of the embodiment of the present invention.

30‧‧‧P型基底 30‧‧‧P type substrate

31‧‧‧N型磊晶層 31‧‧‧N type epitaxial layer

32‧‧‧深P型光二極體 32‧‧‧Deep P-type photodiode

33‧‧‧淺溝槽隔離區 33‧‧‧Shallow trench isolation zone

34‧‧‧隔離層 34‧‧‧Isolation

35‧‧‧傳送閘 35‧‧‧Transmission gate

36‧‧‧P+浮動擴散 36‧‧‧P+floating diffusion

Claims (18)

一種互補式金屬氧化物半導體(CMOS)影像感測器之電洞型超深光二極體,包含:
   一P型基底,接地或連接至一負電源供給;
   一N型磊晶層,成長於該P型基底上,該N型磊晶層連接至一正電源供給;及
   一超深P型光二極體植入區域,形成於該N型磊晶層內。
A cavity-type ultra-deep light diode of a complementary metal oxide semiconductor (CMOS) image sensor, comprising:
a P-type substrate, grounded or connected to a negative power supply;
An N-type epitaxial layer is grown on the P-type substrate, the N-type epitaxial layer is connected to a positive power supply; and an ultra-deep P-type photodiode implanted region is formed in the N-type epitaxial layer .
如申請專利範圍第1項所述CMOS影像感測器之電洞型超深光二極體,其中上述超深P型光二極體植入區域之厚度大於0.5微米。The hole-type ultra-deep light diode of the CMOS image sensor according to claim 1, wherein the ultra-deep P-type photodiode implantation region has a thickness greater than 0.5 μm. 如申請專利範圍第2項所述CMOS影像感測器之電洞型超深光二極體,其中上述超深P型光二極體植入區域之厚度為0.5-2微米。The hole-type ultra-deep light diode of the CMOS image sensor according to claim 2, wherein the ultra-deep P-type photodiode implantation region has a thickness of 0.5 to 2 μm. 如申請專利範圍第2項所述CMOS影像感測器之電洞型超深光二極體,其中上述之超深P型光二極體植入區域之厚度大於2微米。The hole-type ultra-deep light diode of the CMOS image sensor according to claim 2, wherein the ultra-deep P-type photodiode implant region has a thickness greater than 2 micrometers. 如申請專利範圍第1項所述CMOS影像感測器之電洞型超深光二極體,更包含:
   一隔離區,形成於該N型磊晶層內。
The hole type ultra-deep light diode of the CMOS image sensor described in claim 1 of the patent application further includes:
An isolation region is formed in the N-type epitaxial layer.
如申請專利範圍第5項所述CMOS影像感測器之電洞型超深光二極體,其中上述之隔離區為一淺溝槽隔離區。The hole-type ultra-deep light diode of the CMOS image sensor according to claim 5, wherein the isolation region is a shallow trench isolation region. 如申請專利範圍第5項所述CMOS影像感測器之電洞型超深光二極體,更包含:
   一N型晶胞隔離層,形成於該隔離區的側邊及底部。
The hole-type ultra-deep light diode of the CMOS image sensor described in claim 5 of the patent application further includes:
An N-type cell isolation layer is formed on the sides and the bottom of the isolation region.
一種互補式金屬氧化物半導體(CMOS)影像感測器之電洞型超深光二極體的製程方法,包含:
   提供一P型基底;
   成長一N型磊晶層於該P型基底上;及
   形成一超深P型光二極體植入區域於該N型磊晶層內。
A method for manufacturing a cavity type ultra-deep light diode of a complementary metal oxide semiconductor (CMOS) image sensor, comprising:
Providing a P-type substrate;
An N-type epitaxial layer is grown on the P-type substrate; and an ultra-deep P-type photodiode implant region is formed in the N-type epitaxial layer.
如申請專利範圍第8項所述CMOS影像感測器之電洞型超深光二極體的製程方法,其中上述超深P型光二極體植入區域之形成包含使用不同能量以執行複數次植入。The method for manufacturing a cavity-type ultra-deep light diode of a CMOS image sensor according to claim 8 , wherein the forming of the ultra-deep P-type photodiode implant region comprises using different energy to perform a plurality of implantations. In. 如申請專利範圍第9項所述CMOS影像感測器之電洞型超深光二極體的製程方法,更包含:
   於每一次該植入後或者藉由後續製程步驟施以一熱處理。
The method for manufacturing the cavity type ultra-deep light diode of the CMOS image sensor according to claim 9 of the patent application scope further includes:
A heat treatment is applied after each implantation or by subsequent processing steps.
如申請專利範圍第8項所述CMOS影像感測器之電洞型超深光二極體的製程方法,更包含:
   形成一隔離區於該N型磊晶層內。
The method for manufacturing a cavity type ultra-deep light diode of the CMOS image sensor according to claim 8 of the patent application scope, further comprises:
An isolation region is formed in the N-type epitaxial layer.
如申請專利範圍第11項所述CMOS影像感測器之電洞型超深光二極體的製程方法,更包含:
   形成一N型晶胞隔離層於該隔離區的側邊及底部;及
   植入一N型深隔離層於該晶胞隔離層下。
The method for manufacturing the cavity type ultra-deep light diode of the CMOS image sensor described in claim 11 of the patent application further includes:
Forming an N-type cell isolation layer on the sides and the bottom of the isolation region; and implanting an N-type deep isolation layer under the cell isolation layer.
如申請專利範圍第8項所述CMOS影像感測器之電洞型超深光二極體的製程方法,更包含:
   植入一通道植入區域於該N型磊晶層之一上表層區域,其中該通道植入區域位於該超深P型光二極體植入區域上方。
The method for manufacturing a cavity type ultra-deep light diode of the CMOS image sensor according to claim 8 of the patent application scope, further comprises:
A channel implant region is implanted in a surface region of one of the N-type epitaxial layers, wherein the channel implant region is above the ultra-deep P-type photodiode implant region.
如申請專利範圍第13項所述CMOS影像感測器之電洞型超深光二極體的製程方法,更包含:
   植入一N型梢(pinning)植入區域於該N型磊晶層之一上表層區域;及
   植入一P型表面光二極體植入區域於該N型磊晶層內,作為一主要電洞型光二極體之電荷儲存,其中該表面光二極體植入區域位於該通道植入區域與該超深P型光二極體植入區域之間。
The method for manufacturing a cavity type ultra-deep light diode of the CMOS image sensor according to claim 13 of the patent application scope, further comprises:
Implanting an N-type pinning implant region on a surface region of the N-type epitaxial layer; and implanting a P-type surface photodiode implant region in the N-type epitaxial layer as a main The charge storage of the cavity type photodiode, wherein the surface photodiode implantation region is located between the channel implantation region and the ultra-deep P-type photodiode implantation region.
如申請專利範圍第8項所述CMOS影像感測器之電洞型超深光二極體的製程方法,更包含:
   形成一傳送閘於該N型磊晶層上;及
   形成一P型浮動擴散(FD)植入區域於該N型磊晶層內,其中該傳送閘位於該超深P型光二極體植入區域與該P型浮動擴散植入區域之間。
The method for manufacturing a cavity type ultra-deep light diode of the CMOS image sensor according to claim 8 of the patent application scope, further comprises:
Forming a transfer gate on the N-type epitaxial layer; and forming a P-type floating diffusion (FD) implant region in the N-type epitaxial layer, wherein the transfer gate is located in the ultra-deep P-type photodiode implant The region is between the P-type floating diffusion implanted region.
如申請專利範圍第8項所述CMOS影像感測器之電洞型超深光二極體的製程方法,其中上述超深P型光二極體植入區域之厚度大於0.5微米。The method for manufacturing a cavity-type ultra-deep light diode of a CMOS image sensor according to claim 8 , wherein the ultra-deep P-type photodiode implant region has a thickness greater than 0.5 μm. 如申請專利範圍第16項所述CMOS影像感測器之電洞型超深光二極體的製程方法,其中上述超深P型光二極體植入區域之厚度為0.5-2微米。The method for manufacturing a cavity-type ultra-deep light diode of the CMOS image sensor according to claim 16 , wherein the ultra-deep P-type photodiode implantation region has a thickness of 0.5 to 2 μm. 如申請專利範圍第16項所述CMOS影像感測器之電洞型超深光二極體的製程方法,其中上述之超深P型光二極體植入區域之厚度大於2微米。The method for manufacturing a cavity-type ultra-deep light diode of the CMOS image sensor according to claim 16 , wherein the ultra-deep P-type photodiode implant region has a thickness greater than 2 μm.
TW99141774A 2010-12-01 2010-12-01 Hole-based ultra-deep photodiode in a cmos image sensor and a process thereof TWI426603B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99141774A TWI426603B (en) 2010-12-01 2010-12-01 Hole-based ultra-deep photodiode in a cmos image sensor and a process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99141774A TWI426603B (en) 2010-12-01 2010-12-01 Hole-based ultra-deep photodiode in a cmos image sensor and a process thereof

Publications (2)

Publication Number Publication Date
TW201225268A TW201225268A (en) 2012-06-16
TWI426603B true TWI426603B (en) 2014-02-11

Family

ID=46726121

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99141774A TWI426603B (en) 2010-12-01 2010-12-01 Hole-based ultra-deep photodiode in a cmos image sensor and a process thereof

Country Status (1)

Country Link
TW (1) TWI426603B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI562345B (en) * 2016-03-04 2016-12-11 Silicon Optronics Inc Image sensing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3422424B1 (en) * 2017-06-27 2022-09-07 ams AG Semiconductor photodetector device with protection against ambient back light
CN107424917A (en) * 2017-08-07 2017-12-01 上海华力微电子有限公司 A kind of process of optimization CIS UTS device white pixels
US10672810B2 (en) 2017-10-31 2020-06-02 Taiwan Semiconductor Manufacturing Co., Ltd. CMOS image sensor with shallow trench edge doping

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070267666A1 (en) * 2006-05-17 2007-11-22 Samsung Electronics Co., Ltd Methods of fabricating image sensors and image sensors fabricated thereby
TW200818461A (en) * 2006-06-20 2008-04-16 Eastman Kodak Co Pmos pixel structure with low cross talk

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070267666A1 (en) * 2006-05-17 2007-11-22 Samsung Electronics Co., Ltd Methods of fabricating image sensors and image sensors fabricated thereby
TW200818461A (en) * 2006-06-20 2008-04-16 Eastman Kodak Co Pmos pixel structure with low cross talk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI562345B (en) * 2016-03-04 2016-12-11 Silicon Optronics Inc Image sensing device

Also Published As

Publication number Publication date
TW201225268A (en) 2012-06-16

Similar Documents

Publication Publication Date Title
US8664734B2 (en) Hole-based ultra-deep photodiode in a CMOS image sensor and a process thereof
US8779481B2 (en) SOI-based CMOS imagers employing flash gate/chemisorption processing
US7855407B2 (en) CMOS image sensor and method for manufacturing the same
US7728277B2 (en) PMOS pixel structure with low cross talk for active pixel image sensors
US20060157806A1 (en) Multilayered semiconductor susbtrate and image sensor formed thereon for improved infrared response
JP6126666B2 (en) Solid-state imaging device and electronic apparatus
JP4960058B2 (en) Amplification type solid-state image sensor
US20100207231A1 (en) Solid-state image device and method of manufacturing the same
JP2013012556A (en) Solid-state image pickup device, manufacturing method of the same and electronic apparatus
CN105895650A (en) Solid camera device and electronic apparatus
JP2014529906A (en) Image sensor unit pixel and light receiving element thereof
JP2006294871A (en) Solid-state imaging apparatus
US8853705B2 (en) Image sensor including guard ring and noise blocking area to block noise and method of manufacturing the same
JP2010098219A (en) Backside-illuminated solid-state image pickup device
US20100148230A1 (en) Trench isolation regions in image sensors
JP2014527307A (en) Image sensor unit pixel and light receiving element thereof
US20150008482A1 (en) Semiconductor device and manufacturing method thereof
GB2537421A (en) A pixel having a plurality of photodiodes
TWI426603B (en) Hole-based ultra-deep photodiode in a cmos image sensor and a process thereof
US20100133590A1 (en) Shared photodiode image sensor
US20120104464A1 (en) P-pixel cmos imagers using ultra-thin silicon on insulator substrates (utsoi)
JP2015220255A (en) Backside irradiation type cmos imaging device, and method for manufacturing thereof
JP2008034836A (en) Solid-state image sensing device
JP2013131516A (en) Solid-state imaging device, method of manufacturing the same, and electronic equipment
Uchida et al. A $2.9\mu\mathrm {m} $ Pixel CMOS Image Sensor for Security Cameras with high FWC and 97 dB Single-Exposure Dynamic Range