TWI426564B - Structure and fabrication of semiconductor architecture having field-effect transistors especially suitable for analog applications - Google Patents

Structure and fabrication of semiconductor architecture having field-effect transistors especially suitable for analog applications Download PDF

Info

Publication number
TWI426564B
TWI426564B TW097134813A TW97134813A TWI426564B TW I426564 B TWI426564 B TW I426564B TW 097134813 A TW097134813 A TW 097134813A TW 97134813 A TW97134813 A TW 97134813A TW I426564 B TWI426564 B TW I426564B
Authority
TW
Taiwan
Prior art keywords
dopant
semiconductor
additional
region
conductivity type
Prior art date
Application number
TW097134813A
Other languages
Chinese (zh)
Other versions
TW200924075A (en
Inventor
Constantin Bulucea
Original Assignee
Nat Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/981,481 external-priority patent/US7642574B2/en
Priority claimed from US11/981,355 external-priority patent/US7838369B2/en
Application filed by Nat Semiconductor Corp filed Critical Nat Semiconductor Corp
Publication of TW200924075A publication Critical patent/TW200924075A/en
Application granted granted Critical
Publication of TWI426564B publication Critical patent/TWI426564B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2658Bombardment with radiation with high-energy radiation producing ion implantation of a molecular ion, e.g. decaborane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823892Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/105Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with vertical doping variation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Description

特別適合類比應用之具有場效電晶體的半導體架構之構造與製造 Construction and fabrication of a semiconductor architecture with field effect transistors that is particularly suitable for analog applications

本發明係關於半導體技術,且尤指絕緣閘極(insulated-gate)型式的場效電晶體(FET)。除非另為指明,下文所述之所有的絕緣閘極場效電晶體(IGFET,insulated-gate FET)係表面通道增強模式IGFET。 This invention relates to semiconductor technology, and more particularly to an insulated-gate type field effect transistor (FET). Unless otherwise indicated, all of the insulated gate field effect transistors (IGFETs) described below are surface channel enhancement mode IGFETs.

一IGFET係一種半導體裝置,其中,一閘極介電層係將一閘極電極電氣絕緣於一通道區,該通道氏在一源極區及一汲極區之間延伸。於一增強模式IGFET之通道區係其經常稱為基板或基板區域之一本體區域的部分者,本體區域係形成具有源極與汲極之各自的pn接面。於一增強模式IGFET,通道區係由源極與汲極之間的所有半導體材料所組成。於IGFET操作期間,電荷載體係沿著上半導體表面而透過其感應於通道區之一通道,以自源極移動至汲極。臨界電壓係閘極至源極電壓值,於其,IGFET係針對接通(on)與切斷(off)狀態之已知定義而在自其接通與切斷狀態切換。通道長度係沿著上半導體表面在源極與汲極之間的距離。 An IGFET is a semiconductor device in which a gate dielectric layer electrically insulates a gate electrode from a channel region extending between a source region and a drain region. The channel region of an enhancement mode IGFET is often referred to as a portion of a body region of a substrate or substrate region that forms a respective pn junction with a source and a drain. In an enhanced mode IGFET, the channel region consists of all semiconductor material between the source and the drain. During IGFET operation, a charge carrier is transmitted along the upper semiconductor surface through one of the channels of the channel region to move from the source to the drain. The threshold voltage is the gate-to-source voltage value, and the IGFET is switched from its on and off states for the known definition of the on and off states. The channel length is the distance between the source and the drain along the upper semiconductor surface.

IGFET係運用於積體電路(IC)以實行種種的數位與類比功能。隨著IC操作能力已經在歷年來提升,IGFET已經逐漸地變小,導致於最小通道長度逐漸減小。操作針對一IGFET的古典模型所規定之方式的一IGFET經常描述成一 “長通道”裝置。當通道長度降低至使IGFET行為顯著脫離古典IGFET模型之程度,則一IGFET描述為一“短通道”裝置。雖然短通道與長通道IGFET均運用於IC,利用超大型積體應用的數位功能之絕大多數IC佈局,以藉著可得平版印刷技術而具有可靠製造之最小通道長度。 IGFETs are used in integrated circuits (ICs) to perform a variety of digital and analog functions. As IC operational capabilities have increased over the years, IGFETs have gradually become smaller, resulting in a gradual reduction in the minimum channel length. An IGFET that operates in a manner specified by the classical model of an IGFET is often described as a "Long channel" device. An IGFET is described as a "short channel" device when the channel length is reduced to the extent that the IGFET behavior is significantly off the classical IGFET model. Although both short- and long-channel IGFETs are used in ICs, the vast majority of IC layouts utilizing the digital capabilities of very large integrated applications have the smallest channel lengths that are reliably manufactured by available lithographic techniques.

一個空乏區域係沿著於源極與本體區域之間的接面延伸。另一個空乏區域係沿著於汲極與本體區域之間的接面延伸。一高電場係存在於各個空乏區域。在某些條件下,特別是當通道長度為小,汲極空乏區域係可側向地延伸至源極空乏區域且與其上半導體表面之下方合併。此現象係稱為(主體)穿透(punchthrough)。當穿透發生,IGFET的操作將不會被其閘極電極控制。穿透係必須避免。 A depleted region extends along the junction between the source and body regions. Another depleted area extends along the junction between the bungee and the body region. A high electric field is present in each of the depleted areas. Under certain conditions, particularly when the channel length is small, the depleted region can extend laterally to the source depletion region and merge with the underlying semiconductor surface. This phenomenon is called (subject) punchthrough. When penetration occurs, the operation of the IGFET will not be controlled by its gate electrode. Penetration must be avoided.

隨著IGFET尺寸已經減小,種種的技術已經運用來改良IGFET之性能,包括操作於短通道狀態之彼等者。一種性能改良技術係涉及:提供具有用於降低熱載體注入的二部分汲極之IGFET。該IGFET亦通常提供一類似架構的二部分源極。 As IGFET sizes have decreased, various techniques have been utilized to improve the performance of IGFETs, including those operating in short channel states. One performance improvement technique involves providing an IGFET with a two-part drain for reducing heat carrier implantation. The IGFET also typically provides a two-part source of similar architecture.

圖1說明了如於美國專利第6,548,842 B1號(Bulucea 等人)所述之該種習用的長n通道IGFET 20。IGFET 20之上表面設有凹陷之電氣絕緣的場絕緣區域22,其係側向地環繞主動半導體島部24,該主動半導體島部24具有n型源極/汲極(S/D,source/drain)區26與28。各個S/D區26或26係由極重度摻雜的主要部分26M或28M與較輕度摻雜(但仍為重度摻雜)的側向延伸部分26E或28E所組成。 Figure 1 illustrates such a conventional long n-channel IGFET 20 as described in U.S. Patent No. 6,548,842 B1 (Bulucea et al.). The upper surface of the IGFET 20 is provided with a recessed electrically insulating field insulating region 22 which laterally surrounds the active semiconductor island portion 24, which has an n-type source/drain (S/D, source/ Drain) zones 26 and 28. Each S/D region 26 or 26 is comprised of a very heavily doped main portion 26M or 28M with a lightly doped (but still heavily doped) laterally extending portion 26E or 28E.

S/D區26與28係由p型的本體材料32之通道區30而彼此分離,本體材料32係由輕度摻雜的下部34、重度摻雜的中間井部36、與上部38所組成。雖然上方本體材料部分38之大部分係中度摻雜,上部38包括其分別沿著S/D區26與28延伸之離子植入的重度摻雜環圈(halo)袋部40與42。IGFET 20更包括閘極介電層44、上覆的閘極電極46、電氣絕緣的閘極側壁間隔物48與50、及金屬矽化物層52、54與56。 The S/D regions 26 and 28 are separated from each other by a channel region 30 of a p-type body material 32. The body material 32 is composed of a lightly doped lower portion 34, a heavily doped intermediate well 36, and an upper portion 38. . While the majority of the upper body material portion 38 is moderately doped, the upper portion 38 includes heavily doped halo pocket portions 40 and 42 that are implanted along the S/D regions 26 and 28, respectively. IGFET 20 further includes a gate dielectric layer 44, an overlying gate electrode 46, electrically insulating gate sidewall spacers 48 and 50, and metal telluride layers 52, 54 and 56.

S/D區26與28主要為彼此的鏡像。環圈袋部40與42亦主要為彼此的鏡像,使得通道區30係關於通道摻雜劑濃度而縱向地對稱漸變(graded)。結果,IGFET 20係一對稱裝置。於IGFET操作期間,S/D區26或28可作為源極,而另一個S/D區28或26可作為汲極。此係特別為適用於數位情況,其中,S/D區26與28係於某些時間期間而分別作為源極與汲極,且於其他時間期間而分別作為汲極與源極。 S/D zones 26 and 28 are primarily mirror images of each other. The ring pocket portions 40 and 42 are also primarily mirror images of each other such that the channel region 30 is longitudinally symmetrically graded with respect to channel dopant concentration. As a result, the IGFET 20 is a symmetrical device. During IGFET operation, S/D region 26 or 28 can serve as a source and another S/D region 28 or 26 can serve as a drain. This is particularly useful in digital situations where the S/D regions 26 and 28 are used as source and drain, respectively, during certain time periods, and as drains and sources, respectively, during other times.

圖2說明針對於IGFET 20隨縱向距離x的一函數變化多少的淨摻雜劑濃度NN。由於IGFET 20係對稱裝置,圖2呈現起始自通道中心之僅為一半的量變曲線(profile)。於圖2之曲線段26M*、26E*、28M*、28E*、30*、40*、與42*分別代表區域26M、26E、28M、28E、30、40、與42之淨摻雜劑濃度。點狀曲線段40”或42”是指形成環圈袋部40或42之p型摻雜劑的總濃度,包括在形成袋部40或42之過程所引入至針對於S/D區26或28之位置的p型摻雜劑。 Figure 2 illustrates the net dopant concentration N N for how the IGFET 20 varies as a function of the longitudinal distance x. Since IGFET 20 is a symmetrical device, Figure 2 presents a quantometric profile starting from only half of the center of the channel. The curve segments 26M*, 26E*, 28M*, 28E*, 30*, 40*, and 42* of FIG. 2 represent the net dopant concentration of the regions 26M, 26E, 28M, 28E, 30, 40, and 42, respectively. . The dotted curve segment 40" or 42" refers to the total concentration of p-type dopants forming the ring pocket portion 40 or 42 including introduction to the S/D region 26 during the process of forming the pocket portion 40 or 42 or P-type dopant at position 28.

除了有助於減輕於短通道長度之臨界電壓的不合意的 衰減(roll-off)之外,於IGFET 20之環圈袋部40與42的存在使在通道區30的p型摻雜劑濃度沿著各個S/D區26或28而提高,特別是沿著各個側向延伸部分26E或28E。因為沿著源極作用的S/D區26或28之接面延伸的空乏區域之通道區部分的厚度係減小,穿透之開始因而減輕。 In addition to helping to alleviate the undesirable voltage of the short channel length In addition to roll-off, the presence of the ring pocket portions 40 and 42 of the IGFET 20 increases the p-type dopant concentration in the channel region 30 along the respective S/D regions 26 or 28, particularly along Each lateral extension 26E or 28E is present. Since the thickness of the portion of the channel region of the depletion region extending along the junction of the source-acting S/D regions 26 or 28 is reduced, the beginning of the penetration is thus alleviated.

本體材料32提供附加的摻雜特性以進而減輕穿透。基於美國專利第6,548,842 B1號提出的資訊,圖3a粗略地描繪p型與n型摻雜劑的絕對濃度NT是如何隨著沿著延伸穿過主要S/D部分26M或28M的一垂直線之深度y的一函數而變化,作為附加的摻雜特性之結果。於圖3a之曲線段26M”或28M”代表界定主要S/D部分26M或28M之n型摻雜劑的總濃度。曲線段34”、36”、38”、40”、與42”係共同代表其界定個別區域34、36、38、40、與42之p型摻雜劑的總濃度。 The body material 32 provides additional doping characteristics to thereby reduce penetration. Information based on U.S. Patent No. 6,548,842 B1 proposed roughly FIG 3a depicts the p-type and n-type dopant N T is the absolute concentration along with how to extend through main S / D portion 26M or a vertical line of 28M The function of the depth y varies as a result of the additional doping characteristics. The curved section 26M" or 28M" of Figure 3a represents the total concentration of the n-type dopant defining the primary S/D portion 26M or 28M. The curved segments 34", 36", 38", 40", and 42" collectively represent the total concentration of p-type dopants that define the individual regions 34, 36, 38, 40, and 42.

附加摻雜特性係藉由離子植入p型抗穿透(APT,anti-punchthrough)摻雜劑於p型上方本體材料部分38而達成,p型APT摻雜劑係在上半導體表面之下方為超過0.1微米且在上表面之下方為不超過0.4微米之一深度而達到一最大濃度。針對於圖3a所代表之情況,其中,主要S/D部分26M與28M係在上表面之下方延伸約0.2微米,p型APT摻雜劑於約0.2微米的深度達到最大濃度。藉著以此方式而設置p型APT摻雜劑,沿著源極作用的S/D區26或28之pn接面延伸的空乏區域之通道區部分的厚度係進而降低,藉以進而減輕穿透。 The additional doping characteristics are achieved by ion implantation of a p-type anti-punch through dopant in the p-type upper body material portion 38, and the p-type APT dopant is below the upper semiconductor surface. A maximum concentration of more than 0.1 micron and a depth of no more than 0.4 micron below the upper surface is achieved. For the case represented by Figure 3a, wherein the major S/D portions 26M and 28M extend about 0.2 microns below the upper surface, the p-type APT dopant reaches a maximum concentration at a depth of about 0.2 microns. By providing the p-type APT dopant in this manner, the thickness of the portion of the channel region of the depletion region extending along the pn junction of the source-acting S/D region 26 or 28 is further reduced, thereby further reducing penetration. .

井部區域36係藉由離子植入p型井部摻雜劑於IGFET 20而界定,p型井部摻雜劑係在p型APT摻雜劑的最大濃度者之下方的一深度而達到最大濃度。雖然,p型井部摻雜劑的最大濃度係稍微大於p型APT摻雜劑的最大濃度,總p型摻雜劑的垂直量變曲線從最大井部摻雜劑濃度之位置為向上至主要S/D部分26M或28M是相當平坦。特別而言,總p型摻雜劑的濃度NT從最大井部摻雜劑濃度之位置為向上至主要S/D部分26M或28M減少為頗小於5%。 The well region 36 is defined by ion implantation of a p-type well dopant in the IGFET 20, and the p-type well dopant is maximized at a depth below the maximum concentration of the p-type APT dopant. concentration. Although the maximum concentration of the p-type well dopant is slightly greater than the maximum concentration of the p-type APT dopant, the vertical amount curve of the total p-type dopant is from the position of the maximum well dopant concentration up to the main S The /D portion 26M or 28M is quite flat. In particular, the concentration N T of the total p-type dopant is reduced from the position of the maximum well dopant concentration up to the main S/D portion 26M or 28M to less than 5%.

美國專利第6,548,842 B1號揭示的是:藉由植入一附加的p型摻雜劑(其在APT與井部摻雜劑之最大濃度的深度之間的一深度而達到最大濃度),沿著透過主要S/D部分26M或28M之上述的垂直線之p型摻雜劑量變曲線可進一步為平坦化。此情況係說明於圖3b,針對於IGFET 20之該種變化者,其中,曲線段58”是指由另一p型摻雜劑所引起的變化。於圖3b,另一p型摻雜劑之最大濃度係在APT與井部摻雜劑的最大濃度之間。是以,總p型摻雜劑的濃度NT同樣自最大井部摻雜劑濃度之位置移動至部分26M或28M減小為頗小於5%。 U.S. Patent No. 6,548,842 B1 discloses: by implanting an additional p-type dopant (which reaches a maximum concentration at a depth between the APT and the depth of the maximum concentration of the well dopant), along The p-type doping dose curve of the above-mentioned vertical line passing through the main S/D portion 26M or 28M can be further planarized. This situation is illustrated in Figure 3b for this variation of IGFET 20, where curve segment 58" refers to the change caused by another p-type dopant. Figure 3b, another p-type dopant the maximum concentration system. Therefore, the concentration of N T the total p-type dopant in the same position from the maximum dopant concentration of the well to move portion 26M or 28M decreases between APT and the maximum concentration of the well dopant It is quite less than 5%.

於裝置操作期間的電流僅以一個方向流動通過一IGFET之情況下(特別是諸多的類比應用)不需要一種對稱IGFET構造。如進而論述於美國專利第6,548,842 B1號,環圈袋部係可自汲極側而刪除。IGFET 20因而成為長n通道IGFET 60,如於圖4a所示。IGFET 60係一種不對稱裝置,因為通道區30係不對稱縱向地摻雜劑漸變。於IGFET 60之S/D區26與28係分別作為源極與汲極。圖4b說明對應於長通道IGFET 60之不對稱短n通道IGFET 70。於IGFET 70,源極側的環圈袋部40緊密地靠近汲極28。分別針對於IGFET 60與70之沿著上半導體表面而作為縱向距離x的一函數之淨摻雜劑濃度NN係顯示於圖5a與5b。 A symmetrical IGFET configuration is not required where current flow during device operation flows through an IGFET in only one direction (especially for many analog applications). As further discussed in U.S. Patent No. 6,548,842 B1, the loop pocket portion can be removed from the drain side. IGFET 20 thus becomes a long n-channel IGFET 60, as shown in Figure 4a. IGFET 60 is an asymmetric device because channel region 30 is asymmetrically longitudinally dopant gradual. The S/D regions 26 and 28 of the IGFET 60 serve as source and drain, respectively. Figure 4b illustrates an asymmetric short n-channel IGFET 70 corresponding to long channel IGFET 60. In the IGFET 70, the ring pocket portion 40 on the source side is closely adjacent to the drain pad 28. The net dopant concentration N N as a function of the longitudinal distance x along the upper semiconductor surface of IGFETs 60 and 70, respectively, is shown in Figures 5a and 5b.

不對稱IGFET 60與70接收如同對稱IGFET 20之相同的APT與井部摻雜劑。沿著延伸透過源極26與汲極28的垂直線,IGFET 60與70因此具有圖3a所示的摻雜劑分佈,但是由於環圈袋部42之不存在,虛線的曲線段62”代表透過汲極28的垂直摻雜劑分佈。當IGFET構造提供附加的井部植入物(implant)以進而平坦化該垂直摻雜劑量變曲線,圖3b呈現結果的垂直摻雜劑分佈,同樣為按照代表透過汲極28的摻雜劑分佈之曲線段62”。 Asymmetric IGFETs 60 and 70 receive the same APT and well dopants as symmetric IGFET 20. Along the vertical line extending through the source 26 and the drain 28, the IGFETs 60 and 70 thus have the dopant profile shown in Figure 3a, but due to the absence of the ring pocket portion 42, the dashed curved segment 62" represents the transmission. The vertical dopant distribution of the drain 28. When the IGFET configuration provides an additional well implant to further planarize the vertical doping dose profile, Figure 3b presents the resulting vertical dopant profile, again in accordance with A curve segment 62" representing the dopant distribution through the drain 28 is represented.

美國專利第6,078,082號與6,127,700號(均為Bulucea)描述具有不對稱的通道區之IGFET,但其具有不同於美國專利第6,548,842 B1號之發明IGFET所運用的彼等者之垂直摻雜劑特性。具有不對稱的通道區之IGFET亦檢驗於其他先前技術的文獻,諸如:(a)Buti等人之“針對可靠度與性能之不對稱環圈源極GOLD汲極(HS-GOLD)深度次半微米n-MOSFET設計”(IEDM Tech.Dig.,西元1989年12月3至6日,26.2.1至26.2.4頁);(b)Chai等人之“針對RF無線應用之特徵為漸變通道CMOS(GCMOS)與準自我對準(QSA)NPN的成本有效0.25微米Leff BiCMOS技術”(Procs.2000 Bipolar/BiCMOS Circs.and Tech.Meeting,西元2000 年9月24至26日,110至113頁);(c)Chen等人之“針對高速次1.0V電源供應器深度次微米CMOS之通道工程”(1999 Symp.VLSI Tech.,Dig.Tech.Paps.,西元1999年6月14至16日,69與70頁);(d)Deshpande等人之“針對晶片上系統應用之深度次微米CMOS技術的類比裝置設計之通道工程”(IEEE Trans.Elec.Devs.,西元2002年9月,1558至1565頁);(e)Hiroki等人之“具有不對稱通道輪廓之高性能0.1微米MOSFET”(IEDM Tech.Dig.,西元1995年12月,17.7.1至17.7.4頁);(f)Lamey等人之“改良針對於無線應用之RF漸變通道CMOS製程的製造力”(SPIE Conf.Microelec.Dev.Tech.II.,西元1998年9月,147至155頁);(g)Ma等人之“針對高性能、低電壓DSP應用之漸變通道MOSFET(GCMOSFET)”(IEEE Trans.VLSI Systs.Dig.,西元1997年12月,352至358頁);(h)Matsuki等人之“針對次四分之一微米MOSFET的側向摻雜通道(LDC)構造”(1991 Symp.VLSI Tech.,Dig.Tech.Paps.,西元1991年5月28至30日,113與114頁);及(i)Su等人之“針對混合式類比/數位應用之高性能可另一次微米MOSFET”(IEDM Tech.Dig.,西元1991年12月,367至370頁)。 U.S. Patent Nos. 6,078,082 and 6,127,700 (both to Bulucea) describe IGFETs having asymmetric channel regions, but which have different vertical dopant characteristics than those employed by the inventive IGFETs of U.S. Patent No. 6,548,842 B1. IGFETs with asymmetric channel regions have also been examined in other prior art documents such as: (a) Buti et al. "Asymmetric ring source GOLD drain (HS-GOLD) depth half for reliability and performance Micron n-MOSFET design" ( IEDM Tech.Dig., December 3-6, 1989, 26.2.1 to 26.2.4); (b) Chai et al. "Features for RF wireless applications are gradient channels CMOS (GCMOS) and Quasi-Self-Aligned (QSA) NPN Cost-effective 0.25 μm L eff BiCMOS Technology” ( Procs. 2000 Bipolar/BiCMOS Circs. and Tech. Meeting, September 24-26, 2000, 110-113 Page); (c) Chen et al. “Channel Engineering for High-Speed Subsequent 1.0V Power Supply Deep Sub-micron CMOS” ( 1999 Symp.VLSI Tech., Dig.Tech.Paps., June 14-16, 1999 (69, p. 70); (d) Deshpande et al., "Channel Engineering for Analog Devices Design for Deep Sub-micron CMOS Technology for On-Chip System Applications" ( IEEE Trans.Elec. Devs., September 2002, 1558 to 1565); (e) Hiroki et al. "High-performance 0.1 micron MOSFET with asymmetric channel profile" ( IEDM Tech.Dig., December 1995, 17.7.1 to 17.7 .4 pages); (f) Lamey et al., "Improving the Manufacturing Power of RF Gradient Channel CMOS Processes for Wireless Applications" ( SPIE Conf. Microelec. Dev. Tech. II., September 1998, 147-155 (g) Ma et al., "Fade-Channel MOSFETs (GCMOSFETs) for High Performance, Low-Voltage DSP Applications" ( IEEE Trans.VLSI Systs. Dig., December 1997, pp. 352-358 ); h) Matsuki et al., "Land-Doped Channel (LDC) Construction for Sub-Quarter Micron MOSFETs" ( 1991 Symp. VLSI Tech., Dig. Tech. Paps., May 28-30, 1991) , 113 and 114); and (i) Su et al. "High-performance micron MOSFETs for hybrid analog/digital applications" ( IEDM Tech.Dig., December 1991, pp. 367-370) .

術語“混合(mixed)訊號”係指含有數位與類比電路方塊之IC。數位電路係典型為運用最積極的另一n通道與p通道IGFET,以得到於既定電流洩漏規格之最大潛在數位速度。類比電路係按照不同於數位IGFET之性能需求而利用IGFET及/或雙極電晶體。類比IGFET之需求通常包括: 高的線性電壓增益、於高頻之良好的小訊號與大訊號的頻率響應、良好的參數匹配、低輸入雜訊、對主動與被動構件之適當控制的電氣參數、及降低的寄生現象,特別是降低的寄生電容。雖然利用相同的電晶體於類比與數位方塊係將有經濟吸引力,此舉係將典型地導致變弱的類比性能。加諸於類比IGFET性能之許多需求係與數位另一者之結果為衝突。 The term "mixed signal" refers to an IC containing digital and analog circuit blocks. Digital circuit systems typically use the most active n-channel and p-channel IGFETs to achieve the maximum potential digital speed for a given current leakage specification. Analog circuits utilize IGFETs and/or bipolar transistors in accordance with the performance requirements of digital IGFETs. The requirements for analog IGFETs typically include: High linear voltage gain, good frequency response of large signals at high frequencies, large signal matching, good parameter matching, low input noise, proper control of electrical parameters for active and passive components, and reduced parasitics, especially It is a reduced parasitic capacitance. While it would be economically attractive to utilize the same transistor for analog and digital block systems, this would typically result in weaker analog performance. Many of the requirements imposed on the performance of analog IGFETs conflict with the results of the other digit.

較為特別而言,類比IGFET之電氣參數相較於數位方塊的IGFET是按照更嚴格的規格。於運作為放大器之一類比IGFET,該IGFET之輸出電阻必須為最大化,藉以使得其內在增益為最大化。輸出電阻於設定一類比IGFET之高頻的性能亦為重要。反之,輸出電阻於數位電路明顯為較不重要。於數位電路之輸出電阻的降低值可容許交換較高的電流驅動及因此較高的數位切換速度,只要該數位電路可區分其邏輯狀態,例如:邏輯“0”與邏輯“1”。 More specifically, the electrical parameters of the analog IGFET are in stricter specifications than the IGFET of the digital block. To operate as an analog of an IGFET, the output resistance of the IGFET must be maximized to maximize its intrinsic gain. It is also important that the output resistance is set to the high frequency performance of an analog IGFET. Conversely, the output resistance is significantly less important in digital circuits. The reduced value of the output resistance of the digital circuit allows for the exchange of higher current drive and therefore higher bit switching speed as long as the digital circuit can distinguish its logic state, for example: logic "0" and logic "1".

穿過類比電晶體之電氣訊號的形狀對電路性能來說為關鍵性的且通常必須儘可能維持為無諧波失真與雜訊。諧波失真主要由電晶體增益與電晶體電容之非線性度所引起。因此,類比電晶體之線性度的要求係非常高。於pn接面之寄生電容具有必須為減輕於類比方塊之本質的電壓非線性度。反之,訊號線性度通常為於數位電路之次要的重要性。 The shape of the electrical signal passing through the analog transistor is critical to circuit performance and must generally be maintained as harmonic distortion and noise as possible. Harmonic distortion is mainly caused by the nonlinearity of the transistor gain and the transistor capacitance. Therefore, the linearity requirements of analog crystals are very high. The parasitic capacitance at the pn junction has a voltage nonlinearity that must be mitigated by the nature of the analog block. Conversely, signal linearity is often a secondary importance of digital circuits.

運用於類比放大器之IGFET的小訊號的類比速度性能係決定於小訊號的頻率極限且涉及小訊號的增益與沿著針 對源極與汲極之pn接面的寄生電容。類比放大器IGFET之大訊號的類比速度性能同理為決定於大訊號的頻率極限且涉及IGFET特性之非線性者。 The analog speed performance of the small signal applied to the IGFET of the analog amplifier is determined by the frequency limit of the small signal and involves the gain of the small signal along the pin. The parasitic capacitance of the pn junction of the source and the drain. The analog speed performance of the large signal of the analog amplifier IGFET is similarly determined by the frequency limit of the large signal and involves the nonlinearity of the IGFET characteristics.

邏輯閘之數位速度係依據電晶體/負載組合之大訊號的切換時間而定義,因而涉及驅動電流與輸出電容。因此,類比速度性能係不同於數位速度性能而決定。類比與數位速度之最佳化可不同,導致不同的電晶體參數需求。 The digital gate speed is defined by the switching time of the large signal of the transistor/load combination, and thus involves the drive current and output capacitance. Therefore, the analog speed performance is determined by the difference in digital speed performance. The analogy and digital speed optimization can be different, resulting in different transistor parameter requirements.

數位電路方塊優勢地運用可製造之最小的IGFET。因為造成的尺寸範圍為本質地大,於數位電路之參數匹配經常為相當粗劣。反之,良好的參數匹配通常需要類比電路以達成必要的性能。此典型地要求:類比電晶體相較於數位IGFET而製造較大尺寸,使得類比IGFET為儘可能短,藉以具有儘可能低的源極至汲極的傳播延遲。 The digital circuit block advantageously uses the smallest IGFET that can be fabricated. Since the resulting size range is essentially large, parameter matching in digital circuits is often quite crude. Conversely, good parameter matching usually requires an analog circuit to achieve the necessary performance. This typically requires that the analog transistor be made larger in size than the digital IGFET, making the analog IGFET as short as possible, with as low a source-to-drain propagation delay as possible.

鑒於前述的考量,具有提供IGFET良好的類比特性之一種半導體架構係合意。該類比IGFET應具有高的本質增益、高的輸出電阻、降低寄生電容之高的小訊號速度,特別是沿著源極與汲極接面之降低寄生電容。亦為合意的是:該種架構係能夠提供高性能的數位IGFET。 In view of the foregoing considerations, it is desirable to have a semiconductor architecture that provides good analog properties of the IGFET. The analog IGFET should have high intrinsic gain, high output resistance, high signal speed to reduce parasitic capacitance, and especially reduce parasitic capacitance along the source and drain junctions. It is also desirable that this architecture is capable of providing high performance digital IGFETs.

本發明係提出該種架構。根據本發明,一種半導體構造係含有一主要(principal)IGFET,其具有沿著形成源極/汲極邊界之pn接面的至少一者之相當低的寄生電容。雖然可用於數位應用,主要IGFET係特別適用於類比應用且可 達成優越的類比性能。 The present invention proposes such an architecture. In accordance with the present invention, a semiconductor construction system includes a principal IGFET having a relatively low parasitic capacitance along at least one of the pn junctions forming the source/drain boundary. Although available for digital applications, the main IGFETs are especially suitable for analog applications and Achieve superior analog performance.

本發明之半導體構造可包括類似於主要IGFET但為相反極性者所構成之一附加(additional)IGFET。該二個IGFET因而形成其特別有用於類比電路之一互補IGFET架構。此半導體構造亦可含有其特別適用於數位電路之另一(further)IGFET,或二個另一的相反極性的IGFET。整體的架構於是可運用於混合訊號的IC。 The semiconductor construction of the present invention can include an additional IGFET that is similar to the primary IGFET but is of opposite polarity. The two IGFETs thus form a complementary IGFET architecture that is particularly useful for one of the analog circuits. The semiconductor construction may also contain a further IGFET that is particularly suitable for use in a digital circuit, or two other IGFETs of opposite polarity. The overall architecture can then be applied to ICs that mix signals.

回到主要IGFET,其含有一通道區、一對源極/汲極(S/D)區、覆於通道區之上的一閘極介電層、及覆於通道區之上方的閘極介電層之上的一閘極電極。主要IGFET係由具有摻雜一第一導電性型式之半導體摻雜劑以作為第一導電性型式者的本體材料之一半導體本體所作成。通道區係本體材料之部分且因此為第一導電性型式。S/D區係位於該半導體本體而沿著其上表面且為由該通道區所側向分開。各個S/D區係相反於第一導電性型式之一第二導電性型式者,藉以形成具有本體材料之一pn接面。本體材料係側向延伸在該等S/D區之下方。 Returning to the main IGFET, which includes a channel region, a pair of source/drain (S/D) regions, a gate dielectric layer overlying the channel region, and a gate dielectric overlying the channel region A gate electrode above the electrical layer. The primary IGFET is fabricated from a semiconductor body having a semiconductor dopant doped with a first conductivity type as one of the bulk materials of the first conductivity type. The channel region is part of the bulk material and is therefore of the first conductivity type. The S/D region is located along the upper surface of the semiconductor body and is laterally separated by the channel region. Each S/D zone is opposite to one of the first conductivity types of the second conductivity type, thereby forming a pn junction having one of the bulk materials. The body material extends laterally below the S/D regions.

重要的是,於本體材料之第一導電性型式的摻雜劑具有一濃度,其於自一下層本體材料位置朝上移動至該等S/D區的一指定者而減小成最多10%,較佳為減小成最多20%,該下層本體材料位置相較於指定S/D區而在上半導體表面之下方為不超過10倍深,較佳為不超過5倍深。替代而言,於本體材料之第一導電性型式的摻雜劑之濃度係自指定S/D區朝下移動至一本體材料位置而增大至少10倍,較佳 為至少20倍,該本體材料位置相較於該S/D區而在上半導體表面之下方為不超過10倍深,較佳為不超過5倍深。此次表層(subsurface)的本體材料位置通常位於多半在通道與S/D區之各者的全部之下方。藉由提供此“次陡峭(hypoabrupt)”摻雜劑分佈在該本體材料,沿著於本體材料與指定S/D區之間的pn接面之寄生電容係相當低。主要IGFET係可因此達成高的類比性能。 Importantly, the dopant of the first conductivity type of the bulk material has a concentration that decreases to a maximum of 10% from a position of the lower layer body material up to a designator of the S/D regions. Preferably, the reduction is up to 20%, and the position of the underlying body material is no more than 10 times deeper than the designated S/D region below the upper semiconductor surface, preferably no more than 5 times deep. Alternatively, the concentration of the dopant of the first conductivity type of the bulk material is increased by at least 10 times from the designated S/D region downwardly to a position of the body material, preferably Preferably, the body material is at least 20 times deeper than the S/D region below the upper semiconductor surface, preferably no more than 5 times deep. The position of the body material of the subsurface is usually located mostly below all of the channel and the S/D zone. By providing this "hypoabrupt" dopant distributed to the bulk material, the parasitic capacitance along the pn junction between the bulk material and the designated S/D region is relatively low. The main IGFET system can thus achieve high analog performance.

主要IGFET係通常為一不對稱裝置,在於:通道區係不對稱地縱向摻雜劑漸變。明確而言,於該本體材料之第一導電性型式的摻雜劑之濃度相較於在通道區沿著上表面會合該等S/D區的一剩餘者之處,在通道區沿著上半導體表面會合該指定S/D區之處為較低。於IGFET操作期間,指定S/D區通常是構成汲極而剩餘S/D區係構成源極。於該本體材料之第一導電性型式的摻雜劑之濃度係相較於在通道區沿著上表面會合該源極之處而在通道區沿著上表面會合該汲極之處為通常較低至少10%,較佳為較低至少20%。替代而言,於該本體材料之第一導電性型式的摻雜劑之濃度相較於在通道區沿著上表面會合該汲極之處,在通道區沿著上表面會合該源極之處為通常至少10倍高,較佳為至少20倍高。 The primary IGFET system is typically an asymmetric device in that the channel region is asymmetrically longitudinally dopant gradual. Specifically, the concentration of the dopant in the first conductivity type of the bulk material is higher in the channel region than in the channel region along the upper surface that meets the remainder of the S/D regions. The semiconductor surface meets the lower portion of the designated S/D region. During IGFET operation, the designated S/D region typically constitutes the drain and the remaining S/D regions form the source. The concentration of the dopant of the first conductivity type of the bulk material is generally higher than where the source region meets the source along the upper surface and the drain region along the upper surface of the channel region It is at least 10% lower, preferably at least 20% lower. Alternatively, the concentration of the dopant in the first conductivity type of the bulk material is higher than the concentration of the dopant in the channel region along the upper surface, where the source region meets the source region along the upper surface. It is usually at least 10 times higher, preferably at least 20 times higher.

沿著通道區之源極側的高摻雜劑濃度係屏蔽該源極為免於在汲極之相當高的電場,因為來自於汲極之電場線係終止於位在於靠近源極之通道區且提供靠近源極之較高的通道區摻雜劑濃度之離子化的摻雜劑原子,而非終止於沿 著源極的空乏區之離子化的摻雜劑原子且不利降低針對於來自源極的大多數電荷載體之電位障壁的絕對值。此減輕穿透。於該指定S/D區(即:在此為汲極)下方的上述次陡峭垂直摻雜劑量變曲線、及於源極側之提高的通道區摻雜劑濃度之組合係可因而達成高的類比性能而無穿透失效。 The high dopant concentration along the source side of the channel region shields the source from the relatively high electric field at the drain because the electric field line from the drain terminates in the channel region located near the source and Providing ionized dopant atoms at a higher channel region dopant concentration near the source, rather than terminating along The ionized dopant atoms of the source depletion region and the absolute value of the potential barrier against most of the charge carriers from the source are disadvantageously reduced. This reduces penetration. The combination of the sub-steep vertical doping dose curve below the designated S/D region (ie, here a drain) and the increased channel region dopant concentration at the source side can thus achieve a high Analog performance without penetration failure.

於指定S/D區之下方的次陡峭垂直摻雜劑量變曲線係可以種種方式實施。於一個實施例,於該本體材料之第一導電性型式的摻雜劑之濃度係在其置於指定S/D區之下的前述的次表層本體材料位置而達到一局部的最大值。於該本體材料之第一導電性型式的摻雜劑之濃度是典型自此本體材料位置朝上移動至指定S/D區而逐漸減小。 The sub-steep vertical doping dose curve below the designated S/D zone can be implemented in a variety of ways. In one embodiment, the concentration of the dopant of the first conductivity type of the bulk material is at a local maximum by placing the aforementioned subsurface bulk material location below the designated S/D region. The concentration of the dopant of the first conductivity type of the bulk material is typically gradually reduced from the position of the body material moving up to the designated S/D region.

於製造其根據本發明之主要IGFET的前述實施,第一導電性型式之半導體井部摻雜劑典型為藉由離子植入而引入至半導體本體以界定第一導電性型式之一井部。離子植入之運用於實行井部摻雜步驟使該井部摻雜劑以於前述的次表層本體材料位置而達到其最大濃度。閘極電極設於意圖為通道區的半導體材料之上方,且為由閘極介電材料所分開自該半導體材料。第二導電性型式之半導體源極/汲極摻雜劑係引入至半導體本體以形成S/D區。 In fabricating the foregoing implementation of its primary IGFET in accordance with the present invention, a first conductivity type semiconductor well dopant is typically introduced into the semiconductor body by ion implantation to define one of the first conductivity types. The ion implantation is performed to perform a well doping step such that the well dopant reaches its maximum concentration at the location of the aforementioned subsurface body material. The gate electrode is disposed over the semiconductor material intended to be the channel region and is separated from the semiconductor material by a gate dielectric material. A second conductivity type semiconductor source/drain dopant is introduced to the semiconductor body to form an S/D region.

實行附加處理以完成主要IGFET的前述實施之製造。井部摻雜步驟及附加處理係在致使於指定S/D區之下方的垂直摻雜劑量變曲線為次陡峭之條件而作成。特別而言,井部摻雜劑之濃度自前述的次表層本體材料位置向上移動至該指定S/D區而減小成最多10%。 Additional processing is performed to complete the fabrication of the aforementioned implementation of the primary IGFET. The well doping step and the additional processing are performed under conditions that cause the vertical doping dose curve below the designated S/D region to be sub-steep. In particular, the concentration of the well dopant is reduced upwardly from the aforementioned subsurface body material location to the designated S/D zone to a maximum of 10%.

本體材料係第一導電性型式者,至少是於IGFET製造結束時。於IGFET製造結束時而構成本體材料與S/D區之半導體材料係可能初始為第二導電性型式者。若是如此,井部摻雜步驟轉換此材料之一下部至第一導電性型式。於製程之一個形式,補償摻雜係藉著第一導電性型式之半導體摻雜劑而實行以轉換此材料之剩餘部分至第一導電性型式。於製程之另一個形式,井部摻雜劑之部分者係於附加處理期間而朝上擴散至此材料之上部,藉以致使其在井部摻雜步驟後而未顯著受到第一或第二導電性型式的其他摻雜之此材料上部的實質全部以轉換為第一導電性型式。 The body material is of the first conductivity type, at least at the end of the IGFET fabrication. The semiconductor material that constitutes the bulk material and the S/D region at the end of the IGFET fabrication may be initially a second conductivity type. If so, the well doping step converts one of the lower portions of the material to the first conductivity pattern. In one form of the process, the compensation doping is performed by the first conductivity type semiconductor dopant to convert the remainder of the material to the first conductivity pattern. In another form of the process, part of the well dopant is diffused upwardly to the upper portion of the material during additional processing such that it is not significantly exposed to the first or second conductivity after the well doping step The other portions of the other doped materials of the type are all converted to the first conductivity type.

於主要FET之另一種實施,於本體材料之第一導電性型式的摻雜劑之濃度係自該前述的次表層本體材料位置朝上移動至指定S/D區而實質經歷一步級減小。舉例而言,本體材料係可含有:一次表層(埋入)本體材料部分;及,一直接覆於上層的表面鄰接本體材料部分,其延伸至該上半導體表面且其含有S/D區。次表層本體材料部分係置於S/D區之下,且於其最接近該等S/D區之處,相較於該等S/D區而在上半導體表面之下方為不超過10倍深,較佳為不超過5倍深。舉例而言,次表層本體材料部分係可大部分均勻摻雜。於本體材料之第一導電性型式的摻雜劑之濃度係於是於自該次表層本體材料部分跨過至表面鄰接本體材料部分而實質經歷一步級減小(通常為至少一10%),且於透過該表面鄰接本體材料部分進一步朝上移動至指定S/D區而維持相較於該次表層本體材料部分為較低至少一因數 10。 In another implementation of the primary FET, the concentration of the dopant of the first conductivity type of the bulk material moves from the aforementioned subsurface body material position upwardly to the designated S/D region and substantially undergoes a one-step reduction. For example, the body material can comprise: a surface layer (buried) body material portion; and a surface directly overlying the upper layer abutting the body material portion extending to the upper semiconductor surface and containing the S/D region. The subsurface body material portion is disposed below the S/D region and, where it is closest to the S/D regions, is no more than 10 times below the upper semiconductor surface compared to the S/D regions Deep, preferably no more than 5 times deep. For example, the subsurface body material portion can be mostly uniformly doped. The concentration of the dopant of the first conductivity type of the bulk material is such that it substantially undergoes a one-step reduction (typically at least one 10%) from the portion of the subsurface body material that spans the surface adjacent the body material portion, and Moving further upwardly through the surface adjacent body material portion to a designated S/D region while maintaining a lower than at least one factor compared to the subsurface body material portion 10.

簡言之,本發明係提供具有特別適用於類比電路之一IGFET、或一對相反極性的IGFET之一種半導體架構。此架構可包括特別適用於數位電路之另一IGFET、或一對相反極性的另一IGFET。造成的架構非常適當處理混合訊號應用。本發明因此提供其優於先前技術的實質進展。 Briefly stated, the present invention provides a semiconductor architecture having an IGFET that is particularly suitable for use in an analog circuit, or a pair of IGFETs of opposite polarity. This architecture may include another IGFET that is particularly suitable for digital circuitry, or another pair of IGFETs of opposite polarity. The resulting architecture handles mixed-signal applications very well. The invention thus provides a substantial advance over the prior art.

參考記號與其他規定Reference marks and other regulations

運用於下文與圖式中之參考符號係具有下列的意義,其中,形容詞“線(lineal)”係意指每單位IGFET寬度,且形容詞“面(areal)”係意指每單位側向面積:AI≡電流增益 The reference symbols used in the following figures have the following meanings, wherein the adjective "lineal" means the width per unit IGFET, and the adjective "areal" means the area per unit lateral: A I ≡ current gain

Cda≡面空乏區域電容 C da ≡ 空 区域 area capacitor

Cd0a≡於零反向電壓之面空乏區域電容值 C d0a零 零 零 零 反向 反向 反向 反向 反向 反向

CDB≡汲極至本體電容 C DB bungee to body capacitance

CDBw≡線汲極至本體電容 C DBw 汲 line bungee to body capacitance

CGB≡閘極至本體電容 C GB ≡ gate to body capacitance

CGD≡閘極至汲極電容 CG D ≡ gate to drain capacitor

CGIa≡面閘極介電電容 C GIa闸 gate dielectric capacitor

CGS≡閘極至源極電容 C GS ≡ gate to source capacitance

CL≡負載電容 C L ≡ load capacitor

CSB≡源極至本體電容 C SB ≡ source to body capacitance

CSBw≡線源極至本體電容 C SBw 源 line source to body capacitance

f≡頻率 F≡frequency

fT≡截止頻率 f T ≡ cutoff frequency

fTpeak≡截止頻率的峰值 f Tpeak 峰值 peak of cutoff frequency

gm≡IGFET的本質互導 The intrinsic mutual conductance of g m ≡IGFET

gmw≡IGFET的線互導 g mw线 IGFET line mutual conductance

gmb≡本體電極的互導 G mb互 body electrode mutual conductance

gmeff≡IGFET於存在電源電阻的有效互導 g meff ≡ IGFET in the presence of effective mutual conductance of the power supply resistor

gmsatw≡IGFET於飽和的線互導 g msatw ≡IGFET cross-conducting on saturated line

HA≡放大器轉移函數 H A ≡ amplifier transfer function

ID≡汲極電流 I D ≡汲 current

IDw≡線汲極電流 I Dw汲 line 汲 current

ID0w≡於零閘極至源極電壓之線汲極電流的洩漏值 I D0w Leakage value of the line drain current from zero gate to source voltage

ii≡小訊號輸入電流 i i small signal input current

io≡小訊號輸出電流 i o ≡ small signal output current

KS≡半導體材料的相對介電係數 Relative dielectric constant of K S ≡ semiconductor material

k≡波次曼常數 K≡ wave subman constant

L≡通道的長度 L≡ channel length

LG≡閘極電極的長度 L G ≡ gate electrode length

LGDoverlap≡閘極電極重疊(或覆蓋)汲極的縱向距離 L GDoverlap ≡ Gate electrode overlaps (or covers) the longitudinal distance of the bungee

LGSoverlap≡閘極電極重疊源極的縱向距離 Longitudinal distance of the L GSoverlap ≡ gate electrode overlap source

NA≡受體摻雜劑濃度 N A ruthenium acceptor dopant concentration

NB≡於本體材料的淨摻雜劑濃度 N B is the net dopant concentration of the bulk material

NB0,NB0’≡於pn接面的較輕度摻雜側之於材料接面近端固定濃度部分的淨摻雜劑濃度值 N B0 , N B0 '≡ on the lighter doped side of the pn junction, the net dopant concentration value at the near-end fixed concentration portion of the material junction

NB1,NB1’≡於pn接面的較輕度摻雜側之於材料接面遠端固定濃度部分的淨摻雜劑濃度值 N B1 , N B1 '≡ on the lighter doped side of the pn junction, the net dopant concentration value at the fixed concentration portion of the distal end of the material junction

ND≡施體摻雜劑濃度 N D ≡ donor dopant concentration

ND0≡於pn接面的較重度摻雜側之於固定濃度材料的淨摻雜劑濃度值 N D0净 The net dopant concentration of the fixed-concentration material on the heavier doping side of the pn junction

NI≡個別摻雜劑濃度 N I ≡ individual dopant concentration

NN≡淨摻雜劑濃度 N N net dopant concentration

NT≡絕對摻雜劑濃度 N T ≡ absolute dopant concentration

ni≡本質載體濃度 n i ≡ essential carrier concentration

q≡電子電荷 Q≡Electronic charge

RD≡於IGFET之汲極的串聯電阻 R D is the series resistance of the drain of the IGFET

RG≡於IGFET之閘極電極的串聯電阻 R G串联 series resistance of the gate electrode of IGFET

Ron≡IGFET之線性區域的接通電阻 On- resistance of the linear region of R ≡ IGFET

RS≡於IGFET之源極的串聯電阻 R S is the series resistance of the source of the IGFET

s≡變換變數 S≡ transform variable

T≡溫度 T≡ temperature

td≡空乏區域厚度 t d ≡ vacant area thickness

td0≡於零反向電壓之空乏區域厚度值 t d0 is the thickness of the depletion region of the zero reverse voltage

tG1≡閘極介電質厚度 t G1 ≡ gate dielectric thickness

VBI≡內建電壓 V BI ≡ built-in voltage

VBS≡DC本體至源極電壓 V BS ≡DC body to source voltage

VDB≡DC汲極至本體電壓 V DB ≡DC汲 to body voltage

VDD≡高供應電壓 V DD ≡ high supply voltage

VDS≡DC汲極至源極電壓 V DS ≡DC drain to source voltage

VGS≡DC閘極至源極電壓 V GS ≡DC gate to source voltage

Vg≡閘極電壓振幅 V g ≡ gate voltage amplitude

Vin≡輸入電壓振幅 Input voltage amplitude V in

Vout≡輸出電壓振幅 V out ≡ output voltage amplitude

VR≡DC反向電壓 V R ≡DC reverse voltage

VRmax≡DC反向電壓的最大值 V Rmax ≡DC reverse voltage maximum

VSB≡DC源極至本體電壓 V SB ≡DC source to body voltage

VSS≡低供應電壓 V SS degrades supply voltage

VT≡臨界電壓 V T ≡ threshold voltage

Vgs≡小訊號閘極至源極電壓 V gs ≡ small signal gate to source voltage

Vnsat≡電子飽和速度 V nsat ≡ electron saturation speed

W≡通道寬度 W≡ channel width

x≡縱向距離 X≡ longitudinal distance

y≡自pn接面的深度、垂直距離、或距離 Y≡ depth, vertical distance, or distance from the pn junction

yd≡自pn接面至於本體材料空乏區域遠端邊界的距離值 y d距离 distance from the pn junction to the distal boundary of the depletion region of the bulk material

yd0≡自pn接面至本體材料接面近端固定濃度部分的距離值,本體材料係具有於均勻淨摻雜劑濃度的步級變化 y d0 ≡ distance from the pn junction to the value of a fixed concentration portion of body material proximal end surface, the body having a material based on a uniform net dopant concentration changes in steps of

ydmax≡自pn接面至本體材料接面遠端固定濃度部分的距離值,本體材料係具有於均勻淨摻雜劑濃度的步級變化 y dmax距离 distance from the pn junction to the fixed concentration portion of the distal end of the body material junction, the bulk material has a step change in uniform net dopant concentration

yD≡於汲極之底部的深度值 y D The depth value at the bottom of the bungee

yS≡於源極之底部的深度值 y S深度 depth value at the bottom of the source

yST≡於接面近端上方本體材料部分遠端邊界的深度 值 y ST深度 depth value at the distal end of the body material portion above the proximal end of the junction

yW≡於井摻雜劑之最大濃度位置的深度值 y W深度 depth value at the maximum concentration position of the well dopant

ε0≡自由空間(真空)的介電係數 ε 0 ≡ free space (vacuum) dielectric constant

μn≡電子移動率 n n ≡ electron mobility

ω≡角頻率 ω corner frequency

ωin≡於輸入極點之角頻率值 ω in ≡ the angular frequency of the input pole

ωout≡於輸出極點之角頻率值 ω out ≡ the angular frequency value of the output pole

ωz≡於零點之角頻率值 ω z ≡ at the angular value of the zero point

ωp≡於極點之角頻率值 ω p ≡ at the corner of the pole

長通道與短通道n通道IGFET在此(即:下文與上文)分別稱為長與短n通道IGFET。同理,長通道與短通道p通道IGFET在此分別稱為長與短p通道IGFET。如運用於下文,術語“表面鄰接(adjoining)”係意指鄰接(或延伸至)上半導體表面,即:由單晶(或主要為單晶)半導體材料所組成之一半導體本體的上表面。 The long and short channel n-channel IGFETs (here, hereinafter and above) are referred to as long and short n-channel IGFETs, respectively. Similarly, long channel and short channel p-channel IGFETs are referred to herein as long and short p-channel IGFETs, respectively. As used hereinafter, the term "surface adjacency" means to abut (or extend to) an upper semiconductor surface, i.e., an upper surface of a semiconductor body composed of a single crystal (or predominantly single crystal) semiconductor material.

無特定的通道長度值係概括區分IGFET操作之短通道與長通道方式或概括區別一短通道IGFET與一長通道IGFET。一短通道IGFET(或操作於短通道方式之一IGFET)僅是特性為顯著受到短通道效應所影響之一IGFET。一長通道IGFET(或操作於長通道方式之一IGFET)係一短通道IGFET之相反者。儘管約為0.4毫米(mm)之通道長度係粗略為構成針對於美國專利第6,548,842 B1號之背景技藝的短通道與短通道方式之間的界限,長通道/短通道的界限可 發生在較高或較低的通道長度值,視種種的因素而定,諸如:閘極介電質厚度、最小可印製的特徵尺寸、通道區摻雜劑厚度、及源極/汲極-本體的接面深度。 No specific channel length values are used to generalize the short channel and long channel modes of IGFET operation or to distinguish between a short channel IGFET and a long channel IGFET. A short channel IGFET (or one of the short channel modes IGFETs) is only one of the IGFETs that are characterized by significant short channel effects. A long channel IGFET (or one of the long channel modes IGFET) is the opposite of a short channel IGFET. Although the length of the channel of about 0.4 millimeters (mm) is roughly the boundary between the short channel and the short channel mode of the background art of U.S. Patent No. 6,548,842 B1, the boundary of the long channel/short channel can be Occurs at higher or lower channel length values depending on various factors such as: gate dielectric thickness, minimum printable feature size, channel region dopant thickness, and source/drainage - The junction depth of the body.

於汲極下方的垂直本體材料摻雜劑量變曲線為次陡峭之IGFET,歸因於井部摻雜劑濃度的次表層最大The vertical bulk material doping dose curve below the bungee is a sub-steep IGFET, which is attributed to the subsurface maximum of the well dopant concentration. value

圖6係說明根據本發明所構成之一種不對稱長n通道IGFET 100,以便特別適用於高速的類比應用。長通道IGFET 100係由一單晶矽(單矽)半導體本體所作成,其中,一對極重度摻雜的n型源極/汲極(S/D)區102與104係位於沿著上半導體表面。S/D區102與104係因為其通常(雖然非為必要)分別作用為源極與汲極而分別於下文概括稱為源極102與汲極104。 Figure 6 illustrates an asymmetric long n-channel IGFET 100 constructed in accordance with the present invention to be particularly suitable for high speed analog applications. The long channel IGFET 100 is fabricated from a single crystal germanium (single germanium) semiconductor body in which a pair of heavily heavily doped n-type source/drain regions (S/D) regions 102 and 104 are located along the upper semiconductor. surface. S/D regions 102 and 104 are generally referred to hereinafter as source 102 and drain 104, respectively, because they generally, although not necessarily, act as source and drain, respectively.

汲極104係通常相較於源極102而摻雜稍微較重度。於沿著上半導體表面之源極102的淨摻雜劑濃度NN之最大值係通常為至少1×1020原子/立方公分,典型為4×1020原子/立方公分。於沿著上表面之汲極104的濃度NN之最大值係通常為至少1×1020原子/立方公分,典型為稍微大於4×1020原子/立方公分,以稍微超過於源極102的最大上表面NN濃度。然而,如下文所述之關聯於圖63之發明的IGFET,汲極104有時相較於源極102是摻雜較輕度。舉例而言,當於源極102的最大上表面NN濃度係至少為1×1020原子/立方公分,則於沿著上表面之汲極104的濃度NN之最大值可為5×1019原子/立方公分,且可下降為至少小到如同1×1019原子/立方公分。 The drain 104 is typically doped slightly more heavily than the source 102. The maximum value of the net dopant concentration N N along the source 102 of the upper semiconductor surface is typically at least 1 x 10 20 atoms/cm 3 , typically 4 x 10 20 atoms/cm 3 . The maximum value of the concentration N N of the drain 104 along the upper surface is usually at least 1 × 10 20 atoms / cubic centimeter, typically slightly more than 4 × 10 20 atoms / cubic centimeter, to slightly exceed the source 102 Maximum upper surface N N concentration. However, as described below with respect to the IGFET of the invention of FIG. 63, the drain 104 is sometimes less doped than the source 102. For example, when the maximum upper surface N N concentration of the source 102 is at least 1×10 20 atoms/cm 3 , the maximum value of the concentration N N of the drain 104 along the upper surface may be 5×10. 19 atoms / cubic centimeter, and can be reduced to at least as small as 1 × 10 19 atoms / cubic centimeter.

源極102係延伸至上半導體表面之下方的一距離yS。汲極104係延伸至上半導體表面之下方的一深度yD。源極深度yS係通常為0.1至0.2微米,典型為0.15微米。汲極深度yD係通常為0.15至0.3微米,典型為0.2微米。汲極深度yD係通常為超過源極深度yS,典型為超過0.05至0.1微米。 The source 102 extends a distance y S below the upper semiconductor surface. The drain 104 is extended to a depth y D below the upper semiconductor surface. The source depth y S is typically from 0.1 to 0.2 microns, typically 0.15 microns. The bungee depth y D is typically from 0.15 to 0.3 microns, typically 0.2 microns. The bungee depth y D is typically above the source depth y S , typically over 0.05 to 0.1 microns.

源極102與汲極104係由p型本體材料108之一不對稱通道區106所側向分開,p型本體材料108係形成(a)對於源極102之一源極-本體pn接面110與(b)對於汲極104之一汲極-本體pn接面112。p型本體材料108係由一輕度摻雜的下部114、一重度摻雜的中間井部116與一上部118所組成,上部118係相較於源極102與汲極104而典型地在上半導體表面之下方延伸較深。上方本體材料部分118係因此典型為含有通道區106之全部。無論如何,p-下方本體材料部分114與p+井部116係側向延伸在源極102與汲極104之下方。 Source 102 and drain 104 are laterally separated by an asymmetric channel region 106 of p-type body material 108, which forms (a) source-body pn junction 110 for source 102. And (b) one of the drain-body pn junctions 112 for the drain 104. The p-type body material 108 is comprised of a lightly doped lower portion 114, a heavily doped intermediate well 116 and an upper portion 118, typically upper than the source 102 and the drain 104. The underside of the semiconductor surface extends deeper. The upper body material portion 118 is thus typically comprised of all of the channel regions 106. In any event, the p-lower body material portion 114 and the p+ well 116 extend laterally below the source 102 and the drain 104.

p+井部116係由一種約為高斯方式所垂直分佈的p型半導體井部摻雜劑而界定,藉以達成在上半導體表面下方的一深度yW之一最大次平面濃度。於圖6之“X”概括指出p型井部摻雜劑之最大次平面濃度的位置。於深度yW之p型井部摻雜劑濃度係通常為1×1018-1×1019原子/立方公分,典型為5×1018原子/立方公分。超過源極深度yS與汲極深度yD之最大井部濃度的深度yW通常為0.5至1.0微米,典型為0.7微米。此外,深度yW相較於汲極深度yD而通常 為不超過10倍,較佳為不超過5倍。即,p型井部摻雜劑之最大濃度的位置相較於汲極104而在上表面之下方為不超過10倍深,較佳為不超過5倍。 The p+ well 116 is defined by a p-type semiconductor well dopant that is approximately vertically distributed in a Gaussian manner to achieve a maximum sub-plane concentration at a depth y W below the upper semiconductor surface. The "X" in Figure 6 summarizes the location of the maximum sub-plane concentration of the p-type well dopant. The p-type well dopant concentration at depth y W is typically 1 x 10 18 - 1 x 10 19 atoms/cm 3 , typically 5 x 10 18 atoms/cm 3 . The depth y W exceeding the maximum well concentration of the source depth y S and the drain depth y D is typically 0.5 to 1.0 microns, typically 0.7 microns. Further, the depth y W is usually not more than 10 times, preferably not more than 5 times, compared to the drain depth y D . That is, the position of the maximum concentration of the p-type well dopant is not more than 10 times deep, preferably not more than 5 times below the upper surface, compared to the drain 104.

因為井部116係位於如同井部116之相同導電性型式(p型)的摻雜半導體材料,重度摻雜的井部116之上與下邊界係有些不精確。如下文所指出,界定井部116之半導體材料具有通常為相當均勻的低p型背景摻雜劑濃度。井部116之上與下邊界典型地定義p型井部摻雜劑濃度等於p型背景摻雜劑濃度之位置。除了井部116係延伸至相較於井部116為更重度摻雜之其他p型材料的任何位置之外,沿著井部116的上與下邊界之總p型摻雜劑的濃度是p型背景摻雜劑濃度的二倍。在此等邊界定義下,井部116的上邊界通常在上半導體表面之下方的0.2至0.5微米(μm),典型為0.3微米。井部116的下邊界通常在上表面之下方的0.9至1.3微米,典型為1.1微米。 Because the well 116 is located in the same conductivity type (p-type) doped semiconductor material as the well 116, the heavily doped well 116 is somewhat inaccurate above and below the lower boundary. As indicated below, the semiconductor material defining the well 116 has a generally low uniform p-type background dopant concentration. The upper and lower boundaries of the well 116 typically define a location at which the p-type well dopant concentration is equal to the p-type background dopant concentration. The concentration of total p-type dopant along the upper and lower boundaries of well 116 is p except that well 116 extends to any location other than the p-type material that is more heavily doped than well 116. Type background dopant concentration is twice. Under the definition of such boundaries, the upper boundary of the well 116 is typically 0.2 to 0.5 micrometers (μm) below the upper semiconductor surface, typically 0.3 microns. The lower boundary of the well 116 is typically 0.9 to 1.3 microns below the upper surface, typically 1.1 microns.

一空乏區域(未顯示)於IGFET操作期間為沿著上半導體表面而自跨過通道區106的源極-本體pn接面110延伸至汲極-本體pn接面112。表面空乏區域之平均厚度係通常為小於0.1毫米,典型為0.05微米左右。雖然井部116之上與下邊界係有些不精確,p型井部摻雜劑之濃度通常於上表面下方之小於0.1微米的深度而下降至電氣微小的位準。是以,井部116實質為位在表面空乏區域之下方。 A depletion region (not shown) extends from the source-body pn junction 110 across the channel region 106 to the drain-body pn junction 112 along the upper semiconductor surface during IGFET operation. The average thickness of the surface depletion region is typically less than 0.1 mm, typically about 0.05 microns. Although the upper and lower boundary portions of the well 116 are somewhat inaccurate, the concentration of the p-type well dopant is typically reduced to an electrical minute level at a depth of less than 0.1 microns below the upper surface. Therefore, the well 116 is substantially below the surface depletion region.

p型上方本體材料部分118包括一重度摻雜袋部120,其沿著源極120而向上延伸至上半導體表面且終止於源極 102與汲極104之間的一位置。圖6說明p+袋部120相較於源極102與汲極104而延伸在上表面下方為較深之實例。特別是,圖6描繪該袋部120為側向延伸在源極102下方且主要地到達p+井部116之實例。如關聯下文所論述之於圖18a至18c,袋部120相較於圖6所示而可延伸至上表面下方的較小深度。p型上方本體材料部分118之剩餘者(即:在袋部120之外側的部分)指為於圖6之項目124。上方本體材料剩餘者124係輕度摻雜且沿著汲極104延伸。於源極102與汲極104之間的所有p型半導體材料所組成之通道區106因而部分由源極側的p+袋部120及部分由汲極側的p-上方本體材料剩餘者124所形成。 The p-type upper body material portion 118 includes a heavily doped pocket portion 120 that extends up the source 120 to the upper semiconductor surface and terminates at the source A position between 102 and the drain 104. Figure 6 illustrates an example in which the p+ pocket 120 extends deeper below the upper surface than the source 102 and the drain 104. In particular, FIG. 6 depicts an example in which the pocket portion 120 is laterally extending below the source 102 and primarily to the p+ well 116. As discussed below with respect to Figures 18a through 18c, pocket portion 120 can extend to a lesser depth below the upper surface than that shown in Figure 6. The remainder of the p-type upper body material portion 118 (i.e., the portion on the outer side of the pocket portion 120) is referred to as item 124 of FIG. The upper body material remainder 124 is lightly doped and extends along the drain 104. The channel region 106 formed by all of the p-type semiconductor material between the source 102 and the drain 104 is thus formed in part by the p+ pocket portion 120 on the source side and the remaining portion 124 of the p-upper body material on the drain side. .

一閘極介電層126位在上半導體表面且延伸在通道區106之上方。一閘極電極128係位於通道區106之上方的閘極介電層126。閘極電極128部分為延伸在源極102與汲極104之上方。於圖6之實例,閘極電極128係由其極重度摻雜n型的多晶矽(聚矽)所組成。閘極電極128可藉著其他的導電材料所形成,諸如:金屬或充分摻雜p型為導電性之聚矽。 A gate dielectric layer 126 is located on the upper semiconductor surface and extends above the channel region 106. A gate electrode 128 is a gate dielectric layer 126 over the channel region 106. The gate electrode 128 portion extends over the source 102 and the drain 104. In the example of FIG. 6, the gate electrode 128 is composed of a very heavily doped n-type polysilicon (polyfluorene). The gate electrode 128 can be formed by other conductive materials such as a metal or a doped p-type electrically conductive polymer.

源極102、汲極104、與n++閘極電極128之上表面典型為設有薄層(未顯示)之導電的金屬矽化物,以利於作成電氣接觸至區域102、104、128。於此情形,閘極電極128與覆於其上的金屬矽化物層形成一複合式的閘極電極。源極102、汲極104與通道區106典型為由一電氣絕緣場區域(同樣為未顯示於圖6)所側向環繞,該場區域係凹陷於上半導 體表面,以界定其含有區域102、104與106之一主動半導體島部。金屬矽化物層與場絕緣區域之實例係關聯於圖29.1與29.2而於下文提出。 The top surface of source 102, drain 104, and n++ gate electrode 128 is typically provided with a thin layer (not shown) of conductive metal halide to facilitate electrical contact to regions 102, 104, 128. In this case, the gate electrode 128 forms a composite gate electrode with the metal halide layer overlying it. Source 102, drain 104 and channel region 106 are typically laterally surrounded by an electrically insulating field region (also not shown in Figure 6) which is recessed in the upper half. The body surface defines an active semiconductor island portion that includes one of the regions 102, 104, and 106. Examples of metal telluride layers and field insulating regions are associated with Figures 29.1 and 29.2 and are set forth below.

沿著源極102之p+袋部120的存在致使通道區106相關於通道摻雜劑濃度而縱向漸變,即:於通道長度之方向。因為源極側的袋部120之實質鏡像並未位於沿著汲極104,通道區106於縱向方向為不對稱摻雜劑漸變。p+井部116位於其延伸沿著汲極104的p-上方本體材料剩餘者124之下方。p+井部116與p-上方本體材料剩餘者124之此組態致使其位在汲極102之下方的本體材料108部分者之垂直摻雜劑量變曲線為次陡峭。即,p型摻雜劑的濃度自汲極-本體接面112朝下透過p-上方本體材料剩餘者124至p+井部116而大為提高,通常為至少10%。於通道區106的縱向不對稱摻雜劑漸變與於汲極104下方的本體材料108部分者之透過汲極104的次陡峭垂直摻雜劑量變曲線之組合使IGFET 100具有極為良好的類比特性而且避免穿透。 The presence of the p+ pocket 120 along the source 102 causes the channel region 106 to ramp longitudinally with respect to the channel dopant concentration, i.e., in the direction of the channel length. Because the substantial mirror image of the pocket portion 120 on the source side is not located along the drain 104, the channel region 106 is asymmetrical dopant gradient in the longitudinal direction. The p+ well 116 is located below the p-upper body material remainder 124 that extends along the drain 104. This configuration of the p+ well 116 and the p-upper body material remainder 124 causes the vertical doping dose curve of the portion of the body material 108 that is positioned below the drain 102 to be sub-steep. That is, the concentration of the p-type dopant is greatly increased from the drain-body junction 112 downward through the p-upper body material remainder 124 to the p+ well 116, typically at least 10%. The combination of the longitudinal asymmetric dopant grading in the channel region 106 and the sub-steep vertical doping dose curve of the portion of the body material 108 under the drain 104 that passes through the drain 104 provides the IGFET 100 with excellent analogy characteristics and Avoid penetration.

於通道區106之縱向不對稱摻雜劑漸變及於汲極104下方的本體材料108部分者之次陡峭垂直摻雜劑量變曲線的瞭解藉助於圖7a至7c(集體為“圖7”)、圖8a至8c(集體為“圖8”)、圖9a至9c(集體為“圖9”)、及圖10a至10c(集體為“圖10”)而促進。圖7係呈現沿著上半體表面之範例的摻雜劑濃度,作為縱向距離x之一函數。作為沿著透過源極102之一垂直線130的深度y之一函數的範例的摻雜劑濃度呈現於圖8。圖9呈現範例的摻雜劑濃度,作 為沿著透過通道區106之一對垂直線132與134的深度y之一函數。垂直線132係通過源極側的袋部120。垂直線134係通過於袋部120與汲極104之間的一垂直位置。作為沿著透過汲極104之一垂直線136的深度y之一函數的範例的摻雜劑濃度呈現於圖10。 The longitudinal asymmetry dopant gradient in the channel region 106 and the sub-steep vertical doping dose curve of the portion of the body material 108 below the drain 104 are understood by means of Figures 7a to 7c (collectively "Figure 7"), Figures 8a to 8c (collectively "Figure 8"), Figures 9a to 9c (collectively "Figure 9"), and Figures 10a to 10c (collectively "Figure 10") are promoted. Figure 7 is a graph showing the dopant concentration along the upper surface of the upper half as a function of the longitudinal distance x. An exemplary dopant concentration as a function of one of the depths y across one of the vertical lines 130 of the source 102 is presented in FIG. Figure 9 presents an exemplary dopant concentration for It is a function of one of the depths y of the vertical lines 132 and 134 along one of the transmission channel regions 106. The vertical line 132 passes through the pocket portion 120 on the source side. The vertical line 134 passes through a vertical position between the pocket 120 and the drain 104. An exemplary dopant concentration as a function of depth y along a vertical line 136 through one of the drains 104 is presented in FIG.

圖7a明確說明沿著上半導體表面之個別半導體摻雜劑的濃度NI,該等摻雜劑主要界定區域102、104、120與124且因此建立通道區106之縱向摻雜劑漸變。圖8a、9a與10a明確說明沿著垂直線130、132、134與136之個別半導體摻雜劑的濃度NI,該等摻雜劑係垂直界定區域102、104、114、116、120與124且因此建立於汲極104之下方的本體材料108部分者的次陡峭垂直摻雜劑量變曲線。曲線102’與104’代表運用以分別形成源極102與汲極104之n型摻雜劑的濃度NI(表面及垂直)。曲線114’、116’、120’與124’代表運用以分別形成區域114、116、120與124之p型摻雜劑的濃度NI(表面及/或垂直)。項目110#與112#是指淨摻雜劑濃度NN降至零之處且因此分別指示pn接面110與112之位置。 Figure 7a clearly illustrates the concentration N I of the individual semiconductor dopants along the upper semiconductor surface, which primarily define regions 102, 104, 120 and 124 and thus establish a longitudinal dopant gradation of channel region 106. Figures 8a, 9a and 10a clearly illustrate the concentration N I of individual semiconductor dopants along vertical lines 130, 132, 134 and 136 which are vertically defined regions 102, 104, 114, 116, 120 and 124. And thus a sub-steep vertical doping dose curve of the portion of the bulk material 108 that is established below the drain 104. Curves 102' and 104' represent the concentration N I (surface and vertical) of the n-type dopant used to form source 102 and drain 104, respectively. Curves 114', 116', 120' and 124' represent the concentration N I (surface and/or vertical) of the p-type dopant utilized to form regions 114, 116, 120 and 124, respectively. Items 110 # and 112 # refer to where the net dopant concentration N N drops to zero and thus indicate the location of the pn junctions 110 and 112, respectively.

沿著上半導體表面之於區域102、104、120與124的總p型與總n型摻雜劑的濃度NT係顯示於圖7b。圖8b、9b與10b描繪沿著垂直線130、132、134與136之於區域102、104、114、116、120與124的總p型與總n型摻雜劑的濃度NT。分別對應於區域114、116、120與124之曲線段114”、116”、120”與124”代表p型摻雜劑的總濃度NT。 於圖7b之項目106”係對應於通道區106且代表曲線段120”與124”之通道區部分。n型摻雜劑的總濃度NT係由分別對應於源極102與汲極104之曲線102”與104”所代表。於圖7b之曲線102”與104”係分別為相同於圖7a之曲線102’與104’。於圖8b與10b之曲線102”與104”係分別為相同於圖8a與10a之曲線102’與104’。 Along the upper semiconductor surface in a region 102, 104, and the total concentration of N T based p-type and total n-type dopant 124 shown in Figure 7b. Figures 8b, 9b, and 10b depict the total p-type and total n-type dopant concentration N T along regions 109, 104, 114, 116, 120, and 124 along vertical lines 130, 132, 134, and 136. Respectively corresponding to regions 114,116,120 and 124 of curve segments 114 ", 116", 120 "and 124" represents the total concentration of the N T p-type dopant. Item 106 in Figure 7b the "group corresponding to channel zone 106 and represents the curve segments 120 'and 124" of the channel region portion .n-type dopant concentration of the total system by the N T respectively corresponding to source 102 and drain 104 The curves 102" and 104" are represented. The curves 102" and 104" in Fig. 7b are the same as the curves 102' and 104' of Fig. 7a, respectively. The curves 102" and 104" in Figs. 8b and 10b are respectively the same. Curves 102' and 104' of Figures 8a and 10a.

圖7c說明沿著上半導體表面的淨摻雜劑濃度NN。沿著垂直線130、132、134與136的淨摻雜劑濃度NN呈現於圖8c、9c、與10c。曲線段114*、116*、120*與124*係代表於個別區域114、116、120與124之p型摻雜劑的淨濃度NN。於圖7c之項目106*係代表通道區的曲線段120*與124*之組合,且因此呈現於通道區106之淨p型摻雜劑的濃度NN。於源極102與汲極104之淨n型摻雜劑的濃度NN分別由曲線102*與104*所代表。 Figure 7c illustrates the net dopant concentration N N along the upper semiconductor surface. The net dopant concentration N N along vertical lines 130, 132, 134 and 136 is presented in Figures 8c, 9c, and 10c. Curve segments 114*, 116*, 120*, and 124* represent the net concentration N N of the p-type dopants for the individual regions 114, 116, 120, and 124. Item 106* of Figure 7c represents a combination of curved segments 120* and 124* of the channel region, and thus presents a concentration N N of the net p-type dopant in channel region 106. The concentration N N of the net n-type dopant at source 102 and drain 104 is represented by curves 102* and 104*, respectively.

考慮到關於圖7至10之前述的概括論點,圖7a指出的是:於源極側的袋部120之p型摻雜劑係具有沿著上半導體表面之二個主要分量,即:提供於二個的摻雜作業之分量。沿著上表面之於袋部120之p型摻雜劑的一個主要分量係由圖7a之曲線段124’所代表的p型背景摻雜劑。p型背景摻雜劑通常呈現為貫穿其包括區域102、104、114、116與120之全部單矽材料的一低(大部分為均勻)濃度。在袋部120與上方本體材料剩餘者124之下方,p型背景摻雜劑係由如圖8a、9a、與10a所指示的曲線段114’所代表。p型背景摻雜劑的濃度通常為1×1015至1×1016原子/立方公分, 典型為5×1015原子/立方公分。 In view of the foregoing generalizations with respect to Figures 7 through 10, Figure 7a indicates that the p-type dopant layer of the pocket portion 120 on the source side has two major components along the upper semiconductor surface, namely: The component of the two doping operations. A major component of the p-type dopant along the upper surface of the pocket portion 120 is the p-type background dopant represented by the curved segment 124' of Figure 7a. The p-type background dopant typically exhibits a low (mostly uniform) concentration throughout all of the monoterpene materials including regions 102, 104, 114, 116 and 120. Below the pocket portion 120 and the upper body material remainder 124, the p-type background dopant is represented by a curved segment 114' as indicated by Figures 8a, 9a, and 10a. The concentration of the p-type background dopant is usually from 1 × 10 15 to 1 × 10 16 atoms/cm 3 , typically 5 × 10 15 atoms / cubic centimeter.

於源極側的袋部120之p型摻雜劑的另一個主要分量係由圖7a之曲線段120’所指示的p型袋部(或通道漸變)摻雜劑。p型袋部摻雜劑提供於高的上表面濃度,通常為5×1017至2×1018原子/立方公分,典型為1×1018原子/立方公分,以界定袋部120。p型袋部摻雜劑之上表面濃度的特定值係嚴格調整,典型為於10%的準確度之內,以設定IGFET 100之臨界電壓。 The other major component of the p-type dopant of the pocket portion 120 on the source side is a p-type pocket (or channel graded) dopant as indicated by the curved segment 120' of Figure 7a. The p-type pocket dopant is provided at a high upper surface concentration, typically 5 x 10 17 to 2 x 10 18 atoms per cubic centimeter, typically 1 x 10 18 atoms per cubic centimeter, to define the pocket portion 120. The specific value of the surface concentration of the p-type pocket dopant is strictly adjusted, typically within 10% accuracy, to set the threshold voltage of IGFET 100.

源極側的袋部120之邊界係由下列所組成:(a)上半導體表面之一段,(b)由源極-本體接面110所形成的一pn接面段,及(c)本體材料108之一p型段。雖然袋部120之邊界的p型段係有些不精確,p型袋部段典型地界定在其p型袋部摻雜劑的濃度等於p型背景摻雜劑的濃度之處。於袋部120為未介入至井部116之範圍內,沿著袋部120之邊界的p型段之p型摻雜劑濃度為背景摻雜劑濃度之二倍,包括:p型袋部邊界段為會合上半導體表面之處。 The boundary of the pocket portion 120 on the source side is composed of: (a) a segment of the upper semiconductor surface, (b) a pn junction segment formed by the source-body junction 110, and (c) a bulk material 108 one p-type segment. While the p-segment of the boundary of the pocket 120 is somewhat inaccurate, the p-bag section is typically defined where the concentration of the p-type pocket dopant is equal to the concentration of the p-type background dopant. In the range of the pocket portion 120 that is not intervened into the well 116, the p-type dopant concentration along the boundary of the pocket portion 120 is twice the background dopant concentration, including: p-type pocket boundary The segment is where the semiconductor surface is closed.

p型袋部摻雜劑亦存在於源極102,如於圖7a之曲線120’所指示。於源極102之p型袋部摻雜劑的濃度NI沿著其上表面而實質為固定。沿著上半導體表面自源極102縱向移動至通道區106,p型袋部摻雜劑的濃度NI係於至區106的中途而為實質固定的上表面位準,且接著於源極102與汲極104之間的一位置為自該位準而實質下降至零。 A p-type pocket dopant is also present at source 102 as indicated by curve 120' of Figure 7a. The concentration N I of the p-type pocket dopant in the source 102 is substantially fixed along its upper surface. Moving longitudinally from the source 102 to the channel region 106 along the upper semiconductor surface, the concentration N I of the p-type pocket dopant is in the middle of the region 106 to be a substantially fixed upper surface level, and then to the source 102 A position between the drain 104 and the drain 104 is substantially reduced to zero from this level.

由於沿著上半導體表面之於通道區106的總p型摻雜劑係沿著上表面的p型背景與袋部摻雜劑之總和,沿著上 表面之總p型的通道區的摻雜劑係由圖7b之曲線段106”所代表。於曲線段106”之變化顯示的是:自源極102縱向移動至汲極104而跨過通道區106,沿著上表面之於區106的總p型摻雜劑的濃度NT係於至區106的中途為實質固定的高位準,於源極102與汲極104之間的一位置為自該高位準而減小至低的p型背景位準,且接著於至汲極104之其餘距離為維持在低背景位準。 The doping of the total p-type channel region along the upper surface is due to the sum of the p-type background and the pocket dopant along the upper surface of the total p-type dopant system along the upper semiconductor surface along the upper surface. The agent is represented by curve segment 106" of Figure 7b. Variations in curve segment 106" are shown as moving longitudinally from source 102 to drain 104 and across channel region 106, along the upper surface to region 106. The concentration of the total p-type dopant N T is a substantially fixed high level in the middle of the region 106, and a position between the source 102 and the drain 104 is reduced from the high level to a low p-type. The background level is followed by the remaining distance to the drain 104 to maintain a low background level.

於一些實施例,於源極102之p型袋部摻雜劑的濃度NI可能於沿著源極102上表面的僅有部分者為實質固定的源極位準,且可能接著沿著上半導體表面縱向移動,以自源極102之上表面內的一位置至源極-本體接面110而減小。於此情形,於跨過區106而朝向汲極104縱向移動,於通道區106之p型袋部摻雜劑的濃度NI在跨過源極-本體接面110之後而立即開始減小。是以,跨過通道區106而自源極102縱向移動至汲極104,沿著上表面之於區106之總p型摻雜劑的濃度NT類似為在跨過接面110之後而立即開始減小,而不是至區106的中途為實質固定的源極位準。 In some embodiments, the concentration N I of the p-type pocket dopant at the source 102 may be a substantially fixed source level along only a portion of the upper surface of the source 102, and may then follow The semiconductor surface moves longitudinally, decreasing from a location within the upper surface of the source 102 to the source-body junction 110. In this case, across the region 106 to drain 104 toward the longitudinal movement, the p-type pocket dopant concentration of the channel region 106 of N I across the source - the body immediately begins to decrease after surface 110. Therefore, across the channel region 106 from the source 102 to drain 104 to move longitudinally, along the upper surface of the concentration of the total p-type dopant region 106 similar to N T across the surface 110 immediately after The decrease begins, rather than being a substantially fixed source level to the middle of zone 106.

不論沿著上半導體表面之於通道區106的p型袋部摻雜劑的濃度NI對於縱向至區106之自源極-本體接面110的一非零的距離是否在實質源極位準,沿著上表面之於區106之總p型摻雜劑的濃度NT相較於區106會合源極102之處而在區106會合汲極104之處為較低。特別而言,於區106之總p型摻雜劑的濃度NT相較於在沿著上表面之源極-本體接面110,通常在沿著上表面之汲極-本體接面112為較低, 且為至少10%,較佳為較低至少20%,更佳為較低至少50%,典型為較低為100%或更大。 Regardless of whether the concentration N I of the p-type pocket dopant along the upper semiconductor surface of the channel region 106 is a non-zero distance from the source-body junction 110 in the longitudinal direction to the region 106, whether it is at a substantial source level , in the region along the upper surface of the N T 106 of total concentration of p-type dopant compared to the region 106 at the source junction and the junction of the drain electrode 102 of the electrode 104 in the area 106 is low. In particular, in the area of the total p-type dopant concentration 106 N T as compared to the source along the upper surface of the electrode - a body surface 110, generally along the drain electrode on the surface of the - body junction 112 Lower, and at least 10%, preferably at least 20% lower, more preferably at least 50% lower, typically lower than 100% or greater.

圖7c係顯示的是:如曲線106*所代表,沿著上半導體表面之於通道區106之淨p型摻雜劑的濃度NN係類似於區106之總p型摻雜劑的濃度NT而變化,除了:沿著上表面之於區106之淨p型摻雜劑的淨摻雜劑濃度NN係於pn接面110與112而下降至零。通道區106之源極側因此相較於汲極側而具有一高淨量的p型摻雜劑。於通道區106之高源極側量的p型摻雜劑使沿著源極-本體接面110之空乏區域的通道側部分之厚度降低。 Figure 7c shows the system: * represented by the curve 106, along the upper semiconductor surface at a concentration of N concentration N-N-based channel zone of the net p-type dopant 106 is similar to the total area of the p-type dopant 106 The change in T except that the net dopant concentration N N of the net p-type dopant along the upper surface of the region 106 is reduced to zero at the pn junctions 110 and 112. The source side of channel region 106 thus has a high net amount of p-type dopant compared to the drain side. The p-type dopant on the high source side of the channel region 106 reduces the thickness of the channel side portion along the depletion region of the source-body junction 110.

此外,沿著通道區106之源極側的高p型摻雜劑濃度屏蔽源極102以免於汲極104之相當高的電場。此發生是因為自汲極104的電場線終止於袋部120的離子化p型摻雜劑原子,而非終止於沿著源極102之空乏區域的離子化摻雜劑原子,且不利於降低針對於電子的電位障壁。沿著源極-本體接面110之空乏區域因而防止穿透至沿著汲極-本體接面112之空乏區域。藉由適當選取於通道區106的高源極側p型摻雜劑之量,穿透係避免於IGFET 100。 In addition, the source 102 is shielded from the high p-type dopant concentration along the source side of the channel region 106 from the relatively high electric field of the drain 104. This occurs because the electric field lines from the drain 104 terminate in the ionized p-type dopant atoms of the pocket 120, rather than terminating the ionized dopant atoms along the depletion region of the source 102, and are detrimental to degradation. A potential barrier against electrons. The depletion region along the source-body junction 110 thus prevents penetration into the depletion region along the drain-body junction 112. The penetration system is avoided by the IGFET 100 by appropriately selecting the amount of the high source side p-type dopant in the channel region 106.

源極102、通道區106與汲極104之下方的本體材料108部分者之p型摻雜劑具有如於圖8a、9a、與10a所指示的三個主要分量。區域102、104與106之下方的本體材料部分者之p型摻雜劑的一個主要分量係由圖8a、9a與10a之曲線段124’或114’所代表的p型背景摻雜劑。第二個主要分量係如由圖8a、9a與10a之曲線段116’所指示之其界 定井部116的p型井部摻雜劑。 The p-type dopant of the portion of the bulk material 108 below the source 102, channel region 106 and drain 104 has three major components as indicated in Figures 8a, 9a, and 10a. A major component of the p-type dopant in the bulk material portion below regions 102, 104 and 106 is a p-type background dopant represented by curved segments 124' or 114' of Figures 8a, 9a and 10a. The second major component is as defined by the curved segment 116' of Figures 8a, 9a and 10a. The p-type well dopant of the well portion 116.

於區域102、104與106之下方的本體材料部分者之p型摻雜劑的最後一個主要分量係由圖8a與9a之曲線120’所指示的p型袋部摻雜劑。p型袋部摻雜劑大致上僅存在於源極102之下方的本體材料108部分者及通道區106的鄰接部分。存在於汲極104之下方的本體材料108部分者的p型袋部摻雜劑的量本質為零或非常低,而實質電氣性質不重要。因此,於汲極104之下方的本體材料108部分者的總p型袋部摻雜劑實質為僅由p型井部與背景摻雜劑所組成,如於圖10a之沿著垂直線136所取得的曲線116’與124’或114’所分別指示。 The last major component of the p-type dopant in the bulk material portion below regions 102, 104 and 106 is the p-type pocket dopant as indicated by curve 120' of Figures 8a and 9a. The p-type pocket dopant is present substantially only in portions of the body material 108 and adjacent portions of the channel region 106 below the source 102. The amount of p-type pocket dopant present in the portion of bulk material 108 that exists below drain 104 is essentially zero or very low, while substantial electrical properties are not critical. Thus, the total p-type pocket dopant of the bulk material 108 portion below the drain 104 is substantially composed of only the p-type well and the background dopant, as shown along the vertical line 136 of FIG. 10a. The obtained curves 116' and 124' or 114' are indicated separately.

於汲極104之下方的本體材料108部分者的總p型摻雜劑係由圖10b之曲線段116”及其延伸者124”(朝上)與114”(朝下)所指示。曲線段116”代表於井部116之p型井部與背景摻雜劑的總和。曲線段114”與124”分別對應於p-下方本體材料部分114與p-上方本體材料剩餘者124。因為p型背景摻雜劑的濃度NI相當均勻,於汲極104之下方的本體材料108部分者的總p型摻雜劑的濃度NT係於實質等於深度yW之一次表層位置而達到一最大值,即:實質地在p型井部摻雜劑達到其最大濃度之處。 The total p-type dopant portion of the bulk material 108 below the drain 104 is indicated by the curved segment 116" of Figure 10b and its extenders 124" (upward) and 114" (downward). 116" represents the sum of the p-type well of the well 116 and the background dopant. Curve segments 114" and 124" correspond to p-lower body material portion 114 and p-upper body material remainder 124, respectively. Since the concentration N I of the p-type background dopant is relatively uniform, the concentration N T of the total p-type dopant in the portion of the bulk material 108 below the drain 104 is achieved at a surface position substantially equal to the depth y W . A maximum, i.e., substantially where the p-type well dopant reaches its maximum concentration.

如由圖10b之組合的曲線段116”/124”之變化所示,於汲極104之下方的本體材料108部分者的總p型摻雜劑的濃度NT自於井部116之p型摻雜劑的最大濃度之次表層位置沿著垂直線136朝上移動至汲極104,而次陡峭式減小成 對多10%。於汲極104之下方的本體材料108部分者的總p型摻雜劑的濃度NT係於自最大p型井部濃度之位置向上移動至汲極104而較佳為減小為成最多20%,更佳為成最多40%,甚至是更佳為成最多80%,典型為接近100%或更大。此外,如由組合的曲線段116”/124”所指示,於汲極104之下方的本體材料108部分者的總p型摻雜劑的濃度NT自最大p型井部濃度之位置向上移動至汲極104,而通常為逐漸減小。 Changes as shown by curve segment 10b of FIG combined 116 "/ 124", the concentration in the drain portion 108 by the lower electrode 104 of the bulk material of the total p-type dopant from the N T in the p-type well 116 The subsurface position of the maximum concentration of dopant moves up the vertical line 136 upward to the drain 104, while the second steepness decreases by 10% in pairs. Concentration of those portions of body material 108 below drain 104 to the total p-type dopant in the N T system is shifted from the position of the maximum concentration of the p-type well portion 104 up to the drain and is preferably reduced to up to 20 %, more preferably up to 40%, even more preferably up to 80%, typically close to 100% or more. Further, as 116 '/ 124 "indicated by the combination of curve segments, is moved upward by the position concentrations portion of body material 108 below drain 104 to the total p-type dopant concentration of the N T from the maximum p-type well portion To the drain 104, and usually it is gradually decreasing.

於汲極104之下方的本體材料108部分者的淨摻雜劑係p型摻雜劑。圖10c顯示的是:如曲線段116*與124*之組合所代表,於汲極104之下方的本體材料108部分者的淨摻雜劑的濃度NN類似於汲極104之下方的本體材料108部分者的總p型摻雜劑的濃度NT而垂直變化,除了:於汲極104之下方的本體材料108部分者的濃度NN係於汲極-本體接面112而下降至零。由於下文進而論述之理由,於汲極104之下方的本體材料108部分者的次陡峭垂直摻雜劑量變曲線係使其關聯於汲極-本體接面112的寄生電容減小。此能IGFET 100具有提高的類比速度。 The net dopant in the bulk material 108 portion below the drain 104 is a p-type dopant. Figure 10c shows that the net dopant concentration N N of the bulk material 108 portion below the drain 104 is similar to the bulk material below the drain 104, as represented by the combination of the curved segments 116* and 124*. changes in the concentration of N T and the vertical portion 108 by the total p-type dopant, in addition: N N concentration in those portions of lines 108 under the drain electrode 104 of the bulk material in the drain - body junction 112 drops to zero. For the reasons discussed further below, the sub-steep vertical doping dose curve of the portion of the body material 108 below the drain 104 is such that the parasitic capacitance associated with the drain-body junction 112 is reduced. This IGFET 100 has an increased analog speed.

進展至沿著透過源極102之垂直線130的摻雜劑分佈,於源極102之下方的本體材料108部分者的總p型摻雜劑係由p型井部、背景與袋部摻雜劑所組成,如由圖8a之曲線116’、124’與120’所分別指出。針對於圖6之實例,其中,源極側的袋部120會合於源極102之下方的井部116,使得p型井部與袋部摻雜劑的濃度NI均超過於會合位 置之p型背景濃度,於源極102之下方的本體材料108部分者的總p型摻雜劑係由圖8b的曲線段116”與120”之組合所指示。於一個實施例,其中,袋部120係延伸在源極102之下方而並未會合井部116,於源極102之下方的本體材料108部分者的總p型摻雜劑係將為由曲線段116”與120”及其對應於p-上方本體材料剩餘者124的一曲線段之組合所指示。 Advancing to the dopant distribution along the vertical line 130 through the source 102, the total p-type dopant portion of the body material 108 under the source 102 is doped with a p-type well, background and pocket The composition of the agents is indicated by curves 116', 124' and 120', respectively, of Figure 8a. For the example of FIG. 6 , the source side pocket portion 120 meets the well portion 116 below the source electrode 102 such that the concentration N I of the p-type well portion and the pocket portion dopant exceeds the convergence position p. The background concentration, the total p-type dopant of the bulk material 108 portion below the source 102 is indicated by the combination of the curved segments 116" and 120" of Figure 8b. In one embodiment, wherein the pocket portion 120 extends below the source 102 without the well portion 116, the total p-type dopant system of the portion of the body material 108 below the source 102 will be a curve. The combination of segments 116" and 120" and a curve segment corresponding to the remainder of the p-top body material 124 is indicated.

如由圖8b之組合的曲線段116”/120”所示,於源極102之下方的本體材料108部分者的總p型摻雜劑的濃度NT係自於井部116之p型摻雜劑最大濃度的次表層位置朝上移動透過本體材料108而初始減小為最多10%,其典型為接近成最多30%。當到達於源極102之下方的一局部最小值,於源極102之下方的本體材料108部分者的總p型摻雜劑的濃度NT接著在到達源極102之前而上升。 The concentration of those portions of body material 108 below source 102 to the total p-type dopant from dopant from the N T lines shown in the graph of FIG. 8b of the segment combination 116 "/ 120" in the p-type well 116 The secondary surface of the maximum concentration of the dopant moves upwardly through the body material 108 and initially decreases to a maximum of 10%, which is typically close to a maximum of 30%. When a local minimum below the source 102 is reached, the concentration N T of the total p-type dopant in the portion of the bulk material 108 below the source 102 then rises before reaching the source 102.

於源極102之下方的部分本體材料108的淨摻雜劑係p型摻雜劑。圖8c顯示的是:如曲線段116*與120*之組合所代表,針對於圖6之實例,其中,源極側的袋部120係會合井部116,於源極102之下方的本體材料108部分者的淨摻雜劑的濃度NN類似於源極102之下方的本體材料108部分者的總p型摻雜劑的濃度NT而垂直變化,除了:於源極102之下方的本體材料108部分者的淨摻雜劑濃度NN係於源極-本體接面110而下降至零。視種種的因素而定,諸如:袋部120之深度為超過源極102之深度的量,於源極102之下方的此垂直摻雜劑量變曲線有時為致使沿著源極-本體 接面110的寄生電容為降低,雖然其通常為小於沿著汲極-本體接面112的寄生電容之降低。 The net dopant of the portion of bulk material 108 below source 102 is a p-type dopant. Figure 8c shows: as represented by the combination of curved segments 116* and 120*, for the example of Figure 6, wherein the source side pockets 120 are merged with the well 116 and the bulk material below the source 102 The concentration N N of the net dopant of the 108 portion is perpendicular to the concentration N T of the total p-type dopant of the portion of the bulk material 108 below the source 102 except for the body below the source 102 The net dopant concentration N N of the portion of material 108 is reduced to zero at the source-body junction 110. Depending on various factors, such as the depth of pocket portion 120 being greater than the depth of source 102, this vertical doping dose curve below source 102 is sometimes caused along the source-body junction The parasitic capacitance of 110 is reduced, although it is typically less than the parasitic capacitance along the drain-body junction 112.

簡單參考圖9,其關於沿著透過通道區106之垂直線132與134的摻雜劑濃度NI、NT與NN,在參考符號120’、120”與120*之後的括號內欄目“132”係指沿著垂直線132的摻雜劑濃度。在參考各個符號124’、124”與124*之後的括號內欄目“134”係指沿著垂直線134的摻雜劑濃度。 Referring briefly to Figure 9, for dopant concentrations N I , N T and N N along vertical lines 132 and 134 of the transmission channel region 106, in parentheses after reference symbols 120', 120" and 120*"132" refers to the dopant concentration along vertical line 132. The brackets "134" after reference to respective symbols 124', 124" and 124* refer to the dopant concentration along vertical line 134.

圖11描繪根據本發明所構成之一種不對稱短n通道IGFET 140,以便特別適用於高速的類比應用。短通道IGFET 140係長通道IGFET 100的一種變化者,其中,通道長度縮短至該IGFET操作發生在短通道方式之程度。通道長度係藉由適當降低閘極電極128之長度而縮短。於圖11之實例,p型袋部120延伸為充分遠而跨過通道區106以正好為會合汲極104。 Figure 11 depicts an asymmetric short n-channel IGFET 140 constructed in accordance with the present invention to be particularly suitable for high speed analog applications. A variation of short channel IGFET 140 long channel IGFET 100 in which the channel length is shortened to the extent that the IGFET operation occurs in the short channel mode. The length of the channel is shortened by appropriately reducing the length of the gate electrode 128. In the example of FIG. 11, the p-bag portion 120 extends far enough across the channel region 106 to just coincide with the meeting pole 104.

圖12a至12c(集體為“圖12”)分別呈現IGFET 140之沿著上半導體表面的範例的摻雜劑濃度NI、NT與NN,作為縱向距離x之函數,藉以利於瞭解IGFET 140之通道區106的不對稱縱向摻雜劑漸變。關聯於圖7之上述針對於IGFET 100的所有分析係應用於IGFET 140,除了:於IGFET 140之通道區106的縮短的長度使於IGFET 140之通道區106的摻雜劑分佈為不同於IGFET 100之通道區106的摻雜劑分佈,如關聯於圖12之下文解說。 Figures 12a through 12c (collectively "Figure 12") present exemplary dopant concentrations N I , N T and N N along the upper semiconductor surface of IGFET 140 as a function of longitudinal distance x, thereby facilitating understanding of IGFET 140. The asymmetric longitudinal dopant gradient of the channel region 106. All of the above-described analysis for IGFET 100 associated with FIG. 7 is applied to IGFET 140 except that the shortened length of channel region 106 of IGFET 140 causes the dopant distribution of channel region 106 of IGFET 140 to be different than IGFET 100. The dopant profile of channel region 106 is as explained below in connection with FIG.

如同於圖7a,沿著上半導體表面之p型袋部摻雜劑的濃度NI係由圖12a之曲線120’所代表。不同於IGFET 100 之通道區106所發生者,IGFET 140之沿著通道區106的上表面之p型袋部摻雜劑的濃度NI未於源極102與汲極104之間的一位置而本質為下降至零。而是,如於圖12a之曲線120’所示,IGFET 140之沿著通道區106的上表面之p型袋部摻雜劑的濃度NI係沿著通道區上表面的實質全部者為大於零,且因此於通道區106/袋部120會合汲極104之處是於一小的有限值。於IGFET 140之袋部摻雜劑的濃度NI於區106/袋部120會合源極102(沿著通道區的上表面)之處是於一較大許多的值。 As with Figure 7a, the concentration N I of the p-type pocket dopant along the upper semiconductor surface is represented by curve 120' of Figure 12a. Unlike the occurrence of the channel region 106 of the IGFET 100, the concentration N I of the p-type pocket dopant along the upper surface of the channel region 106 of the IGFET 140 is not at a location between the source 102 and the drain 104. The essence is to drop to zero. Rather, as shown by curve 120' of Figure 12a, the concentration N I of the p-type pocket dopant along the upper surface of channel region 106 of IGFET 140 is greater than substantially all of the upper surface of the channel region. Zero, and thus where the channel region 106/bag portion 120 meets the drain 104 is a small finite value. The concentration N I of the dopant in the pocket of the IGFET 140 is at a much larger value where the region 106/bag portion 120 meets the source 102 (along the upper surface of the channel region).

IGFET 140之沿著於通道區106的上表面之p型袋部摻雜劑的濃度NI之前述變化係反映於IGFET 140之沿著上半導體表面的絕對摻雜劑濃度NT與淨摻雜劑濃度NN。如同於圖7b,於圖12b之曲線段106”係代表沿著上半導體表面之於通道區106的總p型摻雜劑的濃度NT,針對於其,於區106的總p型摻雜劑係沿著上半導體表面的p型背景與袋部摻雜劑之總和。於圖12b之曲線段106”的變化顯示的是:於沿著上半導體表面而自源極102透過通道區106移動至汲極104,IGFET 140之沿著上半導體表面之在區106的總p型摻雜劑的濃度NT係在至區106的中途為實質固定於源極102之高位準,且接著在當到達汲極104而自該高位準以減小至稍大於背景摻雜劑濃度之一低位準。較特別而言,IGFET 140之於通道區106的總p型摻雜劑的濃度NT係於沿著上半導體表面自該區106會合汲極104之處至該區106會合源極102之處的途中而逐漸提高。 The aforementioned variation of the concentration N I of the p-type pocket dopant along the upper surface of the channel region 106 of the IGFET 140 is reflected in the absolute dopant concentration N T along the upper semiconductor surface of the IGFET 140 and the net doping. Agent concentration N N . As in Figure 7b, the curved section 106" of Figure 12b represents the concentration N T of the total p-type dopant along the upper semiconductor surface to the channel region 106 for which the total p-doping at region 106 is The agent is along the sum of the p-type background of the upper semiconductor surface and the pocket dopant. The variation of the curved section 106" of Figure 12b is shown as moving from the source 102 through the channel region 106 along the upper semiconductor surface. to drain 104, IGFET along the upper semiconductor surface of the total concentration of the N T based p-type dopant in the middle region 106 to the region 106 to 140 of substantially constant high level to the source electrode 102, and then when the The drain 104 is reached and is reduced from the high level to a level slightly below the background dopant concentration. For more specific, IGFET 140 is to the total concentration of N T based p-type dopant in channel zone 106 along the upper semiconductor surface from the junction 106 to the drain region 104 of the electrode 102 of the zone 106 meets source On the way, it gradually increased.

類似於關於IGFET 100之上述者,於沿著上表面而自源極102跨過通道區106縱向移動至汲極104,於IGFET 140之沿著上半導體表面的p型袋部摻雜劑濃度NI係可在通過源極-本體pn接面110之後而立即開始減小。如於移動自汲極104至源極102而非為自源極102至汲極104所視,沿著上半導體表面而自該區106會合汲極104之處直到至該區106會合源極102之處,於IGFET 140之通道區106的總p型摻雜劑的濃度NT於是逐漸增大。無論如何,IGFET 140之沿著上表面之於區106的總p型摻雜劑的濃度NT係滿足針對IGFET 100之上文所述的規格,於該區106會合汲極104之處相較於該區106會合源極102之處為較低。 Similar to the above described with respect to IGFET 100, the dopant concentration N along the upper surface of the IGFET 140 across the upper semiconductor surface along the upper surface of the IGFET 140 is shifted longitudinally across the channel region 106 to the drain 104. The I system can begin to decrease immediately after passing through the source-body pn junction 110. As seen from the drain 104 to the source 102, rather than from the source 102 to the drain 104, along the upper semiconductor surface from where the region 106 meets the drain 104 until the region 106 meets the source 102 Whereas, the concentration N T of the total p-type dopant in the channel region 106 of the IGFET 140 is then gradually increased. In any case, the concentration of the N T based IGFET total p-type dopant in zone 106 of IGFET satisfy the above specification for 100 of the 140 along the upper surface, the area 106 to the juncture of the drain 104 as compared The source 106 is lower in this zone 106.

圖12c顯示的是:如曲線106*所代表,沿著IGFET 140之通道區106上表面之淨p型摻雜劑的濃度NN係類似於IGFET 140之沿著上半導體表面的區106之總p型摻雜劑的濃度NT而變化,除了:於IGFET 140之沿著上半導體表面的區106之淨p型摻雜劑的濃度NN係於pn接面110與112而降至零。如同於IGFET 100之通道區106,於IGFET 140之通道區106的源極側相較於IGFET 140的汲極側而具有高淨量的p型摻雜劑。於IGFET 140之通道區106的高源極側p型摻雜使其沿著源極-本體接面110延伸之空乏區域的通道側部分之厚度為降低。 Figure 12c shows that the concentration of the net p-type dopant N N along the upper surface of the channel region 106 of the IGFET 140 is similar to the total of the regions 106 of the IGFET 140 along the upper semiconductor surface, as represented by curve 106*. p-type dopant concentration of N T is changed, in addition: Flora N N concentration along the upper semiconductor surface of IGFET 140 to 106 of the net p-type dopant in the pn junction 110 and 112 to zero. As with the channel region 106 of the IGFET 100, the source side of the channel region 106 of the IGFET 140 has a high net amount of p-type dopant compared to the drain side of the IGFET 140. The high source side p-type doping of the channel region 106 of the IGFET 140 reduces the thickness of the channel side portion of the depletion region extending along the source-body junction 110.

於IGFET 140之源極102與汲極104相較於IGFET 100而較接近彼此。是以,很可能的是:相較於IGFET 100,沿著源極102延伸之空乏區域將於IGFET 140為穿透至沿著 汲極104延伸之空乏區域。然而,相對於缺少袋部120之一種其他方面為等效的短n通道IGFET,IGFET 140之於通道區106之高量的源極側p型摻雜劑降低其發生於IGFET 140之穿透的可能性。 Source 102 and drain 104 of IGFET 140 are closer to each other than IGFET 100. Therefore, it is likely that the depletion region extending along the source 102 will penetrate into the IGFET 140 as compared to the IGFET 100. The depleted area where the bungee 104 extends. However, the high amount of source side p-type dopant of IGFET 140 in channel region 106 reduces its penetration into IGFET 140 relative to a short n-channel IGFET that is equivalent to one of the other aspects of bag portion 120. possibility.

於IGFET 140之沿著分別透過源極102、通道區106與汲極104的垂直線130、132與136的摻雜劑濃度係實質為相同於IGFET 100。於圖8至10所示之沿著垂直線130、132與136的濃度NI、NT與NN因此為應用於IGFET 140。是以,IGFET 140具有在汲極104之下方的本體材料108部分者的次陡峭垂直摻雜劑量變曲線。此使關聯於汲極-本體pn接面112的寄生電容減小,如下文所進而描述,使得IGFET 140具有提高的類比速度。 The dopant concentrations along the vertical lines 130, 132, and 136 of the IGFET 140 that pass through the source 102, the channel region 106, and the drain 104, respectively, are substantially the same as the IGFET 100. The concentrations N I , N T and N N along the vertical lines 130, 132 and 136 shown in FIGS. 8 to 10 are thus applied to the IGFET 140. Thus, IGFET 140 has a sub-steep vertical doping dose curve for the portion of body material 108 below drain 104. This reduces the parasitic capacitance associated with the drain-body pn junction 112, as described further below, such that the IGFET 140 has an increased analog speed.

源極102可為縱向摻雜劑漸變,以降低其源極(串聯)電阻RS。如下所論述,降低源極電阻RS特別有利於類比IGFET應用。於源極102之此縱向摻雜劑漸變典型地涉及:將其配置為一主要部分與一較輕度摻雜的側向延伸部分,該延伸部分係沿著上半導體表面而終止於通道區106。汲極104可供有類似的縱向摻雜劑漸變,以降低熱載體注入。提供S/D區102與104皆具有縱向摻雜劑漸變係因此有利,不論區102與104是否分別作用為源極與汲極(正常情形)或分別為汲極與源極。 Source 102 may be a longitudinally dopant graded to reduce its source (series) resistance R S. As discussed below, reducing the source resistance R S is particularly advantageous for analog IGFET applications. This longitudinal dopant grading at source 102 typically involves configuring it as a major portion and a lightly doped laterally extending portion that terminates in channel region 106 along the upper semiconductor surface. . The drain 104 can be similarly graded with a longitudinal dopant to reduce heat carrier injection. It is advantageous to provide both S/D regions 102 and 104 with a longitudinal dopant grading system, regardless of whether regions 102 and 104 act as source and drain, respectively (normal) or drain and source, respectively.

圖13說明根據本發明所構成之一種不對稱長n通道IGFET 150,特別適用於高速的類比應用,且尤其是具有縱向的源極/汲極摻雜劑漸變以降低源極電阻RS與汲極側的 熱載體注入。IGFET 150配置為如同IGFET 100,除了:(a)n型源極102係由一極重度摻雜的主要部分102M與一較輕度摻雜的側向延伸部分102E所組成,及(b)n型汲極104係由一極重度摻雜的主要部分104M與一較輕度摻雜的側向延伸部分104E所組成。雖然相較於n++主要S/D部分102M與104M為較輕度摻雜,側向延伸部分102E與104E於次微米互補IFGET應用(諸如:此者)而仍為重度摻雜。n+側向延伸部分102E與104E係沿著上半導體表面而終止於通道區106。閘極電極128係部分延伸於n+側向延伸部分102E與104E各者之上,但是典型地並未於n++主要源極部分102M或n++主要汲極部分104M之上。 Figure 13 illustrates an asymmetric long n-channel IGFET 150 constructed in accordance with the present invention, particularly suitable for high speed analog applications, and in particular with longitudinal source/drain dopant grading to reduce source resistance R S and 汲The hot carrier is injected on the extreme side. IGFET 150 is configured as IGFET 100 except that: (a) n-type source 102 is comprised of a heavily heavily doped main portion 102M and a lightly doped laterally extending portion 102E, and (b)n The type drain 104 is comprised of a very heavily doped main portion 104M and a lightly doped laterally extending portion 104E. Although the primary S/D portions 102M and 104M are lighter doped than the n++ main S/D portions 102E and 104E are still heavily doped in sub-micron complementary IFGET applications, such as this one. The n+ laterally extending portions 102E and 104E terminate in the channel region 106 along the upper semiconductor surface. Gate electrode 128 extends partially over each of n+ laterally extending portions 102E and 104E, but is typically not over n++ primary source portion 102M or n++ primary drain portion 104M.

主要S/D部分102M與104M通常分別相較於側向延伸部分102E與104E而在上半導體表面之下方為延伸較深。結果,於IGFET 150之源極深度yS與汲極深度yD分別為主要源極部分102M與主要汲極部分104M之深度。袋部120係延伸在主要源極部分102M之下方(且部分為沿著旁邊),使得汲極深度yD同樣通常為超過源極深度yS。此外,袋部120係延伸在源極延伸部分102E之下方(且為沿著旁邊)。結果,汲極延伸部分104E通常相較於源極延伸部分102E而在上表面之下方為延伸較深。 The main S/D portions 102M and 104M generally extend deeper below the upper semiconductor surface than the laterally extending portions 102E and 104E, respectively. As a result, the source depth y S and the drain depth y D of the IGFET 150 are the depths of the main source portion 102M and the main drain portion 104M, respectively. The pocket portion 120 extends below the main source portion 102M (and partially alongside) such that the drain depth y D also typically exceeds the source depth y S . Additionally, pocket portion 120 extends below (and alongside) source extension portion 102E. As a result, the drain extension portion 104E generally extends deeper below the upper surface than the source extension portion 102E.

沿著上半導體表面之於n++主要源極部分102M的最大淨摻雜劑濃度NN通常為至少1×1020原子/立方公分,典型為4×1020原子/立方公分。沿著上半導體表面之於n++主要汲極部分104M的最大淨摻雜劑濃度NN通常為至少1×1020 原子/立方公分,典型為稍大於4×1020原子/立方公分,藉以稍微超過於主要源極部分102M的最大上表面NN濃度。沿著上半導體表面之於n+源極延伸部分102E的最大淨摻雜劑濃度NN通常為1×1018至1×1019原子/立方公分,典型為3×1018原子/立方公分。沿著上半導體表面之於n+汲極延伸部分104E的最大淨摻雜劑濃度NN典型為稍大於3×1018原子/立方公分,藉以稍微超過於源極延伸部分102E的最大上表面NN濃度。 The maximum net dopant concentration N N along the upper semiconductor surface to the n++ main source portion 102M is typically at least 1 x 10 20 atoms/cm 3 , typically 4 x 10 20 atoms/cm 3 . The maximum net dopant concentration N N along the upper semiconductor surface to the n++ main drain portion 104M is typically at least 1 x 10 20 atoms/cm 3 , typically slightly more than 4 x 10 20 atoms/cm 3 , thereby slightly exceeding The maximum upper surface N N concentration of the main source portion 102M. The maximum net dopant concentration N N along the upper semiconductor surface to the n + source extension portion 102E is typically 1 x 10 18 to 1 x 10 19 atoms/cm 3 , typically 3 x 10 18 atoms/cm 3 . The maximum net dopant concentration N N along the upper semiconductor surface to the n+ drain extension 104E is typically slightly greater than 3 x 10 18 atoms/cm 3 , thereby slightly exceeding the maximum upper surface N N of the source extension 102E. concentration.

按照於源極102與汲極104之縱向摻雜劑漸變,於IGFET 150之通道區106係實質相同於IGFET 100而不對稱縱向摻雜劑漸變。圖14a至14c(集體為“圖14”)呈現IGFET 150之沿著上半導體表面的範例的摻雜劑濃度,作為縱向距離x之一函數,用於檢驗於源極102與汲極104之縱向摻雜劑漸變。圖14a描繪沿著上半導體表面之其主要界定區域102M、102E、104M、104E、120與124之個別半導體摻雜劑的濃度NI。沿著上半導體表面之區域102M、102E、104M、104E、120與124之總p型與總n型摻雜劑的濃度NT描繪於圖14b。圖14c說明沿著上半導體表面的淨摻雜劑濃度NNIn accordance with the vertical dopant grading of source 102 and drain 104, channel region 106 of IGFET 150 is substantially identical to IGFET 100 with asymmetric longitudinal dopant grading. Figures 14a through 14c (collectively "Figure 14") present exemplary dopant concentrations along the upper semiconductor surface of IGFET 150 as a function of longitudinal distance x for verifying the longitudinal direction of source 102 and drain 104 The dopant gradient. Figure 14a depicts the concentration N I of individual semiconductor dopants along its major defined regions 102M, 102E, 104M, 104E, 120 and 124 along the upper semiconductor surface. The total p-type and total n-type dopant concentration N T along regions 102M, 102E, 104M, 104E, 120 and 124 of the upper semiconductor surface are depicted in Figure 14b. Figure 14c illustrates the net dopant concentration N N along the upper semiconductor surface.

圖14a類似於圖7a,除了:曲線102M’、102E’、104M’與104E’代表沿著上半導體表面之運用以分別形成區域102M、102E、104M與104E的n型摻雜劑濃度NI。圖14b類似於圖7b,條件為沿著上半導體表面之n型摻雜劑的總濃度NT係由下列者所代表:(a)曲線102”由分別對應於主要 源極部分102M與源極延伸部分102E之段102M”與102E”所組成及(b)曲線104”由分別對應於主要汲極部分104M與汲極延伸部分104E之段104M”與104E”所組成。圖14c類似於圖7c,條件為(a)代表沿著上半導體表面之於源極102的淨摻雜劑濃度NN之曲線102*係藉著分別對應於主要源極部分102M與源極延伸部分102E之段102M*與102E*所形成,及(b)代表沿著上半導體表面之於汲極104的淨摻雜劑濃度NN之曲線104*係藉著分別對應於主要汲極部分104M與汲極延伸部分104E之段104M*與104E*所形成。 Figure 14a is similar to Figure 7a except that curves 102M', 102E', 104M' and 104E' represent the n-type dopant concentration N I along the upper semiconductor surface to form regions 102M, 102E, 104M and 104E, respectively. 14b is similar to FIG. 7b, the n-type surface condition of the dopant concentration N T is the total system represented by the following persons along the upper semiconductor: (a) curve 102 'by the pole portion 102M and source respectively corresponding to main source The segments 102M" and 102E" of the extended portion 102E are composed and the (b) curve 104" is composed of segments 104M" and 104E" respectively corresponding to the main drain portion 104M and the drain extension portion 104E. Figure 14c is similar to Figure 7c, with the condition that (a) represents a curve 102* along the net dopant concentration N N of the upper semiconductor surface to the source 102 by extending correspondingly to the main source portion 102M and the source, respectively. The segments 102M* and 102E* of the portion 102E are formed, and (b) represents a curve 104* along the net dopant concentration N N of the upper semiconductor surface to the drain 104 by respectively corresponding to the main drain portion 104M. Formed with segments 104M* and 104E* of the drain extension 104E.

於IGFET 150之源極102與汲極104的縱向摻雜劑漸變降低源極電阻RS且減輕汲極側的熱載體注入,但不具有任何顯著影響於通道區106之不對稱縱向摻雜劑漸變。是以,於IGFET 150之不對稱的通道區摻雜劑漸變主要為相同於IGFET 100而避免穿透。 The longitudinal dopants of source 102 and drain 104 of IGFET 150 gradually reduce the source resistance R S and mitigate the heat carrier injection on the drain side, but do not have any asymmetric longitudinal dopant that significantly affects channel region 106. Gradient. Therefore, the dopant gradient in the asymmetric channel region of IGFET 150 is primarily the same as IGFET 100 to avoid penetration.

於IGFET 150之井部116與上方本體材料剩餘者124的組態實質為相同於IGFET 100,而致使透過汲極104至下層本體材料108之垂直摻雜劑量變曲線為次陡峭。由於垂直線130與136為分別通過n++主要源極部分102M與n++主要汲極部分104M,圖8至10的垂直摻雜劑濃度曲線實質為應用於IGFET 150。關聯於汲極-本體接面112所造成的降低寄生電容可使IGFET 150具有提高的類比速度。於源極電阻RS之降低係以下文所論的方式而進一步增強類比性能。 The configuration of the well 116 and the upper body material remainder 124 of the IGFET 150 is substantially the same as the IGFET 100, such that the vertical doping dose curve through the drain 104 to the underlying body material 108 is sub-steep. Since the vertical lines 130 and 136 pass through the n++ main source portion 102M and the n++ main drain portion 104M, respectively, the vertical dopant concentration curves of FIGS. 8 through 10 are substantially applied to the IGFET 150. The reduced parasitic capacitance associated with the drain-body junction 112 allows the IGFET 150 to have an increased analog speed. The reduction in source resistance R S further enhances the analog performance in the manner discussed below.

汲極104可為垂直摻雜劑漸變以進而降低其關聯於汲 極-本體接面112的寄生電容。源極102可類似為垂直摻雜劑漸變以降低其關聯於源極-本體接面110的寄生電容。垂直摻雜劑漸變係典型地涉及:配置各個S/D區102或104作為一主要部分與一較輕度摻雜的下部。垂直源極/汲極摻雜劑漸變可結合於源極102與汲極104之上述的縱向摻雜劑漸變。 The drain 104 can be a vertical dopant gradient to further reduce its association with The parasitic capacitance of the pole-body junction 112. Source 102 can be similar to a vertical dopant ramp to reduce its parasitic capacitance associated with source-body junction 110. Vertical dopant grading typically involves configuring each S/D region 102 or 104 as a major portion and a lightly doped lower portion. The vertical source/drain dopant gradient can be combined with the above-described longitudinal dopant grading of source 102 and drain 104.

關於前文,圖15說明根據本發明所構成以特別適用於高速類比應用之一種不對稱長n通道IGFET 160。IGFET 160均提供用於降低源極電阻RS與汲極側的熱載體注入之源極/汲極的縱向摻雜劑漸變、以及用於降低源極/汲極的寄生電容之源極/汲極的垂直摻雜劑漸變。IGFET 160配置為相同於IGFET 150,除了:(a)源極102更包括其相較於主要源極部分102M為較輕度摻雜之一下部102L,且(b)汲極104更包括其相較於主要汲極部分104M為較輕度摻雜之一下部104L。下方源極部分102M與下方汲極部分104M係重度摻雜n型。 With respect to the foregoing, Figure 15 illustrates an asymmetric long n-channel IGFET 160 constructed in accordance with the present invention to be particularly suitable for high speed analog applications. The IGFETs 160 each provide a vertical dopant gradation for reducing the source/drain of the source resistance R S and the drain side of the heat carrier, and a source/汲 for reducing the parasitic capacitance of the source/drain Extreme vertical dopant gradient. The IGFET 160 is configured identical to the IGFET 150 except that: (a) the source 102 further includes a lower portion 102L that is lighter doped than the main source portion 102M, and (b) the drain 104 further includes its phase The lower portion 104L is one of the lighter dopings than the main drain portion 104M. The lower source portion 102M and the lower drain portion 104M are heavily doped n-type.

於IGFET 160之源極深度yS與汲極深度yD分別為n+下方源極部分102L與n+下方汲極部分104L(由於其分別為置於n++主要源極部分102M與n++主要汲極部分104M之下)的深度。袋部120係延伸在下方源極部分102L之下方。結果,汲極深度yD同樣通常為超過源極深度ySThe source depth y S and the drain depth y D of the IGFET 160 are respectively n+lower source portion 102L and n+lower drain portion 104L (since they are placed in the n++ main source portion 102M and the n++ main drain portion 104M, respectively) Under) the depth. The pocket portion 120 extends below the lower source portion 102L. As a result, the drain depth y D is also typically above the source depth y S .

IGFET 160之源極102與汲極104分別包括n+側向源極延伸部分102E與n+側向汲極延伸部分104E,以達成縱向的源極-汲極摻雜劑漸變。於IGFET 160之縱向的源極/ 汲極摻雜劑漸變具有實質為相同於IGFET 150之特性。是以,關聯於IGFET 150之圖14的縱向上表面摻雜劑濃度曲線圖及圖14的說明應用於IGFET 160。由於IGFET 150(且因此為於IGFET 160)之縱向的源極/汲極摻雜劑漸變不具有任何重大的影響於通道區106之不對稱縱向摻雜劑漸變,於IGFET 160之不對稱的通道區摻雜劑漸變實質為相同於IGFET 100而避免於IGFET 160之穿透。 The source 102 and the drain 104 of the IGFET 160 include an n+ lateral source extension 102E and an n+ lateral drain extension 104E, respectively, to achieve a longitudinal source-drain dopant gradation. Source in the longitudinal direction of IGFET 160 / The drain dopant gradient has substantially the same characteristics as IGFET 150. Therefore, the longitudinal upper surface dopant concentration profile of FIG. 14 associated with IGFET 150 and the description of FIG. 14 are applied to IGFET 160. Since the source/drain dopant grading in the longitudinal direction of IGFET 150 (and thus IGFET 160) does not have any significant effect on the asymmetric longitudinal dopant grading of channel region 106, the asymmetric channel in IGFET 160 The region dopant gradient is substantially the same as IGFET 100 and avoids penetration of IGFET 160.

於IGFET 160之垂直摻雜劑漸變的瞭解係藉助於圖16a至16c(集體為“圖16”)與圖17a至17c(集體為“圖17”)而為促進,圖16與圖17呈現沿著分別為透過源極102與汲極104(包括:分別為透過下方源極部分102L與下方汲極部分104L)之垂直線130與136的範例的摻雜劑濃度,作為深度y之一函數。圖16a與圖17a明確說明其垂直界定區域102M、102L、104M、104L、114、116、120與124之個別的半導體摻雜劑(分別沿著線130與136)的濃度NI。沿著線130與136之於區域102M、102L、104M、104L、114、116、120與124的總p型與總n型摻雜劑的濃度NT分別描繪於圖16b與17b。圖16c與17c分別說明沿著線130與136的淨摻雜劑濃度NNThe understanding of the vertical dopant grading at IGFET 160 is facilitated by means of Figures 16a to 16c (collectively "Figure 16") and Figures 17a to 17c (collectively "Figure 17"), and Figures 16 and 17 are presented along Exemplary dopant concentrations, respectively, through the vertical lines 130 and 136 of the source 102 and the drain 104 (including: through the lower source portion 102L and the lower drain portion 104L, respectively) as a function of depth y. Figures 16a and 17a clearly illustrate the concentration N I of the individual semiconductor dopants (along lines 130 and 136, respectively) of the vertically defined regions 102M, 102L, 104M, 104L, 114, 116, 120 and 124. The total p-type and total n-type dopant concentration N T along lines 130 and 136 for regions 102M, 102L, 104M, 104L, 114, 116, 120 and 124 are depicted in Figures 16b and 17b, respectively. Figures 16c and 17c illustrate the net dopant concentration N N along lines 130 and 136, respectively.

圖16a與17a分別類似於圖8a與10a,除了:(a)曲線102M’與102L’代表其運用以分別形成主要源極部分102M與下方源極部分102L的n型摻雜劑之沿著垂直線130的濃度NI,及(b)曲線104M’與104L’代表其運用以分別形成主要汲極部分104M與下方汲極部分104L的n型摻雜劑之沿 著垂直線136的濃度NI。同理,圖16b與17b分別類似於圖8b與10b,條件為:(a)沿著線130之總n型摻雜劑的濃度NT係由其分別對應於主要源極部分102M與下方源極部分102L之段102M”與102L”所在此組成的曲線102”所代表,及(b)沿著線136之總n型摻雜劑的濃度NT係由其分別對應於主要汲極部分104M與下方汲極部分104L之段104M”與104L”而在此組成的曲線104”所代表。 Figures 16a and 17a are similar to Figures 8a and 10a, respectively, except that: (a) curves 102M' and 102L' represent vertical n-type dopants that are utilized to form primary source portion 102M and lower source portion 102L, respectively. The concentration N I of line 130, and (b) curves 104M' and 104L' represent the concentration N I along the vertical line 136 of the n-type dopant that is utilized to form the main drain portion 104M and the lower drain portion 104L, respectively. . Similarly, FIG. 16b and 17b are similar to Figures 8b and 10b, the condition is: (a) along the line of the total concentration of N T n-type dopants, respectively, by the line 130 corresponding to the lower source portion 102M and main source of pole section 102L of the curve segments 102M "and 102L" where this composition 102 "is represented, and (b) along the total n-type dopant concentration of the N T by the line 136 lines respectively corresponding to main drain portion 104M It is represented by a curve 104" composed of segments 104M" and 104L" of the lower drain portion 104L.

圖16c與17c分別類似於圖8c與10c,條件為:(a)代表沿著線130之於源極102的淨摻雜劑濃度NN之曲線102*在此為分別對應於主要源極部分102M與下方源極部分102L之段102M*與102L*所形成,及(b)代表沿著線136之於汲極104的淨摻雜劑濃度NN之曲線104*在此為分別對應於主要汲極部分104M與下方汲極部分104L之段104M*與104L*所形成。此外,IGFET 160之沿著透過通道區106之垂直線132與134的摻雜劑濃度實質相同於IGFET 100。因此,沿著垂直線132與134之於圖9所示的濃度NI、NT、與NN係應用於IGFET 160。 FIG. 16c and 17c are similar to Figures 8c and 10c, the condition is: (a) on behalf of the source line 130 along the net dopant concentration N N pole 102 of curve 102 * here respectively correspond to main source portion 102M and lower source portion 102L of electrode segments 102M * and 102L * is formed, and (b) represents the line along a net dopant concentration in the drain electrode 104 of the N N 136 104 * in this graph correspond to the primary of The drain portion 104M is formed with the segments 104M* and 104L* of the lower drain portion 104L. Moreover, the dopant concentration of the IGFET 160 along the vertical lines 132 and 134 of the transmission channel region 106 is substantially the same as the IGFET 100. Therefore, the concentrations N I , N T , and N N along the vertical lines 132 and 134 shown in FIG. 9 are applied to the IGFET 160.

按照其關於IGFET 160之源極102與汲極104的垂直摻雜劑漸變的前述論點,於IGFET 160之井部116與袋部120的組態實質相同於IGFET 100。是以,於IGFET 160之於汲極104之下方的垂直摻雜劑量變曲線實質相同於IGFET 100。因此,關聯於汲極-本體接面112的寄生電容係降低於IGFET 160,因而致能其具有提高的類比速度。於源極102與汲極104的垂直摻雜劑漸變係藉由降低(或進一步 降低)沿著源極-本體接面110的寄生電容且藉由進一步降低沿著汲極-本體接面112的寄生電容而致能IGFET 160具有更高的類比速度。於IGFET 160之源極102與汲極104的縱向摻雜劑漸變降低源極電阻RS而且同時減輕於汲極側的熱載體注入。 In accordance with the foregoing arguments regarding the vertical dopant grading of source 102 and drain 104 of IGFET 160, the configuration of well 116 and pocket 120 of IGFET 160 is substantially identical to IGFET 100. Therefore, the vertical doping dose curve below the drain 104 of the IGFET 160 is substantially the same as the IGFET 100. Therefore, the parasitic capacitance associated with the drain-body junction 112 is reduced by the IGFET 160, thus enabling it to have an increased analog speed. The vertical dopant grading at source 102 and drain 104 is achieved by reducing (or further reducing) the parasitic capacitance along source-body junction 110 and by further reducing the gate-body interface 112 along the drain The parasitic capacitance enables the IGFET 160 to have a higher analog speed. The longitudinal dopant of source 102 and drain 104 of IGFET 160 gradually reduces the source resistance R S and at the same time mitigates the heat carrier injection on the drain side.

圖18a至18c分別說明不對稱長n通道IGFET 100、150與160之形式170、180與190,其中,袋部120係相較於源極102與汲極104而在上半導體表面之下方為延伸至較小的深度。針對於其源極102與汲極104分別包括源極延伸部分102E與汲極延伸部分104E之長n通道IGFET 180或190,袋部120延伸在上半導體表面下方的程度深於延伸部分102E與延伸部分104E。 Figures 18a through 18c illustrate the forms 170, 180 and 190 of asymmetric long n-channel IGFETs 100, 150 and 160, respectively, wherein pocket portion 120 extends below the upper semiconductor surface as compared to source 102 and drain 104. To a smaller depth. For a long n-channel IGFET 180 or 190 whose source 102 and drain 104 respectively include a source extension 102E and a drain extension 104E, the pocket 120 extends below the upper semiconductor surface to a depth deeper than the extension 102E and extension Section 104E.

如同關聯於IGFET 100之上文所解說,於各個IGFET 170、180或190之袋部120的邊界之p型段界定為:於其p型袋部摻雜劑的濃度等於p型背景摻雜劑的濃度之位置。沿著袋部120邊界之p型段的總p型摻雜劑濃度是於IGFET 170、180或190的背景摻雜劑濃度之二倍。因此,p型袋部摻雜劑的一些者係存在於IGFET 170、180或190之源極102而為於針對於圖18a至18c的袋部120所示者之下方的深度。於源極102之此附加的p型袋部摻雜劑係抵消(補償)其界定源極102為沿著其下表面之n型摻雜劑的一些者。是以,於IGFET 170、180或190之汲極深度yD係超過源極深度yS,儘管為相較於IGFET 100之較小量。 As explained above in connection with IGFET 100, the p-type segment at the boundary of pockets 120 of each IGFET 170, 180 or 190 is defined as having a p-type pocket dopant concentration equal to the p-type background dopant. The location of the concentration. The total p-type dopant concentration of the p-type segments along the boundaries of the pockets 120 is twice the background dopant concentration of the IGFETs 170, 180 or 190. Thus, some of the p-type pocket dopants are present at the source 102 of the IGFET 170, 180 or 190 and are below the depth shown for the pocket 120 of Figures 18a-18c. This additional p-type pocket dopant at source 102 cancels (compensates) some of the n-type dopants that define source 102 as being along its lower surface. Thus, the drain depth y D of the IGFET 170, 180 or 190 exceeds the source depth y S , albeit to a smaller amount than the IGFET 100.

IGFET 170、180、與190之各者的通道區106實質為 如上所述分別針對於IGFET 100、150與160而不對稱縱向摻雜劑漸變。關於此點,針對於IGFET 170之沿著上半導體表面的摻雜劑濃度NI、NT與NN亦實質為分別代表於圖7。圖14實質為呈現針對於IGFET 180與190之沿著上表面的摻雜劑濃度NI、NT與NN。以上述針對於IGFET 100之方式,穿透因此避免於IGFET 170、180與190。 Channel region 106 of each of IGFETs 170, 180, and 190 is substantially asymmetric longitudinal dopant grading for IGFETs 100, 150, and 160, respectively, as described above. In this regard, the dopant concentrations N I , N T , and N N for the upper semiconductor surface of the IGFET 170 are also substantially represented in FIG. 7, respectively. Figure 14 essentially presents dopant concentrations N I , N T and N N along the upper surface for IGFETs 180 and 190. In the manner described above for IGFET 100, penetration is thus avoided by IGFETs 170, 180 and 190.

IGFET 170、180與190之各者實質為如上所述針對於IGFET 100、150與160而具有在汲極104之下方的次陡峭垂直摻雜劑量變曲線。圖10亦分別實質呈現針對於IGFET 170與180各者之沿著透過汲極104的垂直線136的濃度NI、NT與NN。針對於IGFET 190之沿著透過汲極104的垂直線136的濃度NI、NT與NN實質代表於圖17。沿著於各個IGFET 170、180或190之汲極-本體接面112的寄生電容係因而降低,如上文所述針對於IGFET 100,致能各個IGFET 170、180或190為具有提高的類比速度。 Each of IGFETs 170, 180, and 190 is substantially a sub-steep vertical doping dose curve below solute 104 for IGFETs 100, 150, and 160 as described above. 10 also substantially presents concentrations N I , N T , and N N along the vertical line 136 through the drain 104 for each of the IGFETs 170 and 180, respectively. The concentrations N I , N T and N N for the vertical line 136 of the IGFET 190 along the pass gate 104 are substantially represented in FIG. The parasitic capacitance along the drain-body junction 112 of each IGFET 170, 180 or 190 is thus reduced, as described above for the IGFET 100, enabling each IGFET 170, 180 or 190 to have an increased analog speed.

圖19a至19c(集體為“圖19”)與圖20a至20c(集體為“圖20”)呈現針對於IGFET 170、180與190之沿著透過源極102的垂直線130之範例的摻雜劑濃度,作為深度y之一函數。圖19係應用於IGFET 170與180。圖20係應用於IGFET 190。圖19a與19b明確說明其沿著線130而垂直界定區域102、114、116與120之個別半導體摻雜劑的濃度NI。沿著線130之於區域102、114、116與120的總p型與總n型摻雜劑的濃度NT描繪於圖19b與20b。圖19c與20c分別說明沿著線130的淨摻雜劑濃度NNFIGS. 19a through 19c (collectively "FIG. 19") and FIGS. 20a through 20c (collectively "FIG. 20") present examples of doping for the IGFETs 170, 180 and 190 along the vertical line 130 passing through the source 102. The concentration of the agent, as a function of depth y. Figure 19 is applied to IGFETs 170 and 180. FIG. 20 is applied to IGFET 190. 19a and 19b clearly illustrate the concentration N I of individual semiconductor dopants that vertically define regions 102, 114, 116, and 120 along line 130. Along line 130 in a region of the p-type 102,114,116 and 120 of the total concentration of the total n-type dopant N T depicted in FIG. 19b and 20b. Figures 19c and 20c illustrate the net dopant concentration N N along line 130, respectively.

如由圖19b與20b的曲線段116”與124”之變化所示,於源極102之下方的本體材料108部分者的總p型摻雜劑濃度NT係自於井部116之p型摻雜劑的最大濃度之次表層位置沿著垂直線130朝上移動至源極102而次陡峭式減小為成最多10%。相較於源極102與汲極104而構成較淺袋部120,因此造成針對於源極102之下方的本體材料108部分者的總p型摻雜劑的次陡峭垂直量變曲線。此舉發生,因為相較於IGFET 100、150與160,許多較少的p型摻雜劑係位於IGFET 170、180與190之源極102之下方。於圖8b、16b、19b與20b之代表沿著透過源極102的垂直線130之總p型袋部摻雜劑濃度NT的曲線段120”於圖19b與20b為大部分位在源極深度yS之上方而於圖8b與16b為相當多地延伸在深度yS之下方。 As in FIG. 19b and 20b of curve segments 116 'and 124 "of FIG, 108 are part of body material 102 below the source of the total p-type dopant concentration from the N T based on the p-type well 116 The subsurface position of the maximum concentration of dopant moves up the vertical line 130 up to the source 102 and sub-steep to a maximum of 10%. The shallower pocket portion 120 is formed as compared to the source 102 and the drain 104, thus causing a sub-steep vertical amount variation curve for the total p-type dopant for the portion of the bulk material 108 below the source 102. This occurs because many of the less p-type dopants are below the source 102 of IGFETs 170, 180, and 190 as compared to IGFETs 100, 150, and 160. The curves 120' representing the total p-type pocket dopant concentration N T along the vertical line 130 of the source 102 are shown in Figures 8b, 16b, 19b and 20b. Most of the bits are at the source in Figures 19b and 20b. Above the depth y S and in Figures 8b and 16b there is considerable extension below the depth y S .

IGFET 170、180或190之源極102之下方的本體材料108部分者的次陡峭垂直摻雜劑量變曲線係相當類似於IGFET 170、180或190之汲極104之下方(且因此為於IGFET 100、150或160之汲極104之下方)的本體材料108部分者的次陡峭垂直摻雜劑量變曲線。比較於圖19b與20b之沿著透過源極102的垂直線130之組合的曲線段116”/120”及於圖10b與17b之沿著透過汲極104的垂直線136之組合的曲線段116”/120”。類似於汲極104之下方的本體材料108部分者所發生者,於各個IGFET 170、180或190的源極102之下方的本體材料108部分者之總p型摻雜劑濃度NT係自最大p型井部濃度之次表層位置為向上移動至源極 102的極重度摻雜材料,而較佳為減小為成最多20%,更佳為成最多40%,甚至更佳為成最多80%,典型為接近100%。於IGFET 170、180或190,於源極102的極重度摻雜材料之下方的本體材料108部分者的次陡峭垂直摻雜劑量變曲線致使關聯於源極-本體接面110的寄生電容為減小。IGFET 170、180或190之類比速度進而提高。 The sub-steep vertical doping dose curve of the portion of the body material 108 below the source 102 of the IGFET 170, 180 or 190 is substantially similar to the drain 104 of the IGFET 170, 180 or 190 (and thus for the IGFET 100) The sub-steep vertical doping dose curve of the portion of the bulk material 108 of the lower portion of the drain 104 of 150 or 160. Curve section 116"/120" of the combination of the vertical lines 130 passing through the source 102 of FIGS. 19b and 20b and the curved section 116 of the combination of the vertical lines 136 of the passages 104b and 17b. "/120". Drain electrode 104 is similar to the lower body portion 108 by a material that occurs by, those portions of body material 108 below source in each IGFET 170,180 or 190 of the electrode 102 total p-type dopant concentration from the maximum line N T The sub-surface position of the p-type well concentration is a very heavily doped material that moves up to the source 102, and is preferably reduced to a maximum of 20%, more preferably to a maximum of 40%, and even more preferably to a maximum of 80. %, typically close to 100%. The sub-steep vertical doping dose curve of the bulk material 108 portion of the IGFET 170, 180 or 190 below the very heavily doped material of the source 102 causes the parasitic capacitance associated with the source-body junction 110 to be reduced. small. The analog speed of the IGFET 170, 180 or 190 is in turn increased.

IGFET 170、180或190之沿著透過通道區106的垂直線134的摻雜劑濃度NI、NT與NN實質呈現為如於圖9所顯示。IGFET 170、180或190之沿著透過通道區106(包括:袋部120)的垂直線134的摻雜劑濃度NI、NT與NN係類似於圖9所示者,除了:針對於IGFET 170、180或190之沿著線132的p型袋部摻雜劑的濃度NI之曲線120”類似於圖19a或20a之沿著線130的曲線120’。 The dopant concentrations N I , N T and N N of the IGFET 170, 180 or 190 along the vertical line 134 of the transmission channel region 106 are substantially as shown in FIG. IGFET 170, 180 or 190 along the through channel zone 106 (comprising: a pocket portion 120) N I a dopant concentration of a vertical line 134, N T are shown similar to Figure 9 N N lines, except: directed to the IGFET N I concentration curve along the line p-type pocket dopant portions 170, 180 or 190. 132. 120 "is similar to FIG. 19a or 20a of curve 120 along line 130 '.

為了於描述IGFET 100、140、150、160、170、180與190之簡便,上文所假設的是:p型背景摻雜劑的濃度實質固定為貫穿其含有IGFET 100、140、150、160、170、180與190的任一者之半導體材料。然而,p型背景摻雜劑的濃度為可變化,只要p型背景摻雜劑的峰值相較於其他p型摻雜劑的濃度為相當低。 To describe the simplicity of IGFETs 100, 140, 150, 160, 170, 180, and 190, it is assumed above that the concentration of the p-type background dopant is substantially fixed throughout it containing IGFETs 100, 140, 150, 160, Semiconductor material of any of 170, 180 and 190. However, the concentration of the p-type background dopant can vary as long as the peak of the p-type background dopant is relatively low compared to other p-type dopants.

於各個IGFET 100、140、150、160、170、180與190之本體材料108的井部116係如同直接下層的輕度摻雜的半導體材料(下方本體材料部分114)之相同的導電性型式者。如關聯於圖31a至31o及圖31p.1至31r.2之製程於下文所指示,此情況係當p+井部116與p+袋部120作成於輕 度摻雜的p型半導體材料之起始區域而出現。於大部分的上方本體材料剩餘者124之摻雜劑濃度因而多半等於p-起始區域之低的背景摻雜劑濃度。 The well 116 of the body material 108 of each of the IGFETs 100, 140, 150, 160, 170, 180, and 190 is the same conductivity type as the directly underlying lightly doped semiconductor material (lower body material portion 114). . The process associated with Figures 31a through 31o and Figures 31p.1 through 31r. 2 is indicated below, when the p+ well 116 and the p+ pocket 120 are made light. Occurs in the initial region of the doped p-type semiconductor material. The dopant concentration of most of the upper body material remainder 124 is thus often equal to the low background dopant concentration of the p-start region.

替代而言,直接於井部116之下的半導體材料可為對於井部116之相反導電性型式者。由於井部116係p型,直接於井部116之下的半導體材料於是為n型。此替代者典型出現在當p+井部116與p+袋部120為作成於n型半導體材料之起始區域,通常為輕度摻雜於相當均勻的淨摻雜劑濃度。於一個實施例,意圖成為上方本體材料部分118之起始n型區域部分者(即:位在井部116之上方(或在針對於井部116的意圖位置之上方)的起始n型區域部分者)係摻雜具有p型補償摻雜劑至其大於起始n型半導體區域之n型背景摻雜劑濃度的一絕對濃度,藉以使上方本體材料部分118之全部者為p型。於另一個實施例,意圖以成為上方本體材料部分118之起始n型區域部分者係藉由於井部116的p型井部摻雜劑的部分者之向上擴散而轉換至p型導電性。 Alternatively, the semiconductor material directly below the well 116 can be the opposite conductivity type for the well 116. Since the well 116 is p-type, the semiconductor material directly below the well 116 is then n-type. This alternative is typically present when p+ well 116 and p+ pocket 120 are initially formed in the n-type semiconductor material, typically lightly doped to a fairly uniform net dopant concentration. In one embodiment, it is intended to be the starting n-type region portion of the upper body material portion 118 (ie, the starting n-type region above the well 116 (or above the intended location for the well 116)) Partially) is doped with an absolute concentration of p-type compensating dopant to its n-type background dopant concentration greater than the starting n-type semiconductor region, whereby all of the upper body material portion 118 is p-type. In another embodiment, the portion intended to be the starting n-type region of the upper body material portion 118 is converted to p-type conductivity by the upward diffusion of a portion of the p-type well dopant of the well 116.

於上方本體材料部分118之p型補償或井部摻雜劑的淨濃度NN之最小值可為接近於n型背景摻雜劑濃度。然而,為了確保全部的本體材料部分118係p型,於部分118之p型補償或井部摻雜劑的濃度NN之最小值通常為大於n型背景摻雜劑濃度之顯著的量,例如:至少為二倍大。在井部120之外側的大部分本體材料部分118之p型補償或井部摻雜劑的濃度NN之最小值因此通常為顯著大於n型背 景摻雜劑濃度。 The minimum value of the p-type compensation or the net concentration N N of the well dopant in the upper body material portion 118 may be close to the n-type background dopant concentration. However, to ensure that all of the bulk material portion 118 is p-type, the minimum of the p-type compensation or well dopant concentration N N at portion 118 is typically a significant amount greater than the n-type background dopant concentration, such as : At least twice as large. The minimum of the p-type compensation or the concentration of the well dopant N N of most of the bulk material portion 118 on the outside of the well 120 is therefore typically significantly greater than the n-type background dopant concentration.

圖21說明根據本發明且為類似於圖6之不對稱長n通道IGFET 100的一種變化者100V,其中,p-下本體材料部分114替代為一輕度摻雜的n型下方區域192,其形成對於p+井部116之一下方pn接面194。由於下方區域192非為p型導電性,於IGFET 100V之p型本體材料108係由井部116與其替代IGFET 100之上方本體材料部分118的一上方部分196所組成。IGFET 100V之上方本體材料部分196部分由p+袋部120所形成。上方本體材料部分196的剩餘者(即:在袋部120之外側的部分者)係指於圖21之項目198。上方本體材料剩餘者198係以相較於n-下方部分192之有些較高的淨濃度而輕度摻雜p型。本體材料剩餘者198之輕度p型摻雜係藉著上述p型補償摻雜劑而達成。除了前述差異及合成摻雜劑濃度差異之外,IGFET 100V實質為相同於IGFET 100而配置及構成。 21 illustrates a variation 100V in accordance with the present invention and which is similar to the asymmetric long n-channel IGFET 100 of FIG. 6, wherein the p-lower body material portion 114 is replaced by a lightly doped n-type lower region 192, A pn junction 194 is formed below one of the p+ wells 116. Since the lower region 192 is not p-type conductive, the p-type body material 108 at the IGFET 100V is comprised of the well 116 and an upper portion 196 of the upper body material portion 118 of the IGFET 100. The upper body material portion 196 portion of the IGFET 100V is formed by the p+ pocket portion 120. The remainder of the upper body material portion 196 (i.e., the portion on the outer side of the pocket portion 120) is referred to as item 198 of FIG. The upper body material remainder 198 is lightly doped p-type with a somewhat higher net concentration than the n-lower portion 192. The mild p-type doping of the remaining body material 198 is achieved by the p-type compensation dopant described above. The IGFET 100V is substantially identical to the IGFET 100 in configuration and configuration, except for the aforementioned differences and differences in synthesized dopant concentrations.

IGFET 100V具有類似於IGFET 100的彼等者之以下特點:(a)於通道106之一不對稱的縱向摻雜劑漸變,及(b)於汲極104之下方的本體材料108部分之次陡峭垂直摻雜劑量變曲線。IGFET 100V之此等特點的瞭解(包括:如何可分別有些不同於IGFET 100的彼等者)係藉助於圖22a至22c(集體為“圖22”)、圖23a至23c(集體為“圖23”)、及圖24a至24c(集體為“圖24”)。圖22呈現IGFET 100V之沿著上半導體表面的範例的摻雜劑濃度,作為縱向距離x之函數。IGFET 100V之沿著透過源極102的垂直線130的範 例摻雜劑濃度係呈現於圖23。圖24呈現IGFET 100V之沿著透過汲極104的垂直線136的範例摻雜劑濃度。 IGFET 100V has the following features similar to those of IGFET 100: (a) asymmetrical longitudinal dopant grading in one of channels 106, and (b) sub-steep portion of body material 108 below drain 104 Vertical doping dose curve. An understanding of these features of IGFET 100V (including: how they can be somewhat different from those of IGFET 100) is by means of Figures 22a to 22c (collectively "Figure 22"), Figures 23a to 23c (collectively "Figure 23 "), and Figures 24a to 24c (collectively "Figure 24"). Figure 22 presents an exemplary dopant concentration along the upper semiconductor surface of IGFET 100V as a function of longitudinal distance x. The IGFET 100V is along the vertical line 130 through the source 102 An example dopant concentration is presented in Figure 23. 24 presents an example dopant concentration along IGFET 100V along vertical line 136 through drain 104.

圖22a、23a與24a說明其定義區域102、104、116、120、192、196與198之個別半導體摻雜劑的濃度NI。曲線192’與198’明確分別代表其分別定義n-下方區域192與p-上方本體材料剩餘者198之n型背景摻雜劑與p型補償摻雜劑的濃度NI。項目194#指在井部116之下方的.淨摻雜劑濃度NN成為零之處且因此指示下方pn接面194之位置。 Figures 22a, 23a and 24a illustrate the concentration N I of individual semiconductor dopants defining regions 102, 104, 116, 120, 192, 196 and 198. The curves 192' and 198' clearly represent the concentration N I of the n-type background dopant and the p-type compensation dopant, respectively, which define the n-lower region 192 and the p-upper body material remaining 198, respectively. Item 194 # refers to the position below the well 116 where the net dopant concentration N N becomes zero and thus indicates the position of the lower pn junction 194.

於區域102、104、116、120、192、196與198之總p型與總n型摻雜劑的濃度NT描繪於圖22b、23b與24b。於圖22b、23b與24b之曲線段192”與198”分別對應於n-下方區域192與p-上方本體材料剩餘者198。圖22c、23c與24c說明於種種區域102、104、116、120、192、196與198之淨p型摻雜劑與淨n型摻雜劑的濃度NN。於圖22c、23c與24c之曲線段192*與198*分別對應於n-下方區域192與p-上方本體材料剩餘者198。 102,104,116,120,192,196 in a region of 198 to the total p-type and total n-type dopant concentration of N T depicted in FIG. 22b, 23b and 24b. The curved segments 192" and 198" of Figures 22b, 23b and 24b correspond to the n-lower region 192 and the p-upper body material remainder 198, respectively. Figures 22c, 23c and 24c illustrate the concentration N N of the net p-type dopant and the net n-type dopant for the various regions 102, 104, 116, 120, 192, 196 and 198. The curved segments 192* and 198* of Figures 22c, 23c and 24c correspond to the n-lower region 192 and the p-upper body material remainder 198, respectively.

圖22至24代表一個實例,其中:(a)於IGFET 100V之n型背景摻雜劑的濃度NI近似等於IGFET 100之p型背景摻雜劑濃度NI,(b)IGFET 100V之沿著上半導體表面的p型補償摻雜劑的濃度NI係於IGFET 100V之n型背景摻雜劑的濃度NI之2至3倍,及(c)p型補償摻雜劑的濃度NI之最大值係沿著上半導體表面的p型補償摻雜劑的濃度NI之2至3倍且因此為n型背景摻雜劑的濃度NI之4至9倍。除了此等差異之外,IGFET 100V之其他摻雜劑的濃度NI 分別大部分為相同於IGFET 100。 Figures 22 through 24 represent an example in which: (a) the concentration N I of the n-type background dopant of the IGFET 100V is approximately equal to the p-type background dopant concentration N I of the IGFET 100, (b) along the IGFET 100V The concentration N I of the p-type compensation dopant on the upper semiconductor surface is 2 to 3 times the concentration N I of the n-type background dopant of the IGFET 100V, and (c) the concentration of the p-type compensation dopant N I The maximum value is 2 to 3 times the concentration N I of the p-type compensation dopant along the upper semiconductor surface and thus 4 to 9 times the concentration N I of the n-type background dopant. In addition to these differences, the concentration N I of the other dopants of IGFET 100V is mostly the same as IGFET 100, respectively.

較特別而言,於IGFET 100V之p型袋部摻雜劑的濃度NI實質相同於IGFET 100而縱向變化。於圖22a之曲線段120’顯示的是:自源極102而沿著IGFET 100V之上半導體表面縱向移動至通道區106,p型袋部摻雜劑的濃度NI係於至區106的中途為大約固定的上表面位準,且接著於源極102與汲極104之間的一位置為自該位準而實質下降至零。 More specifically, the concentration N I of the p-type pocket dopant in the IGFET 100V is substantially the same as that of the IGFET 100 in the longitudinal direction. The curved section 120' of Fig. 22a shows: from the source 102 and along the semiconductor surface above the IGFET 100V to the channel region 106, the concentration of the p-type pocket dopant N I is in the middle of the region 106. It is about a fixed upper surface level, and then a position between the source 102 and the drain 104 is substantially reduced to zero from that level.

IGFET 100V之沿著上半導體表面於通道區106的總p型摻雜劑係袋部與補償摻雜劑的總和。此係不同於IGFET 100,於其:沿著上半導體表面於通道區106的總p型摻雜劑係袋部與背景摻雜劑的總和。由於圖示實例之p型補償摻雜劑的濃度NI係n型背景摻雜劑的濃度NI之2至3倍且因此為於IGFET 100之p型背景摻雜劑的濃度NI之2至3倍,於圖示實例之IGFET 100V沿著上表面之總p型摻雜劑濃度NI的最小值係IGFET 100沿著上表面之總p型摻雜劑濃度NI的最小值之2至3倍。 The sum of the total p-type dopant pocket portion of the IGFET 100V along the upper semiconductor surface in the channel region 106 and the compensation dopant. This is different from IGFET 100 in that it is the sum of the total p-type dopant pocket portion of the channel region 106 along the upper semiconductor surface and the background dopant. Since the concentration of N I 2-3-fold concentration of the concentration of N I N I illustrates an example of the line-type compensating dopant in the p-type background dopant of n and is therefore in the context of IGFET 100. The p-type dopant 2 Up to 3 times, the minimum value of the total p-type dopant concentration N I along the upper surface of the IGFET 100V in the illustrated example is the minimum of the total p-type dopant concentration N I along the upper surface of the IGFET 100. Up to 3 times.

於圖22b之項目106”代表曲線段120”與198”的通道區部分。類似於IGFET 100所出現者,於曲線106”的變化在此顯示的是:IGFET 100V之沿著上半導體表面於通道區106的總p型摻雜劑的濃度NT相較於區106為會合源極102之處,於區106為會合汲極104之處係較低。於IGFET 100V之通道區106的總p型摻雜劑的濃度NT相較於沿著上表面之源極-本體接面110而於沿著上表面之汲極-本體接面112為通常較低10%,較佳為較低至少20%,更佳為較低至少 50%,典型為較低為接近100。針對於IGFET 100V之此濃度差異的典型值為接近於100%而非為超過100%(如可出現於IGFET 100)的理由係在於:於IGFET 100V之圖示實例,沿著上表面的總p型摻雜劑的濃度NT之最小值相較於IGFET 100而較高為2至3倍 Item 106" of Figure 22b represents the portion of the channel portion of curve segments 120" and 198". Similar to the appearance of IGFET 100, the variation at curve 106" is shown here: IGFET 100V along the upper semiconductor surface in the channel The concentration N T of the total p-type dopant in region 106 is lower than that in region 106 where the source 102 is merged. Channel IGFET 100V in the areas of the total p-type dopant concentration compared to the N T 106 along the source electrode on the surface of the - body junction 110 to the upper surface of the pole along the drain - body junction 112 is typically relatively It is 10% lower, preferably at least 20% lower, more preferably at least 50% lower, and typically lower at nearly 100. The typical value for this difference in concentration for IGFET 100V is close to 100% instead of more than 100% (as may occur in IGFET 100). The reason for the illustrated example of IGFET 100V is the total p along the upper surface. Min-type dopant concentration of the N T IGFET 100 and compared to the 2 to 3-fold higher

參考圖22c,項目106*在此代表通道區曲線段120*與198*之組合。按照針對於IGFET 100V之曲線106*的段198*為稍微高於圖7c之針對於IGFET 100之曲線106*的段124*,於圖7c與22c之曲線106*係相當類似。是以,於IGFET 100V之通道區106的源極側相較於汲極側而具有高淨量的p型摻雜劑。於IGFET 100V之沿著源極-本體接面110之空乏區的通道側部分之厚度係因而降低。此外,針對於關聯於IGFET 100之上述的(場線終止)理由,於IGFET 100V之沿著通道區106的源極側之高p型摻雜劑濃度係屏蔽源極102以免於汲極104之相當高的電場。穿透係避免於IGFET 100V。 Referring to Figure 22c, item 106* here represents a combination of channel zone curve segments 120* and 198*. The segment 198* according to the curve 106* for the IGFET 100V is slightly higher than the segment 124* for the curve 106* of the IGFET 100 of Figure 7c, and the curve 106* of Figures 7c and 22c is quite similar. Therefore, a high-purity p-type dopant is provided on the source side of the channel region 106 of the IGFET 100V compared to the drain side. The thickness of the channel side portion of the IGFET 100V along the depletion region of the source-body junction 110 is thus reduced. Moreover, for the above-described (field line termination) reason associated with IGFET 100, the high p-type dopant concentration along the source side of channel region 106 of IGFET 100V shields source 102 from drain 104 A fairly high electric field. The penetration system is avoided by the IGFET 100V.

IGFET 100V之源極102與汲極104之下方的本體材料108部分者的p型摻雜劑係由圖23a與24a之曲線116’與198’所分別指示的主要井部與補償摻雜劑所組成,且針對於源極102為亦由圖23a之曲線120’所指示的袋部摻雜劑所組成。於圖23a與24a之曲線198’的變化顯示的是:p型補償摻雜劑的濃度NI係在接近源極102與汲極104之底部而達到最大值。此最大值係於圖23a與24a之特定實例的n型背景摻雜劑的濃度NI之4至9倍。於圖23a與24a之實 例的p型補償摻雜劑濃度NI係在小於井部116之最大p型摻雜劑濃度的深度yW之一深度而本質為下降至零。 The p-type dopant portion of the bulk material 108 below the source 102 and the drain 104 of the IGFET 100V is the primary well and compensating dopant indicated by curves 116' and 198' of Figures 23a and 24a, respectively. The composition, and for the source 102, is comprised of a pocket dopant also indicated by curve 120' of Figure 23a. The variation of curve 198' in Figures 23a and 24a shows that the concentration N I of the p-type compensation dopant is near the bottom of source 102 and drain 104 to a maximum. This maximum is 4 to 9 times the concentration N I of the n-type background dopant of the specific examples of Figures 23a and 24a. P-type compensating dopant concentration in N I-based example of FIG. 23a and 24a is decreased to zero in less than a maximum concentration of the p-type dopant is one of the well depth of the depth y W portion 116 of the essence.

IGFET 100V之汲極104之下方的本體材料108部分者的總p型摻雜劑係由於圖24b之曲線段116”與其(朝上)延伸部分198”所指示。因為p型補償摻雜劑的濃度NI係於小於深度yW之一深度而本質下降至零,汲極104之下方的本體材料部分者的總p型摻雜劑之濃度NT係於實質等於yW之次表層位置而達到一最大值。如同發生於IGFET 100,於圖24b的組合曲線段116”/198”之變化顯示的是:IGFET 100V之汲極104之下方的本體材料108部分者的總p型摻雜劑之濃度NT自於井部116之總p型摻雜劑的最大濃度之次表層位置朝上移動至汲極104而次陡峭式減小為成最多10%。 The total p-type dopant portion of the bulk material 108 below the drain 104 of the IGFET 100V is indicated by the curved segment 116" of Figure 24b and its (upward) extension 198". Since the concentration of N I p-type compensating dopant lines in one of a depth less than the depth y W and essentially drops to zero, the body material portion below drain's 104 total p-type dopant concentration of the N T based on substantive It is equal to the subsurface position of y W and reaches a maximum value. As occurs in IGFET 100, 116 "/ 198" changes the composition of curve segment 24b in FIG shows: the concentration of those portions of body material 108 below drain 104 of IGFET 100V of the total p-type dopant from the N T The subsurface position of the maximum concentration of the total p-type dopant at the well 116 is moved upward to the drain 104 and sub-steep to a maximum of 10%.

於圖24b之特定實例,IGFET 100V之汲極104之下方的本體材料108部分者的總p型摻雜劑之濃度NT係典型為於向上移動自該最大p型井部濃度的位置至汲極104而減小為最多接近15%。於IGFET 100V之此次陡峭濃度減小的典型值為最多接近15%而非為接近於100%(如出現於IGFET 100)的理由係在於:於圖24a之實例的IGFET 100V之汲極104的底部之p型補償摻雜劑的濃度NI係於IGFET 100之汲極104的底部之p型背景摻雜劑的濃度NI之4至9倍。然而,針對於p型補償摻雜劑的垂直摻雜劑量變曲線係可降低以降低於汲極104的底部之p型補償摻雜劑的濃度NI值,而仍然確保的是:上方本體材料部分196之全部為p型。於IGFET 100V之汲極104之下方的本體材料108 部分之總p型摻雜劑的濃度NT係可於朝上移動自井部116之總p型摻雜劑的最大濃度之位置至汲極104而易於減小為最多20%,且典型為最多40%。 Specific examples in Figure 24b, the portion 108 of the body's material of IGFET 100V below drain 104 of the total p-type dopant concentration of the N T is typically based on a position moved upward from the maximum concentration of the p-type well to the drain portion The pole 104 is reduced to a maximum of approximately 15%. The typical value of this steep concentration reduction for IGFET 100V is at most close to 15% rather than close to 100% (as appears in IGFET 100) because the IGFET 100V has a drain 104 of the example of Figure 24a. 4-9 N I-fold concentration of the p-type background dopant at the bottom of the bottom of the p-type compensating dopant concentration N I drain line 100 in IGFET 104 is extremely. However, the vertical doping dose curve for the p-type compensation dopant can reduce the concentration N I of the p-type compensation dopant at the bottom of the drain 104, while still ensuring: the upper body material All of the portions 196 are p-type. The total concentration of N T line of the p-type body material portion below drain of IGFET 100V to 104 to 108 dopants may be moved upwardly from the position of the shaft portion 116 of the total p-type dopant to the maximum concentration of the drain 104 is easily reduced to at most 20%, and typically at most 40%.

如由曲線段116*與198*之組合所代表,圖24c顯示的是:於IGFET 100V之汲極104之下方的本體材料108部分者的淨p型摻雜劑之濃度NN垂直變化為類似於汲極104之下方的本體材料部分者的總p型摻雜劑之濃度NT,除了:汲極104之下方的本體材料部分者之濃度NN係於pn接面112與194而下降至零。歸因於IGFET 100V之汲極104之下方的本體材料部分者之次陡峭的垂直摻雜劑量變曲線,關聯於汲極-本體接面112的寄生電容同樣為針對於進一步於下文論述之理由而減小。雖然相較於IGFET 100,於沿著接面104之寄生電容的減小係可能於IGFET 100V為較小,IGFET 100V係仍然具有提高的類比速度。 As represented by the combination of curve segments 116* and 198*, Figure 24c shows that the concentration of the net p-type dopant N N varies vertically in the portion of bulk material 108 below the drain 104 of the IGFET 100V. The concentration N T of the total p-type dopant in the bulk material portion below the drain 104 is except that the concentration N N of the bulk material portion below the drain 104 is reduced to the pn junction 112 and 194 to zero. The parasitic capacitance associated with the drain-body junction 112 is also due to the reasons discussed further below due to the sub-steep vertical doping dose curve of the bulk material portion below the drain 104 of the IGFET 100V. Reduced. Although the reduction in parasitic capacitance along junction 104 may be smaller than IGFET 100V compared to IGFET 100, the IGFET 100V system still has an increased analog speed.

濃度為大於IGFET 100的p型背景摻雜劑者之p型補償摻雜劑的存在,相較於IGFET 100V之透過汲極104的垂直摻雜劑量變曲線,具有頗為較少的影響於IGFET 100V之透過源極102的垂直摻雜劑量變曲線,因為p型袋部摻雜劑係亦存在於IGFET 100V之源極102之下方。如比較圖23與圖24而為明顯,關於IGFET 100之透過源極102的垂直摻雜劑量變曲線而上述的論點係概括應用至IGFET 100V之透過源極102的垂直摻雜劑量變曲線。 The presence of a p-type compensating dopant having a concentration greater than that of the p-type background dopant of IGFET 100 has a relatively small effect on the IGFET compared to the vertical doping dose curve of the pass gate 104 of the IGFET 100V. The vertical doping dose curve of the 100V pass source 102 is because the p-type pocket dopant is also present below the source 102 of the IGFET 100V. As is apparent from a comparison of FIG. 23 and FIG. 24, with respect to the vertical doping dose curve of the IGFET 100 through the source 102, the above-described argument summarizes the vertical doping dose curve applied to the pass source 102 of the IGFET 100V.

圖25說明根據本發明且類似於圖13之不對稱長n通道IGFET 150的一種變化者150V,其中,n-下部192再次 取代p-下方本體材料部分114。IGFET 150V同樣含有p型上方本體材料部分196,其取代IGFET 150之上方本體材料部分118。上方本體材料部分196之p-剩餘者198相較於n-下部192而再次為於稍微較高的淨摻雜劑濃度。如同IGFET 100V,於IGFET 150V之上方本體材料剩餘者198的輕度p型摻雜係藉著p型補償摻雜劑而達成。按照n-下部192與p-上方本體材料剩餘者198之存在,IGFET 150V實質為相同於IGFET 150而構成,藉以具有縱向的源極/汲極摻雜劑漸變,以降低源極電阻RS與汲極側的熱載體注入。 Figure 25 illustrates a variation 150V in accordance with the present invention and similar to the asymmetric long n-channel IGFET 150 of Figure 13, wherein the n-lower portion 192 again replaces the p-lower body material portion 114. IGFET 150V also includes a p-type upper body material portion 196 that replaces upper body material portion 118 of IGFET 150. The p-residue 198 of the upper body material portion 196 is again at a slightly higher net dopant concentration than the n-lower portion 192. Like IGFET 100V, the mild p-type doping of the body material remainder 198 above IGFET 150V is achieved by a p-type compensation dopant. The IGFET 150V is substantially identical to the IGFET 150 in the presence of the n-lower portion 192 and the p-upper body material remaining 198, thereby having a longitudinal source/drain dopant gradient to reduce the source resistance R S and Heat carrier injection on the drain side.

圖26a至26c(集體為“圖26”)呈現IGFET 150V之沿著上半導體表面的範例的摻雜劑濃度,用於檢驗於源極102與汲極104之縱向摻雜劑漸變。沿著上表面之主要界定區域102M、102E、104M、104E、120、192與198之個別半導體摻雜劑的濃度NI係描繪於圖26a。圖26b說明沿著上表面之區域102M、102E、104M、104E、120、192與198之總p型與n型摻雜劑的濃度NT。沿著上表面的淨濃度NN說明於圖26c。 Figures 26a through 26c (collectively "Figure 26") present exemplary dopant concentrations along the upper semiconductor surface of IGFET 150V for verifying the vertical dopant grading at source 102 and drain 104. The concentration N I of the individual semiconductor dopants along the major defined regions 102M, 102E, 104M, 104E, 120, 192 and 198 of the upper surface is depicted in Figure 26a. Figure 26b illustrates the concentration N T of the total p-type and n-type dopants along regions 102M, 102E, 104M, 104E, 120, 192 and 198 along the upper surface. The net concentration N N along the upper surface is illustrated in Figure 26c.

圖26重複圖14且按照於圖22所呈現的分別修改以考量n-下部192與p-上方本體材料剩餘者198。於IGFET 150V之源極102與汲極104的縱向摻雜劑漸變不具有任何重大影響於通道區106之不對稱的縱向摻雜劑漸變。於IGFET 150V之不對稱的通道區摻雜劑漸變大部分如同於IGFET 150且因此大部分如同於IGFET 100而避免穿透。 Figure 26 repeats Figure 14 and is modified as shown in Figure 22 to account for the n-lower portion 192 and the p-upper body material remainder 198. The longitudinal dopant grading of source 102 and drain 104 of IGFET 150V does not have any significant longitudinal dopant grading that significantly affects channel region 106. The asymmetrical channel region dopant gradient in IGFET 150V is mostly similar to IGFET 150 and therefore largely as IGFET 100 avoids penetration.

於IGFET 150V之p+井部116與p-上方本體材料剩餘 者198的組態使其透過汲極104且至下層本體材料108之垂直摻雜劑量變曲線為次陡峭而實質相同於IGFET 150。圖23與24之沿著垂直線130與136的垂直摻雜劑濃度曲線圖實質應用至IGFET 150V。於IGFET 150V之汲極-本體接面112具有降低的寄生電容,雖然典型為未降低如同於IGFET 150的多,使IGFET 150V具有提高的類比切換速度。 For the IGFET 150V p+ well 116 and p- above the body material remains The configuration of the 198 is such that it passes through the drain 104 and the vertical doping dose curve to the underlying body material 108 is sub-steep and substantially the same as the IGFET 150. The vertical dopant concentration profiles along vertical lines 130 and 136 of Figures 23 and 24 are substantially applied to IGFET 150V. The drain-body junction 112 of the IGFET 150V has a reduced parasitic capacitance, although typically not as much as the IGFET 150, providing an improved analog switching speed for the IGFET 150V.

圖27a與27b說明根據本發明且分別為類似於圖18a與18b之分別的不對稱長n通道IGFET 170與180的變化者170V與180V,其中,n-下部192再次取代p-下方本體材料部分114。各個IGFET 170V或180V同樣含有p型上方本體材料部分196,其取代IGFET 170或180之上方本體材料部分118。上方本體材料部分196之p-剩餘者198相較於n-下部192而再次為於稍微較高的淨摻雜劑濃度。如同IGFET 100V與150V,於各個IGFET 170V或180V之上方本體材料剩餘者198的輕度p型摻雜係藉著p型補償摻雜劑而達成。按照n-下部192與p-上方本體材料剩餘者198之存在,各個IGFET 170V或180V之袋部120相較於源極102與汲極104而在上半導體表面之下方為延伸至較小的深度。IGFET 180V亦具有IGFET 150V之縱向的源極/汲極摻雜劑漸變,以降低源極電阻RS與汲極側的熱載體注入。 Figures 27a and 27b illustrate variations 170V and 180V of asymmetric long n-channel IGFETs 170 and 180, respectively, in accordance with the present invention, similar to Figures 18a and 18b, respectively, wherein n-lower portion 192 again replaces the p-lower body material portion. 114. Each IGFET 170V or 180V also contains a p-type upper body material portion 196 that replaces the body material portion 118 above the IGFET 170 or 180. The p-residue 198 of the upper body material portion 196 is again at a slightly higher net dopant concentration than the n-lower portion 192. Like IGFETs 100V and 150V, the mild p-type doping of the body material remainder 198 above each IGFET 170V or 180V is achieved by a p-type compensation dopant. The pockets 120 of the respective IGFETs 170V or 180V extend below the upper semiconductor surface to a lesser depth than the source 102 and the drain 104, in accordance with the presence of the n-lower portion 192 and the p-upper body material remaining 198. . The IGFET 180V also has a source/drain dopant gradation in the longitudinal direction of the IGFET 150V to reduce the source resistance R S and the heat carrier injection on the drain side.

IGFET 170V與180V之各者的通道區106實質為如分別針對於IGFET 100V與150V之上文所述而不對稱縱向摻雜漸變。圖22實質呈現針對於IGFET 170V之沿著上半導體表面的濃度NI、NT、與NN。針對於關聯於IGFET 100V 之上述的理由,穿透係因此避免於IGFET 170V。IGFET 180V之沿著上半導體表面的濃度NI、NT與NN係實質分別代表於圖26。IGFET 180V如針對於IGFET 170V之上文所述且因此如針對於IGFET 100V之上文所述而避免穿透。 The channel region 106 of each of the IGFETs 170V and 180V is substantially asymmetric longitudinal doping grading as described above for IGFETs 100V and 150V, respectively. Figure 22 essentially presents concentrations N I , N T , and N N for the upper semiconductor surface of IGFET 170V. For the reasons described above in relation to IGFET 100V, the penetrating system is thus avoided in IGFET 170V. The concentrations N I , N T and N N of the IGFET 180V along the upper semiconductor surface are substantially represented in Fig. 26, respectively. IGFET 180V avoids penetration as described above for IGFET 170V and thus as described above for IGFET 100V.

IGFET 170V與180V之各者係如針對於IGFET 100V之上文所述而具有透過汲極104之次陡峭垂直摻雜劑量變曲線。圖24亦呈現針對於各個IGFET 170V或180V之沿著透過汲極104的垂直線136之濃度NI、NT與NN。結果,針對於關聯於IGFET 100V之上述的理由,於各個IGFET 170V或180V之沿著汲極-本體接面112的寄生電容係降低。IGFET 170V或180V因而具有提高的類比速度。 Each of the IGFETs 170V and 180V has a sub-steep vertical doping dose curve through the drain 104 as described above for the IGFET 100V. Figure 24 also shows concentrations N I , N T and N N for vertical lines 136 across the drain 104 for each IGFET 170V or 180V. As a result, the parasitic capacitance along the drain-body junction 112 of each IGFET 170V or 180V is reduced for the reason described above in relation to the IGFET 100V. The IGFET 170V or 180V thus has an increased analog speed.

圖28a至28c(集體為“圖28”)分別呈現針對於各個IGFET 170V或180V之沿著透過源極102的垂直線130之濃度NI、NT與NN。如於圖28b的曲線段116”與198”之變化所指示,於源極102之下方的本體材料108部分者的總p型摻雜劑之濃度NT自於井部116之p型摻雜劑的最大濃度之次表層位置沿著線130朝上移動至源極102而次陡峭式減小為最多10%。如同發生於IGFET 170與180,於IGFET 170V與180V,相較於源極102與汲極104而構成較淺袋部120係造成針對於源極102之下方的本體材料部分者的p型摻雜劑的次陡峭垂直量變曲線。 Figures 28a through 28c (collectively "Figure 28") present concentrations N I , N T and N N for vertical lines 130 passing through source 102 for respective IGFETs 170V or 180V, respectively. The curve segment 28b in FIG. 116 "and 198" of the changes indicated by the concentration portion of body material 108 below source 102 to the total p-type dopant from the N T p-type dopant in well portion 116 The subsurface position of the maximum concentration of the agent moves up the line 130 up to the source 102 and sub-steep to a maximum of 10%. As occurs in IGFETs 170 and 180, at IGFETs 170V and 180V, shallower pockets 120 are formed as compared to source 102 and drain 104, resulting in p-type doping for portions of the bulk material below source 102. Sub-steep vertical quantitative curve of the agent.

針對於各個IGFET 170V或180V,於源極102之下方的本體材料108部分者的次陡峭垂直摻雜劑量變曲線係相當類似於汲極104之下方的本體材料108部分者的次陡峭 垂直摻雜劑量變曲線。於圖28之特定實例,IGFET 170V或180V之於源極102之下方的本體材料部分者的總p型摻雜劑之濃度NT自該最大p型井部濃度的位置向上移動至源極102而典型減小為最多接近15%。雖然此典型15%明顯為小於其發生於IGFET 170或180之對應的典型100%,針對於p型補償摻雜劑之垂直摻雜劑量變曲線係可降低。類似於其關於IGFET 100V之透過汲極104的垂直摻雜劑量變曲線而於上文所述者,IGFET 170V或180V之源極102之下方的本體材料部分者的總p型摻雜劑之濃度NT係可容易自於井部116之總p型摻雜劑的最大濃度位置朝上移動至源極102而減小為最多20%,典型為最多40%。 For each IGFET 170V or 180V, the sub-steep vertical doping dose curve of the portion of the body material 108 below the source 102 is quite similar to the sub-steep vertical doping of the bulk material 108 portion below the drain 104. Dose change curve. In the particular example of FIG. 28, the concentration N T of the total p-type dopant of the bulk material portion of the IGFET 170V or 180V below the source 102 is moved upward from the position of the maximum p-type well concentration to the source 102. The typical reduction is up to approximately 15%. Although this typical 15% is significantly less than the typical 100% that occurs for the corresponding IGFET 170 or 180, the vertical doping dose profile for the p-type compensation dopant can be reduced. Similar to its vertical doping dose profile for the pass gate 104 of the IGFET 100V, the concentration of the total p-type dopant in the bulk material portion below the source 102 of the IGFET 170V or 180V is described above. The N T system can be easily reduced from up to 20%, typically up to 40%, from the maximum concentration position of the total p-type dopant of the well 116 up to the source 102.

IGFET 170V或180V之於源極102之下方的本體材料108部分者之次陡峭垂直摻雜劑量變曲線使關聯於源極-本體接面110的寄生電容減小,儘管典型為相較於IGFET 170或180之一較小量。結果,各個IGFET 170V或180V的類比速度進而提高。 The sub-steep vertical doping dose curve of the portion of bulk body 108 of IGFET 170V or 180V below source 102 reduces the parasitic capacitance associated with source-body junction 110, although typically compared to IGFET 170 Or one of the smaller quantities of 180. As a result, the analog speed of each IGFET 170V or 180V is further increased.

IGFET 140、160與190之變化者可設有n-下部192與p-上方本體材料剩餘者198(或p型上方本體材料部分196),以區域192與198(或196)設於IGFET 100V、150V、170V與180V之相同的方式。IGFET 140、160與190之此等不對稱長n通道變化者於下文分別稱為IGFET 140V、160V與190V。 Variations of IGFETs 140, 160 and 190 may be provided with n-lower portion 192 and p-upper body material remaining 198 (or p-type upper body material portion 196), with regions 192 and 198 (or 196) being provided at IGFET 100V, 150V, 170V and 180V in the same way. These asymmetric long n-channel variations of IGFETs 140, 160, and 190 are hereinafter referred to as IGFETs 140V, 160V, and 190V, respectively.

適用於混合訊號應用之互補IGFET構造Complementary IGFET construction for mixed-signal applications

長通道IGFET 150、160、170、180、190、100V、150V、 160V、170V、180V與190V之短通道形式可藉由適當降低通道長度而為根據本發明所製造。p通道IGFET可藉由反向IGFET 100、140、150、160、170、180、190、100V、140V、150V、160V、170V、180V與190V(包括:IGFET 150、160、170、180、190、150V、160V、170V、180V與190V之短通道的變化者)的半導體區域之導電性型式而同樣為根據本發明所製造。 Long channel IGFETs 150, 160, 170, 180, 190, 100V, 150V, Short channel forms of 160V, 170V, 180V and 190V can be made in accordance with the present invention by appropriately reducing the length of the channel. The p-channel IGFET can be implemented by reverse IGFETs 100, 140, 150, 160, 170, 180, 190, 100V, 140V, 150V, 160V, 170V, 180V, and 190V (including: IGFETs 150, 160, 170, 180, 190, The conductivity type of the semiconductor region of the 150V, 160V, 170V, 180V, and 190V short channel variations is also manufactured in accordance with the present invention.

n通道IGFET 100、140、150、160、170、180、190、100V、140V、150V、160V、170V、180V與190V(包括:IGFET 150、160、170、180、190、150V、160V、170V、180V與190V之短通道的變化者)、及p通道IGFET可各自提供於相同的半導體構造,以產生其特別適用於高速的類比應用之一種互補IGFET半導體架構。舉例而言,n通道IGFET 100、140、150、160、170、180與190之一或多者可結合IGFET 100V、140V、150V、160V、170V、180V與190V之一或多個p通道的變化者。互補IGFET構造於是由輕度摻雜的p型半導體材料所作成,運用p-下方本體材料部分114作為n-下部192之p型等效者,針對於IGFET 100V、140V、150V、160V、170V、180V或190V之各個p通道的變化者。替代而言,n通道IGFET 100V、140V、150V、160V、170V、180V與190V之一或多者可結合IGFET 100、140、150、160、170、180與190之一或多個p通道的變化者,由輕度摻雜的n型半導體材料所製造,運用n-下部192作為p-下方本體材料部分114之n型等效者,針對於IGFET 100、140、150、160、170、180或190之各個p通道的變化者。 N-channel IGFETs 100, 140, 150, 160, 170, 180, 190, 100V, 140V, 150V, 160V, 170V, 180V and 190V (including: IGFETs 150, 160, 170, 180, 190, 150V, 160V, 170V, The variants of the short channels of 180V and 190V) and the p-channel IGFETs can each be provided in the same semiconductor construction to produce a complementary IGFET semiconductor architecture that is particularly suitable for high speed analog applications. For example, one or more of the n-channel IGFETs 100, 140, 150, 160, 170, 180, and 190 can incorporate changes in one or more of the IGFETs 100V, 140V, 150V, 160V, 170V, 180V, and 190V. By. The complementary IGFET is constructed of a lightly doped p-type semiconductor material using the p-lower body material portion 114 as the p-type equivalent of the n-lower portion 192 for IGFETs 100V, 140V, 150V, 160V, 170V, The change of each p channel of 180V or 190V. Alternatively, one or more of the n-channel IGFETs 100V, 140V, 150V, 160V, 170V, 180V, and 190V may incorporate one or more p-channel variations of the IGFETs 100, 140, 150, 160, 170, 180, and 190. Manufactured from a lightly doped n-type semiconductor material using n-lower portion 192 as the n-type equivalent of p-lower body material portion 114 for IGFET A change in each p-channel of 100, 140, 150, 160, 170, 180, or 190.

特別適用於數位電路之IGFET(n通道及p通道)亦可提供於半導體構造。雙極式電晶體(npn及pnp)係可各自提供於半導體構造。造成的半導體架構因此適用於混合訊號應用。 IGFETs (n-channel and p-channel) that are particularly suitable for digital circuits can also be provided in semiconductor construction. Bipolar transistors (npn and pnp) can each be provided in a semiconductor construction. The resulting semiconductor architecture is therefore suitable for mixed-signal applications.

圖29.1與29.2(集體為“圖29”)描繪根據本發明所構成以特別適用於混合訊號應用之一種互補IGFET半導體構造的二個部分。圖29之互補IGFET構造係由其具有下方p-本體材料部分114之一種摻雜的單矽半導體本體所作成。典型主要為氧化矽所組成的電氣絕緣材料之一圖案化場區域200係凹陷至半導體本體之上表面,以界定一群之側向分開的主動半導體島部(island)。四個該種島部202、204、206與208出現於圖29。 Figures 29.1 and 29.2 (collectively "Figure 29") depict two portions of a complementary IGFET semiconductor construction constructed in accordance with the present invention to be particularly suitable for mixed signal applications. The complementary IGFET structure of Figure 29 is fabricated from a doped single germanium semiconductor body having a lower p-body material portion 114. A patterned field region 200, typically one of the electrically insulating materials consisting primarily of yttria, is recessed onto the upper surface of the semiconductor body to define a group of laterally separated active semiconductor islands. Four such island portions 202, 204, 206 and 208 appear in FIG.

四個長通道IGFET 210、220、230與240分別沿著上半導體表面而形成於島部202、204、206與208之位置。於圖29.1之IGFET 210與220主要意圖用於高速的類比應用之不對稱裝置。於圖29.2之IGFET 230與240主要意圖用於數位應用之對稱裝置。IGFET 210與230係n通道裝置。IGFET 220與240係p通道裝置。 Four long channel IGFETs 210, 220, 230 and 240 are formed at the locations of islands 202, 204, 206 and 208 along the upper semiconductor surface, respectively. The IGFETs 210 and 220 of Figure 29.1 are primarily intended for use with asymmetric devices for high speed analog applications. The IGFETs 230 and 240 of Figure 29.2 are primarily intended for use in symmetrical devices for digital applications. IGFETs 210 and 230 are n-channel devices. IGFETs 220 and 240 are p-channel devices.

不對稱n通道IGFET 210係圖18b之長n通道IGFET 180的一種實施且含有IGFET 180的所有區域。是以,IGFET 210實質為如上所述針對於IGFET 180且因此為如上所述針對於IGFET 100而具有於汲極104之下方的次陡 峭垂直摻雜劑量變曲線。同理,IGFET 210之通道區106係如上所述針對於IGFET 180且因此實質為如上所述針對於IGFET 150而為不對稱縱向摻雜漸變。 The asymmetric n-channel IGFET 210 is an implementation of the long n-channel IGFET 180 of Figure 18b and contains all of the regions of the IGFET 180. Therefore, the IGFET 210 is substantially as described above for the IGFET 180 and thus has a sub-deep below the drain 104 for the IGFET 100 as described above. The tangential vertical doping dose curve. Similarly, channel region 106 of IGFET 210 is directed to IGFET 180 as described above and is therefore substantially asymmetric longitudinal doping grading for IGFET 150 as described above.

n通道IGFET 210之源極102、汲極104、與通道區106係位於島部202。除了於圖18b所描繪的區域之外,IGFET 210含有一對電氣絕緣的側壁間隔物250與252,其位在沿著閘極電極128之相對的橫向側壁。金屬矽化物層254、256與258係分別位在沿著源極102、汲極104與閘極電極128之頂部。 The source 102, the drain 104, and the channel region 106 of the n-channel IGFET 210 are located at the island 202. In addition to the region depicted in FIG. 18b, IGFET 210 includes a pair of electrically insulating sidewall spacers 250 and 252 positioned along opposing lateral sidewalls of gate electrode 128. Metal telluride layers 254, 256, and 258 are located along the top of source 102, drain 104, and gate electrode 128, respectively.

不對稱p通道IGFET 220係長n通道IGFET 180V的一p通道形式之實施,其中,n-下部192替代為p-下方本體材料部分114。IGFET 220具有由n型本體材料268之一n型通道區266所分開的一p型源極262與一p型汲極264,本體材料268係由一重度摻雜的井部276與一上部278所組成。作為n通道IGFET 180V的一p通道形式之實施,p通道IGFET 220實質為相同於(須經導電性型式之反向)如上所述針對於n通道IGFET 180V且因此如上所述針對於n通道IGFET 100V而具有於汲極264之下方的次陡峭垂直摻雜劑量變曲線。同理,p通道IGFET 210之通道區106實質為相同於(同樣為須經導電性型式之反向)如上所述針對於n通道IGFET 180V且因此為如上所述針對於n通道IGFET 150V而為不對稱縱向摻雜漸變。 An asymmetric p-channel IGFET 220 is implemented in the form of a p-channel of a long n-channel IGFET 180V in which the n-lower portion 192 is replaced by a p-lower body material portion 114. IGFET 220 has a p-type source 262 and a p-type drain 264 separated by an n-type channel region 266 of n-type body material 268. The body material 268 is comprised of a heavily doped well 276 and an upper portion 278. Composed of. As a p-channel implementation of n-channel IGFET 180V, p-channel IGFET 220 is substantially identical (inverted by the conductivity type) as described above for n-channel IGFET 180V and thus for n-channel IGFET as described above 100V with a sub-steep vertical doping dose curve below the drain 264. Similarly, the channel region 106 of the p-channel IGFET 210 is substantially identical (again, in the opposite direction of the conductive pattern) as described above for the n-channel IGFET 180V and thus for the n-channel IGFET 150V as described above. Asymmetric longitudinal doping gradient.

p通道IGFET 220之源極262、汲極264與通道區266係位於島部204。各個p型S/D區262或264係由一極重度 摻雜的主要部分262M或264M及一較輕度摻雜(但仍為重度摻雜)的側向延伸部分262E或264E所組成,以降低源極電阻RS與汲極側的熱載體注入。p+側向延伸部分262E與264E係沿著上半導體表面而終止於通道區266。 The source 262, the drain 264, and the channel region 266 of the p-channel IGFET 220 are located at the island 204. Each p-type S/D region 262 or 264 is comprised of a very heavily doped main portion 262M or 264M and a lightly doped (but still heavily doped) laterally extending portion 262E or 264E to The source resistance R S and the heat carrier injection on the drain side are reduced. The p+ laterally extending portions 262E and 264E terminate in the channel region 266 along the upper semiconductor surface.

n型上方本體材料部分278之一重度摻雜袋部280係沿著源極262延伸,主要為沿著源極延伸部分262E。如同關於IGFET 210之袋部120,n+袋部280相較於p+源極延伸部分262E而在上半導體表面之下方為延伸較深,但是非為如同p++主要源極部分262M之深。n型上方本體材料部分278之剩餘者284係輕度摻雜且沿著汲極264延伸。於IGFET 220之n+井部276、n+袋部280與n-上方本體材料剩餘者284典型地具有分別如同於IGFET 180V之p+井部116、p+袋部120與p-上方本體材料剩餘者198之大部分相同的縱向與垂直摻雜特性且導電性型式為反向。IGFET 220係因而避免穿透且具有沿著源極-本體與汲極-本體pn接面之降低的寄生電容。 A heavily doped pocket portion 280 of the n-type upper body material portion 278 extends along the source 262, primarily along the source extension portion 262E. As with the pocket portion 120 of the IGFET 210, the n+ pocket portion 280 extends deeper below the upper semiconductor surface than the p+ source extension portion 262E, but is not as deep as the p++ main source portion 262M. The remainder 284 of the n-type upper body material portion 278 is lightly doped and extends along the drain 264. The n+ well 276, n+ pocket 280 and n-upper body material remainder 284 of IGFET 220 typically have p+ well 116, p+ pocket 120 and p-top body material remaining 198, respectively, as IGFET 180V. Most of the same longitudinal and vertical doping characteristics and the conductivity pattern are reversed. The IGFET 220 thus avoids penetration and has a reduced parasitic capacitance along the source-body and drain-body pn junctions.

於其關聯於圖32a至32c與圖33a至33f之下文所述的IGFET 220之變化者,n-上方本體材料剩餘者284本質為僅是n+井部276之一延伸部分。於此變化者之n-上方本體材料剩餘者284的輕度n型摻雜藉由其用以形成n+井部276之n型摻雜劑部分者的朝上擴散而產生,以避免其用於致使剩餘者284為輕度摻雜n型之一個單獨的摻雜劑引入步驟。 With respect to the variations of IGFET 220 described below in connection with Figures 32a through 32c and Figures 33a through 33f, the n-upper body material remainder 284 is essentially an extension of only one of the n+ wells 276. The slight n-type doping of the n-upper body material remainder 284 of this variation is produced by the upward diffusion of the n-type dopant portion used to form the n+ well 276 to avoid its use. The remaining 284 is caused to be a separate dopant introduction step for the lightly doped n-type.

一閘極介電層286係覆於IGFET 220的通道區266之 上。一閘極電極288係位於通道區266之上方的閘極介電層286。閘極電極288部分延伸於各個側向S/D延伸部分262E或264E之上。於圖29之實例,閘極電極288係由極重度摻雜p型聚矽所組成。一對電氣絕緣的側壁間隔物290與292係位在沿著p++閘極電極288之相對橫向側壁。金屬矽化物層294、296與298係分別位在沿著源極262、汲極264與閘極電極288之頂部。 A gate dielectric layer 286 is overlying the channel region 266 of the IGFET 220. on. A gate electrode 288 is a gate dielectric layer 286 above the channel region 266. The gate electrode 288 extends partially over each of the lateral S/D extensions 262E or 264E. In the example of Figure 29, the gate electrode 288 is composed of a very heavily doped p-type polyfluorene. A pair of electrically insulating sidewall spacers 290 and 292 are positioned along opposite lateral sidewalls of p++ gate electrode 288. Metal telluride layers 294, 296, and 298 are located along the top of source 262, drain 264, and gate electrode 288, respectively.

對稱的n通道IGFET 230具有由p型本體材料308之一p型通道區306所分開之一對n型S/D區302與304,本體材料308係由下方p-部分114、一重度摻雜的鄰接井部316與一上部318所組成。S/D區302與304及通道區306係位於島部206。各個n型S/D區302或304係由一極重度摻雜的主要部分302M或304M及一重度摻雜(且因此較為輕度摻雜)的側向延伸部分302E或304E所組成,以降低汲極側的熱載體注入。n+側向延伸部分302E與304E係沿著上半導體表面而終止於通道區306。 Symmetrical n-channel IGFET 230 has one pair of n-type S/D regions 302 and 304 separated by a p-type channel region 306 of p-type body material 308, which is heavily doped by a lower p-portion 114 The adjacent well 316 is formed with an upper portion 318. S/D zones 302 and 304 and channel zone 306 are located on island 206. Each n-type S/D region 302 or 304 is comprised of a heavily heavily doped main portion 302M or 304M and a heavily doped (and therefore lightly doped) laterally extending portion 302E or 304E to reduce Heat carrier injection on the drain side. The n+ laterally extending portions 302E and 304E terminate in the channel region 306 along the upper semiconductor surface.

p型上方本體材料部分318之一對重度摻雜的環圈袋部320與322係以對稱方式而分別沿著S/D區302與304延伸。p+環圈袋部320與322主要沿著n+ S/D延伸部分302E與304E延伸。於圖29之實例,p+袋部320與322相較於n+延伸部分302E與304E而在上半導體表面之下方為延伸較深,但是非為如同n++主要汲極部分302M與304M之深。項目324係上方本體材料部分318之中度摻雜p型剩餘者。 One of the p-type upper body material portions 318 extends the heavily doped ring pocket portions 320 and 322 along the S/D regions 302 and 304, respectively, in a symmetrical manner. The p+ hoop pockets 320 and 322 extend primarily along the n+ S/D extensions 302E and 304E. In the example of FIG. 29, p+ pockets 320 and 322 extend deeper below the upper semiconductor surface than n+ extensions 302E and 304E, but are not as deep as n++ main drain portions 302M and 304M. Item 324 is above the body material portion 318 that is moderately doped with the p-type remainder.

一閘極介電層326係覆於通道區306之上。一閘極電 極328係位於通道區306之上方的閘極介電層326。閘極電極328係部分延伸於各個側向S/D延伸部分302E或304E之上。於圖29之實例,閘極電極328係由極重度摻雜n型聚矽所組成。一對電氣絕緣的側壁間隔物330與332係位在沿著n++閘極電極328之相對橫向側壁。金屬矽化物層334、336與338係分別為位在沿著S/D區302與304與閘極電極328之頂部。 A gate dielectric layer 326 overlies the channel region 306. One gate The pole 328 is a gate dielectric layer 326 located above the channel region 306. The gate electrode 328 extends partially over each of the lateral S/D extensions 302E or 304E. In the example of Figure 29, the gate electrode 328 is composed of a very heavily doped n-type polyfluorene. A pair of electrically insulating sidewall spacers 330 and 332 are positioned along opposite lateral sidewalls of the n++ gate electrode 328. Metal telluride layers 334, 336 and 338 are located on top of S/D regions 302 and 304 and gate electrode 328, respectively.

按照為形成在p-下方本體材料部分214之上,對稱的p通道IGFET 240實質為相同於IGFET 230且導電性型式為反向所構成之長通道裝置。IGFET 240因此具有由n型本體材料348之一n型通道區346所分開之一對p型S/D區342與344,本體材料348由一重度摻雜的井部356與一上部358所組成。S/D區342與344及通道區346係位於島部208。各個p型S/D區342或344係由一極重度摻雜的主要部分342M或344M及一較輕度摻雜(但仍為重度摻雜)的側向延伸部分342E或344E所組成,以降低汲極側的熱載體注入。p+側向延伸部分342E與344E係沿著上半導體表面而終止於通道區346。 In accordance with the formation of the p-lower body material portion 214, the symmetric p-channel IGFET 240 is substantially identical to the IGFET 230 and the conductive pattern is reversed. IGFET 240 thus has a pair of p-type S/D regions 342 and 344 separated by an n-type channel region 346 of n-type body material 348, which consists of a heavily doped well 356 and an upper portion 358. . S/D zones 342 and 344 and channel zone 346 are located on island 208. Each p-type S/D region 342 or 344 is comprised of a very heavily doped main portion 342M or 344M and a lightly doped (but still heavily doped) laterally extending portion 342E or 344E to Reduce the heat carrier injection on the drain side. The p+ laterally extending portions 342E and 344E terminate in the channel region 346 along the upper semiconductor surface.

n型上方本體材料部分358之一對重度摻雜的環圈袋部360與362係以對稱方式而分別沿著S/D區342與344延伸。n+環圈袋部360與362係主要為沿著S/D延伸部分342E與344E延伸。於圖29之實例,n+袋部360與362相較於n+延伸部分342E與344E而在上半導體表面之下方為延伸較深,但是非為如同n++主要S/D部分342M與344M之深。 項目364係上方本體材料部分358之中度摻雜n型剩餘者。 One of the n-type upper body material portions 358 extends the heavily doped ring pocket portions 360 and 362 along the S/D regions 342 and 344, respectively, in a symmetrical manner. The n+ loop pocket portions 360 and 362 extend primarily along the S/D extensions 342E and 344E. In the example of FIG. 29, n+ pockets 360 and 362 extend deeper below the upper semiconductor surface than n+ extensions 342E and 344E, but are not as deep as n++ main S/D portions 342M and 344M. Item 364 is an upper doped n-type remainder of the upper body material portion 358.

一閘極介電層366係覆於通道區346之上。一閘極電極368係位於通道區346之上方的閘極介電層366。閘極電極368係部分延伸於各個S/D延伸部分342E或344E之上。於圖29之實例,閘極電極368係由極重度摻雜p型聚矽所組成。一對電氣絕緣的側壁間隔物370與372係位在沿著p++閘極電極368之相對橫向側壁。金屬矽化物層374、376與378係分別為位在沿著S/D區342與344與閘極電極368之頂部。 A gate dielectric layer 366 overlies the channel region 346. A gate electrode 368 is a gate dielectric layer 366 located above the channel region 346. The gate electrode 368 extends partially over each of the S/D extensions 342E or 344E. In the example of Figure 29, the gate electrode 368 is composed of a very heavily doped p-type polyfluorene. A pair of electrically insulating sidewall spacers 370 and 372 are positioned along opposite lateral sidewalls of p++ gate electrode 368. Metal telluride layers 374, 376 and 378 are located on top of S/D regions 342 and 344 and gate electrode 368, respectively.

IGFET 210、220、230與240之閘極介電層126、286、326與366典型地主要由氧化矽所組成,但是可由氮氧化矽及/或其他的高介電係數的介電材料所組成。介電層126、286、326、與366之厚度係通常為2至8奈米(nm),較佳為3至5nm,針對於跨於1.8伏特範圍之操作而典型為3.5nm。介電層厚度係針對於跨於較高電壓範圍之操作而適當增大,或是針對於跨於較低電壓範圍之操作而適當減小。側壁間隔物250、252、290、292、330、332、370與372係形狀為粗略,如同其具有凸狀斜邊之直角三角形而圖示於圖29,但是可具有其他的形狀。矽化物層254、256、258、294、296、298、334、336、338、374、376與378典型為由矽化鈷所組成。 The gate dielectric layers 126, 286, 326, and 366 of IGFETs 210, 220, 230, and 240 are typically composed primarily of hafnium oxide, but may be composed of hafnium oxynitride and/or other high dielectric constant dielectric materials. . The thickness of the dielectric layers 126, 286, 326, and 366 is typically 2 to 8 nanometers (nm), preferably 3 to 5 nm, and is typically 3.5 nm for operation across the 1.8 volt range. The thickness of the dielectric layer is suitably increased for operation across a higher voltage range, or is suitably reduced for operation across a lower voltage range. The sidewall spacers 250, 252, 290, 292, 330, 332, 370, and 372 are generally rough in shape, as they have a right-angled triangle with a convex beveled edge and are illustrated in Figure 29, but may have other shapes. The telluride layers 254, 256, 258, 294, 296, 298, 334, 336, 338, 374, 376 and 378 are typically composed of cobalt telluride.

IGFET 230與240之通道區306與346具有類似於其針對於圖1之對稱IGFET 20而圖示於圖2者之對稱的縱向摻雜劑量變曲線。於通道區306的p+環圈袋部320與322之 存在減輕臨界電壓衰減且為有助於避免於IGFET 230之穿透。於通道區346的n+環圈袋部360與362之存在同理為減輕臨界電壓衰減且為有助於避免於IGFET 240之穿透。 The channel regions 306 and 346 of IGFETs 230 and 240 have a symmetrical longitudinal doping dose curve similar to that of Figure 2 for the symmetric IGFET 20 of FIG. The p+ loop pockets 320 and 322 of the passage zone 306 There is a reduction in threshold voltage attenuation and to help avoid penetration of IGFET 230. The presence of the n+ loop pockets 360 and 362 in the channel region 346 is similar to mitigate the threshold voltage attenuation and to help avoid penetration of the IGFET 240.

透過IGFET 230之各個n++主要S/D部分302M與304M且至下層p型本體材料308的垂直摻雜劑量變曲線係類似於針對於IGFET 20之於圖3a所示者且亦為類似於下文所論述之於圖40、44a與44b所示的電腦模擬的參考摻雜劑量變曲線。同理應用至透過IGFET 240之各個p++主要S/D部分342M與344M且至下層n型本體材料348的垂直摻雜劑量變曲線,按照於本體材料348為形成於p-下部114之一pn接面而不是合併至下層的輕度摻雜n型單矽。IGFET 230之於上方本體材料部分324的p型摻雜劑之中度(但為升高)的濃度係與由環圈袋部320與322所提供的重度p型摻雜劑濃度為共同運作以防止穿透發生於IGFET 230。於IGFET 240之上方本體材料部分364及環圈袋部360與362的對應摻雜同理使其避免穿透。 The vertical doping dose curves through the respective n++ main S/D portions 302M and 304M of IGFET 230 and to the underlying p-type body material 308 are similar to those shown for Figure IG for IGFET 20 and are also similar to the following The reference doping dose curves for the computer simulations shown in Figures 40, 44a and 44b are discussed. Similarly, the vertical doping dose curve applied to each of the p++ main S/D portions 342M and 344M through the IGFET 240 and to the lower n-type body material 348 is formed in the p-lower portion 114 according to the body material 348. Instead of a lightly doped n-type single 合并 merged into the lower layer. The intermediate (but elevated) concentration of the p-type dopant of the IGFET 230 to the upper body material portion 324 is co-operating with the heavy p-type dopant concentration provided by the ring pocket portions 320 and 322. Prevention of penetration occurs at IGFET 230. The corresponding doping of the body material portion 364 and the ring pocket portions 360 and 362 above the IGFET 240 is similar to avoid penetration.

如同其界定IGFET 210的井部116之p型井部摻雜劑的最大濃度,界定井部316之p型井部摻雜劑典型在上半導體表面之下方的約為相同深度而達到一最大濃度。因為p型背景摻雜劑的濃度NI係相當均勻,如同於IGFET 210之井部116的總p型摻雜劑之最大濃度,於IGFET 230之井部316的總p型摻雜劑之最大濃度典型為發生在上表面之下方的約為相同深度。IGFET 230之上方本體材料部分318係提供p型抗穿透(APT)摻雜劑以升高上方部分318至一中 度p型摻雜位準。於上方本體材料部分318之p型APT摻雜劑相較於井部316的p型井部摻雜劑之最大濃度而在上半導體表面之下方的較小深度為達到最大濃度。 As with the maximum concentration of the p-type well dopant defining the well 116 of the IGFET 210, the p-type well dopant defining the well 316 is typically about the same depth below the upper semiconductor surface to a maximum concentration. . Since the concentration of N I-based p-type background dopant is relatively uniform, as the maximum concentration of the well IGFET 210 of the total p-type dopant 116, the maximum of IGFET 230 in the well 316 of the total p-type dopant of The concentration is typically about the same depth that occurs below the upper surface. The upper body material portion 318 of the IGFET 230 is provided with a p-type anti-penetration (APT) dopant to raise the upper portion 318 to a moderately p-type doping level. The p-type APT dopant in the upper body material portion 318 has a smaller depth below the upper semiconductor surface than the maximum concentration of the p-type well dopant of the well 316 to a maximum concentration.

於n++主要S/D部分302M或304M之下方的本體材料308部分者的總p型摻雜劑(即:p型井部、APT與背景摻雜劑)之組合使於該本體材料部分者的總p型摻雜劑之濃度NT為沿著其自於井部316的最大p型摻雜劑濃度的次表層位置向上延伸至主要S/D部分302M或304M之一垂直線而相當平坦。特別而言,於主要S/D部分302M或304M之下方的本體材料308部分者的總p型摻雜劑之濃度NT自於井部316的最大p型摻雜劑濃度的位置向上移動至部分302M或304M而通常變化(減小)為大於10%且典型為大於5%。 The combination of the total p-type dopant (ie, p-type well, APT and background dopant) of the bulk material 308 underneath the n++ main S/D portion 302M or 304M is part of the bulk material The concentration N T of the total p-type dopant is relatively flat along a subsurface position of its maximum p-type dopant concentration from the well 316 extending up to one of the vertical lines of the main S/D portion 302M or 304M. In particular, those portions of body material 308 below in main S / D portion 302M or 304M of the total p-type dopant concentration of the N T is moved upward from the position of the maximum p-type dopant concentration in well portion 316 to Portion 302M or 304M typically varies (decreases) to greater than 10% and typically greater than 5%.

同理發生於IGFET 240。如同其界定IGFET 220的井部276之n型井部摻雜劑的最大濃度,界定IGFET 240的井部356之n型井部摻雜劑典型為在上半導體表面之下方的約為相同深度而達到一最大濃度。如同於IGFET 220之井部276的總n型摻雜劑之最大濃度,於IGFET 240之井部356的總n型摻雜劑之最大濃度因此典型為發生在上表面之下方的約為相同深度。IGFET 240之上方本體材料部分358提供n型APT摻雜劑以升高上方部分358至一中度n型摻雜位準。於上方本體材料部分358之n型APT摻雜劑相較於井部356的n型井部摻雜劑之最大濃度而在上半導體表面之下方的較小深度為達到最大濃度。 The same applies to IGFET 240. As with the maximum concentration of the n-type well dopant defining the well 276 of the IGFET 220, the n-type well dopant defining the well 356 of the IGFET 240 is typically about the same depth below the upper semiconductor surface. A maximum concentration is reached. As with the maximum concentration of the total n-type dopant of the well 276 of the IGFET 220, the maximum concentration of the total n-type dopant at the well 356 of the IGFET 240 is thus typically about the same depth that occurs below the upper surface. . The upper body material portion 358 of the IGFET 240 provides an n-type APT dopant to raise the upper portion 358 to a moderate n-type doping level. The n-type APT dopant in the upper body material portion 358 has a smaller depth below the upper semiconductor surface than the maximum concentration of the n-type well dopant of the well 356 to reach a maximum concentration.

於S/D區342M或344M之下方的本體材料348部分者 的總n型摻雜劑(即:主要為n型井部與APT摻雜劑)之組合使於該本體材料部分者的總n型摻雜劑之濃度NT為沿著自於井部356的最大n型摻雜劑濃度的次表層位置向上延伸至主要S/D部分342M或344M之一垂直線而相當平坦。明確而言,於主要S/D部分342M或344M之下方的本體材料348部分者的總n型摻雜劑之濃度NT係於向上移動自於井部356的最大n型摻雜劑濃度的位置至部分342M或344M而通常變化為大於10%,典型為大於5%。 The total n-type dopant (ie, mainly n-type well and APT dopant) in the bulk material 348 portion below the S/D region 342M or 344M is the total n of the bulk material portion The concentration of the dopant, N T , is relatively flat along a subsurface position extending from the maximum n-type dopant concentration of the well 356 to a vertical line of the main S/D portion 342M or 344M. Specifically, the concentration of those portions of body material 348 below in main S / D portion 342M or 344M of the total n-type dopant based on the N T moves upward from the well portion 356 of the maximum n-type dopant concentration The position is typically changed to greater than 10%, typically greater than 5%, to portion 342M or 344M.

誠然,個別IGFET 210與220之環圈袋部120與280係可替代為相較於個別源極102與汲極262而在上半導體表面之下方為延伸較深。IGFET 210係於是實施圖13之IGFET 150,而IGFET 220係實施IGFET 150V之一p通道形式。n通道IGFET 230之環圈袋部320與322可相較於S/D區302與304而在上半導體表面之下方為延伸較深,如下文於圖40之電腦模擬參考短通道構造B所發生。p通道IGFET 240之環圈袋部360與362可同樣相較於S/D區340與342而在上半導體表面之下方為延伸較深。 It is true that the ring pocket portions 120 and 280 of the individual IGFETs 210 and 220 can be replaced with a deeper extension below the upper semiconductor surface than the individual source 102 and drain 262. IGFET 210 is implemented as IGFET 150 of Figure 13, and IGFET 220 is implemented in one p-channel form of IGFET 150V. The ring pocket portions 320 and 322 of the n-channel IGFET 230 may extend deeper below the upper semiconductor surface than the S/D regions 302 and 304, as occurs in the computer analog reference short channel configuration B of FIG. . The ring pocket portions 360 and 362 of the p-channel IGFET 240 can likewise extend deeper below the upper semiconductor surface than the S/D regions 340 and 342.

圖30.1與30.2(集體為“圖30”)描繪其根據本發明所構成以特別為適用於混合訊號應用之另一種互補IGFET半導體構造的二個部分。圖30之互補IGFET構造含有一不對稱p通道IGFET 220與一不對稱長n通道IGFET 380,其構成為相同於不對稱n通道IGFET 210,除了一重度摻雜n型次表層382係位在於p+井部116與p-下部114之間,以將p+井部116與p型上方本體材料部分118為隔離自p-下部 114。結果,針對於IGFET 380之p型本體材料108不包括p-下部114而是僅為由p+井部116與p型上方本體材料部分118所組成。 Figures 30.1 and 30.2 (collectively "Figure 30") depict two portions of another complementary IGFET semiconductor construction constructed in accordance with the present invention to be particularly suitable for mixed signal applications. The complementary IGFET structure of Figure 30 includes an asymmetric p-channel IGFET 220 and an asymmetric long n-channel IGFET 380 that are identical to the asymmetric n-channel IGFET 210 except that a heavily doped n-type subsurface 382 is in the p+ Between the well 116 and the p-lower 114 to isolate the p+ well 116 from the p-type upper body material portion 118 from the p-lower portion 114. As a result, the p-type body material 108 for the IGFET 380 does not include the p-lower portion 114 but consists solely of the p+ well 116 and the p-type upper body material portion 118.

圖30之互補IGFET構造更包括一對稱p通道IGFET 240與一對稱長n通道IGFET 390,其構成為相同於對稱n通道IGFET 230,除了一重度摻雜n型次表層392係位於p+井部316與p-下部114之間,以將p+井部316與p型上方本體材料部分318為隔離自p-下部114。針對於IGFET 390之p型本體材料308因而不包括p-下部114而僅為由p+井部316與p型上方本體材料部分318所組成。除了n+次表層382與392之外,n通道IGFET 380與390分別為相同於n通道IGFET 210與230而操作。 The complementary IGFET configuration of FIG. 30 further includes a symmetric p-channel IGFET 240 and a symmetric long n-channel IGFET 390 that are identical to the symmetric n-channel IGFET 230 except that a heavily doped n-type sub-surface layer 392 is located at p+ well 316. Between the p-lower portion 114, the p+ well 316 and the p-type upper body material portion 318 are isolated from the p-lower portion 114. The p-type body material 308 for the IGFET 390 thus does not include the p-lower portion 114 but only consists of the p+ well 316 and the p-type upper body material portion 318. In addition to n+ subsurface layers 382 and 392, n-channel IGFETs 380 and 390 operate the same as n-channel IGFETs 210 and 230, respectively.

除了IGFET 210、220、230、240、380與390之外的電路元件可設於圖29或30之互補IGFET構造的其他部分(未顯示)。舉例而言,IGFET 210、220、230、240、380與390之短通道形式係可存在於任一個互補IGFET構造。雙極電晶體以及種種型式的電阻器、電容器及/或電感器係可設於圖29或30之互補IGFET構造。視附加電路元件之特性而定,適合的電氣隔離亦提供於針對於附加元件之任一個互補IGFET構造。誠然,於一些純為類比的互補IGFET構造,IGFET 240與230或390係可刪除。 Circuit components other than IGFETs 210, 220, 230, 240, 380, and 390 can be provided in other portions of the complementary IGFET configuration of FIG. 29 or 30 (not shown). For example, the short channel form of IGFETs 210, 220, 230, 240, 380, and 390 can exist in any of the complementary IGFET configurations. Bipolar transistors and various types of resistors, capacitors, and/or inductors can be provided in the complementary IGFET configuration of FIG. 29 or 30. Depending on the nature of the additional circuit components, suitable electrical isolation is also provided for any complementary IGFET configuration for the additional components. Admittedly, in some purely analog complementary IGFET configurations, IGFET 240 and 230 or 390 can be removed.

適用於混合訊號應用的互補IGFET構造之製造Fabrication of complementary IGFET structures for mixed-signal applications

圖31a至31o、圖31p.1至31r.1、與圖31p.2至31.r2(集體為“圖31”)說明根據本發明之一種半導體製程,用 於製造其含有概括於圖29所示的長通道IGFET 210、220、230、與240之一種互補IGFET半導體構造。直到就在閘極側壁間隔物250、252、290、292、330、332、370與372之創作前的階段,涉及於IGFET 210、220、230與240之製造的步驟顯示於圖31a至31o。圖31p.1至31r.1係說明間隔物250、252、290與292之製造以及其導致如於圖29.1所繪之IGFET 210與220的後續步驟。圖31p.2至31.r2說明間隔物330、332、370與372之製造以及其導致如於圖29.2所示之IGFET 230與240的後續步驟。 31a to 31o, 31p.1 to 31r.1, and Figs. 31p.2 to 31.r2 (collectively "Fig. 31") illustrate a semiconductor process according to the present invention, A complementary IGFET semiconductor construction comprising long channel IGFETs 210, 220, 230, and 240 as summarized in FIG. 29 is fabricated. The steps involved in the fabrication of IGFETs 210, 220, 230, and 240 are shown in Figures 31a through 31o until the stage prior to the creation of gate sidewall spacers 250, 252, 290, 292, 330, 332, 370, and 372. Figures 31p.1 through 31r.1 illustrate the fabrication of spacers 250, 252, 290, and 292 and the subsequent steps that result in IGFETs 210 and 220 as depicted in Figure 29.1. Figures 31p.2 through 31.r2 illustrate the fabrication of spacers 330, 332, 370 and 372 and the subsequent steps leading to IGFETs 230 and 240 as shown in Figure 29.2.

IGFET 210、220、230與240之短通道形式係可根據其運用於製造長通道IGFET 210、220、230與240之製造步驟而同時製造。短通道IGFET係相較於長通道IGFET 210、220、230與240為較小的通道長度,但在其他方面為概括相同於圖31所示的中間IGFET外觀。長通道IGFET 210、220、230與240及其短通道形式之同時製造係藉著其具有針對於長通道及短通道IGFET的圖案之遮罩板(光網)而實施。 The short channel form of IGFETs 210, 220, 230, and 240 can be fabricated simultaneously according to the manufacturing steps that are used to fabricate long channel IGFETs 210, 220, 230, and 240. The short channel IGFETs are smaller channel lengths than the long channel IGFETs 210, 220, 230, and 240, but are otherwise similar to the intermediate IGFET appearance shown in FIG. Simultaneous fabrication of long channel IGFETs 210, 220, 230 and 240 and their short channel forms is carried out by means of a mask (optical mesh) having a pattern for long channel and short channel IGFETs.

除了袋部(包括:環圈袋部)離子植入步驟及源極/汲極延伸部分離子植入步驟之外,於此製程之所有的離子植入步驟概略為垂直於下半導體表面且因此概略為垂直於上半導體表面而實行。更為特別而言,除了袋部及源極/汲極延伸部分離子植入步驟之外的所有植入步驟係實行於對於垂直線之一小角度,典型為7度。自垂直度之此小偏差運用以避免不合意的離子通道效應。為了簡化,自垂直度之小 偏差未指示於圖31。 Except for the pocket portion (including the ring pocket portion) ion implantation step and the source/drain extension portion ion implantation step, all of the ion implantation steps of this process are roughly perpendicular to the lower semiconductor surface and thus are summarized It is carried out perpendicular to the upper semiconductor surface. More particularly, all implant steps except the pocket and source/drain extension ion implantation steps are performed at a small angle to one of the vertical lines, typically 7 degrees. This small deviation from the verticality is used to avoid undesirable ion channel effects. For simplicity, the small verticality The deviation is not indicated in Figure 31.

除非是另為指明,利用於圖31之製程的各個n型離子植入之n型摻雜劑的物種係由元素形式的指定n型摻雜劑所組成。即,各個n型離子植入係以指定n型摻雜劑元素之離子而非為其含有n型摻雜劑的化合物之離子所實行。運用於各個p型離子植入之p型摻雜劑的物種係由元素或化合物形式之p型摻雜劑(通常為硼)所各自組成。因此,各個p型離子植入通常為以硼離子或以一含有硼的化合物(二氟化硼)之離子所實行。 Unless otherwise indicated, the species of each n-type ion implanted n-type dopant utilized in the process of Figure 31 consists of a specified n-type dopant in elemental form. That is, each n-type ion implantation is performed with ions that specify ions of the n-type dopant element rather than the compound of the compound containing the n-type dopant. The species of p-type dopant used in each p-type ion implantation is composed of a p-type dopant (usually boron) in the form of an element or a compound. Therefore, each p-type ion implantation is usually carried out with ions of boron ions or with a boron-containing compound (boron difluoride).

於圖31之一些製造步驟,開口(實質)延伸透過在其針對於二個IGFET的主動半導體區域之上方的一光阻遮罩。當二個IGFET形成於圖31之範例橫截面為側向彼此相鄰,二個光阻開口係於圖31而說明為單一個開口,即使其可能於下文描述為分離的開口。 In some of the fabrication steps of Figure 31, the opening (substantially) extends through a photoresist mask over its active semiconductor regions for the two IGFETs. When the two IGFETs are formed in the cross section of Fig. 31 to be laterally adjacent to each other, the two photoresist openings are illustrated as a single opening in Fig. 31, even though it may be described below as a separate opening.

出現於圖31之圖式的一參考符號末尾之字母“P”指出對於其顯示於圖29且其為由“P”之前的參考符號部分所識別於圖29的一區域之一前驅物(precursor)。當該前驅物係已經充分發展以大部分構成於圖29之對應區域,字母“P”係自於圖31之圖式的該參考符號所去除。 The letter "P" at the end of a reference symbol appearing in the diagram of Fig. 31 indicates a precursor (precursor) for one of the regions identified in Fig. 29 for which it is shown in Fig. 29 and which is a portion of the reference symbol preceding "P". ). When the precursor system has been fully developed to form most of the corresponding regions of Fig. 29, the letter "P" is removed from the reference symbol of the pattern of Fig. 31.

針對於圖31之製程的起點典型為由一重度摻雜p型基板400與一上層的輕度摻雜p型外延層114P所組成之一單矽半導體本體。參閱圖31a,p+基板400係一半導體晶圓,藉著其摻雜硼至約為5×1018原子/立方公分之一濃度以達成0.015歐姆-公分(Ω-cm)之典型的電阻率之<100>單矽所形 成。為了簡化,基板400未顯示於圖31之其餘部分。替代而言,起點可僅僅是輕度摻雜為實質相同於p-外延層114P之一p型基板。 The starting point for the process of FIG. 31 is typically a mono-semiconductor body consisting of a heavily doped p-type substrate 400 and an upper layer of lightly doped p-type epitaxial layer 114P. Referring to Fig. 31a, the p+ substrate 400 is a semiconductor wafer by which boron is doped to a concentration of about 5 x 10 18 atoms/cm 3 to achieve a typical resistivity of 0.015 ohm-cm (Ω-cm). <100> formed by a single unit. For simplicity, substrate 400 is not shown in the remainder of FIG. Alternatively, the starting point may simply be a p-type substrate that is lightly doped substantially the same as the p- epitaxial layer 114P.

外延層114P由外延成長的<100>單矽所組成,藉著硼所輕度摻雜p型至約為5×1015原子/立方公分之一濃度,用於達成5歐姆-公分之典型的電阻率。外延層114P之厚度典型為5.5微米。當針對於圖31之製程的起點係一輕度摻雜p型基板,項目114P係p-基板。 The epitaxial layer 114P is composed of an epitaxially grown <100> single germanium, which is lightly doped with boron to a concentration of about 5×10 15 atoms/cm 3 for boron to achieve a typical 5 ohm-cm. Resistivity. The thickness of the epitaxial layer 114P is typically 5.5 microns. When the starting point for the process of Figure 31 is a lightly doped p-type substrate, item 114P is a p-substrate.

場絕緣區域200提供沿著p-外延層(或p-基板)114P的上表面,如於圖31b所示,藉以界定於圖31b之自左至右之分別針對於IGFET 210、220、230與240的主動半導體島部202、204、206與208。場絕緣200較佳為根據一種溝氧化物技術所作成,但可為根據一種局部氧化技術所作成。於提供場絕緣200,氧化矽之一薄屏蔽絕緣層402熱成長為沿著外延層114P的上表面。 Field insulating region 200 is provided along the upper surface of p- epitaxial layer (or p-substrate) 114P, as shown in FIG. 31b, thereby being defined from left to right of FIG. 31b for IGFETs 210, 220, 230, respectively. Active semiconductor islands 202, 204, 206, and 208 of 240. Field insulator 200 is preferably fabricated in accordance with a trench oxide technique, but may be fabricated in accordance with a partial oxidation technique. To provide the field insulation 200, one of the thin barrier insulating layers 402 of yttria is thermally grown along the upper surface of the epitaxial layer 114P.

具有在島部202與206之上方的開口之一光阻遮罩404形成於屏蔽氧化物層402,如於圖31c所示。由硼物種所組成之p型井部摻雜劑係於重度劑量及高能量而離子植入為透過屏蔽氧化物402之未覆蓋部分且至下層的單矽,以界定(a)針對於IGFET 210之p+井部116及(b)針對於IGFET 230之p+前驅井部316P。在井部116之上方的外延層114P之部分者係構成針對於IGFET 210之p-前驅上方本體材料部分118P。移除光阻404。 A photoresist mask 404 having an opening above the island portions 202 and 206 is formed over the shield oxide layer 402, as shown in Figure 31c. The p-type well dopant consisting of boron species is at a heavy dose and high energy while ion implantation is through the uncovered portion of the shield oxide 402 and to the underlying monolayer to define (a) for IGFET 210 The p+ well 116 and (b) are directed to the p+ precursor well 316P of the IGFET 230. Portions of epitaxial layer 114P above well 116 constitute a p-precursor upper body material portion 118P for IGFET 210. The photoresist 404 is removed.

具有在島部206之上方的一開口之一光阻遮罩406形 成於屏蔽氧化物402。參閱:圖31d。由硼物種所組成之p型APT摻雜劑係於中度劑量而離子植入為透過屏蔽氧化物402之未覆蓋部分且至下層的單矽,以界定針對於IGFET 230之p前驅上方本體材料部分324P。移除光阻406。 a photoresist mask 406 having an opening above the island portion 206 Formed in the shield oxide 402. See: Figure 31d. The p-type APT dopant consisting of boron species is at a moderate dose while ion implantation is through the uncovered portion of the shield oxide 402 and to the underlying monolayer to define the p precursor precursor body material for the IGFET 230. Part 324P. The photoresist 406 is removed.

具有在島部204與208之上方的開口之一光阻遮罩408形成於屏蔽氧化物402,如於圖31e所示。由磷或砷所組成之n型井部摻雜劑係於重度劑量及高能量而離子植入為透過屏蔽氧化物402之未覆蓋段且至下層的單矽,以界定(a)針對於IGFET 220之n+井部276及(b)針對於IGFET 240之n+前驅井部356P。 A photoresist mask 408 having an opening above the island portions 204 and 208 is formed over the shield oxide 402, as shown in Figure 31e. An n-type well dopant consisting of phosphorus or arsenic is applied at a heavy dose and high energy while ion implantation is through an uncovered segment of the shield oxide 402 and to a single layer of the underlying layer to define (a) for the IGFET 220 n+ well 276 and (b) are directed to n+ precursor well 356P of IGFET 240.

隨著光阻遮罩408為於定位,同樣為由磷或砷所組成的n型補償摻雜劑係於輕度劑量及中能量而離子植入為透過在島部204之上方的氧化物402之未覆蓋段且至下層的單矽,以界定其針對於IGFET 220之一n-前驅上方本體材料部分278P。n-前驅本體材料部分278P係覆於n+井部276之上,如同其存在於圖31e之階段。n型補償摻雜劑植入之劑量與植入能量通常為充分以使前驅本體材料部分278P之全部為n型導電性者。 As the photoresist mask 408 is positioned, an n-type compensating dopant consisting of phosphorus or arsenic is also applied to the light dose and medium energy and ion implanted through the oxide 402 above the island 204. The segment is not covered and to the underlying monolayer to define it for one of the n-precursor upper body material portions 278P of the IGFET 220. The n-precursor body material portion 278P overlies the n+ well 276 as it exists at the stage of Figure 31e. The dose and implant energy of the n-type compensating dopant implant is typically sufficient to allow all of the precursor body material portion 278P to be n-type conductive.

n型補償摻雜劑亦通過島部208之上方的氧化物402之未覆蓋段且至其針對於IGFET 240之下層的單矽。利用光阻408之該二個n型摻雜作業的任一者可為先實行。移除光阻408。若期望的是:針對於IGFET 240的單矽未接收任何n型補償摻雜劑,n型補償摻雜作業可藉著其具有在島部204之上方而未在島部208之上方(且亦未在島部202與206 之上方)的一開口之一附加光阻遮罩所實行,其後,移除附加光阻。 The n-type compensating dopant also passes through the uncovered segments of the oxide 402 above the island 208 and to its single turn for the underlying layers of the IGFET 240. Any of the two n-type doping operations using photoresist 408 can be performed first. The photoresist 408 is removed. If it is desired that the single germanium for IGFET 240 does not receive any n-type compensating dopants, the n-type compensating doping operation may be over the island portion 204 without being above the island portion 208 (and also Not at islands 202 and 206 One of the openings above is attached to the photoresist mask, and then the additional photoresist is removed.

於後續的製造步驟期間,運用以界定針對於IGFET 220之前驅n+井部276的n型井部摻雜劑之一些者係朝上擴散至在n+井部276之上方的半導體材料,如同其存在於圖29之製程的此點。即,n型井部摻雜劑之部分者係朝上擴散至其初始摻雜輕度p型之島部204的上層材料。界定n+井部276的n型井部摻雜劑之部分者的朝上擴散主要為發生於實行於升高溫度(即:顯著大於室溫的溫度)之後續製造步驟期間。 During subsequent fabrication steps, some of the n-type well dopants used to define the n+ well 276 for the IGFET 220 are diffused upwardly to the semiconductor material above the n+ well 276 as it exists. This point of the process of Figure 29. That is, part of the n-type well dopant diffuses upward to the upper layer material of the island portion 204 where it is initially doped with a mild p-type. The upward diffusion of the portion of the n-type well dopant defining the n+ well 276 occurs primarily during subsequent manufacturing steps that are performed at elevated temperatures (ie, temperatures significantly greater than room temperature).

視種種的因素而定,主要是下列二者之總結效應:(a)後續製造步驟的升高溫度之期間與(b)藉著彼等升高溫度以利於摻雜劑的增加擴散之溫度參數,界定n+井部276的n型井部摻雜劑之朝上擴散部分可成為分佈貫穿針對於IGFET 220之島部204以使反摻雜目前於島部204的p型摻雜劑之全部。忽略其後續引入至島部204之任何其他的摻雜劑,n型井部摻雜劑之此朝上擴散部分可使島部204之全部為轉換至n型導電性。於此情形,有時植入n型補償摻雜劑之步驟可刪除以簡化製程且降低製造成本。論述於下文之圖32a至32c及圖33a至33c描述圖31之製程的二種變化者,其中,刪除植入n型補償摻雜劑之步驟。 Depending on various factors, it is mainly the summing effect of (a) the period of the elevated temperature of the subsequent manufacturing steps and (b) the temperature parameter by which the temperature is increased to facilitate the diffusion of the dopant. The upwardly-diffusing portion of the n-type well dopant defining the n+ well 276 may be distributed throughout the island portion 204 of the IGFET 220 such that the counter-doping is present throughout the island 204. Ignoring any other dopants that are subsequently introduced to the island 204, this upwardly diffusing portion of the n-type well dopant can cause all of the islands 204 to be converted to n-type conductivity. In this case, sometimes the step of implanting the n-type compensating dopant can be eliminated to simplify the process and reduce manufacturing costs. Two variants of the process of Figure 31 are described in Figures 32a through 32c and Figures 33a through 33c below, wherein the step of implanting the n-type compensating dopant is removed.

於後續的製造期間,運用以界定針對於IGFET 240之n+井部356P的n型井部摻雜劑之一些者係亦朝上擴散至在n+井部356P之上方的半導體材料,如同其存在於圖29之 製程的此點。然而,如下文所論述,針對於IGFET 240之島部208的全部在其引入至島部208之n型APT摻雜劑的離子植入與關聯活化之結束時而為n型導電性者。因此,保留或去除n型補償植入物之決策係由其應用至針對於IGFET 220之島部204的後續製造步驟之條件所決定。 During subsequent fabrication, some of the n-type well dopants used to define the n+ well 356P for IGFET 240 also diffuse upwardly to the semiconductor material above the n+ well 356P as if it were present Figure 29 This point of the process. However, as discussed below, all of the island portions 208 for IGFET 240 are n-type conductivity at the end of ion implantation and associated activation of the n-type APT dopant introduced into island portion 208. Thus, the decision to retain or remove the n-type compensating implant is determined by its application to the subsequent manufacturing steps for the island portion 204 of the IGFET 220.

具有在島部208之上方的一開口之一光阻遮罩410形成於屏蔽氧化物402。參閱:圖31f。由磷或砷所組成之n型APT摻雜劑係於中度劑量而離子植入為透過屏蔽氧化物402之未覆蓋部分且至下層的單矽,以界定其針對於IGFET 240之一n前驅上方本體材料部分358P。移除光阻410。 A photoresist mask 410 having an opening above the island portion 208 is formed on the shield oxide 402. See: Figure 31f. An n-type APT dopant consisting of phosphorus or arsenic is applied at a moderate dose while ion implantation is through an uncovered portion of the shield oxide 402 and to a single layer of the underlying layer to define one of its precursors for IGFET 240. Upper body material portion 358P. The photoresist 410 is removed.

諸如一迅速熱退火(RTA,rapid thermal anneal)之一種熱退火可實行於造成的半導體基板,以修復晶格損壞且置放所植入的p型與n型摻雜劑於能量更為穩定的狀態。參閱:圖31g。上半導體表面係清淨。一含有閘極介電質的介電層412提供為沿著上半導體表面,如於圖31h所示。介電層412藉由一種熱成長技術所作成。 A thermal anneal such as a rapid thermal anneal (RTA) can be applied to the resulting semiconductor substrate to repair lattice damage and place the implanted p-type and n-type dopants more energy-stable. status. See: Figure 31g. The upper semiconductor surface is clean. A dielectric layer 412 containing a gate dielectric is provided along the upper semiconductor surface, as shown in Figure 31h. Dielectric layer 412 is fabricated by a thermal growth technique.

前驅閘極電極128P、288P、328P與368P形成於其含有閘極介電質的介電層412而分別在上方本體材料部分118P、278P、318P與358P的片段之上方。參閱:圖31i。前驅閘極電極128P、288P、328P與368P藉由沉積一層之大部分未摻雜(本質)的聚矽於介電層412且接著圖案化該聚矽而作成。置於前驅閘極電極128P、288P、328P與368P之下的介電層412的部分者分別構成閘極介電層126、286、326與366。藉著閘極介電層126、286、326與366所形成 的閘極介電材料係概括為分別分開閘極電極128P、288P、328P與368P及其意圖為分別的通道區106、266、306與346之本體材料片段。 The precursor gate electrodes 128P, 288P, 328P, and 368P are formed on their dielectric layers 412 containing gate dielectrics above the segments of the upper body material portions 118P, 278P, 318P, and 358P, respectively. See: Figure 31i. The precursor gate electrodes 128P, 288P, 328P, and 368P are formed by depositing a majority of an undoped (essential) layer of polysilicon on the dielectric layer 412 and then patterning the polysilicon. Portions of dielectric layer 412 disposed under precursor gate electrodes 128P, 288P, 328P, and 368P form gate dielectric layers 126, 286, 326, and 366, respectively. Formed by gate dielectric layers 126, 286, 326, and 366 The gate dielectric material is summarized as separating the gate electrodes 128P, 288P, 328P, and 368P and their body material segments intended to be separate channel regions 106, 266, 306, and 346, respectively.

一介電密封層414熱成長為沿著前驅閘極電極128P、288P、328P與368P之暴露表面。再次參閱:圖31i。於形成介電密封層414之過程中,位在閘極介電層126、286、326與366之側邊的介電層412部分者係有些加厚以成為一合成表面介電層416。 A dielectric sealing layer 414 is thermally grown along the exposed surfaces of the precursor gate electrodes 128P, 288P, 328P and 368P. See again: Figure 31i. During the formation of the dielectric sealing layer 414, portions of the dielectric layer 412 located on the sides of the gate dielectric layers 126, 286, 326, and 366 are somewhat thickened to form a composite surface dielectric layer 416.

具有概括在其針對於IGFET 210之p+袋部120的意圖位置上方之一開口的一光阻遮罩418形成於介電層414與416。參閱:圖31j。光阻418嚴格對準於前驅閘極電極128P。由硼物種所組成之p型袋部摻雜劑係以一斜角方式於中度劑量而離子植入為透過表面介電層416之未覆蓋部分且至下層的單矽,以界定其針對於IGFET 210之一p+前驅袋部120P。p型袋部植入通常實行於其對於垂直線之二個相對的傾斜角度。替代而言,p型袋部植入可實行於單一個傾斜角度。移除光阻418。 A photoresist mask 418 having an opening generally above its intended location for the p+ pocket portion 120 of the IGFET 210 is formed over the dielectric layers 414 and 416. See: Figure 31j. The photoresist 418 is strictly aligned to the precursor gate electrode 128P. The p-type pocket dopant consisting of boron species is ion implanted at a moderate dose in an oblique manner through an uncovered portion of the surface dielectric layer 416 and to a single layer of the underlying layer to define One of the IGFETs 210 is a p+ precursor pocket portion 120P. P-pocket implantation is typically performed at two opposite angles of inclination to the vertical. Alternatively, the p-bag portion can be implanted at a single angle of inclination. The photoresist 418 is removed.

具有概括在其針對於IGFET 220之n+袋部280的意圖位置上方之一開口的一光阻遮罩420形成於介電層414與416。參閱:圖31k。光阻420嚴格對準於前驅閘極電極288P。由磷或砷所組成之n型袋部摻雜劑以一斜角方式於重度劑量而離子植入為透過表面介電質416之未覆蓋部分且至下層的單矽,以界定其針對於IGFET 220之一n+前驅袋部280P。n型袋部植入通常實行於二個相對的傾斜角度, 但是可實行於單一個傾斜角度。移除光阻420。 A photoresist mask 420 having an opening outlined above its intended location for the n+ pocket portion 280 of the IGFET 220 is formed over the dielectric layers 414 and 416. See: Figure 31k. The photoresist 420 is strictly aligned with the precursor gate electrode 288P. An n-type pocket dopant consisting of phosphorus or arsenic is ion implanted at an oblique dose in a heavily dosed manner through an uncovered portion of the surface dielectric 416 and to a single layer of the underlying layer to define it for the IGFET One of the 220 n+ front pocket portions 280P. The n-type pocket implant is usually implemented at two opposite tilt angles. However, it can be implemented at a single angle of inclination. The photoresist 420 is removed.

具有在島部202與206之上方的開口之一光阻遮罩422形成於介電層414與416,如於圖31l所示。由砷或磷所組成之n型源極/汲極延伸部分摻雜劑係於重度劑量而離子植入為透過表面介電質416之未覆蓋部分且至下層的單矽,以界定(a)針對於IGFET 210之一n+前驅源極延伸部分102EP、(b)針對於IGFET 210之一單獨的n+前驅汲極延伸部分104EP、及(c)針對於IGFET 230之一對側向分開的n+前驅源極/汲極延伸部分302EP與304EP。移除光阻422。 A photoresist mask 422 having openings above the island portions 202 and 206 is formed over the dielectric layers 414 and 416, as shown in FIG. 31. An n-type source/drain extension dopant consisting of arsenic or phosphorus is applied at a heavy dose while ion implantation is through a non-covered portion of the surface dielectric 416 and to a single layer of the underlying layer to define (a) For n+ precursor source extension 102EP of IGFET 210, (b) separate n+ precursor drain extensions 104EP for one of IGFETs 210, and (c) side-separated n+ precursors for one of IGFETs 230 Source/drain extensions 302EP and 304EP. The photoresist 422 is removed.

具有在島部206之上方的一開口之一光阻遮罩424形成於介電層414與416。參閱:圖31m。由硼物種所組成之p型環圈摻雜劑以一斜角方式於重度劑量而離子植入為透過表面介電質416之未覆蓋部分且至下層的單矽,以界定其針對於IGFET 230之一對側向分開的p型前驅環圈袋部320P與322P。移除光阻424。 A photoresist mask 424 having an opening above the island 206 is formed over the dielectric layers 414 and 416. See: Figure 31m. A p-type ring dopant composed of a boron species is ion implanted at an oblique dose in a heavily dosed manner through an uncovered portion of the surface dielectric 416 and to a single layer of the underlying layer to define it for the IGFET 230 One pair of laterally split p-type precursor ring pocket portions 320P and 322P. The photoresist 424 is removed.

具有在島部204與208之上方的開口之一光阻遮罩426形成於介電層414與416,如於圖31n所示。由硼物種所組成之p型源極/汲極延伸部分摻雜劑係於重度劑量而離子植入為透過表面氧化物416之未覆蓋部分且至下層的單矽,以界定(a)針對於IGFET 220之一p+前驅源極延伸部分262EP、(b)針對於IGFET 220之一單獨的p+前驅汲極延伸部分264EP、及(c)針對於IGFET 240之一對側向分開的p+前驅源極/汲極延伸部分342EP與344EP。移除光阻426。 A photoresist mask 426 having openings above the island portions 204 and 208 is formed over the dielectric layers 414 and 416, as shown in FIG. 31n. The p-type source/drain extension dopant consisting of boron species is at a heavy dose while ion implantation is through the uncovered portion of surface oxide 416 and to the underlying monolayer to define (a) for One of the IGFETs 220 is a p+ precursor source extension 262EP, (b) is a separate p+ precursor drain extension 264EP for one of the IGFETs 220, and (c) is a laterally separated p+ precursor source for one of the IGFETs 240. / bungee extensions 342EP and 344EP. The photoresist 426 is removed.

具有在島部208之上方的一開口之一光阻遮罩428形 成於介電層414與416。參閱:圖31o。由磷或砷所組成之n+環圈摻雜劑係以一斜角方式於重度劑量而離子植入為透過表面介電質416之未覆蓋部分且至下層的單矽,以界定其針對於IGFET 240之一對側向分開的n+前驅環圈袋部360P與362P。移除光阻428。 a photoresist mask 428 having an opening above the island portion 208 Dielectric layers 414 and 416 are formed. See: Figure 31o. An n+ loop dopant consisting of phosphorus or arsenic is ion implanted at a severe dose in a heavily dosed area through an uncovered portion of the surface dielectric 416 and to a single layer of the underlying layer to define it for the IGFET One pair of 240 pairs of laterally separated n+ precursor ring pocket portions 360P and 362P. The photoresist 428 is removed.

一低溫爐退火可實行在此時以移除由源極/汲極延伸部分植入之重度劑量所引起的缺陷。 A low temperature furnace anneal can be performed at this point to remove defects caused by the heavy dose implanted by the source/drain extension.

於圖31之製程的其餘部分,在各個處理階段之互補IGFET構造藉著一對的圖“31z.1”與“31z.2”而說明,其中“z”係變化自“p”至“r”之一字母。各個圖31z.1說明其進行以作成不對稱IGFET 210與220之處理,而各個圖31z.2說明其同時進行以作成對稱IGFET 230與240之處理。為了方便,各對的圖31z.1與31z.2於下文集體稱為“圖31.z”。舉例而言,圖31p.1與31p.2集體稱為“圖31.p”。 In the remainder of the process of Figure 31, the complementary IGFET construction at each processing stage is illustrated by a pair of graphs "31z.1" and "31z.2", where the "z" series varies from "p" to "r" "One of the letters. Each of Figures 31z.1 illustrates the process of making asymmetric IGFETs 210 and 220, and each of Figures 31z.2 illustrates the simultaneous processing to form symmetric IGFETs 230 and 240. For convenience, the pairs 31z.1 and 31z.2 of each pair are collectively referred to below as "Fig. 31.z". For example, Figures 31p.1 and 31p.2 are collectively referred to as "Figure 31.p."

閘極側壁間隔物250、252、290、292、330、332、370與372形成沿著前驅閘極電極128P、288P、328P與368P之橫向側壁,如於圖31p所示。側壁間隔物250、252、290、292、330、332、370與372之形成係藉由沉積介電材料於構造之頂部且接著移除其非意圖以構成間隔物250、252、290、292、330、332、370與372之介電材料而實行,移除主要為藉由其通常垂直於上半導體表面所進行之各向異性的蝕刻。介電層414與416的部分者亦為部分(而非全部)移除。於圖31p之項目430與432分別指非為間隔物250、252、290、292、330、332、370與372所覆蓋之介電層414 與416的剩餘者。 Gate sidewall spacers 250, 252, 290, 292, 330, 332, 370 and 372 are formed along lateral sidewalls of precursor gate electrodes 128P, 288P, 328P and 368P, as shown in Figure 31p. The sidewall spacers 250, 252, 290, 292, 330, 332, 370, and 372 are formed by depositing a dielectric material on top of the construction and then removing it from the intention to form spacers 250, 252, 290, 292, The dielectric materials of 330, 332, 370, and 372 are implemented, and the removal is primarily an anisotropic etch performed by their normal perpendicular to the upper semiconductor surface. Portions of dielectric layers 414 and 416 are also partially, but not entirely, removed. Items 430 and 432 of FIG. 31p refer to dielectric layers 414 that are not covered by spacers 250, 252, 290, 292, 330, 332, 370, and 372, respectively. With the remainder of 416.

具有在島部202與206之上方的開口之一光阻遮罩434形成於介電層430與432及間隔物290、292、370與372。參閱:圖31q。由砷或銻所組成之n型主要源極/汲極摻雜劑係於極重度劑量而離子植入為透過表面介電層432之未覆蓋部分且至下層的單矽,以界定(a)針對於IGFET 210之n++主要源極部分102M與n++主要汲極部分104M、及(b)針對於IGFET 230之n++主要S/D部分302M與304M。n型主要源極/汲極摻雜劑係亦進入前驅電極128P與328P以將其分別轉換為n++閘極電極128與328。移除光阻434。 A photoresist mask 434 having openings above the island portions 202 and 206 is formed over the dielectric layers 430 and 432 and the spacers 290, 292, 370 and 372. See: Figure 31q. The n-type main source/drain dopant consisting of arsenic or antimony is at a very heavy dose and ion implanted as a single pass through the uncovered portion of the surface dielectric layer 432 and to the underlying layer to define (a) The n++ main source portion 102M and n++ main drain portion 104M for IGFET 210, and (b) the n++ main S/D portions 302M and 304M for IGFET 230. The n-type main source/drain dopant system also enters precursor electrodes 128P and 328P to convert them to n++ gate electrodes 128 and 328, respectively. The photoresist 434 is removed.

在主要S/D部分102M與104M之外側的區域102EP、104EP與120P的部分者分別構成針對於IGFET 210之n+源極延伸部分102E、n+汲極延伸部分104E及p+袋部120。p-上方本體材料剩餘者124係前驅上方本體材料部分118P(在此為p型上方本體材料部分118)之剩餘的輕度摻雜材料。在主要S/D部分302M與304M之外側的區域302EP、304EP、320P與322P的部分者分別構成針對於IGFET 230之n+ S/D延伸部分302E與304E及p+環圈袋部320與322。p-上方本體材料剩餘者324係前驅上方本體材料部分318P(在此為p型上方本體材料部分318)之剩餘的輕度摻雜p型材料。 The portions of the regions 102EP, 104EP, and 120P on the outer sides of the main S/D portions 102M and 104M respectively constitute an n+ source extension portion 102E, an n+ drain extension portion 104E, and a p+ pocket portion 120 for the IGFET 210. The p-upper body material remaining 124 is the remaining lightly doped material of the precursor upper body material portion 118P (here, the p-type upper body material portion 118). Portions of the regions 302EP, 304EP, 320P, and 322P on the outer sides of the main S/D portions 302M and 304M respectively constitute n+ S/D extension portions 302E and 304E and p+ ring pocket portions 320 and 322 for the IGFET 230. The remaining 324 of the upper body material is the remaining lightly doped p-type material of the upper body material portion 318P (here, the p-type upper body material portion 318).

當主要源極/汲極摻雜劑為由砷所組成,一熱退火可實行以修復晶格損壞,活化該主要n型源極/汲極摻雜劑,且使其為朝外擴散。此退火(通常為一RTA)亦活化袋部與源極 /汲極延伸部分摻雜劑。 When the primary source/drain dopant is composed of arsenic, a thermal anneal can be performed to repair the lattice damage, activate the primary n-type source/drain dopant, and cause it to diffuse outward. This annealing (usually an RTA) also activates the pocket and source / Bipolar extension part of the dopant.

具有在島部204與208之上方的開口之一光阻遮罩436形成於介電層430與432及間隔物250、252、330與332,如於圖31r所示。由硼物種所組成之p型主要源極/汲極摻雜劑係於極重度劑量而離子植入為透過表面介電層432之未覆蓋部分且至下層的單矽,以界定(a)針對於IGFET 220之p++主要源極部分262M與p++主要汲極部分264M、及(b)針對於IGFET 240之p++主要S/D部分342M與344M。p型主要源極/汲極摻雜劑亦進入前驅電極288P與368P以將其分別轉換為p++閘極電極288與368。移除光阻436。 A photoresist mask 436 having openings above the island portions 204 and 208 is formed over the dielectric layers 430 and 432 and the spacers 250, 252, 330, and 332, as shown in FIG. 31r. The p-type main source/drain dopant consisting of boron species is at a very heavy dose while ion implantation is through the uncovered portion of the surface dielectric layer 432 and to the underlying monolayer to define (a) The p++ main source portion 262M and the p++ main drain portion 264M of the IGFET 220, and (b) the p++ main S/D portions 342M and 344M for the IGFET 240. The p-type main source/drain dopant also enters precursor electrodes 288P and 368P to convert them to p++ gate electrodes 288 and 368, respectively. The photoresist 436 is removed.

在主要S/D部分262M與264M之外側的區域262EP、264EP與280P的部分者分別構成針對於IGFET 220之p+源極延伸部分262E、p+汲極延伸部分264E及n+袋部280。n-上方本體材料剩餘者284係n-上方本體材料部分278P(在此為n型上方本體材料部分278)之剩餘的輕度摻雜n型材料。在主要S/D部分342M與344M之外側的區域342EP、344EP、360P與362P的部分者分別構成針對於IGFET 240之p+ S/D延伸部分342E與344E及n+環圈袋部360與362。n-上方本體材料剩餘者364係n-前驅上方本體材料部分358P(在此為n型上方本體材料部分358)之剩餘的輕度摻雜n型材料。 Portions 262EP, 264EP, and 280P on the outer sides of the main S/D portions 262M and 264M respectively constitute a p+ source extension portion 262E, a p+ drain extension portion 264E, and an n+ pocket portion 280 for the IGFET 220. The remaining lightly doped n-type material of n-upper body material remaining 284 is n-upper body material portion 278P (here, n-type upper body material portion 278). Portions of the regions 342EP, 344EP, 360P, and 362P on the outer sides of the main S/D portions 342M and 344M respectively constitute p+ S/D extension portions 342E and 344E and n+ ring pocket portions 360 and 362 for the IGFET 240. The remaining upper portion of the upper body material 364 is the remaining lightly doped n-type material of the n-precursor upper body material portion 358P (here, the n-type upper body material portion 358).

典型為氧化矽的介電材料之一覆蓋層(未顯示)形成於該構造之頂部。半導體構造接著熱退火以修復晶格損壞且活化所植入的主要p型源極/汲極摻雜劑。若是用於活化主 要n型源極/汲極摻雜劑之稍早的退火未實行,此最終的退火係活化袋部摻雜劑及所有的源極/汲極摻雜劑。最終的退火典型為一RTA。 A cover layer (not shown), typically a dielectric material of yttria, is formed on top of the construction. The semiconductor construction is then thermally annealed to repair lattice damage and activate the implanted primary p-type source/drain dopant. If it is used to activate the main An earlier anneal of the n-type source/drain dopant is not performed, and the final anneal is to activate the pocket dopant and all of the source/drain dopant. The final anneal is typically an RTA.

薄層的介電材料(包括:介電層430與432)係沿著上半導體表面及沿著閘極電極128、288、328與368之頂表面而移除。金屬矽化物層254、256、258、294、296、298、334、336、338、374、376與378分別為沿著區域102M、104M、128、262M、264M、288、302M、304M、328、342M、344M與368之上表面而形成。此典型為需要沉積一薄層的適合材料(典型為鈷)於該構造之上表面且實行一低溫步驟以令該金屬與下層矽為起化學反應。移除未起化學反應的金屬。實行一第二低溫步驟,以完成該金屬與下層矽之化學反應,且藉此形成矽化物層254、256、258、294、296、298、334、336、338、374、376與378。金屬矽化物形成係完成IGFET 210、220、230與240之基本製造。合成的互補IGFET構造呈現為如於圖29所示。 A thin layer of dielectric material (including dielectric layers 430 and 432) is removed along the upper semiconductor surface and along the top surface of gate electrodes 128, 288, 328, and 368. Metal telluride layers 254, 256, 258, 294, 296, 298, 334, 336, 338, 374, 376 and 378 are along regions 102M, 104M, 128, 262M, 264M, 288, 302M, 304M, 328, respectively. Formed on the upper surface of 342M, 344M and 368. This typically requires the deposition of a thin layer of a suitable material (typically cobalt) on the surface of the construction and a low temperature step to chemically react the metal with the underlying crucible. Remove metal that has not been chemically reacted. A second low temperature step is performed to complete the chemical reaction of the metal with the underlying germanium, and thereby form the vaporized layers 254, 256, 258, 294, 296, 298, 334, 336, 338, 374, 376 and 378. Metal halide formation completes the basic fabrication of IGFETs 210, 220, 230, and 240. The resultant complementary IGFET construction is presented as shown in Figure 29.

圖31c至31f之p型井部、p型APT、n型井部、n型補償及n型APT的實施可概括為實行於任何順序。圖31j至31o之p型袋部、n型袋部、n型源極/汲極延伸部分、p型環圈、p型源極/汲極延伸部分與n型環圈的實施可概括為實行於任何順序。圖31q之n型主要源極/汲極的實施係通常在圖31r之p型主要源極/汲極的實施之前而實行,特別是當主要源極/汲極的摻雜劑由砷所組成時。然而,p型主要源極/汲極的實施有時可在n型主要源極/汲極的實施之 前而實行。 The implementation of the p-type well, p-type APT, n-type well, n-type compensation, and n-type APT of Figures 31c to 31f can be summarized as being performed in any order. The implementation of the p-type pocket, the n-type pocket, the n-type source/drain extension, the p-ring, the p-type source/drain extension and the n-ring of Figures 31j to 31o can be summarized as In any order. The n-type main source/drain implementation of Figure 31q is typically performed prior to the implementation of the p-type main source/drain of Figure 31r, especially when the main source/drain dopant is composed of arsenic. Time. However, the implementation of the p-type main source/drain is sometimes implemented in the n-type main source/drain Executed before.

針對於圖31j、31k、31m、與31o之p型袋部、n型袋部、p型環圈與n型環圈實施的傾斜角度通常為至少15度。雖然典型為變化自一個斜角實施至另一者,針對於各個斜角實施典型為25至45度。 The tilt angles for the p-bag portion, the n-type pocket portion, the p-ring and the n-ring of FIGS. 31j, 31k, 31m, and 31o are usually at least 15 degrees. Although the variation is typically implemented from one bevel to the other, typically 25 to 45 degrees for each bevel.

除了其分別轉換IGFET 210與230至IGFET 380與390之n+隔離層382與392以外,圖30之互補IGFET構造典型為根據如同圖29之互補IGFET構造的實質相同步驟而製造。隔離層382與392通常形成於圖31b與31c的階段之間,運用其具有在島部202與206之上方的開口之一附加的光阻遮罩。附加的光阻遮罩亦具有開口,用於作成重度摻雜n型區域,其連接隔離層382與392至上半導體表面以接收一適合的隔離電壓。由砷或磷所組成的隔離摻雜劑係於重度劑量而離子植入為透過屏蔽氧化物402之未覆蓋段且至於下層的單矽,以界定(a)分別針對於IGFET 380與390之n+隔離層382與392及(b)n+隔離層連接區域。 The complementary IGFET configuration of Figure 30 is typically fabricated in accordance with substantially the same steps as the complementary IGFET configuration of Figure 29, except that it converts IGFETs 210 and 230 to n+ isolation layers 382 and 392 of IGFETs 380 and 390, respectively. Isolation layers 382 and 392 are typically formed between the stages of Figures 31b and 31c, with their own photoresist mask attached to one of the openings above islands 202 and 206. The additional photoresist mask also has openings for heavily doped n-type regions that connect isolation layers 382 and 392 to the upper semiconductor surface to receive a suitable isolation voltage. An isolating dopant consisting of arsenic or phosphorus is applied at a heavy dose while ion implantation is through an uncovered segment of the shield oxide 402 and as a single layer of the underlying layer to define (a) n+ for IGFETs 380 and 390, respectively. The isolation layers 382 and 392 and the (b)n+ isolation layer connection regions.

圖31之製程係可修改為如下所述以改變不對稱n通道IGFET 210為自IGFET 180之一種實施至圖18c的不對稱n通道IGFET 190之一種實施,其中,n型S/D區102與104分別更包括其分別置於n++主要S/D部分102M與104M之下的n+下方S/D部分102L與104L。因為下方S/D部分102L與104L相較於主要S/D部分102M與104M而為較輕度摻雜n型,下方S/D部分102L與104L提供源極/汲極的垂直摻雜劑漸變以進一步降低源極/汲極的寄生電容,如同針對 於圖15的IGFET 160之上文所述。 The process of Figure 31 can be modified as described below to change the asymmetric n-channel IGFET 210 from one implementation of the IGFET 180 to the implementation of the asymmetric n-channel IGFET 190 of Figure 18c, wherein the n-type S/D region 102 is The 104 further includes n+ lower S/D portions 102L and 104L, respectively, which are placed under the n++ main S/D portions 102M and 104M, respectively. Since the lower S/D portions 102L and 104L are lightly doped n-type compared to the main S/D portions 102M and 104M, the lower S/D portions 102L and 104L provide source/drain vertical dopant gradients. To further reduce the parasitic capacitance of the source/drain, as The above is described above for IGFET 160 of FIG.

此製程修改開始於圖31q之階段且光阻遮罩434為於定位以運用於離子植入n++主要S/D部分102M與104M。由磷或砷所組成之n型下方源極/汲極的摻雜劑係於重度劑量而離子植入為透過表面介電層432之未覆蓋段且至下層的單矽,以界定n+下方S/D部分102L與104L。n+下方S/D部分102L與104L的植入可為在n++主要S/D部分102M與104M的植入之前或之後而實行。 This process modification begins at the stage of Figure 31q and the photoresist mask 434 is positioned for ion implantation of the n++ main S/D portions 102M and 104M. The n-type underlying source/drain dopant consisting of phosphorus or arsenic is at a heavy dose while ion implantation is through the uncovered segment of the surface dielectric layer 432 and to the underlying monolayer to define n+lower S /D sections 102L and 104L. The implantation of the n+ lower S/D portions 102L and 104L may be performed before or after implantation of the n++ primary S/D portions 102M and 104M.

選取針對於n型主要與下方源極/汲極的摻雜劑之植入能量,使n型下方源極/汲極的摻雜劑相較於n型主要源極/汲極的摻雜劑而為較大的植入範圍。因為n型主要源極/汲極的植入與n型下方源極/汲極的植入均為僅僅透過表面介電層432所實行,n型下方源極/汲極的摻雜劑相較於n型主要源極/汲極的摻雜劑而植入至上半導體表面之下方的較大平均深度。由於n型主要源極/汲極的摻雜劑相較於n型下方源極/汲極的摻雜劑而植入於一極重度劑量且因此為一較大劑量,n+下方S/D部分102L與104L相較於n++主要S/D部分102M與104M而為較輕度摻雜且延伸在上半導體表面之下方為較深。 The implantation energy for the dopants of the n-type main and the lower source/drain is selected so that the dopant of the n-type lower source/drain is compared to the n-type main source/drain dopant. And for a larger implant range. Since the implantation of the n-type main source/drain and the implantation of the n-type source/drain are performed only through the surface dielectric layer 432, the dopants of the n-type source/drain are lower. The n-type main source/drain dopant is implanted to a larger average depth below the upper semiconductor surface. Since the n-type main source/drain dopant is implanted in a very heavy dose and therefore a larger dose than the n-type lower source/drain dopant, the n+ lower S/D portion 102L and 104L are lightly doped and extend deeper below the upper semiconductor surface than the n++ main S/D portions 102M and 104M.

對稱n通道IGFET 230同時為轉換至一種變化者,其中,n型S/D區302與304分別更包括其相較於主要S/D部分302M與304M而為較輕度摻雜之一對的下方S/D部分。如同關於針對於IGFET 210之前述變化者的n+下方S/D部分102L與104L,針對於IGFET 230之變化者的下方S/D 部分係重度摻雜n型。若是期望IGFET 230為非轉換至其具有n+下方S/D部分之一種變化者,n型下方源極/汲極摻雜劑之植入可藉著一附加的光阻遮罩所實行,該附加光阻遮罩在附加光阻移除後為具有在島部202之上方而未在島部206之上方(且亦未在島部204與208之上方)的一開口。 The symmetric n-channel IGFET 230 is simultaneously switched to a variator, wherein the n-type S/D regions 302 and 304 respectively include one of the lighter dopings compared to the main S/D portions 302M and 304M. Below the S/D section. As with the n+ lower S/D portions 102L and 104L for the aforementioned variations of the IGFET 210, the lower S/D for the change of the IGFET 230 Part of the system is heavily doped n-type. If it is desired that IGFET 230 be non-switched to have a change in the n+ lower S/D portion, implantation of the n-type lower source/drain dopant can be performed by an additional photoresist mask, the additional The photoresist mask has an opening above the island 202 without being above the island 206 (and also above the islands 204 and 208) after the additional photoresist is removed.

圖31之製程可類似修改以改變不對稱p通道IGFET 220為自n通道IGFET 180V的p通道形式之一種實施至n通道IGFET 190V的p通道形式之一種實施,針對於其,p型S/D區262與264分別更包括其分別為置於p++主要S/D部分262M與264M之下的一對重度摻雜p型下方S/D部分。p+下方S/D部分提供源極/汲極的垂直摻雜劑漸變以進一步降低源極/汲極的寄生電容,類似於針對於圖15的IGFET 160之上文所述。 The process of Figure 31 can be similarly modified to change the implementation of an asymmetric p-channel IGFET 220 from a p-channel form of n-channel IGFET 180V to a p-channel form of n-channel IGFET 190V for which p-type S/D Regions 262 and 264 respectively include a pair of heavily doped p-type lower S/D portions respectively placed under p++ main S/D portions 262M and 264M. The lower S/D portion of p+ provides a source/drain vertical dopant ramp to further reduce the source/drain parasitic capacitance, similar to that described above for IGFET 160 of FIG.

此附加製程修改開始於圖31r之階段且光阻遮罩436為於定位以運用於離子植入p++主要S/D部分262M與264M。由硼物種所組成之p型下方源極/汲極的摻雜劑係於重度劑量而離子植入為透過表面介電層432之未覆蓋段且至下層的單矽,以界定針對於IGFET 220之變化者的二個p+下方S/D部分。p+下方源極/汲極的植入可在p++主要源極/汲極的植入之前或之後而實行。於一個實例,p型下方源極/汲極的摻雜劑係由元素態的硼所組成,而p型主要源極/汲極的摻雜劑係由二氟化硼所組成。 This additional process modification begins at the stage of Figure 31r and the photoresist mask 436 is positioned for ion implantation of the p++ main S/D portions 262M and 264M. The p-type underlying source/drain dopant consisting of boron species is at a heavy dose while ion implantation is through the uncovered segment of surface dielectric layer 432 and to the underlying monolayer to define for IGFET 220 The two p+ lower S/D parts of the changer. The implantation of the source/drain under the p+ can be performed before or after the implantation of the p++ main source/dip. In one example, the p-type lower source/drain dopant is composed of elemental boron, and the p-type main source/drain dopant is composed of boron difluoride.

選取針對於p型主要與下方源極/汲極的摻雜劑之植入能量,使p型下方源極/汲極的摻雜劑相較於p型主要源極/ 汲極的摻雜劑而為較大的植入範圍。因為p型主要源極/汲極的植入與p型下方源極/汲極的植入均為僅僅透過表面介電層432所實行,p型下方源極/汲極的摻雜劑相較於p型主要源極/汲極的摻雜劑而植入至上半導體表面之下方的較大平均深度。由於p型主要源極/汲極的摻雜劑相較於p型下方源極/汲極的摻雜劑而為植入於一極重度劑量且因此為一較大劑量,針對於IGFET 220之變化者的p+下方S/D部分相較於p++主要S/D部分262M與264M而為較輕度摻雜,且延伸在上半導體表面之下方為較深。 The implantation energy for the dopants of the p-type main source and the lower source/drain is selected so that the dopant of the p-type source/drain is lower than that of the p-type main source/ The dopant of the drain is a larger implant range. Since the p-type main source/drain implant and the p-type lower source/drain implant are performed only through the surface dielectric layer 432, the p-type lower source/drain dopant is compared. The p-type main source/drain dopant is implanted to a larger average depth below the upper semiconductor surface. Since the p-type main source/drain dopant is implanted in a very heavy dose and thus a larger dose than the p-type lower source/drain dopant, for IGFET 220 The S+D portion below the p+ of the variator is lightly doped compared to the p++ main S/D portions 262M and 264M, and extends deeper below the upper semiconductor surface.

對稱p通道IGFET 240同時為轉換至一種變化者,其中,p型S/D區362與364分別更包括其相較於主要S/D部分362M與364M而為較輕度摻雜之一對的下方S/D部分。如同關於針對於IGFET 220之變化者的p+下方S/D部分,針對於IGFET 240之變化者的下方S/D部分係重度摻雜p型。若IGFET 240為非轉換至其具有下方S/D部分之一種變化者,p型下方源極/汲極植入可藉著一附加的光阻遮罩所實行,該附加光阻遮罩在附加光阻移除後為具有在島部204之上方而未在島部208之上方(且亦未在島部202與206之上方)的一開口。 The symmetric p-channel IGFET 240 is simultaneously switched to a variator, wherein the p-type S/D regions 362 and 364 respectively include one of the lighter dopings compared to the main S/D portions 362M and 364M. Below the S/D section. As with the p+ lower S/D portion for the change to IGFET 220, the lower S/D portion for the variator of IGFET 240 is heavily doped p-type. If the IGFET 240 is not switched to have a variation of the lower S/D portion, the p-type lower source/drain implant can be implemented by an additional photoresist mask that is attached After the photoresist is removed, there is an opening that is above the island portion 204 and not above the island portion 208 (and also not above the island portions 202 and 206).

避免n型補償植入物之製程變化 Avoid process variations in n-type compensating implants

圖32a至32c(集體為“圖32”)說明根據本發明之圖31e之步驟的一種替代者,用於製造圖29之互補IGFET半導體構造的一種變化者。如為修改以納入圖32之替代者,n型補償植入物之運用至島部204(與島部208)係避免於圖 31之製程。結果,藉由運用圖32之替代者所製造的互補IGFET構造含有不對稱p通道IGFET 220之一種變化者220V。 Figures 32a through 32c (collectively "Figure 32") illustrate an alternative to the steps of Figure 31e in accordance with the present invention for fabricating a variation of the complementary IGFET semiconductor construction of Figure 29. If modified to incorporate the alternative to Figure 32, the application of the n-type compensating implant to the island 204 (with the island 208) is avoided. 31 process. As a result, a variant 220V containing the asymmetric p-channel IGFET 220 is constructed by using a complementary IGFET fabricated by the alternative of FIG.

圖32之製程的替代者開始於圖31d之構造,其在此重複作為圖32a。關聯於圖31e之上述的n型井部摻雜步驟實行於圖32a之構造。特別而言,光阻遮罩408形成於屏蔽氧化物層402,如於圖32b所示。光阻遮罩408同樣具有在島部204與208之上方的開口。同樣為由磷或砷所組成之n型井部摻雜劑係於重度劑量及高能量而離子植入為透過屏蔽氧化物402之未覆蓋段且至於下層的單矽,以界定(a)針對於不對稱p通道IGFET 220V之一前驅n+井部276P及(b)針對於對稱p通道IGFET 240之n+前驅井部356P。 The alternative to the process of Figure 32 begins with the configuration of Figure 31d, which is repeated here as Figure 32a. The n-type well doping step described above in connection with Figure 31e is carried out in the configuration of Figure 32a. In particular, a photoresist mask 408 is formed over the shield oxide layer 402, as shown in Figure 32b. Photoresist mask 408 also has openings above islands 204 and 208. The n-type well dopant, also composed of phosphorus or arsenic, is tied to a heavy dose and high energy while ion implantation is through the uncovered segment of the shield oxide 402 and as a single layer of the underlying layer to define (a) The precursor n+ well 276P and (b) of the asymmetric p-channel IGFET 220V are directed to the n+ precursor well 356P of the symmetric p-channel IGFET 240.

藉著光阻408於定位而至島部204(與島部208)的n型補償植入未實行於此。而是,僅移除光阻408。在光阻408之移除後,針對於IGFET 220V之島部204的一輕度摻雜p型部分278Q存在於前驅n+井部276P之上方。針對於IGFET 240之島部208的一輕度摻雜p型部分358Q類似為存在於前驅n+井部356P之上方。 The n-type compensation implantation by the photoresist 408 to the island portion 204 (and the island portion 208) is not practiced here. Instead, only the photoresist 408 is removed. After removal of the photoresist 408, a lightly doped p-type portion 278Q for the island portion 204 of the IGFET 220V is present above the precursor n+ well 276P. A lightly doped p-type portion 358Q for island portion 208 of IGFET 240 is similarly present above precursor n+ well 356P.

圖32之替代者繼續以形成光阻遮罩410於屏蔽氧化物402。參閱:圖32c。光阻遮罩410同樣具有在島部208之上方的一開口。同樣由磷或砷所組成之n型APT摻雜劑係於中度劑量而離子植入為透過屏蔽氧化物402之未覆蓋段且至於下層的單矽,以界定針對於IGFET 240之n前驅上方本體材料部分358P。移除光阻410。 The alternative of FIG. 32 continues to form a photoresist mask 410 over the shield oxide 402. See: Figure 32c. The photoresist mask 410 also has an opening above the island portion 208. An n-type APT dopant, also composed of phosphorus or arsenic, is applied at a moderate dose while ion implantation is through an uncovered segment of the shield oxide 402 and as a single layer of the underlying layer to define an n-precursor for the IGFET 240. Body material portion 358P. The photoresist 410 is removed.

植入至島部208之n型APT摻雜劑轉換島部208之所有p-部分358Q至n型導電性。結果,p-部分358Q消失。因為無大量的n型APT摻雜劑為進入島部204,島部204之p-部分278Q仍然存在於此製造階段。 All p-portions of the n-type APT dopant conversion island portion 208 implanted into the island 208 are 358Q to n-type conductivity. As a result, the p-portion 358Q disappears. Since no large amount of n-type APT dopant is entering island portion 204, p-portion 278Q of island portion 204 is still present at this stage of fabrication.

圖32c之構造係進一步處理,根據其關聯於圖31g至31o、圖31p.1至31r.1及圖31p-2至31r.2之上述的製造步驟,包括:關聯的退火作業。此等進一步的步驟之一些者係實行於升高的溫度,同樣為顯著大於室溫的溫度。於升高溫度步驟期間,運用以界定針對於IGFET 220V之前驅n+井部276P的n型井部摻雜劑部分者係朝上擴散至p-部分278Q。n型井部摻雜劑之朝上擴散的部分者係成為分佈貫穿島部204,使得在n型井部摻雜步驟後而未顯著受到p型或/及n型摻雜之所有其p-材料係在製造結束前而轉換至n型導電性。按照相較於完全根據圖31之基本製程所製造的n型上方本體材料部分278而為有些較輕度摻雜n型,p-部分278Q係大部分成為如修改以運用圖32之替代者而根據圖31之製程所作成的互補IGFET構造之n型上方本體材料材料278。n-上方本體材料剩餘者284同樣為n型本體材料部分278之剩餘的輕度摻雜n型材料。 The structure of Fig. 32c is further processed according to the above-described manufacturing steps associated with Figs. 31g to 31o, Figs. 31p.1 to 31r.1, and Figs. 31p-2 to 31r.2, including associated annealing operations. Some of these further steps are carried out at elevated temperatures, again at temperatures significantly greater than room temperature. During the elevated temperature step, the n-type well dopant portion that is utilized to define the pre-drive n+ well 276P for the IGFET 220V is spread upward to the p-portion 278Q. The upwardly diffusing portion of the n-type well dopant is distributed throughout the island portion 204 such that after the n-type well doping step, the p-type and/or n-type doping is not significantly affected by all of its p- The material is converted to n-type conductivity before the end of fabrication. For some of the lighter doped n-types compared to the n-type upper body material portion 278 fabricated entirely in accordance with the basic process of Figure 31, the p-portion 278Q is largely modified to utilize the alternative of Figure 32. An n-type upper body material material 278 of complementary IGFET construction is fabricated in accordance with the process of FIG. The n-upper body material remainder 284 is also the remaining lightly doped n-type material of the n-type body material portion 278.

如為修正以納入圖32之替代者,根據圖31之製程所作成的互補IGFET構造大部分呈現如於圖29所示。藉由運用圖32之替代者所作成之不對稱p通道IGFET 220V的概括形式描繪於下文所論述之圖34。 As a modification to incorporate the alternative of FIG. 32, the complementary IGFET construction made according to the process of FIG. 31 is mostly presented as shown in FIG. A generalized form of an asymmetric p-channel IGFET 220V fabricated using the alternative of FIG. 32 is depicted in FIG. 34 discussed below.

圖33a至33f(集體為“圖33”)說明對於圖31c至31f 的步驟之根據本發明的一種替代者,用於製造圖29之互補IGFET半導體構造的變化者。如同關於圖32之替代者,圖33之替代者係避免運用一n型補償植入至島部204(與島部208)。結果,如為修正以納入圖33之替代者,根據圖31之製程所製造的互補IGFET構造含有不對稱的p通道IGFET 220V以代替IGFET 220。 Figures 33a to 33f (collectively "Figure 33") are illustrated for Figures 31c to 31f An alternative to the present invention is a replacement for the fabrication of the complementary IGFET semiconductor construction of FIG. As with the alternative to FIG. 32, the alternative to FIG. 33 avoids the implantation of an n-type compensation to island portion 204 (and island portion 208). As a result, as a modification to incorporate the alternative of FIG. 33, the complementary IGFET construction fabricated in accordance with the process of FIG. 31 includes an asymmetric p-channel IGFET 220V in place of IGFET 220.

圖33之製程替代者開始於重複為圖33a之圖31b的構造。於圖33a之階段,屏蔽氧化物層402已經沿著外延層114P之上表面而形成。然而,並無離子植入至島部202、204、206與208之任一者係已經作成。 The process replacement of Figure 33 begins with a repeat of the configuration of Figure 31b of Figure 33a. At the stage of Figure 33a, the shield oxide layer 402 has been formed along the upper surface of the epitaxial layer 114P. However, no ion implantation to any of islands 202, 204, 206, and 208 has been made.

具有在島部204與208之上方的開口之光阻遮罩408形成於屏蔽氧化物402,如於圖33b所示。同樣為由磷或砷所組成之n型井部摻雜劑係於重度劑量及高能量而離子植入為透過屏蔽氧化物402之未覆蓋段且至於下層的單矽,以界定(a)針對於IGFET 220V之n+前驅井部276P及(b)針對於IGFET 240之n+前驅井部356P。移除光阻408。在光阻408之移除後,針對於IGFET 220V之島部204的p-部分278Q係存在於n+前驅井部276P之上方。針對於IGFET 240之島部208的p-部分358Q類似為存在於n+前驅井部356P之上方。 A photoresist mask 408 having openings above the island portions 204 and 208 is formed over the shield oxide 402, as shown in Figure 33b. The n-type well dopant, also composed of phosphorus or arsenic, is tied to a heavy dose and high energy while ion implantation is through the uncovered segment of the shield oxide 402 and as a single layer of the underlying layer to define (a) The n+ precursor wells 276P and (b) of the IGFET 220V are directed to the n+ precursor well 356P of the IGFET 240. The photoresist 408 is removed. After removal of the photoresist 408, the p-portion 278Q for the island portion 204 of the IGFET 220V is present above the n+ precursor well 276P. The p-portion 358Q for the island portion 208 of the IGFET 240 is similarly present above the n+ precursor well portion 356P.

較佳為一RTA之一種熱退火通常在此實行於造成的半導體基板,以修復晶格損壞且置放所植入的n型井部摻雜劑於能量更為穩定的狀態。參閱:圖33c。於退火期間,運用以界定針對於IGFET 220V之前驅n+井部276P的n型井 部摻雜劑之部分者係朝上擴散至p-部分278Q。運用以界定針對於IGFET 240之前驅n+井部356P的n型井部摻雜劑之部分者類似為朝上擴散至p-部分358Q。n型井部摻雜劑之此等部分者的朝上擴散典型為充分以轉換p-部分278Q與358Q之下部至n型導電性。p-部分278Q與358Q之如此轉換的下部係分別標示為於圖33c之前驅n-上方本體材料部分278P與358P。歸因於前驅n-上方本體材料部分278P與358P之形成,p-部分278Q與358Q尺寸為垂直收縮,如於圖33c所概括指示。 A thermal anneal, preferably an RTA, is typically performed here on the resulting semiconductor substrate to repair the lattice damage and place the implanted n-type well dopant in a more energy stable state. See: Figure 33c. Used during annealing to define an n-well for the IGFET 220V pre-drive n+ well 276P Some of the dopants are diffused upward to p-portion 278Q. The portion of the n-type well dopant that is utilized to define the n+ well 356P for the IGFET 240 is similarly spread upward to the p-portion 358Q. The upward diffusion of such portions of the n-type well dopant is typically sufficient to convert the lower portion of the p-portions 278Q and 358Q to n-type conductivity. The lower portions of the p-portions 278Q and 358Q so converted are labeled as n-upper body material portions 278P and 358P, respectively, prior to Figure 33c. Due to the formation of the precursor n-upper body material portions 278P and 358P, the p-portions 278Q and 358Q are vertically contracted as indicated generally in Figure 33c.

如進而描述於下文,運用以界定前驅n+井部276P的n型井部摻雜劑之較多者係於圖31之製程的稍後步驟期間而朝上擴散至p-部分278Q,如為修改以運用圖33之替代者。類似於圖32之替代者所發生者,於圖33之替代者的n型井部摻雜劑之總朝上擴散部分者成為分佈貫穿島部204,使得其在n型井部摻雜步驟後而未顯著受到p型及/或n型摻雜之其p-材料全部係在製造結束前而轉換為n型導電性。重要的是,n型井部摻雜劑之部分朝上擴散以界定前驅n-上方本體材料部分278P(如同存在於圖33c之階段)係發生而未影響p型井部摻雜劑或任何APT、袋部、環圈和源極/汲極的摻雜劑,因為用於引入彼等摻雜劑至半導體構造之步驟尚未實行。因此,於製程之此階段而實行n型井部植入有助於確保的是:未受到其他(稍後)的p型及/或n型摻雜之島部204的p-材料全部最後轉換至n型導電性而未引起p型井部摻雜劑或任何APT、袋部、環圈和源極/汲極的 摻雜劑之不合意的擴散。 As further described below, the majority of the n-type well dopants utilized to define the precursor n+ well 276P are diffused upward to the p-portion 278Q during a later step of the process of FIG. 31, as modified To use the alternative of Figure 33. Similar to the alternative of FIG. 32, the total upward diffusion portion of the n-type well dopant in the alternative of FIG. 33 becomes distributed throughout the island portion 204 such that after the n-type well doping step The p-materials that are not significantly p-typed and/or n-doped are converted to n-type conductivity before the end of fabrication. Importantly, the portion of the n-type well dopant diffuses upward to define the precursor n-upper body material portion 278P (as in the stage of Figure 33c) occurs without affecting the p-type well dopant or any APT , pockets, loops, and source/drain dopants, as the steps for introducing their dopants to the semiconductor construction have not been implemented. Therefore, the implementation of the n-type well implant at this stage of the process helps to ensure that all p-materials of the p-type and/or n-doped islands 204 are not finally converted by other (later) p-type and/or n-doped islands 204. To n-type conductivity without causing p-type well dopants or any APT, pocket, ring and source/drain Undesirable diffusion of dopants.

光阻遮罩410形成於屏蔽氧化物402。參閱:圖33d。光阻410同樣為具有在島部208之上方的一開口。n型APT摻雜劑(由磷或砷所組成)係於中度劑量而離子植入為透過屏蔽氧化物402之未覆蓋部分且至下層的單矽,以界定針對於IGFET 240之前驅上方本體材料部分358P。植入至島部208之n型APT摻雜劑轉換島部208之所有的p-部分358Q至n型導電性,因而使p-部分358Q為消失。移除光阻410。 A photoresist mask 410 is formed over the shield oxide 402. See: Figure 33d. Photoresist 410 also has an opening above island portion 208. An n-type APT dopant (composed of phosphorus or arsenic) is applied at a moderate dose while ion implantation is through an uncovered portion of the shield oxide 402 and to a single layer of the underlying layer to define a body above the IGFET 240 Material portion 358P. All p-portions 358Q to n-type conductivity implanted into the n-type APT dopant conversion island portion 208 of the island portion 208, thereby causing the p-portion 358Q to disappear. The photoresist 410 is removed.

光阻遮罩404形成於屏蔽氧化物層402,如於圖33e所示。光阻404同樣具有在島部202與206之上方的開口。p型井部摻雜劑(其由硼物種所組成)係於重度劑量及高能量而離子植入為透過屏蔽氧化物402之未覆蓋部分且至下層的單矽,以界定(a)針對於IGFET 210之p+井部116及(b)針對於IGFET 230之p+前驅井部316P。在井部116之上方的外延層114P之部分者係同樣為構成針對於IGFET 210之p-前驅上方本體材料部分118P。移除光阻404。 A photoresist mask 404 is formed over the shield oxide layer 402 as shown in Figure 33e. Photoresist 404 also has openings above islands 202 and 206. A p-type well dopant (which consists of a boron species) is applied at a heavy dose and high energy while ion implantation is through a non-covered portion of the shield oxide 402 and to a single layer of the underlying layer to define (a) for The p+ well 116 and (b) of the IGFET 210 are directed to the p+ precursor well 316P of the IGFET 230. Portions of the epitaxial layer 114P above the well 116 are also configured to form a p-precursor upper body material portion 118P for the IGFET 210. The photoresist 404 is removed.

光阻遮罩406形成於屏蔽氧化物402。參閱:圖33f。光阻406同樣具有在島部206之上方的一開口。p型APT摻雜劑(其由硼物種所組成)係於中度劑量而離子植入為透過屏蔽氧化物402之未覆蓋部分且至下層的單矽,以界定針對於IGFET 230之p前驅上方本體材料部分324P。移除光阻406。 A photoresist mask 406 is formed over the shield oxide 402. See: Figure 33f. Photoresist 406 also has an opening above island portion 206. The p-type APT dopant (which is composed of boron species) is at a moderate dose while ion implantation is through the uncovered portion of the shield oxide 402 and to the underlying monolayer to define the p precursor for the IGFET 230. Body material portion 324P. The photoresist 406 is removed.

圖33f之構造係進一步處理,根據其關聯於圖31g至 31o、圖31p.1至31r.1、及圖31p.2至31r.2之上述的製造步驟,包括:關聯的退火作業。於稍後的升高溫度步驟期間,運用以界定針對於IGFET 220V之前驅n+井部276P的n型井部摻雜劑的較多者係朝上擴散至島部204之p-部分278Q,直到於製程期間為未受到其他p型或/及n型摻雜之島部p-材料全部轉換至n型導電性。按照相較於完全根據圖31之基本製程所製造的n型上方本體材料部分278而為有些較輕度摻雜n型,p-部分278Q大部分成為如修改以利用圖33之替代者而根據圖31之製程所作成的互補IGFET構造之n型上方本體材料材料278。n-上方本體材料剩餘者284同樣為n型本體材料部分278之剩餘的輕度摻雜n型材料。 The structure of Figure 33f is further processed, according to which is associated with Figure 31g The above manufacturing steps of 31o, 31p.1 to 31r.1, and Figs. 31p.2 to 31r.2 include: an associated annealing operation. During a later elevated temperature step, the larger portion of the n-type well dopant that is applied to define the n+ well 276P for the IGFET 220V is spread up to the p-portion 278Q of the island 204 until During the process, all p-materials that are not subjected to other p-type or/and n-type doping are converted to n-type conductivity. In some lightly doped n-types compared to the n-type upper body material portion 278 fabricated entirely in accordance with the basic process of Figure 31, the p-portion 278Q is largely modified to utilize the alternative of Figure 33. The n-type upper body material material 278 of the complementary IGFET configuration is formed by the process of FIG. The n-upper body material remainder 284 is also the remaining lightly doped n-type material of the n-type body material portion 278.

運用圖33之替代者而根據圖31之製程所作成的互補IGFET構造大部分呈現為如於圖29所示。下文所論述之於圖34所描繪的p通道IGFET亦為藉由運用圖33之替代者所作成的IGFET 220V之概括形式。 The complementary IGFET construction made according to the process of FIG. 31 using the alternative of FIG. 33 is mostly presented as shown in FIG. The p-channel IGFET depicted in FIG. 34, discussed below, is also a generalized form of IGFET 220V fabricated using the alternative of FIG.

如上所述,p通道IGFET 220V之半導體部分係由島部204之輕度摻雜的p型材料所作成。為了確保:除了於製程期間之n型井部摻雜而未受到p型或/及n型摻雜的島部p-材料全部係在製造結束前而轉換至n型導電性,在製造結束時之沿著島部204之上表面的n型井部摻雜劑的濃度必須超過於島部204的p型摻雜劑的初始濃度。由於島部204由p-外延層114P(或實質相同於外延層114P之輕度摻雜的p型基板)的部分者所形成,在製造結束時之於島部204的n 型井部摻雜劑的上表面濃度必須超過於外延層114P之p型背景摻雜劑濃度。 As noted above, the semiconductor portion of p-channel IGFET 220V is formed from a lightly doped p-type material of island portion 204. In order to ensure that all the island p-materials that are not doped with p-type or/and n-type doping during the n-type well doping during the process are converted to n-type conductivity before the end of fabrication, at the end of manufacture The concentration of the n-type well dopant along the upper surface of the island portion 204 must exceed the initial concentration of the p-type dopant of the island portion 204. Since the island portion 204 is formed by a portion of the p- epitaxial layer 114P (or a lightly doped p-type substrate substantially the same as the epitaxial layer 114P), at the end of fabrication, the island portion 204 is n. The upper surface concentration of the well dopant must exceed the p-type background dopant concentration of epitaxial layer 114P.

選取如為修改以納入圖32或33之替代者而於圖31之製程的一個實施之摻雜與熱處理條件,使製造結束時之沿著島部204的上表面之n型井部摻雜劑的濃度係預期為於外延層114P的p型背景摻雜劑濃度之至少二倍。以此方式而選取摻雜與熱處理條件使得非常可能發生的是:鑒於典型的製程變化,在製造結束時之於島部204的n型井部摻雜劑的上表面濃度將實際為超過於外延層114P的p型背景摻雜劑濃度。故選取摻雜與熱處理條件可能需要自上述者以改變於外延層114P的p型背景摻雜劑濃度及/或自上述者以改變n型井部摻雜條件。該等改變關聯於圖35a至35c、圖36a至36c、圖37a至37c、及圖38a至38c而進一步處理於下文。 The doping and heat treatment conditions of one embodiment of the process of FIG. 31, as modified to incorporate the alternative of FIG. 32 or 33, are selected such that the n-type well dopant along the upper surface of island portion 204 at the end of fabrication The concentration is expected to be at least two times the p-type background dopant concentration of epitaxial layer 114P. The doping and heat treatment conditions are selected in this way so that it is highly probable that the upper surface concentration of the n-type well dopant at the end of fabrication will actually exceed the epitaxy at the end of fabrication due to typical process variations. The p-type background dopant concentration of layer 114P. Therefore, the doping and heat treatment conditions may be selected from the above to change the p-type background dopant concentration of the epitaxial layer 114P and/or from the above to change the n-type well doping conditions. These changes are further processed below in connection with Figures 35a to 35c, Figures 36a to 36c, Figures 37a to 37c, and Figures 38a to 38c.

p通道IGFET 220V之通道區266類似於(且典型為有些較強(較大)於)針對於p通道IGFET 220之上述者而通常為不對稱縱向摻雜劑漸變。條件為導電性型式之反向,於IGFET 220V之通道區266的不對稱縱向漸變因此類似於(且典型為有些較強於)針對於IGFET 180V與150V之上述者。 The channel region 266 of the p-channel IGFET 220V is similar (and typically somewhat stronger (larger)) to the above-described one of the p-channel IGFETs 220 and is typically an asymmetric longitudinal dopant gradation. The condition is the inverse of the conductivity pattern, and the asymmetrical longitudinal ramp at channel region 266 of IGFET 220V is therefore similar (and typically somewhat stronger) to the above for IGFETs 180V and 150V.

p通道IGFET 220V類似於(但為有些較弱於)針對於p通道IGFET 220之上述者而典型為具有於汲極264之下方的次陡峭垂直摻雜劑量變曲線。特別而言,IGFET 220V之汲極264之下方的本體材料268部分者之總n型摻雜劑的 濃度係於垂直向上移動自於井部276之n型摻雜劑的最大濃度的次表層位置至汲極264而減小為最多10%(典型為最多約15%),於井部276之n型摻雜劑最大濃度的位置係相較於汲極264而在上半導體表面之下方為不超過10倍深(通常不超過5倍)。同樣地,條件為導電性型式之反向,IGFET 220V的汲極264之下方的次陡峭垂直摻雜劑量變曲線因此典型為類似於(但為有些較弱於)針對於n通道IGFET 180V與100V之上述者。針對於關聯於圖38a至38c之下文論述的理由,IGFET 220V的汲極264之下方的次陡峭垂直摻雜劑量變曲線使其為具有提高的類比速度。 The p-channel IGFET 220V is similar (but somewhat weaker) to the sub-steep vertical doping dose curve below the drain 264 for the above-described p-channel IGFET 220. In particular, the total n-type dopant of the bulk material 268 under the drain 264 of the IGFET 220V The concentration is reduced from a subsurface position of the maximum concentration of the n-type dopant from the well 276 vertically to the drain 264 to a maximum of 10% (typically up to about 15%), at n of the well 276. The maximum concentration of the dopant is located no more than 10 times deep (typically no more than 5 times) below the surface of the upper semiconductor than the drain 264. Similarly, the condition is the inverse of the conductivity pattern, and the sub-steep vertical doping dose curve below the drain 264 of the IGFET 220V is therefore typically similar (but somewhat weaker) to the n-channel IGFET 180V and 100V. The above. For the reasons discussed below in connection with Figures 38a through 38c, the sub-steep vertical doping dose curve below the drain 264 of IGFET 220V is such that it has an increased analog speed.

於一個替代的製程實施例,調整於外延層114P的p型背景摻雜劑濃度、n型井部摻雜條件及後續的熱處理條件,使IGFET 220V之汲極264之下方的本體材料268部分者之總n型摻雜劑的濃度自於井部276之n型摻雜劑的最大濃度的次表層位置向上垂直移動至汲極264而減小為大於10%。雖然造成的類比速度可能未如同當IGFET 220V之汲極264之下方的垂直摻雜劑量變曲線為次陡峭之大,根據此製程實施例以製造IGFET 220V仍簡化製程且降低製造成本。 In an alternative process embodiment, the p-type background dopant concentration, the n-type well doping condition, and the subsequent heat treatment conditions of the epitaxial layer 114P are adjusted to provide a portion of the body material 268 below the drain 264 of the IGFET 220V. The concentration of the total n-type dopant decreases from the subsurface position of the maximum concentration of the n-type dopant of the well 276 vertically upward to the drain 264 to be greater than 10%. Although the resulting analog speed may not be as steep as the vertical doping dose curve below the drain 264 of the IGFET 220V, manufacturing the IGFET 220V according to this process embodiment simplifies the process and reduces manufacturing costs.

不對稱p通道IGFET 220V可取代於圖30之互補IGFET半導體構造的IGFET 220。除了其將IGFET 210與230分別轉換至IGFET 380與390之n+隔離層382與392以外,圖30之互補IGFET構造的如此修改形式典型地實質為根據圖31之製程所製造,如為修改以納入圖32或33之替代者。 於運用圖32之替代者,隔離層382與392同樣為通常形成於圖31b與31c的階段之間,運用其具有在島部202與206之上方的開口之上述的附加的光阻遮罩。當圖33之替代者係運用,隔離層382與392形成於圖33a與33b的階段之間,如同圖32之替代者的相同方式。發生於運用圖33之替代者而直接在n型井部植入之後所實行的熱退火期間之隔離摻雜劑擴散通常為實質不具有損壞效應於造成的互補IGFET構造。 The asymmetric p-channel IGFET 220V can be substituted for the IGFET 220 of the complementary IGFET semiconductor construction of FIG. Except that it converts IGFETs 210 and 230 to n+ isolation layers 382 and 392 of IGFETs 380 and 390, respectively, such modifications of the complementary IGFET configuration of Figure 30 are typically substantially fabricated in accordance with the process of Figure 31, as modified for inclusion. An alternative to Figure 32 or 33. In the alternative to FIG. 32, spacer layers 382 and 392 are also generally formed between the stages of FIGS. 31b and 31c, using the above-described additional photoresist mask having openings above island portions 202 and 206. When the alternative of Figure 33 is utilized, isolation layers 382 and 392 are formed between the stages of Figures 33a and 33b, in the same manner as the alternative of Figure 32. The isolating dopant diffusion that occurs during the thermal anneal performed directly after the n-type well implant using the replacement of Figure 33 is typically a complementary IGFET configuration that is substantially free of damaging effects.

於運用圖32或33之替代者,附加的光阻遮罩同樣亦具有開口,用於作成重度摻雜n型區域,其連接隔離層382與392至上半導體表面以接收隔離電壓。由砷或磷所組成的隔離摻雜劑係於重度劑量而離子植入為透過屏蔽氧化物402之未覆蓋段且至於下層的單矽,以界定(a)分別針對於IGFET 380與390之n+隔離層382與392、及(b)n+隔離層連接區域。 Alternatively to using Figure 32 or 33, the additional photoresist mask also has openings for heavily doped n-type regions that connect isolation layers 382 and 392 to the upper semiconductor surface to receive isolation voltages. An isolating dopant consisting of arsenic or phosphorus is applied at a heavy dose while ion implantation is through an uncovered segment of the shield oxide 402 and as a single layer of the underlying layer to define (a) n+ for IGFETs 380 and 390, respectively. The isolation layers 382 and 392, and (b) the n+ isolation layer connection region.

具有汲極下方的次陡峭垂直本體材料摻雜劑量變曲線之p通道IGFET,歸因於井部摻雜劑濃度的次表層最大值,而避免n型補償植入物A p-channel IGFET with a sub-steep vertical bulk material doping dose curve below the drain, due to the subsurface maximum of the well dopant concentration, avoiding the n-type compensating implant

圖34說明根據本發明之不對稱p通道IGFET 220V的一種概括形式220U,其中,n+井部276係對於直接置於下層的p-半導體材料部分114之相反的導電性型式者。不對稱p通道IGFET 220U根據本發明所製造而引起的IGFET特性者,並未運用補償n型摻雜劑植入至其為直接位在n+井部276(如n型井部摻雜劑之離子植入所初始界定)之上方 的島部204之p型部分。本質上,如為修改以納入圖32或33的替代者之根據圖31的製程所製造之IGFET 220V係IGFET 220U之一種實施。 Figure 34 illustrates a generalized form 220U of an asymmetric p-channel IGFET 220V in accordance with the present invention, wherein the n+ well 276 is for the opposite conductivity type of the p-semiconductor material portion 114 placed directly underneath. The IGFET characteristics caused by the asymmetric p-channel IGFET 220U fabricated in accordance with the present invention are not implanted into the n+ well 276 (such as the n-type well dopant) without the use of a compensating n-type dopant. Above the initial definition of the implant) The p-type part of the island 204. Essentially, one implementation of the IGFET 220V IGFET 220U fabricated in accordance with the process of FIG. 31, modified to incorporate the alternative of FIG. 32 or 33.

p通道IGFET 220U係由二部分p型源極262、二部分p型汲極264、n型本體材料268、閘極介電層286與閘極電極288所組成。n型本體材料268同樣藉著n+井部276與n型上方本體材料部分278所形成,上方本體材料部分278係由n+源極側的袋部280與n型本體材料剩餘者394所組成。n型上方本體材料部分278之n型通道區266類似為同樣側向分開n型S/D區262與264。IGFET 220U之構件262、264、266、268、276、278、280、286與288構成及摻雜為大部分相同於IGFET 220V。 The p-channel IGFET 220U is comprised of a two-part p-type source 262, a two-part p-type drain 264, an n-type body material 268, a gate dielectric layer 286, and a gate electrode 288. The n-type body material 268 is also formed by an n+ well 276 and an n-type upper body material portion 278. The upper body material portion 278 is comprised of a n+ source side pocket portion 280 and an n-type body material remainder 394. The n-type channel region 266 of the n-type upper body material portion 278 is similarly laterally separating the n-type S/D regions 262 and 264 as well. The components 262, 264, 266, 268, 276, 278, 280, 286 and 288 of IGFET 220U are constructed and doped to be substantially identical to IGFET 220V.

於圖34之項目396係指於源極262與本體材料268之間的pn接面。項目398係指於汲極264與本體材料268之間的pn接面。類似於n通道IGFET,項目yS與yD分別為指示p通道IGFET 220U之源極262與汲極264所分別延伸至上半導體表面之下方的深度。 Item 396 of Figure 34 refers to the pn junction between source 262 and body material 268. Item 398 is the pn junction between the drain 264 and the body material 268. Similar to the n-channel IGFET, the terms y S and y D are respectively indicating the depth at which the source 262 and the drain 264 of the p-channel IGFET 220U extend below the upper semiconductor surface, respectively.

為了簡化,IGFET 220U之n型上方本體材料剩餘者394係於圖34而標示為“n-”,類似於IGFET 220之n型上方本體材料剩餘者284為如何由標記“n-”所識別於本文。於如為修改以納入圖32或33之替代者而根據圖31之製程以製造IGFET 220U,上方本體材料剩餘者394通常為接收其為實質僅由下層n+井部276之向上擴散的n型摻雜劑。如為關聯於圖37a至37c而進一步解說於下文,於本體材料剩 餘者394的n型摻雜劑濃度通常為於朝上自井部276至上半導體表面而逐漸減小。由於井部276係重度摻雜n型,本體材料剩餘者394可替代於繪圖方式而視為由一輕度摻雜n型表面鄰接部分、與其位於n+井部276與輕度摻雜n型表面鄰接部分之間的一中度摻雜n型中間部分所組成。 For simplicity, the n-type upper body material remaining 394 of the IGFET 220U is labeled "n-" in FIG. 34, similar to how the n-type upper body material remaining 284 of the IGFET 220 is identified by the flag "n-". This article. In order to fabricate the IGFET 220U according to the process of FIG. 31 as modified to incorporate the alternative of FIG. 32 or 33, the upper body material remainder 394 is typically n-doped that is received to be substantially only diffused upward by the lower n+ well 276. Miscellaneous. As further explained below in connection with Figures 37a to 37c, the remaining material is left. The n-type dopant concentration of the remainder 394 is generally gradually decreasing from the well portion 276 to the upper semiconductor surface. Since the well 276 is heavily doped n-type, the body material remainder 394 can be considered as a lightly doped n-type surface abutment portion instead of the n+ well 276 and the lightly doped n-type surface instead of the drawing mode. A moderately doped n-type intermediate portion between adjacent portions is formed.

IGFET 220U之摻雜特性的瞭解係藉助於圖35a至35c(集體為“圖35”)、圖36a至36c(集體為“圖36”)、圖37a至37c(集體為“圖37”)、及圖38a至38c(集體為“圖38”)而促進。圖35呈現沿著上半體表面之範例的摻雜劑濃度,作為縱向距離x之一函數。作為沿著透過源極262之一垂直線130U的深度y之一函數的範例的摻雜劑濃度呈現於圖36。圖37呈現範例的摻雜劑濃度,作為沿著透過通道區266之一對垂直線132U與134U的深度y之一函數。垂直線132U通過源極側的袋部280。垂直線134U通過於袋部280與汲極264之間的一垂直位置。作為沿著透過汲極264之一垂直線136U的深度y之一函數的範例的摻雜劑濃度呈現於圖38。針對於p通道IGFET 220U之垂直線130U、132U、134U與136U分別對應於針對於本發明的n通道IGFET之垂直線130、132、134與136。 The doping characteristics of IGFET 220U are understood by means of Figures 35a to 35c (collectively "Figure 35"), Figures 36a to 36c (collectively "Figure 36"), Figures 37a to 37c (collectively "Figure 37"), And as shown in Figures 38a to 38c (collectively "Figure 38"). Figure 35 presents an example dopant concentration along the upper surface of the upper body as a function of longitudinal distance x. An exemplary dopant concentration as a function of depth y along a vertical line 130U through source 262 is presented in FIG. 37 presents an exemplary dopant concentration as a function of depth y along one of the transmission channel regions 266 versus the vertical lines 132U and 134U. The vertical line 132U passes through the pocket portion 280 on the source side. The vertical line 134U passes through a vertical position between the pocket portion 280 and the drain 264. An exemplary dopant concentration as a function of one of the depths y across a vertical line 136U of the drain 264 is presented in FIG. Vertical lines 130U, 132U, 134U, and 136U for p-channel IGFET 220U correspond to vertical lines 130, 132, 134, and 136 for the n-channel IGFET of the present invention, respectively.

圖35a說明沿著上半導體表面之個別半導體摻雜劑的濃度NI,該等摻雜劑主要界定區域262、264、280與394且因此建立通道區266之縱向摻雜劑漸變。圖36a、37a與38a說明沿著垂直線130U、132U、134U與136U之個別半導體摻雜劑的濃度NI,該等摻雜劑係垂直界定區域114、 262、264、270、280與394且因此建立於汲極264之下方的本體材料268部分者的次陡峭垂直摻雜劑量變曲線。曲線262’與264’代表其運用以分別形成源極262與汲極264之p型摻雜劑的濃度NI(表面及垂直)。曲線276’、280’與394’係代表其運用以分別形成區域276、280與394之n型摻雜劑的濃度NI(表面及/或垂直)。項目396#與398#係指淨摻雜劑濃度NN為降至零之處且因此分別指pn接面396與398之位置。 Figure 35a illustrates the concentration N I of individual semiconductor dopants along the upper semiconductor surface that primarily define regions 262, 264, 280, and 394 and thus establish a longitudinal dopant gradation of channel region 266. 36a, 37a and 38a illustrate the concentration N I of individual semiconductor dopants along vertical lines 130U, 132U, 134U and 136U that vertically define regions 114, 262, 264, 270, 280 and 394 and The sub-steep vertical doping dose curve of the portion of the body material 268 that is established below the drain 264 is thus established. Curves 262' and 264' represent the concentration N I (surface and vertical) of the p-type dopant that is utilized to form source 262 and drain 264, respectively. Curves 276', 280' and 394' represent the concentration N I (surface and/or vertical) of the n-type dopants that are utilized to form regions 276, 280 and 394, respectively. Items 396 # and 398 # refer to the net dopant concentration N N being reduced to zero and thus refer to the positions of pn junctions 396 and 398, respectively.

沿著上半導體表面之於區域262、264、280與394的總p型與總n型摻雜劑的濃度NT顯示於圖35b。圖36b、37b、與38b描繪沿著垂直線130U、132U、134U與136U之於區域114、262、264、276、280與394的總p型與總n型摻雜劑的濃度NT。分別對應於區域276、280與394之曲線段276”、280”與394”代表n型摻雜劑的總濃度NT。於圖35b之項目266”對應於通道區266且代表曲線段280”與394”之通道區部分。p型摻雜劑的總濃度NT係由分別對應於源極262與汲極264之曲線262”與264”所代表。 Along the upper semiconductor surface in areas 262,264,280 and 394 of the total p-type and total n-type dopant concentration of the N T shown in FIG. 35b. 36b, 37b, and 38b depict the total p-type and total n-type dopant concentration N T along regions 109, 262, 264, 276, 280, and 394 along vertical lines 130U, 132U, 134U, and 136U. Respectively corresponding to regions 276, 280 and 394 of curve segments 276 ", 280" and 394 "represents the total n-type dopant concentration N T. Item 266 in FIG. 35b of" corresponds to channel zone 266 and the representative curve segments 280 " Part of the channel area with 394". The total concentration of the p-type dopant from the N T lines respectively corresponding to source 262 and drain 264 of the curve 262 'and 264 "represent.

圖35c係說明沿著上半導體表面的淨摻雜劑濃度NN。沿著垂直線130U、132U、134U與136U的淨摻雜劑濃度NN呈現於圖36c、37c與38c。曲線段276*、280*與394*代表於個別區域276、280與394之n型摻雜劑的淨濃度NN。於圖35c之項目266*係代表通道區的曲線段280*與394*之組合,且因此呈現於通道區266之淨n型摻雜劑的濃度NN。於源極262與汲極264之淨p型摻雜劑的濃度NN 分別由曲線262*與264*所代表。 Figure 35c illustrates the net dopant concentration N N along the upper semiconductor surface. The net dopant concentration N N along the vertical lines 130U, 132U, 134U, and 136U is presented in Figures 36c, 37c, and 38c. Curve segments 276*, 280* and 394* represent the net concentration N N of the n-type dopants of the individual regions 276, 280 and 394. Item 266* of Figure 35c represents the combination of curve segments 280* and 394* of the channel region, and thus the concentration N N of the net n-type dopant present in channel region 266. The concentration N N of the net p-type dopant at source 262 and drain 264 is represented by curves 262* and 264*, respectively.

針對於p通道IGFET 220U之於圖35所顯示的上表面摻雜劑分佈分別為實質相同於針對於n通道IGFET 180V之於圖26所顯示的上表面摻雜劑分佈,除了:(a)如於圖35a的曲線114’所指之針對於p-下部114的背景p型摻雜劑濃度係小於如於圖26a的項目192’所指之針對於n-下部192的背景n型摻雜劑濃度;及(b)如於圖35a的項目394’、394”與394*所指之針對於n-上方本體材料剩餘者394的上表面摻雜劑濃度係小於如於圖26的項目198’、198”與198*所指之針對於p-上方本體材料剩餘者198的上表面摻雜劑濃度。儘管如此,p通道IGFET 220U類似於n通道IGFET 180V而構成。因此,關於針對於n通道IGFET 180V之於圖26所顯示的上表面摻雜劑分佈而於上文所述的論點大部分為應用於針對於p通道IGFET 220U之於圖35所顯示的上表面摻雜劑分佈,按照分別將針對於IGFET 180V之區域102、102M、102E、104、104M、104E、106、120、192與198改變為針對於IGFET 220U之區域262、262M、262E、264、264M、264E、266、280、114與394且按照所指出的摻雜劑濃度差異。 The upper surface dopant distribution for the p-channel IGFET 220U shown in FIG. 35 is substantially the same as the upper surface dopant distribution shown for FIG. 26 for the n-channel IGFET 180V, except: (a) The background p-type dopant concentration for the p-lower portion 114 as indicated by the curve 114' of Figure 35a is less than the background n-type dopant for the n-lower portion 192 as indicated by item 192' of Figure 26a. Concentration; and (b) the upper surface dopant concentration for the n-upper body material remainder 394 as indicated by items 394', 394" and 394* of Figure 35a is less than item 198' of Figure 26. The upper surface dopant concentration for 198" and 198* for the remaining 198 of the upper body material of p-. Nevertheless, the p-channel IGFET 220U is constructed similarly to the n-channel IGFET 180V. Thus, the arguments described above with respect to the upper surface dopant profile for the n-channel IGFET 180V shown in Figure 26 are mostly applied to the upper surface shown in Figure 35 for the p-channel IGFET 220U. The dopant profile is changed to regions 262, 262M, 262E, 264, 264M for IGFET 220U, respectively, for regions 102, 102M, 102E, 104, 104M, 104E, 106, 120, 192, and 198 for IGFET 180V. , 264E, 266, 280, 114, and 394 and differ in dopant concentration as indicated.

接著考慮圖37,其用以處理摻雜劑濃度NI、NT與NN沿著垂直線132U和134U經由p通道IGFET 220U的通道區266。此括號”132U”在各個參考符號280’、280”和280*會指出沿著垂直線132U的摻雜劑濃度。此括號”134U”在各個參考符號394’、394”和394*會指出沿著垂直線134U的 摻雜劑濃度。於n+袋部280之n型摻雜劑係由下列者所組成:(a)於圖37a的摻雜劑濃度曲線280’所指示之由n型袋部摻雜劑所構成的主要部分;及(b)於圖37a的摻雜劑濃度曲線276’所指示之由n型井部摻雜劑的朝上擴散部分所構成的次要部分。於n-上方本體材料剩餘者394的n型摻雜劑實質為僅僅由n型井部摻雜劑的朝上擴散部分所組成。於n-本體材料剩餘者394之n型井部摻雜劑的朝上擴散部分的濃度NI係於圖37a的n型井部摻雜劑濃度曲線276’之部分者394’所指示。於圖37b與37c之分別的摻雜劑濃度曲線276”與276*之部分者394”與394*類似為分別指示於n-本體材料剩餘者394之總摻雜劑濃度NT與淨摻雜劑濃度NNNext consider Figure 37, for processing a dopant concentration N I, N T and N N along vertical lines 132U and 134U via the channel region of the p-channel IGFET 220U 266. This bracket "132U" will indicate the dopant concentration along the vertical line 132U at each of the reference symbols 280', 280" and 280*. This bracket "134U" will indicate along the respective reference symbols 394', 394" and 394*. The dopant concentration of the vertical line 134U. The n-type dopant of the n+ pocket portion 280 is comprised of: (a) a major portion of the n-type pocket dopant as indicated by the dopant concentration curve 280' of FIG. 37a; (b) A minor portion of the upwardly diffusing portion of the n-type well dopant as indicated by the dopant concentration curve 276' of Figure 37a. The n-type dopant of the n-upper body material remainder 394 is essentially composed of only the upwardly diffusing portion of the n-type well dopant. The concentration N I of the upwardly diffusing portion of the n-type well dopant of the n-body material remainder 394 is indicated by a portion 394' of the n-type well dopant concentration curve 276' of Figure 37a. The dopant concentration curves 276" and 276*, respectively, of portions 394" and 394* of Figures 37b and 37c are similar to indicate the total dopant concentration Nt and net doping of the n-body material remainder 394, respectively. Agent concentration N N .

由於IGFET 220U之源極側的袋部280為重度摻雜n型且由於n-上方本體材料剩餘者394之n型摻雜為實質僅由自n+井部276之向上擴散所提供,於通道區266之最低的摻雜劑濃度係發生於n-本體材料剩餘者394之沿著或接近於其上表面處,視是否n型井部摻雜劑之向上擴散部分的任何顯著量為堆積沿著剩餘者394之上表面而定。圖37說明一個實例,其中,不存在沿著n-本體材料剩餘者394之上表面的任何顯著的n型井部摻雜劑堆積。 Since the pocket portion 280 on the source side of the IGFET 220U is heavily doped n-type and the n-type doping of the remaining 394 of the n-upper body material is substantially only provided by the upward diffusion from the n+ well 276, in the channel region The lowest dopant concentration of 266 occurs at or near the upper surface of the n-body material remainder 394, depending on whether any significant amount of the up-diffusion portion of the n-type well dopant is stacked along The remaining 394 depends on the surface. Figure 37 illustrates an example in which there is no significant n-type well dopant buildup along the upper surface of the n-body material remainder 394.

如上所述,關聯於其半導體部分為作成於曲p-外延層114P(或實質相同於外延層114P之輕度摻雜的一p型基板)之部分者所形成的島部204之p通道IGFET 220V的製造,於製造結束時之沿著島部204的上表面之n型井部摻雜劑 濃度係必須超過於外延層114P之p型背景摻雜劑濃度。於應用至IGFET 220U,此製造摻雜需求轉換通道區266的上表面(明確而言為n-上方本體材料剩餘者394的上表面)之n型井部摻雜劑濃度NI為超過於p-下部114之p型背景摻雜劑濃度NI。摻雜與熱處理條件為選取以使於IGFET 220V製造結束時之於島部204的n型井部摻雜劑的上表面濃度係預期為於外延層114P之p型背景摻雜劑濃度的至少二倍,此合意的製造目標類似轉換為構造摻雜需求在於:沿著n-本體材料剩餘者394的上表面之n型井部摻雜劑濃度NI係至少為p型背景摻雜劑濃度NI的二倍。 As described above, the p-channel IGFET of the island portion 204 formed by the portion of the semiconductor portion which is formed by the portion of the curved p- epitaxial layer 114P (or a p-type substrate which is substantially the same as the lightly doped epitaxial layer 114P) is formed. For the fabrication of 220V, the n-type well dopant concentration along the upper surface of island 204 at the end of fabrication must exceed the p-type background dopant concentration of epitaxial layer 114P. Applied to IGFET 220U, the n-type well dopant concentration N I of the upper surface of the doped demand conversion channel region 266 (specifically, the upper surface of the n-upper body material remainder 394) is greater than p - p-type background dopant concentration N I of lower portion 114. The doping and heat treatment conditions are selected such that the upper surface concentration of the n-type well dopant at the end of the IGFET 220V fabrication is expected to be at least two of the p-type background dopant concentration of the epitaxial layer 114P. In this case, the desired manufacturing target is similarly converted to a structural doping requirement in that the n-type well dopant concentration N I along the upper surface of the n-body material remaining 394 is at least the p-type background dopant concentration N. I doubled.

圖35至38描繪一個實例,其中,沿著n-本體材料剩餘者394的上表面之n型井部摻雜劑濃度NI(如於圖35a與37a的曲線段394’所指示)大約為(如於圖35a與37a的曲線段114’所指示)p-下方區域114之p型背景摻雜劑濃度NI的二倍。因此,圖35至38之實例滿足特定構造的摻雜需求:沿著n-本體材料剩餘者394的上表面之n型井部摻雜劑濃度NI係至少為p型背景摻雜劑濃度NI的二倍。 35 through 38 depict an example in which the n-type well dopant concentration N I along the upper surface of the n-body material remainder 394 (as indicated by the curved segment 394' of Figures 35a and 37a) is approximately (as in FIG. 35a and 37a of curve segments 114 'as indicated) p- region 114 below the p-type dopant concentration of twice the background of N I. Thus, the examples of Figures 35 through 38 satisfy the doping requirements of a particular configuration: the n-type well dopant concentration N I along the upper surface of the n-body material remainder 394 is at least the p-type background dopant concentration N I doubled.

於圖35至38之實例,p型背景摻雜劑濃度NI係約為1×1015原子/立方公分。此係針對於p型背景摻雜劑濃度之上述的既定範圍1×1015至1×1016原子/立方公分之下限。然而,於運用圖32或33之替代者以實施IGFET 220U為IGFET 220V,針對於p型背景摻雜劑濃度之範圍的下限係朝下變動至5×1014原子/立方公分或更小。針對於其運用以作成IGFET 220U之島部204,此提供較多的彈性以確保:除了 於製程期間之n型井部摻雜而未受到p型及/或n型摻雜的島部p-材料全部在製造結束前而轉換至n型導電性。 In the examples of Figures 35 through 38, the p-type background dopant concentration N I is about 1 x 10 15 atoms/cm 3 . This is for the above-mentioned predetermined range of the p-type background dopant concentration of the range of 1 × 10 15 to 1 × 10 16 atoms / cubic centimeter. However, instead of using FIG. 32 or 33 to implement IGFET 220U as IGFET 220V, the lower limit of the range for the p-type background dopant concentration is downwardly changed to 5 × 10 14 atoms/cm 3 or less. For its use to form the island portion 204 of the IGFET 220U, this provides more flexibility to ensure that the island portion p- which is not p-typed and/or n-doped except for the n-type well doping during the process is doped. The materials are all converted to n-type conductivity before the end of manufacture.

於IGFET 220U之n型井部摻雜劑的濃度NI係在上半導體表面之下方的深度yw而達到一最大值。IGFET 220U之源極262與汲極264之下方的本體材料268部分者之總n型摻雜劑僅由n型井部摻雜劑所組成,如於圖36a與38a之曲線276’所指示。結果,IGFET 220U之源極262與汲極264之下方的p-本體材料268部分者之總n型摻雜劑濃度NT在深度yw而達到一最大值,如於圖36b與38b之曲線276”所指示。 The concentration N I of the n-type well dopant in IGFET 220U is at a maximum y w below the upper semiconductor surface. The total n-type dopant of the bulk material 262 of the IGFET 220U and the portion of the body material 268 below the drain 264 consists solely of n-type well dopants, as indicated by curve 276' of Figures 36a and 38a. As a result, those portions 268 of the p- IGFET 220U bulk material below the source 262 and drain 264 of the total n-type dopant concentration in the depth y w N T reaches a maximum value, as in FIG. 36b and 38b of the curve Indicated by 276”.

如於圖38b之曲線276”的變化所示,IGFET 220U之汲極264之下方的本體材料268部分者之總n型摻雜劑濃度NT係於沿著垂直線136U為移動自於井部276之n型摻雜劑的最大濃度的次表層位置至汲極264而減小最多10%,典型為約15%。此外,於井部276之總n型摻雜劑的最大濃度的位置相較於汲極264在上半導體表面之下方為不超過10倍深(通常為不超過5倍)。因此,IGFET 220U之汲極264之下方的垂直摻雜劑量變曲線係次陡峭。再者,IGFET 220U之汲極264之下方的本體材料268部分者之總n型摻雜劑濃度NT通常自最大n型井部濃度的位置移動至汲極264而逐漸減小,如為由曲線276’之部分所指示,其延伸自於汲極264之下方的本體材料268部分者之總n型摻雜劑最大濃度的深度yw至其代表汲極-本體接面398之項目398#。 As the curve 276 in FIG. 38b, "the variation shown, those portions of body material 268 below drain 264 of IGFET 220U of the total n-type dopant concentration in the N T system along vertical lines 136U to move from the well portion The sub-surface position of the maximum concentration of the n-type dopant of 276 is reduced by up to 10%, typically about 15%, to the drain 264. In addition, the position of the maximum concentration of the total n-type dopant in the well 276 is It is no more than 10 times deep (usually no more than 5 times) below the upper semiconductor surface than the drain 264. Therefore, the vertical doping dose curve below the drain 264 of the IGFET 220U is steep. 268 part by the position of the n-type typically total from the maximum concentration of the n-type well dopant concentration portion N T bulk material below drain 264 of IGFET 220U is moved to the drain 264 is gradually reduced, such as by curve 276 ' the indicated portion, extending from the lower electrode 264 to the drain of the n-type body material 268 part by the total of the maximum concentration of the dopant to a depth y w which represents the drain - body junction 398 of the item 398 #.

IGFET 220U之汲極264之下方的本體材料268部分者 之淨摻雜劑係n型摻雜劑。圖38c顯示的是:如於曲線276*所代表,IGFET 220U之汲極264之下方的本體材料268部分者之淨摻雜劑的濃度NN垂直變化為類似於汲極264之下方的本體材料268部分者之總n型摻雜劑的濃度NT,除了:汲極264之下方的本體材料268部分者的濃度NN於汲極-本體接面398下降至零。針對於其關聯於本發明的p通道IGFET 220與不對稱n通道IGFET之上述的理由,IGFET 220U之汲極264之下方的本體材料268部分者之次陡峭垂直摻雜劑量變曲線使其關聯於汲極-本體接面398的寄生電容減小。雖然於汲極264之下方的本體材料268部分者之次陡峭垂直摻雜劑量變曲線係於IGFET 220U(其避免n型補償植入物)並未強烈如同於IGFET 220(其運用n型補償植入物),IGFET 220U之汲極264之下方的本體材料26部分者之次陡峭垂直摻雜劑量變曲線使汲極-本體接面398具有減小的寄生電容。IGFET 220U因而具有提高的類比速度。 The net dopant of the bulk material 268 below the drain 264 of the IGFET 220U is an n-type dopant. FIG. 38c shows: * as represented by the curve 276, the vertical variation of net dopant concentration of the portion 268 of the body's material below drain 264 of IGFET 220U N N similarly to the drain electrode 264 of the lower body material The concentration N T of the total n-type dopant in part 268 except that the concentration N N of the bulk material 268 portion below the drain 264 drops to zero at the drain-body junction 398. For the above-mentioned reasons associated with the p-channel IGFET 220 and the asymmetric n-channel IGFET of the present invention, the sub-steep vertical doping dose curve of the portion of the bulk material 268 below the drain 264 of the IGFET 220U is associated with The parasitic capacitance of the drain-body junction 398 is reduced. Although the sub-steep vertical doping dose curve of the bulk material 268 portion below the bungee 264 is tied to the IGFET 220U (which avoids the n-type compensating implant) is not as strong as the IGFET 220 (which uses n-type compensatory implants) The second steep vertical doping dose curve of the portion of the body material 26 below the drain 264 of the IGFET 220U causes the drain-body junction 398 to have a reduced parasitic capacitance. The IGFET 220U thus has an increased analog speed.

IGFET 220U之源極262之下方的本體材料268部分者之總n型摻雜劑的濃度NI與NT垂直變化為大部分相同於汲極264之下方的本體材料268部分者之總n型摻雜劑的濃度NI與NT。比較於圖36a與36b之曲線276’與276”(沿著透過源極262的垂直線130U所取得)及於圖38a與38b之曲線276’與276”(沿著透過源極264的垂直線136U所取得)。注意的是:IGFET 220U之源極262之下方的本體材料268部分者之淨摻雜劑係n型摻雜劑,源極262之下方的本體材料268部分者之淨摻雜劑的濃度NN垂直變化為大部分 相同於汲極264之下方的本體材料268部分者之淨摻雜劑的濃度NN。如於圖36c之曲線276*所代表,IGFET 220U之源極262之下方的本體材料268部分者之淨摻雜劑的濃度NN因此垂直變化為類似於源極262之下方的本體材料268部分者之總n型摻雜劑的濃度NT,除了:源極262之下方的本體材料268部分者的濃度NN於源極-本體接面396下降至零。IGFET 220U之源極262之下方的此垂直摻雜劑量變曲線通常使沿著源極-本體接面396的寄生電容降低。 268 part by the concentration of N I N T and the vertical change of electrode body material 262 below source 268 of IGFET 220U are part of the total n-type dopant is largely identical to the drain electrode 264 below the total of the n-type body material The concentration of dopants N I and N T . Comparing curves 276' and 276" of Figures 36a and 36b (taken along vertical line 130U through source 262) and curves 276' and 276" of Figs. 38a and 38b (along the vertical line through source 264) 136U obtained). Note that the net dopant of the bulk material 268 under the source 262 of the IGFET 220U is the n-type dopant, and the concentration of the net dopant of the bulk material 268 below the source 262 is N N . The vertical variation is the concentration N N of the net dopant of most of the body material 268 portion that is below the drain 264. As represented by curve 276* of Figure 36c, the concentration N N of the net dopant portion of the bulk material 268 below the source 262 of IGFET 220U is thus vertically varied to resemble the portion of body material 268 below source 262. The concentration N T of the total n-type dopant, except that the concentration N N of the bulk material 268 portion below the source 262 drops to zero at the source-body junction 396. This vertical doping dose curve below the source 262 of the IGFET 220U typically reduces the parasitic capacitance along the source-body junction 396.

概括的電腦模擬Generalized computer simulation

進行電腦模擬以檢查其根據本發明所構成之IGFET的裝置特性與性能優點,特別是針對於類比應用。模擬藉著(a)Siborg系統所提供之Micro Tec二維裝置模擬器及(b)Avant!公司所提供之Medici二維裝置模擬器所實行。Micro Tec模擬器主要利用於大訊號(DC)模擬。Medici模擬器主要運用於小訊號模擬。 Computer simulations were performed to examine the device characteristics and performance advantages of the IGFETs constructed in accordance with the present invention, particularly for analog applications. The simulation is based on (a) the Micro Tec 2D device simulator provided by the Siborg system and (b) Avant! The company's Medici two-dimensional device simulator is implemented. The Micro Tec simulator is primarily used for large signal (DC) simulations. The Medici simulator is mainly used for small signal simulation.

二個型式的n通道IGFET係電腦模擬於裝置層次:(a)根據本發明所構成之不對稱n通道IGFET及(b)概括對應於(但為發明性質不同於)電腦模擬之發明的n通道IGFET之對稱參考n通道IGFET。該發明之電腦模擬的不對稱IGFET係於下文概括指示為構造“A”。構造A之電腦模擬的發明的不對稱IGFET概括對應於圖13之長n通道IGFET 150或對應於IGFET 150之一短通道形式。參考的電腦模擬的對稱IGFET係於下文概括識別為構造“B”。構造B之電腦模擬的參考IGFET概括對應於圖29之長n通道IGFET 230 或對應於IGFET 230之一短通道形式,針對於IGFET 230之環圈袋部320與322為分別延伸在S/D區302與304之下方的情況。 Two types of n-channel IGFETs are computer-simulated at the device level: (a) an asymmetric n-channel IGFET constructed in accordance with the present invention and (b) an n-channel that generally corresponds to the invention of computer simulations (but differing in nature) Symmetrical reference n-channel IGFET for IGFETs. The computer simulated asymmetric IGFET of the invention is generally indicated below as construct "A". The inventive asymmetric IGFET summary of construction A corresponds to the long n-channel IGFET 150 of FIG. 13 or to one of the short channel forms of IGFET 150. The reference computer simulated symmetrical IGFET is generally identified below as construct "B". The reference IGFET of the computer simulation of construction B summarizes the long n-channel IGFET 230 corresponding to FIG. Or corresponding to one of the short channel forms of the IGFET 230, the ring pocket portions 320 and 322 for the IGFET 230 are respectively extended below the S/D regions 302 and 304.

構造A與B基於概括運用高斯(Gaussian)摻雜劑量變曲線之分析量變曲線模型。假設的是:在比較之各組的構造A與B係根據諸如圖31者之相同處理流程所製造。除了產生本發明之本體材料摻雜特徵的變化之外且除非是另外指出於下文,在比較之各組的構造A與B具有實質相同的摻雜劑分佈。在比較之各組的構造A與B亦具有基本相同的幾何尺寸,例如:閘極長度、閘極堆疊高度、及源極/汲極長度。於構造A與B之電腦模擬代表其製造於0.18微米技術節點的裝置,即:藉著其最小可印製的特徵尺寸為0.18微米之設計規則所製造的IGFET。 Structures A and B are based on an analytical quantitative curve model that generalizes the Gaussian doping dose-varying curve. It is assumed that the structures A and B of each group being compared are manufactured according to the same processing flow as those of FIG. In addition to producing variations in the doping characteristics of the bulk material of the present invention, and unless otherwise indicated below, the compositions A and B of each group being compared have substantially the same dopant profile. The configurations A and B of the compared groups also have substantially the same geometric dimensions, such as gate length, gate stack height, and source/drain length. The computer simulation of constructions A and B represents the device fabricated at the 0.18 micron technology node, namely the IGFET fabricated by its minimum printable design rule with a feature size of 0.18 micron.

電腦模擬概括為針對於增強類比性能。構造B因此電腦模擬於其預期以產生針對於構造A之增強類比性能的參數值。由於構造B之基本的架構針對於數位應用,運用於電腦模擬構造B以達成增強類比性能之某些參數值係不同於其將產生增強數位性能之參數值。 Computer simulations are outlined to enhance analogy performance. Construction B is therefore computer simulated as it is expected to produce parameter values for the enhanced analog performance of Construction A. Since the basic architecture of Construction B is for digital applications, some of the parameter values applied to computer simulation construct B to achieve enhanced analog performance are different from the parameter values that will result in enhanced digital performance.

假設的是:構造A與B係配置於多個IGFET構造,且絕緣填充的溝部被運用以實施一場絕緣區域,諸如:於圖29之場絕緣區域200,用於側向隔離於多個IGFET構造中之IGFET。具有針對於構造A與B為相同尺寸之溝部係相較於最佳化於多個IGFET構造中的參考構造B之數位性能所需者而較深為高達50%及較寬為高達20%。對應於分別 針對於圖13之不對稱n通道IGFET 150與於圖29之對稱n通道IGFET 230的p+井部116與316之IGFET井部相較於最佳化該構造B之數位性能所需者而較深為高達20%。發明的構造A係顯得為可能需要較寬/較深的溝部,藉以當存在其平均摻雜劑濃度為低於針對於數位性能所最佳化的構造B者之一井部而維持良好的IGFET間隔離。 It is assumed that the structures A and B are arranged in a plurality of IGFET configurations, and the insulated filled trenches are utilized to implement a field of insulating regions, such as the field insulating region 200 of FIG. 29, for lateral isolation from the plurality of IGFET structures. IGFET in the middle. The trenches having the same dimensions for the structures A and B are as deep as 50% and as wide as 20% wider than those required to optimize the reference structure B in the plurality of IGFET configurations. Corresponding to the respective The asymmetric n-channel IGFET 150 of FIG. 13 is deeper than the IGFET well of the p+ well 116 and 316 of the symmetric n-channel IGFET 230 of FIG. 29 as compared to the digital performance required to optimize the configuration B. Up to 20%. The Structure A of the invention appears to require a wider/deeper trench, whereby a good IGFET is maintained when there is a well whose average dopant concentration is lower than one of the constructs B optimized for digital performance. Isolated.

構造A與B均具有相同的臨界電壓VT與相同的背景p型摻雜劑濃度,即:0.4伏特與5×1015原子/立方公分。針對於一既定值的p型背景摻雜劑濃度,界定其沿著構造A與B的上半導體表面之袋部的p型植入物控制其臨界電壓VT。有鑒於此,於發明構造A之單一個袋部的p型袋部摻雜劑之峰值上表面濃度適當調整以達成其由參考構造B之二個環圈袋部的p型環圈摻雜劑之峰值上表面濃度所引起的相同臨界電壓。更明確而言,發明-的不對稱構造A相較於參考的對稱構造B而接收較重度劑量的袋部摻雜劑,以考量事實在於:參考構造B具有發明構造A之多二倍的袋部。於發明的不對稱構造A之單一個袋部的較高摻雜係提高其穿透電阻,相較於除了於比較的不對稱構造之袋部為具有如同參考對稱構造B之任何一個袋部的相同摻雜而為相同於構造A之一不對稱IGFET構造。 Both structures A and B have the same threshold voltage V T and the same background p-type dopant concentration, namely: 0.4 volts and 5 x 10 15 atoms/cm 3 . The p-type implant defining its pocket along the upper semiconductor surface of configurations A and B controls its threshold voltage V T for a given p-type background dopant concentration. In view of this, the peak upper surface concentration of the p-type bag portion dopant in the single bag portion of the inventive structure A is appropriately adjusted to achieve the p-ring ring dopant of the two ring pocket portions of the reference structure B. The same threshold voltage caused by the peak concentration on the peak. More specifically, the inventive-asymmetric configuration A receives a heavier dose of the pocket dopant compared to the reference symmetric configuration B, taking into account the fact that the reference configuration B has twice as many bags of the inventive configuration A. unit. The higher doping of the single pocket portion of the inventive asymmetric configuration A increases its penetration resistance compared to any pocket portion having a reference symmetrical configuration B as compared to the pocket portion of the comparative asymmetric configuration. The same doping is the same as one of the configuration A asymmetric IGFET configurations.

圖39呈現針對於發明的不對稱構造A的短通道形式實施之三維的摻雜劑量變曲線。針對於參考對稱構造B的對應短通道形式實施之三維的摻雜劑量變曲線呈現於圖40。圖39與40明確說明淨摻雜劑濃度NN為縱向距離x與深度 y之一函數。構造A與B的實施之僅為單矽部分呈現於圖39與40。雖然構造A與B均假設為製造於0.18微米技術節點,電腦模擬之於圖39與40的構造A與B之實施均具有一閘極長度LG為0.2微米,導致其歸因於平版印刷術對準之一通道長度L為0.12至0.14微米。 Figure 39 presents a three-dimensional doping dose curve for a short channel form of the asymmetric configuration A of the invention. A three-dimensional doping dose curve for a corresponding short channel form of reference symmetric configuration B is presented in FIG. Figures 39 and 40 clearly illustrate that the net dopant concentration N N is a function of the longitudinal distance x and the depth y. The only implementation of configurations A and B is shown in Figures 39 and 40. Although both constructions A and B are assumed to be fabricated at 0.18 micron technology nodes, computer simulations of configurations A and B of Figures 39 and 40 have a gate length L G of 0.2 microns, resulting in lithography. One channel length L is aligned from 0.12 to 0.14 microns.

於圖40之發明構造A的實施基本為對應於IGFET 150之短通道形式。於圖40之參考構造B的實施基本為對應於IGFET 230之短通道形式,按照於圖40之構造B的實施為概括模擬於增強構造A的實施之類比性能的參數值且按照IGFET 230之環圈袋部320與322為分別延伸在S/D區302與304之下方。為了方便,於圖39與40之短通道構造A與B的實施標示為具有其運用以識別IGFET 150與230的單矽區域之參考符號。由於構造B針對於類比應用而模擬,S/D區302與304分別標示為於圖40之源極302與汲極304。除了如下文所指示,對於構造A與B的短通道形式、或對於短通道的構造A與B之提及係意指於圖39與40所分別顯示的實施。 The implementation of the inventive construction A of FIG. 40 is substantially in the form of a short channel corresponding to the IGFET 150. The implementation of the reference configuration B of FIG. 40 is substantially in the form of a short channel corresponding to the IGFET 230, and the implementation of the configuration B according to FIG. 40 is to summarize the parameter values of the analog performance simulated in the implementation of the enhancement configuration A and in accordance with the ring of the IGFET 230. The pocket portions 320 and 322 extend below the S/D regions 302 and 304, respectively. For convenience, the implementation of the short channel configurations A and B of Figures 39 and 40 is labeled with reference numerals for their use to identify the single-turn regions of IGFETs 150 and 230. Since construction B is simulated for analog applications, S/D regions 302 and 304 are labeled as source 302 and drain 304, respectively, of FIG. Except as indicated below, the reference to the short channel form of configurations A and B, or the configuration A and B for the short channel, is meant to be the embodiment shown in Figures 39 and 40, respectively.

各個構造A或B之各個S/D區係由一極重度摻雜的主要部分與一較輕度摻雜(但仍為重度摻雜)的側向延伸部分所組成。構造A之短通道形式的汲極104因此為由主要部分104M與側向延伸部分104E所組成。然而,汲極104之區域104M與104E難以識別於圖39且因此為並未單獨標示於圖39。 Each of the S/D regions of each of the configurations A or B consists of a very heavily doped main portion and a lightly doped (but still heavily doped) laterally extending portion. The drain 104 in the form of a short channel of construction A thus consists of a main portion 104M and a laterally extending portion 104E. However, regions 104M and 104E of drain 104 are difficult to identify in Figure 39 and are therefore not separately labeled in Figure 39.

圖41與42呈現二維的摻雜劑輪廓(contour),針對於構 造A與B之分別的短通道形式。摻雜劑輪廓係短通道構造A與B之沿著透過垂直平面所取得。短通道構造A之區域104M與104E可清楚識別於圖41且因此標示於圖41。如由圖41之pn接面110與112的位置所示,短通道構造A之主要汲極部分104M相較於主要源極部分102M而在上半導體表面下方為延伸較深。即,針對於發明的不對稱構造A,汲極深度yD係大於源極深度yS。反之,圖42之檢驗係顯示的是:於參考對稱構造B之主要源極部分302M與主要汲極部分304M在上半導體表面下方為延伸實質相同的深度。 Figures 41 and 42 present a two-dimensional dopant profile for the respective short channel forms of configurations A and B. The dopant profile is obtained by passing the short channel structures A and B along a vertical plane. Regions 104M and 104E of short channel configuration A are clearly identified in Figure 41 and are therefore labeled in Figure 41. As shown by the position of the pn junctions 110 and 112 of FIG. 41, the main drain portion 104M of the short channel structure A extends deeper below the upper semiconductor surface than the main source portion 102M. That is, for the asymmetric structure A of the invention, the drain depth y D is greater than the source depth y S . Conversely, the test of FIG. 42 shows that the main source portion 302M of the reference symmetrical structure B and the main drain portion 304M are substantially the same depth below the upper semiconductor surface.

圖43呈現針對於構造A與B的短通道形式之沿著上半導體表面的淨摻雜劑濃度NN,作為自一測量參考S/D區位置的縱向距離x之函數。測量參考S/D區位置係自通道區中心為約3.5微米。於圖43與其呈現針對於構造A與B的電腦模擬資料之稍後的曲線圖,代表針對於發明構造A之曲線標示為小的空心的圓圈,以區別其資料曲線為未額外標示之針對於參考構造B的資料。於構造A與B具有實質相同資料之位置,針對於構造A與B之曲線段視覺上為彼此無法區別。 Figure 43 presents a function of longitudinal distance x for structures A net dopant concentration along the upper semiconductor surface N N, as measured from a B to a short-channel version of reference S / D zone location. The measurement reference S/D zone position is about 3.5 microns from the center of the channel zone. Figure 43 and its later rendering of the computer simulation data for constructions A and B, representing a circle marked as small for the construction of construction A to distinguish the data curve from the additional indication for Refer to the material of construction B. Where the structures A and B have substantially the same data, the curved segments for the structures A and B are visually indistinguishable from each other.

類似於圖14c之曲線段,於圖43之曲線段102M*、104M*、102E*與104E*分別代表發明的短通道構造A之沿著上半導體表面的區域102M、104M、102E與104E之淨n型摻雜劑的濃度NI。於圖43之曲線段106*與120*係分別代表短通道構造A之沿著上半導體表面的區域106與120之淨p型摻雜劑的濃度NI。曲線段302M*、304M*、302E* 與304E*分別代表參考的短通道構造B之沿著上半導體表面的區域302M、304M、302E與304E之淨p型摻雜劑的濃度NI。曲線段306*、320*與322*分別代表短通道構造B之沿著上半導體表面的區域306、320與322之淨p型摻雜劑的濃度。 Similar to the curved section of Fig. 14c, the curved sections 102M*, 104M*, 102E* and 104E* of Fig. 43 represent the net of the regions 102M, 104M, 102E and 104E along the upper semiconductor surface of the short channel structure A of the invention, respectively. The concentration of the n-type dopant N I . The curve segments 106* and 120* of Fig. 43 represent the concentration N I of the net p-type dopant along the regions 106 and 120 of the upper semiconductor surface of the short channel structure A, respectively. Curve segments 302M*, 304M*, 302E*, and 304E* represent the concentration N I of the net p-type dopant along the regions 302M, 304M, 302E, and 304E of the upper semiconductor structure B of the reference short channel configuration B, respectively. Curve segments 306*, 320*, and 322* represent the concentration of the net p-type dopant of regions 306, 320, and 322 along the upper semiconductor surface of short channel configuration B, respectively.

於圖43之曲線段106*係說明於發明的短通道構造A之通道區106的不對稱摻雜劑漸變。尤其是,曲線段106*係顯示的是:短通道構造A之沿著上半導體表面的淨摻雜劑濃度NI係於靠近源極102而達到於約為1×1018原子/立方公分之一高值,且然後於移動自該高值的位置為跨過通道區106朝向汲極104而逐漸減小。雖然未顯示於電腦模擬,於短通道構造A之通道區106的總p型摻雜劑的濃度NT,相較於區域106沿著上表面為會合汲極104之處,係於其區域106沿著上表面為會合源極102之處而較低為最多10%(典型較低為不到100%)。反之,短通道構造B之通道區306的對稱摻雜劑漸變係由曲線段306*所說明,顯示的是:短通道構造B之沿著上表面的濃度NI係於靠近源極102與汲極104為於大約相等的峰值,且於通道區306之中間為稍微較低的值。 The curved section 106* of Figure 43 illustrates the asymmetric dopant grading of the channel region 106 of the short channel construction A of the invention. In particular, the curved segment 106* shows that the net dopant concentration N I along the upper semiconductor surface of the short channel structure A is close to the source 102 and is about 1×10 18 atoms/cm 3 . A high value, and then gradually decreases in position from the high value across the channel region 106 toward the drain 104. Although not shown in the computer simulation, the channel region in the short-channel structures A total p-type dopant concentration of the N T 106, compared to the region along the upper surface 106 meets the drain electrode 104, the region 106 based thereon Along the upper surface is where the source 102 is converged and is as low as 10% (typically less than 100%). Conversely, the symmetrical dopant grading of the channel region 306 of the short channel structure B is illustrated by the curved segment 306*, which shows that the concentration N I along the upper surface of the short channel structure B is close to the source 102 and 汲. The poles 104 are at approximately equal peaks and are slightly lower values in the middle of the channel region 306.

圖44a呈現針對於構造A與B的短通道形式之透過S/D位置的絕對(總p型與總n型)垂直摻雜劑量變曲線。運用於圖43的縱向距離x為測量自其之相同測量參考S/D區位置,針對於發明的短通道構造A之絕對摻雜劑濃度NT說明於圖44a,沿著透過主要源極部分102M於距離x為等於0.0 微米之一垂直線(或平面)及沿著透過主要汲極部分104M於距離x為等於0.7微米之一垂直線。圖44a同理描繪針對於參考的短通道構造B之濃度NT,沿著延伸透過主要源極部分302M於距離x為等於0.0微米之一垂直線及沿著延伸透過主要汲極部分304M於距離x為等於0.7微米之一垂直線。 Figure 44a presents an absolute (total p-type and total n-type) vertical doping dose curve for the transmitted S/D position for the short channel form of configurations A and B. The longitudinal distance x used in Figure 43 is the same measurement reference S/D zone position measured from it, and the absolute dopant concentration N T for the short channel configuration A of the invention is illustrated in Figure 44a along the main source portion. 102M is a vertical line (or plane) at a distance x equal to 0.0 microns and a vertical line passing through the main drain portion 104M at a distance x equal to 0.7 microns. Figure 44a is similarly depicting the concentration N T of the short channel configuration B for reference, along a vertical line extending through the main source portion 302M at a distance x equal to 0.0 microns and along the extension through the main drain portion 304M. x is a vertical line equal to 0.7 microns.

類似於圖8b與10b之曲線,於圖44a之曲線段102”與104”分別為對應於發明的短通道構造A之源極102與汲極104且因此代表沿著透過源極102與汲極104(明確為主要源極部分102M與主要汲極部分104M)之分別於距離x為0.O與0.7微米的垂直線之總n型摻雜劑的濃度NT。於圖44a之曲線段114”、116”、118”、120”與124”分別為概括對應於短通道構造A之區域114、116、118、120與124且因此各自代表沿著透過源極102與汲極104之於距離x為0.0與0.7微米的垂直線之總p型摻雜劑的濃度NT。項目110#與112#分別指出針對於短通道構造A之pn接面110與112。 Similar to the curves of Figures 8b and 10b, the curved segments 102" and 104" in Figure 44a are respectively the source 102 and the drain 104 corresponding to the short channel configuration A of the invention and thus represent the source 102 and the drain 104 (definitely the main source portion 102M and the main drain portion 104M) are at a concentration N T of the total n-type dopant of a vertical line having a distance x of 0.7 and 0.7 μm, respectively. The curved segments 114", 116", 118", 120" and 124" of Fig. 44a are respectively representative of the regions 114, 116, 118, 120 and 124 corresponding to the short channel configuration A and thus each representative along the transmitting source 102. and drain 104 to a distance x concentration N T 0.0 and 0.7 of the vertical line m of the total p-type dopant. item # 110 and # 112 are indicated with respect to the pn junction 110 of short-channel structures a 112.

於發明的短通道構造A之井部116的p型井部摻雜劑的最大濃度發生在其等於0.7微米之深度yW,如由於圖44a之曲線段116”所指示。曲線段116”與124”之組合說明於短通道構造A之在汲極104之下方而沿著於距離x為等於0.7微米之垂直線的垂直摻雜劑量變曲線之次陡峭性質。特別是,組合的曲線段116”/124”顯示的是:直接在汲極104之下方於本體材料部分的總p型摻雜劑的濃度NT於移動自最大p型井部摻雜劑濃度的位置到於汲極104底部之pn接面112而減小約100%且因此顯著超過10%。 The maximum concentration of the p-type well dopant of the well portion 116 of the inventive short channel configuration A occurs at a depth y W equal to 0.7 microns, as indicated by the curved segment 116" of Figure 44a. The curved segment 116" and The combination of 124" illustrates the sub-steep nature of the vertical doping dose curve of the short channel configuration A below the drain 104 along a vertical line having a distance x equal to 0.7 microns. In particular, the combined curve segment 116 "/ 124" shows: directly below the drain 104 of the body material portion of the total p-type dopant concentration of N T moves from a position at the maximum p-type well dopant concentration at the bottom to drain 104 The pn junction 112 is reduced by about 100% and thus by significantly more than 10%.

於關於圖44a之發明的短通道構造A,汲極-本體接面112的深度yD係約為0.2微米。由於在汲極104下方於本體材料部分的總p型摻雜劑的最大濃度NT之深度yW係0.7微米,於短通道構造A之在汲極104下方於本體材料部分的總p型摻雜劑的最大濃度NT之位置相較於汲極104而在上半導體表面之下方為較深約3.5倍。結果,於本體材料108之總p型摻雜劑的濃度NT係於自最大p型井部摻雜劑濃度的位置(其相較於汲極104而在上半導體表面之下方為較深不超過5倍)朝上移動至汲極104而減小為約100%。 For the short channel configuration A of the invention of Fig. 44a, the depth y D of the drain-body junction 112 is about 0.2 microns. Since the depth of the maximum concentration of the N T below drain 104 of the total p-type dopant in the body material portion y W 0.7 micron lines, the short-channel structures A to the total doped p-type body material portion below drain 104 The maximum concentration of the dopant, N T , is about 3.5 times deeper than the drain 104 above the upper semiconductor surface. As a result, the bulk material in the total p-type dopant concentration of 108 N T based on the position from the maximum dopant concentration of the p-type well section (as compared to its drain 104 below the upper surface of the semiconductor is not deeper More than 5 times) moving up to the drain 104 and decreasing to about 100%.

於圖44a之曲線段302”與304”分別為對應於參考的短通道構造B之源極302與汲極304且代表沿著透過源極302與汲極304之於距離x為0.0與0.7微米的垂直線之總n型摻雜劑的濃度NT。曲線段114”、316”、318”、320”與322”分別為對應於短通道構造B之區域114、316、318、320與322且因此代表沿著透過源極302與汲極304之於距離x為0.0與0.7微米的垂直線之總p型摻雜劑的濃度NT。有關於此,曲線段114”均運用於短通道構造A與B。 The curve segments 302" and 304" in Fig. 44a are respectively the source 302 and the drain 304 of the short channel configuration B corresponding to the reference and represent a distance x between the source 302 and the drain 304 of 0.0 and 0.7 micron. The concentration of the total n-type dopant of the vertical line N T . Curve segments 114", 316", 318", 320", and 322" are regions 114, 316, 318, 320, and 322 corresponding to short channel configuration B, respectively, and thus represent along source 302 and drain 304. x is from 0.0 to 0.7 microns concentration N T of the vertical line of the total p-type dopant. in this connection, curve segments 114 "are applied to short-channel structures a and B.

如同關於發明的短通道構造A之井部116的情況,於參考的短通道構造B之井部316的p型井部摻雜劑的最大濃度發生在其等於0.7微米之深度yW,如由於圖44a之曲線段316”所指示。然而,於短通道構造B,曲線段316”、318”與322”(或320”)之組合係於直接在汲極304(或源極320)之下方的p型本體材料部分為相當平坦。組合的曲線段316”/318”/322”顯示的是:直接在汲極304之下方於本體材 料部分的總p型摻雜劑濃度NT係於移動自最大p型井部摻雜劑濃度的位置到於汲極304底部之pn接面而顯著改變為小於5%,且因此為顯著小於10%。即:於短通道構造B之直接在汲極304下方於本體材料部分的垂直摻雜劑量變曲線非為次陡峭。 As with the case of the well 116 of the short channel configuration A of the invention, the maximum concentration of the p-type well dopant in the well 316 of the reference short channel configuration B occurs at a depth y W equal to 0.7 microns, as The curve segment 316" of Figure 44a is indicated. However, in the short channel configuration B, the combination of curve segments 316", 318" and 322" (or 320") is directly below the drain 304 (or source 320). The p-type body material portion is relatively flat. The combined curved segment 316"/318"/322" shows that the total p-type dopant concentration N T directly below the drain 304 is in the bulk material portion. The position from the maximum p-type well dopant concentration to the pn junction at the bottom of the drain 304 is significantly changed to less than 5%, and thus is significantly less than 10%. That is, the vertical doping dose curve of the short channel structure B directly under the drain 304 in the body material portion is not steep.

針對於構造A與B的短通道形式,對應於圖44a之絕對垂直摻雜劑量變曲線的淨垂直摻雜劑量變曲線呈現於圖44b。於圖44b之曲線段102*與104*分別代表於發明的短通道構造A之源極102與汲極104之淨n型摻雜劑的濃度NN,沿著透過源極102與汲極104(明確為透過主要源極部分102M與主要汲極部分104M)之分別於距離x為0.0與0.7微米的垂直線。曲線段114*、116*、120*與124*係各自代表於短通道構造A之區域114、116、120與124之淨p型摻雜劑的濃度NN,沿著透過源極102與汲極104之於距離x為0.0與0.7微米的垂直線。 For the short channel form of configurations A and B, the net vertical doping dose curve corresponding to the absolute vertical doping dose curve of Figure 44a is presented in Figure 44b. The curved segments 102* and 104* of Fig. 44b represent the concentration N N of the net n-type dopant of the source 102 and the drain 104 of the short channel structure A of the invention, respectively, along the source 102 and the drain 104. A line perpendicular to the distance x between 0.0 and 0.7 microns is defined (through the primary source portion 102M and the main drain portion 104M). The curve segments 114*, 116*, 120*, and 124* each represent a concentration N N of the net p-type dopant in the regions 114, 116, 120, and 124 of the short channel structure A, along the source 102 and the source The poles 104 are perpendicular to the distance x from 0.0 and 0.7 microns.

於圖44b之曲線段302*與304*分別代表於參考的短通道構造B之源極302與汲極304之淨n型摻雜劑的濃度NN,沿著透過源極302與汲極304(明確為透過主要源極部分302M與主要汲極部分304M)之分別於距離x為0.0與0.7微米的垂直線。曲線段114*、316*與318*分別代表於短通道構造B之區域114、316與318之淨p型摻雜劑的濃度NN,沿著透過源極302與汲極304之於距離x為0.0與0.7微米的垂直線。曲線段114*均運用於短通道構造A與B。 The curve segments 302* and 304* in FIG. 44b represent the concentration N N of the net n-type dopant of the source 302 and the drain 304 of the reference short channel configuration B, respectively, along the source 302 and the drain 304. (Immediately through the main source portion 302M and the main drain portion 304M) vertical lines having a distance x of 0.0 and 0.7 microns, respectively. The curve segments 114*, 316*, and 318* represent the concentration N N of the net p-type dopant in the regions 114, 316, and 318 of the short channel structure B, respectively, along the distance x between the source 302 and the drain 304. It is a vertical line of 0.0 and 0.7 microns. Curve segments 114* are applied to short channel configurations A and B.

圖45a與45b分別說明線線性範圍互導gmw與線飽和互 導gmsatw為閘極至源極電壓VGS之函數,針對於構造A與B的短通道形式,其閘極長度LG為0.2微米。圖46a與46b分別說明線線性範圍互導gmw與線飽和互導gmsatw為閘極至源極電壓VGS之函數,針對於構造A與B的長通道形式,其基本為相同於短通道的構造A與B而構成,除了其閘極長度LG為0.5微米。針對於圖45a與46a之線性範圍gmw曲線圖,汲極至源極電壓VDS係0.1伏特。針對於圖45b與46b之飽和gmsatw曲線圖,電壓VDS係2.0伏特。圖45a、45b、46a與46b亦指示線性範圍互導gmw與飽和互導gmsatw為確定自其之線汲極電流IDw的變化。 45a and 45b illustrate the linear linear range mutual conductance g mw and the line saturation mutual conductance g msatw as a function of the gate-to-source voltage V GS , respectively. For the short channel form of the structures A and B, the gate length L G is 0.2 microns. Figures 46a and 46b illustrate linear linear range transconductance g mw and line saturation transconductance g msatw as a function of gate-to-source voltage V GS , respectively, for the long channel form of constructions A and B, which are substantially identical to the short channel The structures A and B are constructed except that the gate length L G is 0.5 μm. For the linear range gmw plots of Figures 45a and 46a, the drain-to-source voltage V DS is 0.1 volts. For the saturated g msatw plots of Figures 45b and 46b, the voltage V DS is 2.0 volts. FIG. 45a, 45b, 46a and 46b are also indicative of the linear range of the transconductance g mw saturated transconductance g msatw to determine a change from its line of the drain current I Dw.

如圖46a與46b所顯示,相較於參考構造B的長通道形式,發明構造A的長通道形式呈現顯著為較高的互導(線性範圍互導gmw與飽和互導gmsatw)。如於圖45a所指示,相較於構造B的短通道形式,構造A的短通道形式呈現稍微較高(粗略為較高10%)的線性範圍互導gmw。圖45b顯示的是:構造A與B的短通道形式係具有幾乎相同的gmsatw特性。針對於發明構造A之互導gmw與gmsatw的概括較高值致能其具有較高的電壓增益且因此改良其類比性能。 46a and FIG. 46b shows, in the form of long channel as compared to the reference structure B, in the form of long channel configuration A of the invention exhibit significantly higher mutual conductance (transconductance g mw linear range and the saturation transconductance g msatw). As indicated in Figure 45a, the short channel form of Construction A exhibits a slightly higher (roughly 10% higher) linear range transconductance gmw than the short channel form of Construction B. Figure 45b shows that the short channel forms of configurations A and B have nearly identical g msatw characteristics. A configuration of the invention is directed to transconductance g mw and higher values are summarized g msatw enable it has a higher voltage gain and thus improve its analog performance.

圖47說明針對於構造A與B的短通道形式之電流-電壓轉移特性,即:線汲極電流IDw對於閘極至源極電壓VGS之變化,於2.0伏特之閘極至源極電壓VGS。如圖47所顯示,短通道的構造A與B具有幾乎為相同的電流-電壓特性。亦為預期的是:構造A與B的長通道形式將具有大部分為相同的電流-電壓特性。 47 illustrates for short-channel structures A and B forms of the current - voltage transfer characteristics, namely: line for the drain current I Dw changes the gate-to-source voltage V GS, the 2.0 volts on the gate-to-source voltage V GS . As shown in Fig. 47, the configurations A and B of the short channel have almost the same current-voltage characteristics. It is also expected that the long channel forms of configurations A and B will have mostly the same current-voltage characteristics.

注意以下事實:參考的短通道構造B之上方本體部分318設有高濃度的p型APT摻雜劑以助於避免於短通道構造B之穿透,針對於短通道構造A與B之幾乎為相同的電流-電壓特性顯示的是:於發明構造A,不存在p型APT摻雜劑於概括類似於參考構造B之p型APT摻雜劑者的位置並未導致於發明構造A之穿透。針對於此結果之定性的物理解釋在於:實行p型袋部摻雜劑於構造A之抗穿透作用。更為明確而言,於發明構造A之袋部120的p型袋部摻雜劑相較於參考構造B之袋部320與322任一者的p型環圈植入物而提供較大摻雜,針對於構造A以具有如同構造B之相同的臨界電壓VT。此差異可藉由比較於圖43的曲線段120*與曲線段320*及322*而看出。於發明構造A之p型袋部植入物的較高摻雜致能其避免穿透而且同時操作於可相比於參考構造B者之低電流洩漏。 Note the fact that the upper body portion 318 of the reference short channel configuration B is provided with a high concentration of p-type APT dopant to help avoid penetration of the short channel structure B, and for the short channel structures A and B are almost The same current-voltage characteristics show that, in inventive construction A, the absence of a p-type APT dopant at a position that is similar to the p-type APT dopant of reference configuration B does not result in penetration of the inventive construct A. . A qualitative physical explanation for this result consists in the penetration resistance of the p-type pocket dopant to the structure A. More specifically, the p-type pocket dopant of the pocket portion 120 of the inventive construction A provides a larger blend than the p-ring implant of either of the pocket portions 320 and 322 of the reference configuration B. Miscellaneous, for construction A to have the same threshold voltage V T as configuration B. This difference can be seen by comparing curve segment 120* and curve segments 320* and 322* of FIG. The higher doping of the p-type pocket implant of the inventive construction A enables it to avoid penetration and at the same time operate at low current leakage comparable to the reference configuration B.

前述結論係由一另一參考短通道IGFET構造C所得到的電腦模擬資料而進一步支持,構造C缺少參考短通道構造B之APT植入物而在其他方面為等於短通道構造B。針對於參考構造C之於VDS值為2.0伏特的電流-電壓轉移特性係由圖47之標示為C的曲線所指示。洩漏電流ID0w係於閘極至源極電壓VGS為零值之汲極電流IDw的值。如圖47所顯示,相較於發明的短通道構造A,針對於參考構造C之汲極洩漏電流ID0w係較高為大約50倍。此係指出的是:穿透發生於參考構造C。 The foregoing conclusions are further supported by a computer simulation of another reference short channel IGFET configuration C, which lacks the APT implant of the reference short channel configuration B and otherwise equals the short channel configuration B. The current-voltage transfer characteristic for the reference configuration C with a V DS value of 2.0 volts is indicated by the curve labeled C in FIG. The leakage current I D0w is the value of the drain current I Dw whose gate-to-source voltage V GS is zero. As shown in FIG. 47, the drain leakage current I D0w for the reference configuration C is about 50 times higher than the short channel configuration A of the invention. This line indicates that penetration occurs in reference construction C.

圖48描繪線汲極電流IDw為汲極至源極電壓VDS之函 數,針對於構造A與B的短通道形式,於範圍為自0.5伏特至2.0伏特之閘極至源極電壓VGS的值。如於圖48所指示,於各個指示VGS值,發明的短通道構造A相較於參考短通道構造B而概括達成汲極電流IDw之稍微較高的值。發明的構造A因此相較於參考構造B而具有較低的通道電阻。此外,相較於參考構造B,汲極電流IDw係於發明構造A之高電壓VDS為隨著增大的汲極至源極電壓VDS而增大為較少。此係指出:相較於參考構造B,較小的崩潰倍增及/或較小的通道寬度調變發生於發明構造A。 Figure 48 depicts the line drain current I Dw as a function of the drain to source voltage V DS , for the short channel form of construction A and B, in the range from 0.5 volts to 2.0 volts gate to source voltage V GS Value. As indicated in FIG. 48, at each of the indicated V GS values, the inventive short channel configuration A summarizes a slightly higher value of the gate current I Dw than the reference short channel configuration B. The construction A of the invention therefore has a lower channel resistance than the reference configuration B. Furthermore, compared to the reference configuration B, the drain current I Dw is higher than the high voltage V DS of the inventive configuration A as the increased drain-to-source voltage V DS increases to less. This series indicates that a smaller collapse multiplication and/or a smaller channel width modulation occurs in the inventive construction A than the reference configuration B.

發明的不對稱IGFET之分析與性能優點Analysis and performance advantages of the inventive asymmetric IGFET

針對於良好的類比性能,一IGFET之源極應儘可能合理為淺,藉以避免於短通道長度之臨界電壓VT的衰減。源極亦應儘可能為重度摻雜,藉以使得於存在源極電阻RS之IGFET的有效互導gmeff為最大。有效互導gmeff係由IGFET的本質互導gm所決定為: For good analog performance, the source of an IGFET should be as reasonably shallow as possible to avoid attenuation of the threshold voltage V T of the short channel length. The source should also be heavily doped as much as possible so that the effective cross-conductance g meff of the IGFET in which the source resistance R S is present is maximized. The effective transconductance g meff is determined by the intrinsic mutual conductance g m of the IGFET as:

如同式(1)所指出,降低源極電阻RS使有效互導gmeff提高。跨於源極電阻RS的電壓降亦相減自本質的閘極至源極電壓,使得實際的閘極至源極電壓VGS係於較低的值。此解除偏壓IGFET於其閘極電極。簡言之,源極電阻RS應儘可能合理為低。 As indicated by equation (1), lowering the source resistance R S increases the effective transconductance g meff . The voltage drop across the source resistance R S is also subtracted from the intrinsic gate to source voltage such that the actual gate to source voltage V GS is tied to a lower value. This de-biass the IGFET at its gate electrode. In short, the source resistance R S should be as reasonably low as possible.

除了需要具有於IGFET之源極與汲極的較低串聯電阻以達成IGFET之接通電阻Ron的較低值之外,最小化源極電阻RS需要以最大化有效互導gmeff。更特別而言,跨於源 極電阻RS的電壓降相加至總源極至汲極的電壓降。此使接通電阻Ron增大。 In addition to requiring a lower series resistance of the source and drain of the IGFET to achieve a lower value of the on-resistance R on of the IGFET, minimizing the source resistance R S is needed to maximize the effective mutual conductance g meff . More specifically, the voltage drop across the source resistance R S is added to the total source to drain voltage drop. This causes the on-resistance R on to increase.

為了達成高電壓能力且降低熱載體注入,一IGFET之汲極應儘可能合理為深且輕度摻雜。此等需要應符合而未致使接通電阻Ron為顯著增大且未致使短通道的臨界電壓衰減。 In order to achieve high voltage capability and reduce heat carrier injection, the drain of an IGFET should be as reasonably deep and lightly doped as possible. These needs should be met without causing the on-resistance R on to increase significantly and not causing the threshold voltage of the short channel to decay.

一IGFET之寄生電容擔任重要任務於設定其含有IGFET之電路的速度性能,特別是於小訊號的高頻作業。圖49係說明各自關聯於一n通道IGFET Q之汲極電極D、源極電極S、閘極電極E與本體區域電極B的寄生電容CDB、CSB、CGB、CGD與CGS,其中,CDB代表汲極至本體的電容,CSB代表源極至本體的電容,CGB代表閘極至本體的電容,CGD代表閘極至汲極的電容,且CGS代表閘極至源極的電容。IGFET Q之一小訊號的等效模型呈現於圖50,其中,VBS係本體至源極的電壓,gmb係本體電極的互導,且項目440與442係電流源。 The parasitic capacitance of an IGFET is an important task in setting the speed performance of its IGFET-containing circuits, especially for high frequency operation of small signals. Figure 49 is a diagram showing the parasitic capacitances C DB , C SB , C GB , C GD and C GS of the drain electrode D, the source electrode S, the gate electrode E and the body region electrode B, respectively associated with an n-channel IGFET Q, Among them, C DB represents the capacitance of the drain to the body, C SB represents the capacitance of the source to the body, C GB represents the capacitance of the gate to the body, C GD represents the capacitance of the gate to the drain, and C GS represents the gate to the gate The capacitance of the source. An equivalent model of one of the small signals of IGFET Q is presented in Figure 50, where VBS is the body-to-source voltage, gmb is the mutual conductance of the body electrodes, and items 440 and 442 are the current sources.

放大器之頻寬係定義為放大器的增益下降至其低頻值之1/(約為0.707)的頻率值。概括為合意的是:放大器之頻寬儘可能為大。 The bandwidth of the amplifier is defined as the gain of the amplifier drops to 1/ of its low frequency value. Frequency value (approximately 0.707). It is generally desirable that the bandwidth of the amplifier is as large as possible.

圖49之IGFET Q可配置於三種主要的放大器組態,以提供作為輸入電壓Vin之函數的放大輸出電壓Vout,根據以下關係式:Vout=HAVin (2)其中,HA係IGFET的複數轉移函數。此三種組態係於圖51a 至51c所分別顯示之共源極、共閘極與共汲極組態,其中,CL係負載電容,VDD係高供應電壓,且VSS係低供應電壓。放大器輸入電壓Vin供應自一電壓源444。於圖51b與51c之元件446係一電流源,而於圖51b之訊號VG係閘極電壓。針對於圖51a至51c之三種組態的轉移函數HA之檢驗係證明的是:降低寄生的汲極至本體電容CDB及/或寄生的源極至本體電容CSB係改良於此等組態各者的IGFET性能: 針對於圖51a之共源極放大器組態的轉移函數HA係輸入極點/輸出極點函數: 其中,RD係汲極(串聯)電阻,ωin係於輸入極點之角頻率,ωout係於輸出極點之角頻率,s係等於jω之複數頻率運算子,ω係角頻率。於共源極組態之IGFET Q的寄生電容係藉由分別既定如下的極點頻率ωin與ωout而輸入式(3): FIG IGFET Q 49 may be disposed on the three main amplifier configured to provide as a function of input voltage V in the amplified output voltage V out, according to the relation: V out = H A V in (2) where, H A A complex transfer function of an IGFET. These three configurations are shown in common source, common gate, and common drain configurations shown in Figures 51a through 51c, where the C L is a load capacitor, V DD is a high supply voltage, and V SS is a low supply voltage. . Amplifier input voltage V in supplied from a voltage source 444. The elements 446 of Figures 51b and 51c are a current source, and the signal V G of Figure 51b is a gate voltage. The test of the transfer function H A for the three configurations of Figures 51a to 51c demonstrates that the parasitic drain-to-body capacitance C DB and/or the parasitic source-to-body capacitance C SB are improved in this group. IGFET performance for each mode: Transfer function H A for the common source amplifier configuration of Figure 51a Input pole/output pole function: Among them, R D is the drain (series) resistance, ω in is the angular frequency of the input pole, ω out is the angular frequency of the output pole, s is the complex frequency operator equal to jω, and the ω is the angular frequency. The parasitic capacitance of the IGFET Q in the common source configuration is input to equation (3) by setting the pole frequencies ω in and ω out as follows:

寄生的汲極至本體電容CDB出現於式(5)之輸出極點頻率ωout。針對於共源極組態之源極電阻RS為零的情形,依據式(4),輸入極點係無限。於圖51a之IGFET Q的頻寬接著為等於如由式(5)所既定之ωout。針對於既定的值之汲極電阻RD與寄生的閘極至汲極電容CGD,輸出極點頻率ωout隨著減少的汲極至本體電容CDB而提高。降低寄生的汲極至本體電容CDB因此合意為提高於圖51a之IGFET Q共源極組態的頻寬。 The parasitic bungee-to-body capacitance C DB appears at the output pole frequency ω out of equation (5). For the case where the source resistance R S of the common source configuration is zero, according to equation (4), the input pole is infinite. The bandwidth of the IGFET Q of Fig. 51a is then equal to ω out as defined by equation (5). For a given value of the gate resistance R D and the parasitic gate to drain capacitance C GD , the output pole frequency ω out increases with decreasing drain to body capacitance C DB . Reducing the parasitic buck to body capacitance C DB is therefore desirable to increase the bandwidth of the IGFET Q common source configuration of Figure 51a.

此外,如於圖51a所示,於共源極組態之寄生的汲極至本體電容CDB並聯於負載電容CL。降低汲極至本體電容CDB因此有利為降低其輸出負載效應。 Furthermore, as shown in Figure 51a, the parasitic drain-to-body capacitance C DB in the common source configuration is paralleled to the load capacitance C L . Reducing the drain to body capacitance C DB is therefore advantageous to reduce its output load effect.

針對於圖51b之共閘極放大器組態的轉移函數HA係輸入極點/輸出極點函數: 其中,針對於共閘極組態的輸入極點頻率ωin係既定為: 降低源極至本體電容CSB使輸入極點頻率ωin提高。此係致能IGFET Q的性能為改良於圖51b之共閘極組態。 The transfer function H A for the common gate amplifier configuration of Figure 51b is the input pole/output pole function: Among them, the input pole frequency ω in for the common gate configuration is defined as: Reducing the source-to-body capacitance C SB increases the input pole frequency ω in . The performance of this system enabled IGFET Q is improved in the common gate configuration of Figure 51b.

針對於圖51b之共閘極放大器組態的輸出極點頻率ωout係由式(5)所既定。降低寄生的汲極至本體電容CDB因此增大圖51b之共閘極組態的頻寬。 The output pole frequency ω out for the common gate amplifier configuration of Figure 51b is defined by equation (5). Reducing the parasitic drain to the bulk capacitance C DB thus increases the bandwidth of the common gate configuration of Figure 51b.

針對於圖51c之共汲極放大器組態的轉移函數HA係單零點/單極點函數: 其中,ωz係於零點之角頻率,且ωp係於極點之角頻率。寄生電容藉由其分別既定為如下之零點頻率ωz與極點頻率ωp而輸入式(8): 寄生的源極至本體電容CSB出現於式(10)之極點頻率ωp。藉由降低電容CSB,極點頻率ωp提高。此係改良於圖51c之 共汲極組態的IGFET之頻率特性。 The transfer function H A for the common drain amplifier configuration of Figure 51c is a single zero/single pole function: Where ω z is at the angular frequency of zero and ω p is at the angular frequency of the pole. The parasitic capacitance is input to the equation (8) by setting the zero point frequency ω z and the pole frequency ω p as follows: The parasitic source-to-body capacitance C SB appears at the pole frequency ω p of equation (10). By lowering the capacitance C SB , the pole frequency ω p is increased. This is a modification of the frequency characteristics of the IGFET of the common blip configuration of Figure 51c.

類似於關於圖51a之共源極組態的汲極至本體電容CDB所發生者,於圖51c所示之共汲極組態,寄生的源極至本體電容CSB並聯於負載電容CL。降低源極至本體電容CSB因此有利為降低於共汲極組態之其輸出負載效應。 Similar to the buck-to-body capacitance C DB of the common source configuration of Figure 51a, the parasitic source-to-body capacitance C SB is connected in parallel to the load capacitance C L in the common drain configuration shown in Figure 51c. . Reducing the source-to-body capacitance C SB is therefore advantageous for reducing its output load effect in a common drain configuration.

圖52說明圖51a之共源極放大器組態的短路輸出形式之一種小訊號模型。於圖52之小訊號模型,IGFET Q之汲極電極D係電氣短路至源極電極S。圖53呈現圖52之IGFET Q的模型之一種小訊號等效電路。於圖53之元件448係一電壓控制的電流源。於圖52與53之項目vgs、ii、與io分別為小訊號的閘極至源極(輸入)電壓、小訊號的輸入電流、及小訊號的輸出電流。 Figure 52 illustrates a small signal model of the shorted output form of the common source amplifier configuration of Figure 51a. In the small signal model of FIG. 52, the drain electrode D of the IGFET Q is electrically shorted to the source electrode S. Figure 53 presents a small signal equivalent circuit of the model of IGFET Q of Figure 52. Element 448 of Figure 53 is a voltage controlled current source. The items v gs , i i , and i o in Figures 52 and 53 are the gate-to-source (input) voltage of the small signal, the input current of the small signal, and the output current of the small signal, respectively.

一IGFET之截止頻率fT定義為頻率f的值:於其,該IGFET的短路輸出共源極組態之電流增益AI的絕對值為下降至1。即: 截止頻率fT係由圖53之小訊號的等效電路而導出為: 於式(12)之電容CGB係介於閘極電極G與其由IGFET Q所佔有的主動區域外的IGFET本體區域之間的寄生電容。 The cutoff frequency f T of an IGFET is defined as the value of the frequency f at which the absolute value of the current gain A I of the short-circuit output common source configuration of the IGFET drops to one. which is: The cutoff frequency f T is derived from the equivalent circuit of the small signal of Figure 53 as: The capacitance C GB of the equation (12) is a parasitic capacitance between the gate electrode G and the IGFET body region outside the active region occupied by the IGFET Q.

提高一放大IGFET的互導gm係通常改良其性能能力,因為其電壓增益係通常為增大。由於截止頻率fT係根據式(12)隨著提高互導gm而提高,於截止頻率fT之一提高係改良IGFET性能之一指標。 An enlarged IGFET improve transconductance g m of lines are usually improve its performance capabilities, because it increases the voltage gain is typically based. Since the cutoff frequency f T is increased according to the equation (12) as the mutual conductance g m is increased, one of the cutoff frequencies f T is an indicator of the improved IGFET performance.

於IGFET Q之古典的長通道模型(針對於其:源極電阻RS為零),互導gm係: 其中,W係IGFET寬度,L同樣為通道長度,μn係電子移動率,且CGIa係每單位面積的閘極介電電容。於IGFET Q之短通道的速度飽和模型,互導gm係:gm=WvnsatCGIa (14)其中,vnsat係電子飽和速度,由於IGFET Q係n通道裝置。式(13)與(14)之驗證顯示的是:於長通道及短通道模型之互導gm均為正比於面閘極介電電容CGIaClassical long-channel model for IGFET Q (for which: source resistance R S is zero), mutual conductance g m : Among them, W is the IGFET width, L is also the channel length, μ n is the electron mobility, and C GIa is the gate dielectric capacitance per unit area. The velocity saturation model of the short channel of IGFET Q, the mutual conductance g m system: g m = Wv nsat C GIa (14) where v nsat is the electron saturation velocity due to the IGFET Q-based n-channel device. The verification of equations (13) and (14) shows that the mutual conductance g m of the long channel and short channel models is proportional to the gate gate dielectric capacitance C GIa .

針對於IGFET Q之古典的長通道模型,於飽和,電容CGS、CGD與CGB係: For the classical long-channel model of IGFET Q, for saturation, capacitors C GS , C GD and C GB are:

CGD=WLGDoverlapCGIa (16) C GD = WL GDoverlap C GIa ( 16)

CGB=WLCGIa (17)其中,LGSoverlap與LGDoverlap係閘極電極分別重疊IGFET Q之源極與汲極的縱向距離。項WLGSoverlapCGIa係起因於閘極電極重疊源極的寄生電容。項WLGDoverlapCGIa係起因於閘極電極重疊汲極的寄生電容。將式(15)至(17)插入至式(12)產生針對於一理想的長通道IGFET於飽和的截止頻率fTC GB =WLC GIa (17) wherein the L GSoverlap and L GDoverlap system gate electrodes overlap the longitudinal distance of the source and the drain of the IGFET Q, respectively. Item WL GSoverlap C GIa system due to the gate electrode overlapping the source parasitic capacitance. Item WL GDoverlap C GIa system due to the gate electrode overlaps the drain parasitic capacitance. Inserting equations (15) through (17) into equation (12) produces a cutoff frequency f T for saturation of an ideal long channel IGFET.

式(15)與(16)係未預期以準確為針對於本發明之不對稱IGFET,歸因於其通道區之不對稱的縱向摻雜漸變。然而,式(15)與(16)可運用為於計算寄生電容CGS與CGD之傾向指示者,用於評估本發明之不對稱IGFET的截止頻率fT。電 容CGS與CGD之較準確值可藉由電腦模擬而確定。 Equations (15) and (16) are not intended to be accurate for the asymmetric IGFET of the present invention due to the asymmetric longitudinal doping gradient of its channel region. However, equations (15) and (16) can be used as indicators of the tendency to calculate parasitic capacitances C GS and C GD for evaluating the cutoff frequency f T of the asymmetric IGFET of the present invention. The more accurate values of the capacitances C GS and C GD can be determined by computer simulation.

按照定義,截止頻率fT涉及於共源極組態之輸出的短路條件。結果,頻率fT本質為消滅寄生的汲極至本體電容CDB之效應。此外,頻率fT係並未反應寄生的源極至本體電容CSB之效應,由於其利用共源極組態。 By definition, the cutoff frequency f T relates to the short circuit condition of the output of the common source configuration. As a result, the frequency f T is essentially the effect of destroying the parasitic drain to the bulk capacitance C DB . Furthermore, the frequency f T does not reflect the effect of the parasitic source-to-body capacitance C SB , since it utilizes a common source configuration.

截止頻率fT具有其相依於操作電流(即:汲極電流ID)之一尖峰截止值fTpeak。雖然尖峰截止頻率fTpeak有用於評估高頻的IGFET性能,電路典型操作在低於峰值fTpeak為10之一至二個因數的頻率。除了針對於一IGFET之峰值fTpeak係合意為高之外,概括為合意的是:隨著減小操作電流為低於對應於峰值fTpeak的操作電流位準,具有截止頻率fT之降低的變化。 The cutoff frequency f T has a peak cutoff value f Tpeak which is dependent on the operating current (ie, the drain current I D ). Although the peak cutoff frequency f Tpeak has IGFET performance for evaluating high frequencies, the circuit typically operates at a frequency that is one to two factors below the peak f Tpeak of 10. In addition to being desirably high for the peak f Tpeak of an IGFET, it is generally desirable to have a decrease in the cutoff frequency f T as the operating current is reduced below the operating current level corresponding to the peak f Tpeak . Variety.

諸如於發明的IGFET 100、140、150、160、170、180、190、210、100V、140V、150V、160V、170V、180V與190V之pn接面110與112,源極本體與汲極本體接面通常為反向偏壓。當一pn接面係反向偏壓,沿著接面之空乏區域呈現其既定為如下之一小訊號的面電容Cda 其中,ε0係絕對介電係數,KS係半導體材料的相對介電係數,且td係空乏區域之電壓相依的厚度。 Pn junctions 110 and 112 such as the inventive IGFETs 100, 140, 150, 160, 170, 180, 190, 210, 100V, 140V, 150V, 160V, 170V, 180V and 190V, the source body and the drain body are connected The face is usually reverse biased. When a pn junction is reverse biased, the surface capacitance C da which is determined to be one of the following small signals is present along the depletion region of the junction: Where ε 0 is the absolute dielectric constant, the relative dielectric constant of the K S -based semiconductor material, and t d is the voltage-dependent thickness of the depletion region.

針對於沿著均勻摻雜的基板所形成之一pn接面,針對於該種理想pn接面之空乏區域的厚度td係: 其中,VR係施加的反向電壓,VBI係接面之內建電壓,q係 電子電荷,且NB0係於基板之均勻的背景摻雜劑濃度。內建電壓VBI係根據以下的關係式而隨著背景摻雜劑濃度NB0所變化: 其中,k係波次曼(Boltzmann’s)常數,T係溫度,且ni係本質載體濃度。 For a pn junction formed along a uniformly doped substrate, the thickness t d of the depletion region for the ideal pn junction is: Wherein, V R is a reverse voltage applied, a built-in voltage of the V BI junction, q is an electron charge, and N B0 is a uniform background dopant concentration of the substrate. The built-in voltage V BI varies with the background dopant concentration N B0 according to the following relationship: Wherein, k is a Boltzmann's constant, a T-system temperature, and n i is an essential carrier concentration.

圖54說明淨摻雜劑濃度ND-NA為如何隨著至一pn接面模型之p型基板材料的距離y而變化,p型基板可具有三種基本型式的摻雜劑量變曲線之任一者,其中,ND與NA分別為絕對的施體與受體摻雜劑濃度。接面模型係亦顯示於圖54。如由圖示的接面模型所指出,p型材料相較於接面的n型材料為較厚且因此為較輕度摻雜。於圖54之曲線450、452、與454分別指示於p型材料的次陡峭、陡峭、與超陡峭摻雜劑量變曲線之實例。距離yd係指其沿著接面之空乏區域的p型部分之厚度。 Figure 54 illustrates how the net dopant concentration N D -N A varies with the distance y of the p-type substrate material to a pn junction model, which can have three basic types of doping dose curves. In one case, N D and N A are absolute donor and acceptor dopant concentrations, respectively. The junction model is also shown in Figure 54. As indicated by the junction model shown, the p-type material is thicker and therefore less lightly doped than the n-type material of the junction. Curves 450, 452, and 454 of Figure 54 indicate examples of sub-steep, steep, and ultra-steep doping dose curves for p-type materials, respectively. The distance y d refers to the thickness of the p-type portion of the depletion region along the junction.

次陡峭量變曲線450係近似代表於發明的n通道IGFET 100、140、150、160、170、180、190、210、100V、140V、150V、160V、170V、180V與190V各者的汲極-本體接面112之下方的垂直摻雜劑量變曲線。於其汲極104包括主要汲極部分104M與側向汲極延伸部分104E之IGFET 150、160、180、190、210、150V、160V、180V與190V,曲線450特定為代表沿著主要部分104M之底部的汲極-本體接面112之下方的垂直摻雜劑量變曲線。針對於其源極102相較於袋部120在上半導體表面下方為延伸較深之IGFET 170、180、190、170V、180V與190V,曲線450亦代表在源極-本體接面110之下方的垂直摻雜劑量變曲線,特定為在針對於IGFET 180、190、180V與190V各者之沿著主要源極部分102M之底部的接面部分之下方。按照導電性型式為反向,曲線450更代表於發明的p通道IGFET 220、220U與220V各者之汲極264的主要部分264M的底部之下方的垂直摻雜劑量變曲線。平坦曲線452代表由式(18)至(20)所包含之理想陡峭pn接面的p型材料。 The sub-steep quantitation curve 450 is approximately representative of the buckoo-body of the inventive n-channel IGFETs 100, 140, 150, 160, 170, 180, 190, 210, 100V, 140V, 150V, 160V, 170V, 180V and 190V. The vertical doping dose curve below the junction 112. The illuminator 104 includes IGFETs 150, 160, 180, 190, 210, 150V, 160V, 180V, and 190V of the main drain portion 104M and the lateral drain extension portion 104E, and the curve 450 is specifically representative of the main portion 104M. A vertical doping dose curve below the bottom bungee-body junction 112. For the IGFET whose source 102 is deeper below the upper semiconductor surface than the pocket 120 170, 180, 190, 170V, 180V and 190V, curve 450 also represents the vertical doping dose curve below the source-body junction 110, specifically for the IGFET 180, 190, 180V and 190V Below the junction portion of the bottom of the main source portion 102M. In the opposite direction of the conductivity pattern, curve 450 represents a vertical doping dose curve below the bottom of the main portion 264M of the drain 264 of each of the inventive p-channel IGFETs 220, 220U and 220V. Flat curve 452 represents a p-type material of the ideal steep pn junction included in equations (18) through (20).

圖55描繪空乏區域之寄生的面電容Cda為如何隨著跨於圖54所模型化的pn接面之反向電壓VR而變化。於圖55之曲線460、462與464係指其分別針對於圖54之曲線450、452與454的Cda變化。尤其是,曲線462係定性式指示如式(18)所決定之針對於理想pn接面的冪方律變化,運用自式(19)之td資料(及自式(20)之VBI資料)。 Figure 55 depicts the parasitic capacitance of the depletion area surface C da varies with how to FIG. 54 across the pn junction of the model of the reverse voltage V R. 55 in graph 464 with the means 460, 462, 450, 452, and changes its C da 454 are directed to the graph of FIG. 54. In particular, curve 462 is a qualitative expression indicating the power law variation for the ideal pn junction as determined by equation (18), using the t d data from equation (19) (and the V BI data from equation (20). ).

發明的n通道IGFET 100、140、150、160、170、180、190、210、100V、140V、150V、160V、170V、180V或190V之沿著汲極-本體接面112之寄生的汲極至本體電容CDB係近似為正比於面空乏電容Cda,如於圖55之曲線460所代表,曲線460係對應於圖54之次陡峭接面量變曲線450。如圖55所顯示,針對於曲線460之空乏電容Cda係較低於(a)針對於對應於圖54的陡峭接面量變(平坦)曲線452之曲線462或(b)針對於對應於圖54的超陡峭接面量變曲線454之曲線464。因此,於各個IGFET 100、140、150、160、170、180、190、210、100V、140V、150V、160V、170V、 180V或190V的汲極-本體接面112之下方的超陡峭垂直摻雜劑量變曲線使其汲極至本體電容CDB降低。同理係應用至發明的p通道IGFET 220、220U或220V之沿著汲極264的底部之電容CDB。寄生的源極至本體電容CSB亦通常為降低,特別是於其源極102相較於袋部120在上半導體表面下方為延伸較深之n通道IGFET 170、180、190、170V、180V與190V The parasitic drain of the inventive n-channel IGFET 100, 140, 150, 160, 170, 180, 190, 210, 100V, 140V, 150V, 160V, 170V, 180V or 190V along the drain-body junction 112 The bulk capacitance C DB is approximately proportional to the surface depletion capacitance C da , as represented by curve 460 of FIG. 55 , which corresponds to the sub-steep junction variation curve 450 of FIG. 54 . FIG 55 shows the curve for the depletion capacitance C da 460 based on the lower of (a) curve 452 corresponds to the curve in FIG. 54 for the amount of the steep surface (flat) or 462 (b) for the corresponding to FIG. The ultra-steep junction of curve 54 is a curve 464 of the curve 454. Thus, ultra-steep vertical doping below the drain-body junction 112 of each IGFET 100, 140, 150, 160, 170, 180, 190, 210, 100V, 140V, 150V, 160V, 170V, 180V or 190V The dose curve reduces the drain to body capacitance C DB . The same applies to the capacitance C DB of the p-channel IGFET 220, 220U or 220V of the invention along the bottom of the drain 264. The parasitic source-to-body capacitance C SB is also generally reduced, particularly the n-channel IGFETs 170, 180, 190, 170V, 180V whose source 102 is deeper than the pocket 120 below the upper semiconductor surface. 190V

此外,如藉著比較於圖55的曲線460與曲線462及464所指出,針對於對應於圖54的次陡峭接面量變曲線450之曲線460的面空乏電容Cda相較於曲線462或464為隨著反向偏壓VR而較緩慢變化。於各個發明的IGFET 100、140、150、160、170、180、190、210、100V、140V、150V、160V、170V、180V、190V、220、220U或220V之寄生的汲極至本體電容CDB因此為隨著反向電壓VR而降低變動。此係有利,因為較少補償需要以考量於電容CDB的變化。相同的論點係應用於寄生的源極至本體電容CSB,特別是於IGFET 170、180、190、170V、180V與190V。 Further, by the curve 460 as compared to curve 462 of FIG. 55 and 464 stated amount of surface curve 450 curve 460 compared to the depletion capacitance C da for curve 462 or 464 times in a steep surface 54 corresponds to FIG. It changes slowly with the reverse bias voltage V R . Parasitic buck-to-body capacitance C DB of each inventive IGFET 100, 140, 150, 160, 170, 180, 190, 210, 100V, 140V, 150V, 160V, 170V, 180V, 190V, 220, 220U or 220V Therefore, the variation is reduced with the reverse voltage V R . This is advantageous because less compensation is needed to account for variations in the capacitance C DB . The same argument applies to the parasitic source to body capacitance C SB , especially for IGFETs 170, 180, 190, 170V, 180V and 190V.

於進而檢驗在汲極104與264之下方的次陡峭摻雜劑量變曲線,考慮一種次陡峭接面量變曲線之極端的實例,其中,沿著pn接面之較輕度摻雜側的半導體材料之淨摻雜劑濃度NB係於其充分接近接面以影響沿著接面的寄生電容之一選擇距離而作成自一第一摻雜劑濃度值至一較高第二摻雜劑濃度值之一步級變化。此實例係模型化於圖56,其說明淨摻雜劑濃度NB為如何隨著自接面之距離y而變化。 Further examining the sub-steep doping dose curves below the drains 104 and 264, consider an extreme example of a sub-steep junction quenching curve in which the semiconductor material along the lighter doped side of the pn junction The net dopant concentration N B is formed from a first dopant concentration value to a higher second dopant concentration value by sufficiently approaching the junction to affect a selected distance along one of the parasitic capacitances of the junction. One step change. This example is modeled in Figure 56, which illustrates how the net dopant concentration, N B , varies with the distance y of the self-joining surface.

圖56之二步級式pn接面構成於以下方式。pn接面之較輕度摻雜側係關於p型材料而形成,其中,淨摻雜劑濃度NB係針對於自接面向外延伸至一距離yd0之一距離為於第一值NB0,於距離yd0,濃度NB係作成一步級變化至一第二值NB1。距離yd0係將構成空乏區域p型邊界的位置,於反向電壓VR為零值,若於p型材料之濃度NB係於低值NB0,超過距離yd0向外至少為至一位置,超過其,於p型材料之濃度NB變化係將未顯著影響沿著接面的寄生電容。 The two-step pn junction of Fig. 56 is constructed in the following manner. The lighter doped side of the pn junction is formed with respect to the p-type material, wherein the net dopant concentration N B is extended to a distance y d0 from the self-joining surface to a distance of the first value N B0 . At a distance y d0 , the concentration N B is changed stepwise to a second value N B1 . The distance y d0 is the position of the p-type boundary of the depletion region, and the reverse voltage V R is zero. If the concentration N B of the p-type material is at the low value N B0 , the distance y d0 is at least one to the outside. The position above which the change in concentration of the p-type material N B will not significantly affect the parasitic capacitance along the junction.

隨著反向電壓VR自零而增大至某個最大值VRmax,沿著於圖56之模型的接面之空乏區域擴展自距離yd0而至最大距離ydmax。超過距離ydmax,於p型材料之淨摻雜劑濃度NB可具有任意量變曲線,如於圖56所示。如亦為於圖56所指示,沿著接面之較重度摻雜的n型材料之濃度NB係於其相較於NB1為較大許多之一均勻值ND0As the reverse voltage V R increases from zero to a certain maximum value V Rmax , the depletion region of the junction along the model of FIG. 56 extends from the distance y d0 to the maximum distance y dmax . Above the distance y dmax , the net dopant concentration N B of the p-type material can have any amount of variation curve, as shown in FIG. As also indicated in Figure 56, the concentration N B of the heavily doped n-type material along the junction is based on a larger uniform value N D0 than N B1 .

圖56描繪於p型材料之摻雜劑的量變曲線,隨著高濃度值NB1範圍為自NB0(於距離yd0之濃度的步級變化為消失)直到20NB0,於典型的yd0值為0.2微米且於典型的NB0值為3×1016原子/立方公分。若模型的pn接面係於上半導體表面下方的深度yD之汲極-本體接面,自NB0至NB1之濃度NB的步級增大發生在上表面之下方的一深度yD+yd0Figure 56 depicts the quantitative curve of the dopant in the p-type material, with the high concentration value N B1 ranging from N B0 (the step change in the concentration of the distance y d0 disappears) until 20N B0 , in the typical y d0 The value is 0.2 μm and the typical N B0 value is 3 × 10 16 atoms/cm 3 . If the pn junction of the model is at the drain-body junction of the depth y D below the upper semiconductor surface, the step of increasing the concentration N B from N B0 to N B1 occurs at a depth y D below the upper surface. +y d0 .

圖56之二步級式pn接面的面空乏電容Cda係由以下的微分式所影響: 按照條件在於:空乏區域係當反向電壓VR為零而延伸至距 離yd0,求取式(21)之積分產生針對於距離yd0之以下值: 結合式(18)與(20)產生針對於空乏電容Cda之以下結果: The surface depletion capacitance C da of the two-step pn junction of Fig. 56 is affected by the following differential equation: The condition is that the depletion region extends to the distance y d0 when the reverse voltage V R is zero, and the integral of equation (21) is generated to produce the following values for the distance y d0 : Binding of formula (18) and (20) to produce the following results for the depletion capacitance C da:

圖57說明面空乏電容Cda為如何隨著反向電壓VR而變化,針對於其範圍為自NB0(同樣為超過模型的接面)直到20 NB0之高濃度值NB1的諸值,如由式(23)所確定。圖57顯示的是:增大的比值NB1/NB0使電容Cda為隨著電壓VR而較緩慢變化。針對於此,合意的是:濃度比值NB1/NB0儘可能合理為高,藉以令寄生電容CDB與CSD為緩慢變化於本發明之不對稱IGFET。 Figure 57 illustrates how the surface depletion capacitance C da varies with the reverse voltage V R for values ranging from N B0 (also over the junction of the model) up to a high concentration value N B1 of 20 N B0 , as determined by equation (23). Figure 57 shows that the increased ratio N B1 /N B0 causes the capacitance C da to change slowly with voltage V R . For this reason, it is desirable that the concentration ratio N B1 /N B0 is as high as possible, so that the parasitic capacitances C DB and C SD are slowly changed to the asymmetric IGFET of the present invention.

面空乏電容係當反向電壓VR為零而於一初始值Cd0a。設定於式(23)之電壓VR至零係產生: The surface depletion capacitance is when the reverse voltage V R is zero and is at an initial value C d0a . The voltage V R set to the equation (23) to zero is generated:

如所預期,初始空乏電容值Cd0a針對於零反向電壓之一理想pn接面的古典值。依據式(24),根據低值NB0之平方根,電容值Cd0a隨著減小低濃度值NB0所減小。結合於選取濃度比NB1/NB0之一高值以具有於寄生電容CDB與CSB之緩慢變化,低濃度值NB0應為低以便電容CDB與CSB於零反向電壓VR為低。 As expected, the initial depletion capacitance value CdOa is for a classical value of one of the ideal pn junctions of the zero reverse voltage. According to equation (24), according to the square root of the low value N B0 , the capacitance value C d0a decreases as the low concentration value N B0 decreases. Combined with a high value of one of the selected concentration ratios N B1 /N B0 to have a slow variation of the parasitic capacitances C DB and C SB , the low concentration value N B0 should be low so that the capacitances C DB and C SB are at zero reverse voltage V R It is low.

關於電容與頻率參數之電腦模擬Computer simulation of capacitance and frequency parameters

考量關於電容與頻率參數的上述資訊,小訊號模擬係藉著麥迪奇(Medici)模擬器而實行以描述發明的構造A之 接面電容的特性。圖58a與58b分別描繪針對於接面電容特性描述之由麥迪奇模擬器所產生的構造A之短通道與長通道形式。項目470與472分別指示於圖58a與58b之源極與汲極接點(或源極與汲極電極)。金屬矽化物層254與256分別納入於接點470與472。於圖58a與58b各者的p型本體材料(或區域)108之摻雜輪廓說明於本體材料108之摻雜的漸變(grading)性質。圖58a之短通道IGFET具有一閘極長度LG為0.15微米。針對於圖58b之長通道IGFET的閘極長度LG係1.0微米。 Considering the above information about the capacitance and frequency parameters, the small signal simulation is performed by the Medici simulator to describe the characteristics of the junction capacitance of the construction A of the invention. Figures 58a and 58b depict short and long channel versions of configuration A produced by the McDutch simulator, respectively, for junction capacitance characteristics. Items 470 and 472 are indicated at the source and drain contacts (or source and drain electrodes) of Figures 58a and 58b, respectively. Metal telluride layers 254 and 256 are incorporated at contacts 470 and 472, respectively. The doping profile of the p-type body material (or region) 108 of each of Figures 58a and 58b illustrates the grading properties of the doping of the bulk material 108. The short channel IGFET of Figure 58a has a gate length L G of 0.15 microns. The gate length L G of the long channel IGFET for Figure 58b is 1.0 micron.

圖59說明寄生的線汲極至本體電容CDBw為汲極至本體電壓VDB之函數,針對於發明的構造A的短通道實施(相當類似於圖58a之構造A的短通道實施)及針對於參考構造B的短通道實施,其為於尺寸方面與摻雜劑方面而實質對應於圖59之構造A的短通道實施,除了本發明摻雜特徵之外。於圖59之閘極長度係0.2微米而非為於圖58a之0.15微米。針對於圖59之CDBw模擬的閘極至源極電壓VGS係0.9伏特。如圖59所示,相較於針對於參考構造B之對應的短通道形式,針對於發明構造A之此短通道形式的汲極至本體電容CDBw係較低的相當多。特別而言,針對於發明構造A之檢驗的短通道形式的電容CDBw於0至2伏特之VDS範圍為針對於參考構造B之檢驗的短通道形式之電容CDBw的大約50%。 Figure 59 illustrates that the parasitic line drain to body capacitance C DBw is a function of the drain to body voltage V DB , for the short channel implementation of the inventive construction A ( approximately similar to the short channel implementation of construction A of Figure 58a) and for The short channel implementation of reference configuration B, which is a short channel implementation that substantially corresponds to the configuration A of FIG. 59 in terms of size and dopant aspects, in addition to the doping features of the present invention. The gate length in Figure 59 is 0.2 microns instead of 0.15 microns in Figure 58a. The gate-to-source voltage V GS for the C DBw simulation of Figure 59 is 0.9 volts. As shown in FIG. 59, the buck-to- body capacitance C DBw for this short channel form of the inventive construction A is relatively low compared to the corresponding short channel form for the reference configuration B. In particular, the V DS range of the short channel form capacitance C DBw for the inspection of the construction configuration A is 0 to 2 volts, which is about 50% of the capacitance C DBw in the short channel form for the inspection of the reference configuration B.

圖60描繪寄生的線源極至本體電容CSBw為源極至本體電壓VSB之函數,針對於檢驗於圖59之構造A與B的短通 道實施。閘極至源極電壓VGS係同樣為0.9伏特。如於圖60所示,相較於針對於參考構造B之對應的短通道形式,針對於發明構造A之檢驗的短通道形式的源極至本體電容CSBw係較低的相當多。雖然CSBw降低係未如同CDBw降低之大,構造A之檢驗的短通道形式係於2.0伏特之VSB值為相較於構造B之檢驗的短通道形式而具有大約35至40%較低的CSBw值,且於0伏特之VSB值為相較於參考構造B之檢驗的短通道形式而具有大約25至35%較低的CSBw值。 Figure 60 depicts the parasitic line source to body capacitance C SBw as a function of source to body voltage V SB for the short channel implementation of configurations A and B of Figure 59. The gate to source voltage V GS is also 0.9 volts. As shown in FIG. 60, the source-to-body capacitance C SBw in the form of the short channel for the inspection of the inventive configuration A is considerably lower than the corresponding short channel form for the reference configuration B. Although the C SBw reduction is not as large as the C DBw reduction, the short channel form of the construction A test is at a V SB value of 2.0 volts which is about 35 to 40% lower than the short channel form of the test of construction B. The C SBw value, and the V SB value at 0 volts has a lower C SBw value of about 25 to 35% compared to the short channel version of the test of reference configuration B.

針對於檢驗於圖59之構造A的短通道形式,於源極至本體電容CSBw之有些較少的改良係預期,因為於源極102之總p型摻雜劑係由於p型袋部植入物而提高。此外,於諸多應用,源極至本體電容CSBw相較於汲極至本體電容CDBw而較不重要,因為源極102係縮短至本體材料108。如所期望,針對於構造A的短通道形式之源極至本體電容CSBw的進一步降低可藉由使得井部116為較深而達成。 For the short channel form of the configuration A of Figure 59, some minor improvements in the source-to-body capacitance C SBw are expected because the total p-type dopant in the source 102 is due to the p-type pocket implant. Increased by the entry. Moreover, in many applications, source-to-body capacitance C SBw compared to the drain to body capacitance C DBw It was important, since the source material 102 to the body 108 based shortening. As desired, a further reduction in the source-to-body capacitance C SBw for the short channel form of construction A can be achieved by making the well 116 deeper.

圖61說明截止頻率fT為線汲極電流IDw之函數,針對於檢驗於圖59之構造A與B的短通道實施。圖61亦說明針對於發明的短通道構造A的一種變化者A’之隨著線汲極電流IDw的截止頻率fT的變化。於圖61及於其呈現針對於發明的構造A與A’之電腦模擬資料的後續圖式,代表針對於構造A’之資料的曲線標示為實心圓,以區分該資料與針對於構造A之標示為空心圓圈的資料。另一的發明構造A’之特別的特徵係關聯於圖63與64而描述於下文。如圖61所指示,針對於模擬的短通道構造A、A’與B之截止頻率 fT大部分為相同。 Figure 61 illustrates the cutoff frequency f T as a function of the line drain current I Dw for the short channel implementation of the configurations A and B of Figure 59. Figure 61 also illustrates the change in the cutoff frequency f T of the line A drain current I Dw for a change in the short channel configuration A of the invention. In FIG. 61 and subsequent figures of the computer simulation data for the structures A and A' of the invention, the curve representing the material for the structure A' is indicated as a solid circle to distinguish the data from the structure A. Information marked as a hollow circle. A particular feature of another inventive construction A' is described below in connection with Figures 63 and 64. As indicated in Fig. 61, the cutoff frequencies f T for the simulated short channel configurations A, A' and B are mostly the same.

針對於圖61之構造A、A’與B之實施的長通道形式,隨著線汲極電流IDw的截止頻率fT的變化說明於圖62。如圖62所指示,針對於發明的構造A與A’的長通道形式之截止頻率fT大部分為相同。重要是,針對於發明的構造A與A’的長通道形式之頻率fT相較於針對於參考構造B的長通道形式而較大的相當多。是以,發明構造A與A’的長通道形式相較於參考構造B的長通道形式而具有較佳的性能。 For the long channel form of the implementation of constructions A, A' and B of Fig. 61, the change in the cutoff frequency f T of the line drain current I Dw is illustrated in Fig. 62. As indicated in Fig. 62, the cutoff frequency f T of the long channel form for the configurations A and A' of the invention is mostly the same. Importantly, the frequency f T for the long channel form of the constructs A and A' of the invention is considerably larger than the long channel form for the reference configuration B. Therefore, the long channel form of the inventive structures A and A' has better performance than the long channel form of the reference structure B.

於汲極下方的垂直本體材料摻雜劑量變曲線為次陡峭之附加IGFET,歸因於井部摻雜劑濃度的次表層最大值The vertical bulk material doping dose curve below the bungee is a sub-steep additional IGFET, due to the subsurface maximum of the well dopant concentration

圖63說明其根據本發明之不對稱IGFET構造A’的一種短n通道實施480。除了概括顯示構造細節之外,針對於IGFET 480之摻雜輪廓描繪於圖63,作為深度y與自一源極位置的縱向距離x之函數。用於測量距離x之源極位置係自通道區中心而約為0.35微米。 Figure 63 illustrates a short n-channel implementation 480 of its asymmetric IGFET configuration A&apos; in accordance with the present invention. In addition to summarizing the architectural details, the doping profile for IGFET 480 is depicted in Figure 63 as a function of depth y and the longitudinal distance x from a source location. The source position for measuring the distance x is about 0.35 microns from the center of the channel region.

IGFET 480概括為類似於圖11之短通道IGFET 140所構成,除了:於IGFET 480之源極102係由n++主要源極部分102M與n+較輕度摻雜的側向延伸部分102E所組成,如同於圖13之長通道IGFET 150。此致能於IGFET 480之源極電阻RS降低,且因而改良其類比性能。如同於IGFET 140與150,p型袋部120相較於源極102而在上半導體表面之下方為延伸較深。針對於IGFET 480之汲極深度yD係大於源極深度yS為約50%。 IGFET 480 is summarized as being similar to short channel IGFET 140 of Figure 11, except that source 102 of IGFET 480 is comprised of n++ main source portion 102M and n+ lightly doped laterally extending portion 102E, as The long channel IGFET 150 of Figure 13. This results in a decrease in the source resistance R S of the IGFET 480 and thus improves its analog performance. As with IGFETs 140 and 150, p-type pocket portion 120 extends deeper below the upper semiconductor surface than source 102. The drain depth y D for IGFET 480 is greater than the source depth y S by about 50%.

圖64呈現針對於圖39的發明構造A及針對於圖63的 發明構造A’(即:IGFET 480)之沿著上半導體表面的淨摻雜劑濃度NN,作為自前述源極位置的縱向距離x之函數。如同於圖12c與14c,曲線段106*與120*在此為代表於分別的區域106與120之淨p型摻雜劑的濃度NN而曲線段102M*、102E*、104M*、104E*與104*代表於分別的區域102M、102E、104M、104E與104之淨n型摻雜劑的濃度NN。雖然僅標示為空心的圓圈,曲線段102M*、102E*、106*與120*均應用至構造A與構造A’。 Figure 64 presents a net dopant concentration N N along the upper semiconductor surface for the inventive configuration A of Figure 39 and for the inventive configuration A' of Figure 63 (i.e., IGFET 480) as a longitudinal direction from the source location The function of distance x. As in Figures 12c and 14c, the curved segments 106* and 120* are here representative of the concentration N N of the net p-type dopants in the respective regions 106 and 120 and the curved segments 102M*, 102E*, 104M*, 104E* And 104* represent the concentration N N of the net n-type dopant in the respective regions 102M, 102E, 104M, 104E and 104. Although only the circles are indicated as hollow, the curved segments 102M*, 102E*, 106* and 120* are applied to the construction A and the construction A'.

如於圖64之曲線段104*與102M*所指示,發明構造A’之IGFET 480相較於主要源極部分102M而沿著上表面之於汲極104為達到一有些較低的最大淨摻雜劑濃度。較特別而言,IGFET 480之沿著上表面於汲極104的淨摻雜劑濃度NN的最大值通常為於主要源極部分102M的濃度NN的最大上表面值之20至50%,典型為30至40%。雖然圖64說明一個實例,其中,於汲極104之濃度NN的最大上表面值稍微超過1×1020原子/cm2,短通道IGFET 480之汲極104的最大上表面NN濃度係可易於顯著降低,例如:5×1019原子/cm2降至1×1019原子/cm2或更小者,視於主要源極部分102M的最大上表面NN濃度而定。此外,於IGFET 480之汲極104相較於主要源極部分102M而在上表面之下方為延伸有些較深。本質上,於其源極為由一主要部分與一較輕度摻雜側向部分所組成的一IGFET(諸如:IGFET 150)之藉著一主要部分與一較輕度摻雜側向部分所形成的二部分式汲極係以一較深的較輕度摻雜的汲極而取代於IGFET 480。於IGFET 480之汲極104的降低摻雜造成於汲極104之降低的電場,且使IGFET 480以操作為遠離不合意的汲極衝擊離子化發生在其之電場大小。 As indicated by the curved segments 104* and 102M* of FIG. 64, the IGFET 480 of the inventive configuration A' has a somewhat lower maximum net addition to the drain 104 along the upper surface than the main source portion 102M. The concentration of the dopant. More specifically, the maximum value of the net dopant concentration N N of the IGFET 480 along the upper surface of the drain 104 is typically 20 to 50% of the maximum upper surface value of the concentration N N of the main source portion 102M, Typically 30 to 40%. Although FIG. 64 illustrates an example in which the maximum upper surface value of the concentration N N at the drain 104 is slightly more than 1 × 10 20 atoms/cm 2 , the maximum upper surface N N concentration of the drain 104 of the short channel IGFET 480 is It is easy to significantly reduce, for example, 5 × 10 19 atoms/cm 2 to 1 × 10 19 atoms/cm 2 or less, depending on the maximum upper surface N N concentration of the main source portion 102M. In addition, the drain 104 of the IGFET 480 extends somewhat deeper below the upper surface than the main source portion 102M. Essentially, an IGFET (such as IGFET 150) whose source is composed of a major portion and a lightly doped lateral portion is formed by a major portion and a lightly doped lateral portion. The two-part drain is replaced by IGFET 480 with a deeper, lighter doped drain. The reduced doping of the drain 104 of the IGFET 480 causes a reduced electric field at the drain 104 and causes the IGFET 480 to operate at an electric field magnitude that occurs away from undesirable buckling ionization.

圖65說明其作為閘極長度LG之一函數的臨界電壓VT,針對於發明構造A’、參考構造B、及一另一的對稱參考構造D之IGFET的電腦模擬,參考構造D缺少構造B之環圈袋部而在其他方面為實質相同於構造B之尺寸與摻雜方式。於圖65之模擬,閘極介電質厚度tGI係4.0奈米(nm)。 Figure 65 illustrates the threshold voltage V T as a function of the gate length L G . For the computer simulation of the inventive configuration A', the reference configuration B, and another symmetric reference structure D, the reference structure D lacks construction. The ring pocket portion of B is otherwise substantially the same size and doping mode as construction B. In the simulation of Figure 65, the gate dielectric thickness t GI is 4.0 nanometers (nm).

如圖65所示,相較於參考構造B或D,臨界電壓衰減係於發明構造A’為移轉至臨界電壓VT的一較低值。圖65亦顯示的是:發明構造A’相較於參考構造B或D而招致較少不合意的反向短通道效應。即,相較於參考構造B或D,發明構造A’隨著增大於長通道域之閘極長度LG而經歷於臨界電壓VT之較少的變化(通常為較少的減小)。構造A因此相較於參考構造B或D而具有較佳的短通道與長通道特性。 As shown in FIG. 65, the threshold voltage decay is compared to the reference configuration B or D in that the inventive configuration A' is a lower value shifted to the threshold voltage V T . Figure 65 also shows that the inventive configuration A' incurs less undesirable reverse short channel effects than the reference configuration B or D. That is, compared to the reference configuration B or D, the inventive configuration A' undergoes less variation (typically less reduction) of the threshold voltage V T as it increases in the gate length L G of the long channel domain. Construction A therefore has better short channel and longer channel characteristics than reference configuration B or D.

附加IGFET之製造Manufacture of additional IGFET

實施圖63之不對稱IGFET構造A’的n通道IGFET 480典型為根據本發明所製造,根據於圖31的製程而運用以製造不對稱n通道IGFET 210的步驟,按照n型源極/汲極延伸部分與主要源極/汲極植入步驟之適當的修改,且按照附加遮罩步驟及關聯的離子植入作業之運用。此等差異係針對於IGFET 480而描述於下文,如為適當,運用其用於描述IGFET 210之製造的相同參考標號。 The n-channel IGFET 480 implementing the asymmetric IGFET configuration A' of FIG. 63 is typically fabricated in accordance with the present invention and is employed in accordance with the process of FIG. 31 to fabricate an asymmetric n-channel IGFET 210 in accordance with an n-type source/drain Appropriate modifications to the extension and main source/drain implantation steps, and in accordance with the use of additional masking steps and associated ion implantation operations. These differences are described below with respect to IGFET 480, as appropriate, using the same reference numerals used to describe the fabrication of IGFET 210.

特別而言,於圖31l之階段,n+前驅源極延伸部分102EP 界定針對於IGFET 480而無須界定針對於IGFET 480之一對應的n+前驅汲極延伸部分。此需要構成光阻遮罩422以延伸在一前驅汲極延伸部分將否則形成針對於IGFET 480的位置之上方,而具有一開口在針對於IGFET 480之前驅源極延伸部分102EP的位置之上方。於此舉,光阻422嚴格對準於針對於IGFET 480之前驅閘極電極128P。n型源極/汲極延伸部分植入係如上述關聯於圖31l而實行,之後,移除光阻422。因為光阻422係遮罩針對於IGFET 480之前驅汲極延伸部分的位置,前驅源極延伸部分102EP形成針對於IGFET 480而未形成一對應的前驅汲極延伸部分。 In particular, at the stage of Figure 31l, the n+ precursor source extension 102EP The definition is for IGFET 480 without defining an n+ precursor drain extension for one of IGFET 480. This need to form a photoresist mask 422 to extend over a position where the precursor drain extension will otherwise form an IGFET 480, with an opening above the location of the source extension 102OP for the IGFET 480. In this regard, the photoresist 422 is strictly aligned with respect to the IGFET 480 front gate electrode 128P. The n-type source/drain extension portion implant is performed as described above in connection with FIG. 31l, after which the photoresist 422 is removed. Because the photoresist 422 is masked relative to the position of the MOSFET 480 prior to the drain extension, the precursor source extension 102EP forms a corresponding precursor drain extension for the IGFET 480 without forming a corresponding one.

稍後於圖31q之階段,光阻遮罩434構成以延伸在針對於IGFET 480之汲極104的位置之上方而具有一開口在針對於IGFET 480之主要源極部分102M的位置之上方。光阻434嚴格對準於IGFET 480之前驅閘極電極128P。n型主要源極/汲極植入係如概括上述關聯於圖31q而實行,之後,移除光阻434。由於光阻422係遮罩針對於IGFET 480之汲極104的位置,主要源極部分102M界定針對於IGFET 480而無須再界定汲極104。在主要源極部分102M之外側的前驅源極延伸部分102EP之部分者係構成源極延伸部分102E。隨著IGFET 480之前驅閘極電極128P的部分者為未覆蓋於植入期間,n型主要源極/汲極摻雜劑亦進入電極128P的未覆蓋部分者。 Later in the stage of FIG. 31q, the photoresist mask 434 is configured to extend over the location for the drain 104 of the IGFET 480 and has an opening above the location for the main source portion 102M of the IGFET 480. The photoresist 434 is strictly aligned to the gate electrode 128P before the IGFET 480. The n-type primary source/drain implant system is implemented as outlined above in connection with Figure 31q, after which the photoresist 434 is removed. Since the photoresist 422 is masked for the location of the drain 104 of the IGFET 480, the primary source portion 102M is defined for the IGFET 480 without the need to redefine the drain 104. Portions of the precursor source extension portion 102EP on the outer side of the main source portion 102M constitute the source extension portion 102E. As part of the IGFET 480 front gate electrode 128P is uncovered during implantation, the n-type main source/drain dopant also enters the uncovered portion of the electrode 128P.

具有針對於IGFET 480之源極102的意圖位置之上方的開口之一附加光阻遮罩(未顯示)形成於針對於IGFET 480 之介電層430與432與閘極側壁間隔物252、針對於IGFET 210之閘極側壁間隔物250與252及閘極側壁間隔物290、292、330、332、370與372之上。該附加光阻嚴格對準於IGFET 480之前驅閘極電極128P。n型汲極摻雜劑係於極高的劑量而離子植入為透過表面介電層432之未覆蓋部分且至下層的單矽,以界定IGFET 480之n++汲極104。雖然其運用以界定IGFET 480之汲極104的n型汲極摻雜劑的劑量係極高,該n型汲極摻雜劑的劑量係小於其運用以界定IGFET 480之主要源極部分102M的n型主要源極/汲極摻雜劑的極高劑量。因此,IGFET 480之汲極104相較於其主要源極區102M為較輕度摻雜。 An additional photoresist mask (not shown) having an opening above the intended position of the source 102 of the IGFET 480 is formed for the IGFET 480 The dielectric layers 430 and 432 and the gate sidewall spacers 252, the gate sidewall spacers 250 and 252 and the gate sidewall spacers 290, 292, 330, 332, 370 and 372 for the IGFET 210. The additional photoresist is strictly aligned to the gate electrode 128P before the IGFET 480. The n-type drain dopant is at a very high dose while ion implantation is through the uncovered portion of the surface dielectric layer 432 and to the underlying monolayer to define the n++ drain 104 of the IGFET 480. Although the dose used to define the n-type drain dopant of the drain 104 of the IGFET 480 is extremely high, the dose of the n-type drain dopant is less than the amount used to define the primary source portion 102M of the IGFET 480. Extremely high dose of n-type main source/drain dopant. Thus, the drain 104 of IGFET 480 is lightly doped compared to its main source region 102M.

針對於IGFET 480之n型汲極植入亦實行於其汲極104為相較於其主要源極部分102M與其前驅源極延伸部分102EP而延伸在上半導體表面下方為較深之條件。舉例而言,針對於IGFET 480之n型主要源極/汲極植入及n型汲極植入可藉著相同的n型摻雜劑(砷或銻)所實行。於此情形,針對於IGFET 480之n型汲極植入相較於n型主要源極/汲極植入而實行於較高的植入能量。替代而言,二種植入可運用不同的n型摻雜劑所實行,IGFET 480之n型汲極摻雜劑相較於n型主要源極/汲極摻雜劑而為較低的分子量者。於一個實例,砷係主要源極/汲極摻雜劑而磷係IGFET 480之n型汲極摻雜劑。相較於前述情形,於此替代方式之植入能量係彼此較接近。然而,於二個情形,n型汲極植入的範圍均為大於n型主要源極/汲極植入的範圍。在針對於 IGFET 480之n型汲極植入之後,移除該附加光阻。 The n-type drain implant for IGFET 480 is also implemented with its drain 104 being deeper below the upper semiconductor surface than its main source portion 102M and its precursor source extension 102EP. For example, n-type main source/drain implants and n-type drain implants for IGFET 480 can be implemented with the same n-type dopant (arsenic or antimony). In this case, the n-type drain implant for IGFET 480 is implemented at a higher implant energy than the n-type main source/drain implant. Alternatively, the second implant can be performed with different n-type dopants, and the n-type drain dopant of IGFET 480 is lower molecular weight than the n-type main source/drain dopant. By. In one example, arsenic is the primary source/drain dopant and the phosphorus-based IGFET 480 is an n-type drain dopant. Compared to the foregoing, the implant energy of this alternative is closer to each other. However, in both cases, the range of n-type drain implants is greater than the range of n-type main source/drain implants. In targeting After the n-type drain of the IGFET 480 is implanted, the additional photoresist is removed.

於主要源極/汲極植入期間所覆蓋為針對於IGFET 480之前驅閘極電極128P的部分者大部分為未覆蓋於針對於IGFET 480之n型汲極植入期間。此係致能針對於IGFET 480之n型汲極摻雜劑以進入於n型主要源極/汲極植入期間所覆蓋之電極128P的部分者。結果,IGFET 480之前驅閘極電極128P的實質全部係於此時為重度摻雜n型。IGFET 480之前驅閘極電極128P因而成為其n++閘極電極128。 The portion covered during the main source/drain implantation period for the IGFET 480 front gate electrode 128P is mostly uncovered during the n-type drain implant period for the IGFET 480. This system is enabled for the n-type drain dopant of IGFET 480 to enter a portion of electrode 128P that is covered during n-type main source/drain implantation. As a result, substantially all of the IGFET 480 precursor gate electrode 128P is at this time heavily doped n-type. The IGFET 480 precursor gate electrode 128P thus becomes its n++ gate electrode 128.

針對於IGFET 480之n型汲極植入可實行在n型主要源極/汲極植入之前而不是在之後。於任一情形,IGFET 480之製造的其餘部分係如同針對於IGFET 210之上述者而實行。 The n-type drain implant for IGFET 480 can be performed before, but not after, the n-type main source/drain. In either case, the remainder of the fabrication of IGFET 480 is performed as described above for IGFET 210.

若IGFET 210亦為存在於半導體構造,針對於IGFET 210的意圖位置之上方的光阻遮罩422與434之組態係相同於分別為關聯於圖31l與31q之上述者。IGFET 480之形成不影響IGFET 210之形成。 If IGFET 210 is also present in the semiconductor configuration, the configuration of photoresist masks 422 and 434 above the intended location of IGFET 210 is the same as described above in connection with Figures 31l and 31q, respectively. The formation of IGFET 480 does not affect the formation of IGFET 210.

適用於混合訊號應用之另一的互補IGFET構造Complementary IGFET construction for another hybrid signal application

圖66說明根據本發明之圖29.1之互補IGFET構造的一種變化者。圖66之互補IGFET構造特別適用於混合訊號應用。於圖29.1與66之互補IGFET構造之間的主要結構差異係在於:圖66之互補IGFET構造係由諸如一接合(bonded)晶圓之一種起始構造而作成。 Figure 66 illustrates a variation of the complementary IGFET configuration of Figure 29.1 in accordance with the present invention. The complementary IGFET configuration of Figure 66 is particularly well suited for mixed signal applications. The main structural difference between the complementary IGFET configurations of Figures 29.1 and 66 is that the complementary IGFET structure of Figure 66 is fabricated from a starting configuration such as a bonded wafer.

於圖66之互補IGFET構造,典型為主要由氧化矽所組成之一次表層電氣絕緣層482分開一下半導體層484與其 具有島部202與204之一上半導體層,島部202與204係由沿著上半導體表面之場絕緣區域200所側向分開。下半導體層484通常由p型或n型的單矽所組成。圖66呈現一個實例,其中,下半導體層484係輕度摻雜p型。典型為溝式且同樣典型為主要由氧化矽所組成之一電氣絕緣延伸部分486係自場絕緣區域200延伸至次表層絕緣層482。場絕緣200與絕緣延伸部分486共同側向環繞島部202與204,使得其彼此為完全介電式隔離。 In the complementary IGFET configuration of FIG. 66, a primary surface electrical insulating layer 482 consisting essentially of yttrium oxide is typically separated from the semiconductor layer 484 There is a semiconductor layer on one of the island portions 202 and 204, and the island portions 202 and 204 are laterally separated by the field insulating region 200 along the upper semiconductor surface. The lower semiconductor layer 484 is typically composed of a p-type or n-type single turn. Figure 66 presents an example in which the lower semiconductor layer 484 is lightly doped p-type. An electrically insulating extension 486, typically of the trench type and also typically composed primarily of yttria, extends from the field insulating region 200 to the sub-surface insulating layer 482. The field insulation 200 and the insulative extensions 486 laterally surround the islands 202 and 204 laterally such that they are completely dielectrically isolated from each other.

島部202與204通常由摻雜<100>單矽所組成。島部202具有一低的實質均勻n型背景摻雜劑濃度,於其係加諸p型半導體摻雜劑鋁所典型提供之一低(但稍微較高)的實質均勻p型背景摻雜劑濃度。因此,未接收任何其他摻雜劑(p型或n型)之島部202的部分者係輕度摻雜p型。島部204係僅僅具有一低的實質均勻n型背景摻雜劑濃度。 The islands 202 and 204 are typically composed of doped <100> monoterpenes. The island 202 has a low substantially uniform n-type background dopant concentration, which is typically provided with a low (but slightly higher) substantially uniform p-type background dopant added to the p-type semiconductor dopant aluminum. concentration. Therefore, portions of the island portion 202 that do not receive any other dopant (p-type or n-type) are lightly doped p-type. The island 204 has only a low substantially uniform n-type background dopant concentration.

島部202提供單矽以針對於長n通道IGFET 210之一種變化者210W。長n通道IGFET 210W之源極102與汲極104由p型本體材料108之一通道部分所分開,本體材料108由一輕度摻雜下部488、p+井部116與一上部490所組成。p-下方本體材料部分488與p型上方本體材料部分490分別對應於IGFET 210之p-下方本體材料部分114與p型上方本體材料部分118。IGFET 210W之上方本體材料部分490係由接觸源極的p+袋部120與輕度摻雜的p型剩餘者492所組成,剩餘者492對應於IGFET 210之p-上方本體材料剩餘者124。歸因於低的p型背景摻雜劑濃度之施加於 IGFET 210W之島部202的較低n型背景濃度,於各個區域488或492之主體的淨摻雜劑濃度NN主要為於p型與n型背景摻雜劑濃度之間的差異。 The island 202 provides a single turn to target a change 210W of the long n-channel IGFET 210. The source 102 and drain 104 of the long n-channel IGFET 210W are separated by a channel portion of the p-type body material 108. The body material 108 is comprised of a lightly doped lower portion 488, a p+ well 116, and an upper portion 490. The p-lower body material portion 488 and the p-type upper body material portion 490 correspond to the p-lower body material portion 114 and the p-type upper body material portion 118 of the IGFET 210, respectively. The upper body material portion 490 of the IGFET 210W is comprised of a p+ pocket portion 120 that contacts the source and a lightly doped p-type residual 492, with the remainder 492 corresponding to the p-upper body material remainder 124 of the IGFET 210. Due to the lower n-type background concentration applied to the island portion 202 of the IGFET 210W due to the low p-type background dopant concentration, the net dopant concentration N N of the bulk of each region 488 or 492 is predominantly p-type. The difference from the n-type background dopant concentration.

除了上述的結構差異與於島部202之二種背景摻雜劑濃度的存在以外,n通道IGFET 210W實質相同於n通道IGFET 210而配置及構成。p-下方本體材料部分488係可刪除,使得p+井部116向下延伸至次表層絕緣層482。 The n-channel IGFET 210W is substantially identical in configuration and configuration to the n-channel IGFET 210 except for the structural differences described above and the presence of two background dopant concentrations in the island portion 202. The p-lower body material portion 488 can be removed such that the p+ well 116 extends down to the sub-surface insulating layer 482.

島部204提供單矽以針對於長p通道IGFET 220之一種變化者220W。長p通道IGFET 220W之源極262與汲極264由n型本體材料268之一通道部分所分開,本體材料268係由一輕度摻雜下部494、n+井部276、與一上部496所組成,上部496對應於IGFET 220之n型上方本體材料部分278。IGFET 220W之上方本體材料部分496係由接觸源極的n+袋部280與輕度摻雜的n型剩餘者498所組成,剩餘者498對應於IGFET 220之n-上方本體材料剩餘者284。不同於IGFET 220,IGFET 220W係不具有一低的p型背景摻雜劑濃度且未利用一n型補償摻雜劑以確保上方本體材料部分496之全部係n型導電性者。於各個區域494或498之主體的淨摻雜劑濃度NN係僅僅是n型背景摻雜劑濃度。 The island 204 provides a single turn to target a change 220W of the long p-channel IGFET 220. The source 262 and the drain 264 of the long p-channel IGFET 220W are separated by a channel portion of the n-type body material 268. The body material 268 is composed of a lightly doped lower portion 494, an n+ well portion 276, and an upper portion 496. The upper portion 496 corresponds to the n-type upper body material portion 278 of the IGFET 220. The upper body material portion 496 of the IGFET 220W is comprised of an n+ pocket portion 280 that contacts the source and a lightly doped n-type remainder 498, with the remainder 498 corresponding to the n-upper body material remainder 284 of the IGFET 220. Unlike IGFET 220, IGFET 220W does not have a low p-type background dopant concentration and does not utilize an n-type compensation dopant to ensure that all of the upper body material portion 496 is n-type conductive. Net dopant concentration N N based on the body 494 or 498 of the respective regions are merely n-type background dopant concentration.

除了上述的結構差異與n型補償摻雜劑濃度之不存在以確保上方本體材料部分496之全部為n型以外,p通道IGFET 220W實質相同於p通道IGFET 220而配置及構成。n-下方本體材料部分494可刪除,使得n+井部276向下延 伸至次表層絕緣層482。 The p-channel IGFET 220W is substantially identical in configuration and configuration to the p-channel IGFET 220 except that the structural differences described above and the n-type compensating dopant concentration are absent to ensure that all of the upper body material portion 496 is n-type. The n-lower body material portion 494 can be removed such that the n+ well 276 is extended downward The subsurface insulating layer 482 is extended.

另一的互補IGFET構造之製造Fabrication of another complementary IGFET construction

圖66之互補IGFET構造係於根據本發明之以下方式而製造。一種構造首先提供,其中,次表層的絕緣層482係夾於下半導體層484與一上半導體區域之間,上半導體區域係由低的均勻摻雜劑濃度之<100>n型單矽所組成。此初始構造可作成,例如:藉由透過其形成次表層絕緣層482之電氣絕緣材料,以將二個半導體晶圓接合在一起。該等晶圓之一者提供針對於上半導體區域之<100>n型單矽。另一個晶圓提供其同樣通常為由單矽所組成之下半導體層484,如於圖示的實例之p型或是n型。 The complementary IGFET structure of Figure 66 is fabricated in the following manner in accordance with the present invention. A configuration is provided first, wherein the sub-surface insulating layer 482 is sandwiched between the lower semiconductor layer 484 and an upper semiconductor region, and the upper semiconductor region is composed of a low uniform dopant concentration of <100>n-type germanium. . This initial configuration can be made, for example, by bonding the two semiconductor wafers together by forming an electrically insulating material of the sub-surface insulating layer 482 therethrough. One of the wafers provides a <100>n-type single turn for the upper semiconductor region. The other wafer provides a semiconductor layer 484 which is also typically composed of a single germanium, such as the p-type or n-type as illustrated in the illustrated example.

絕緣延伸部分486根據一種深溝隔離技術而形成於n-上半導體區域。場絕緣區域200根據一種淺溝隔離技術而接著形成沿著n-上半導體區域之外側(上)表面以界定島部202與204。運用其具有在島部202之上方的一開口之一光阻遮罩,通常為由鋁所組成之p型半導體摻雜劑係於一輕劑量而引入至島部202,該輕劑量係充分高以轉換島部202之全部材料至於低淨濃度之p型導電性。當運用鋁以實行島部202之p型摻雜,鋁係相當快速擴散貫穿島部202,使得其於相當短時間而實質成為均勻摻雜p型。 Insulation extension 486 is formed in the n-up semiconductor region in accordance with a deep trench isolation technique. Field insulating region 200 is then formed along the outer (upper) surface of the n-up semiconductor region to define island portions 202 and 204 in accordance with a shallow trench isolation technique. Using a photoresist mask having an opening above the island portion 202, typically a p-type semiconductor dopant composed of aluminum is introduced to the island portion 202 at a light dose, the light dose system being sufficiently high To convert all of the material of the island portion 202 to p-type conductivity at a low net concentration. When aluminum is used to effect p-type doping of the island portion 202, the aluminum system diffuses relatively rapidly through the island portion 202 such that it becomes substantially uniformly doped p-type for a relatively short period of time.

p+井部116與n+井部276係以關聯於IGFET 210與220之製造的上述方式而分別為形成於島部202與204。島部202之部分者係置於井部116之下且構成p-下方本體材料部分488。島部204之部分者同樣為置於井部276之下且構成 n-下方本體材料部分494。針對於IGFET 210W之區域102、104、120、126、128、250、252、254、256與258以及針對於IGFET 220W之區域262、264、280、286、288、290、292、294、296與298接著如同上述針對於IGFET 210與220而形成。在井部116之上方的p型單矽構成p型上方本體材料部分490,其在p+袋部120之外側的部分構成p-上方本體材料剩餘者492。在井部276之上方的n型單矽構成n型上方本體材料部分496,其在n+袋部280之外側的部分構成n-上方本體材料剩餘者498。 The p+ well 116 and the n+ well 276 are formed on the islands 202 and 204, respectively, in the manner described above in relation to the fabrication of the IGFETs 210 and 220. Portions of the island 202 are placed below the well 116 and form a p-lower body material portion 488. Part of the island 204 is also placed under the well 276 and constitutes N-lower body material portion 494. For regions 102, 104, 120, 126, 128, 250, 252, 254, 256 and 258 of IGFET 210W and regions 262, 264, 280, 286, 288, 290, 292, 294, 296 for IGFET 220W 298 is then formed as described above for IGFETs 210 and 220. The p-type single raft above the well 116 constitutes a p-type upper body material portion 490, the portion of which is on the outer side of the p+ pocket portion 120 constitutes the p-upper body material remainder 492. The n-type single turn above the well 276 constitutes an n-type upper body material portion 496, the portion of which is on the outer side of the n+ pocket portion 280 constitutes the n-upper body material remainder 498.

於汲極下方的垂直本體材料摻雜劑量變曲線為次陡峭之IGFET,歸因於本體材料摻雜劑濃度之步級變化The vertical bulk material doping dose curve below the bungee is a sub-steep IGFET due to the step change of the dopant concentration of the bulk material.

根據本發明所構成的不對稱IGFET之於汲極下方的垂直摻雜劑量變曲線可作成為超陡峭(hyperaburpt),方式為不同於其具有於本體材料之導電性型式界定摻雜劑的濃度NT自最大井部摻雜劑濃度的位置朝上至汲極而逐漸減小為最多10%。特別而言,於汲極之下方的垂直摻雜劑量變曲線可作成為次陡峭,藉由配置針對於汲極之下方的本體材料以包括(a)一汲極鄰接部分,其中,導電性型式界定摻雜劑係於大部分均勻的第一濃度;及(b)一直接置於下層的汲極遠端部分,其中,導電性型式界定摻雜劑係於大部分均勻的第二濃度,其相較於汲極鄰接部分之導電性型式界定摻雜劑的濃度而顯著為較大,通常為較大為至少10倍。 The vertical doping dose curve of the asymmetric IGFET constructed according to the present invention below the drain can be made hyperaburpt in a manner different from the concentration of dopants defined by the conductivity type of the bulk material. T gradually decreases from the position of the maximum well dopant concentration upward to the drain to a maximum of 10%. In particular, the vertical doping dose curve below the drain can be made sub-steep by providing a body material for the underside of the drain to include (a) a drain abutment, wherein the conductive pattern Defining a dopant to a majority of the uniform first concentration; and (b) a distal portion of the drain directly disposed on the lower layer, wherein the conductivity pattern defines the dopant to be at a substantially uniform second concentration, The conductivity pattern is significantly larger than the conductivity pattern of the contiguous portion of the drain, which is typically at least 10 times greater.

導電性型式界定摻雜劑的濃度於是自汲極遠端本體材料部分向上透過汲極鄰接本體材料部分至汲極而經歷一步 級減小,通常減小為最多10%。提供此第二型式的汲極下層次陡峭摻雜劑量變曲線及發明構造A或A’的不對稱通道區摻雜特性之一n通道IGFET概括在此稱作為發明構造E。 The conductivity pattern defines the concentration of the dopant to be a step from the portion of the material of the distal end of the body of the drain that extends upwardly through the portion of the body of the body adjacent to the body of the body to the drain. The level is reduced, usually to a maximum of 10%. One of the n-channel IGFETs providing this second type of buck-under-hierarchy steep doping dose curve and the asymmetric channel region doping characteristics of the inventive construct A or A' is generally referred to herein as inventive construction E.

圖67概括說明針對於構成為構造A/A’、B、與E之n通道IGFET之透過汲極且至下層本體區域的垂直摻雜劑量變曲線。較為特別而言,針對於構造A/A’、B、與E之各者的一種n通道IGFET,作為沿著透過汲極之垂直線的深度y之一函數的絕對摻雜劑濃度NT的變化顯示於圖67。類似於圖56所顯示者,沿著透過構造E之n通道IGFET的汲極之垂直線的總p型摻雜劑濃度NT係自上半導體表面至一深度yST而為於均勻濃度值NB0,深度yST係等於汲極深度yD加上距離yd0。於自深度yD至深度yST的汲極鄰接本體材料部分延伸距離yd0之p型摻雜劑濃度NT因此為NB0。距離yd0通常為0.05至1.0微米,典型為0.1微米。 Figure 67 summarizes the vertical doping dose curves for the transmissive drains of the n-channel IGFETs constructed to construct A/A', B, and E and to the underlying body regions. More particularly, to a structure for A / A ', B, and E are each an n-channel of IGFET of, as a function of depth y along through one of the vertical drain line absolute dopant concentration of N T The change is shown in Figure 67. Similar to those shown in Figure 56, along the transmission total p-type dopant concentration of the drain of a vertical line of the n-channel IGFET configured of E N T based on the semiconductor surface from a depth y ST to be uniform in density value of N B0 , the depth y ST is equal to the bungee depth y D plus the distance y d0 . The p-type dopant concentration N T of the drain from the depth y D to the depth y ST adjoining the body material portion extending the distance y d0 is thus N B0 . The distance y d0 is typically from 0.05 to 1.0 microns, typically 0.1 microns.

於深度yST,絕對摻雜劑濃度NT作成一步級變化成自NB0而朝上至其大於NB0之值NB1,其通常為大於NB0至少10%。於其朝下延伸自深度yST之汲極遠端本體材料部分的濃度NT係於值NB1,而超過其向外至某個深度,於本體材料的p型摻雜劑之濃度不具有任何重大影響於汲極-本體接面的特性,特別是汲極至本體電容CDB。是以,於本體材料的p型摻雜劑之濃度NT係於向上跨過自其p型摻雜劑濃度NT等於NB1之汲極遠端本體材料部分至其p型摻雜劑濃度NT等於NB0之汲極鄰接本體材料部分而作成一步級減小(通常為至少10%)且接著直到汲極-本體接面而維持於NB0The depth y ST, N T the absolute dopant concentration level changes made to step from N B0 and up to a value greater than that of N B1 N B0, which is typically greater than at least 10% N B0. The concentration N T of the portion of the distal end body material extending downward from the depth y ST is tied to the value N B1 , and beyond the outward to a certain depth, the concentration of the p-type dopant in the bulk material does not have Any significant influence on the characteristics of the bungee-body junction, especially the drain-to-body capacitance C DB . Therefore, the p-type dopant concentration of the bulk material in the direction across N T system from which the p-type dopant concentration is equal to N T N drain electrode B1 of the distal end portion of the body to which material is p-type dopant concentration T N is equal to N pole adjoining body-material portion made step B0 and the drain stage is reduced (typically at least 10%) and followed until the drain - body junction is maintained at N B0.

圖68a說明一種不對稱n通道IGFET 500,其根據本發明所構成以實施構造E,藉以特別適用於高速的類比應用。IGFET 500配置為實質相同於圖18a之IGFET 170,除了:p型本體材料108係由一重度摻雜的下方次表層部分502與其延伸至上半導體表面之一上方表面鄰接部分504所組成。p+次表層本體材料部分502置於源極102、汲極104、與通道區106之下。次表層本體材料部分502之上方邊界(頂部)係於上半導體表面之下方的深度yST。深度yST通常為不超過10倍的汲極深度yD,較佳為不超過5倍。在其最靠近源極102與汲極104之處,次表層部分502因此相較於源極102與汲極104為在上半導體表面之下方而通常為不超過10倍深,較佳為不超過5倍深。 Figure 68a illustrates an asymmetric n-channel IGFET 500 constructed in accordance with the present invention to implement Configuration E, thereby being particularly suitable for high speed analog applications. IGFET 500 is configured substantially identical to IGFET 170 of Figure 18a except that p-type body material 108 is comprised of a heavily doped lower subsurface portion 502 extending therefrom to an upper surface abutment portion 504 of one of the upper semiconductor surfaces. The p+ subsurface body material portion 502 is placed under the source 102, the drain 104, and the channel region 106. The upper boundary (top) of the subsurface body material portion 502 is at a depth y ST below the upper semiconductor surface. The depth y ST is usually not more than 10 times the drain depth y D , preferably not more than 5 times. Where it is closest to the source 102 and the drain 104, the subsurface portion 502 is thus generally less than 10 times deeper than the source 102 and the drain 104 below the upper semiconductor surface, preferably not exceeding 5 times deep.

p型表面鄰接本體材料部分504覆於p+次表層本體材料部分502之上且為與其會合。通道區106係表面鄰接本體材料部分504之部分者。p+袋部120(在此相較於源極102為較淺)亦為表面鄰接本體材料部分504之部分者。於圖68a之項目124係表面鄰接本體材料部分504之輕度摻雜材料,即:在袋部120之外的部分504之區段。 The p-type surface abutting body material portion 504 overlies and meets the p+ sub-surface body material portion 502. The channel region 106 is a surface that abuts a portion of the body material portion 504. The p+ pocket 120 (here shallower than the source 102) is also a portion of the surface that abuts the body material portion 504. The item 124 of Figure 68a is a surface that abuts the lightly doped material of the body material portion 504, i.e., a section of the portion 504 that is outside the pocket portion 120.

在汲極104之下方的表面鄰接本體材料部分504之區段的p型摻雜劑呈現於等於NB0之大部分均勻的濃度。針對於濃度NB0之一典型值係5×1015原子/立方公分。在表面鄰接本體材料部分504之前述區段之下方且因此在汲極104之下方的次表層本體材料部分502之區段的p型摻雜劑呈現於等於NB1之大部分均勻較高的濃度。值NB1通常為NB0之 至少10倍,較佳為NB0之至少20倍,更佳為NB0之至少40倍,典型為接近NB0之100倍。 The p-type dopant of the portion below the drain 104 that abuts the portion of the body material portion 504 exhibits a concentration that is substantially equal to a majority of N B0 . A typical value for a concentration N B0 is 5 x 10 15 atoms/cm 3 . The p-type dopant in the section of the sub-surface body material portion 502 below the surface of the body material portion 504 and thus below the drain 104 presents a uniform, higher concentration equal to most of N B1 . N B1 value of N B0 is generally at least 10 times, preferably N B0 is at least 20 times, more preferably N B0 is at least 40-fold, typically 100-fold of proximity N B0.

圖68b說明其根據本發明所構成以實施構造E之另一種不對稱長n通道IGFET 510,特別為適用於高速的類比應用。IGFET 510配置為相同於IGFET 500,除了:典型為主要由氧化矽所組成之一次表層電氣絕緣層512係接觸次表層本體材料部分502為沿著其底表面。於IGFET 510,自深度yST向下至次表層電氣絕緣層512而置於汲極104之下的次表層本體材料部分502之區段的p型摻雜劑大部分為均勻摻雜於濃度NB1Figure 68b illustrates another asymmetric long n-channel IGFET 510 constructed in accordance with the present invention to implement Configuration E, particularly for high speed analog applications. IGFET 510 is configured identically to IGFET 500 except that a primary surface electrical insulating layer 512, typically composed primarily of yttria, contacts subsurface body material portion 502 along its bottom surface. In IGFET 510, the p-type dopant of the sub-surface body material portion 502 disposed below the drain 104 from the depth y ST down to the sub-surface electrical insulating layer 512 is mostly uniformly doped at concentration N. B1 .

IGFET 500與510之於汲極104下方的下層本體材料108之次陡峭垂直摻雜劑量變曲線的瞭解藉助於圖69a至69c(集體為“圖69”)、圖70a至70c(集體為“圖70”)、及圖71a至71c(集體為“圖71”)而促進。圖69概括為類似於圖8而呈現IGFET 500或510之沿著透過源極102的垂直線130之範例的摻雜劑濃度。沿著透過通道區106的垂直線132與134之範例的摻雜劑濃度呈現於圖70,其概括為類似於圖9。圖71概括為類似於圖10而呈現IGFET 500或510之沿著透過汲極104的垂直線136之範例的摻雜劑濃度。 The sub-steep vertical doping dose curve of the lower layer body material 108 of the IGFETs 500 and 510 below the drain 104 is understood by means of Figures 69a to 69c (collectively "Figure 69"), Figures 70a to 70c (collectively "Figure 70"), and Figs. 71a to 71c (collectively "Fig. 71") are promoted. 69 summarizes the dopant concentration of an example of IGFET 500 or 510 along vertical line 130 through source 102, similar to FIG. An exemplary dopant concentration along the vertical lines 132 and 134 through the channel region 106 is presented in FIG. 70, which is summarized similar to FIG. 71 summarizes the dopant concentration of an example of IGFET 500 or 510 along vertical line 136 through drain 104, similar to FIG.

圖69a、70a、與71a說明沿著垂直線130、132、134與136之其形成源極102、汲極104、次表層本體材料部分502、表面鄰接的本體材料部分504之袋部120與部分504的剩餘者124之個別半導體摻雜劑的濃度NI。沿著線130、 132、134與136之於區域102、104、502、120與124的總p型摻雜劑與總n型摻雜劑的濃度NT描繪於圖69b、70b與71b。圖69c、70c與71c描繪沿著線130、132、134與136之淨摻雜劑濃度NNFigures 69a, 70a, and 71a illustrate the pocket portion 120 and portions of the body material portion 504 that form the source 102, the drain 104, the sub-surface body material portion 502, and the surface abutment along the vertical lines 130, 132, 134, and 136. The concentration N I of the individual semiconductor dopants of the remainder 124 of 504. Along lines 130, 132, 134 and 136 to the total area 102,104,502,120 and p-type dopant concentration of the total n-type dopant in the N T 124 depicted in FIG. 69b, 70b and 71b. Figures 69c, 70c and 71c depict the net dopant concentration N N along lines 130, 132, 134 and 136.

於圖69至71之曲線/曲線段102’、102”、102*、104’、104”、104*、120,、120”、120*、124’、124”與124*具有關聯於分別類似於圖8至10之上文所述的意義。於圖69a、70a與71a之曲線502’係指沿著垂直線130、132、134與136之其用以形成次表層本體材料部分502的n型摻雜劑的濃度NI。於圖69b、70b與71b之曲線段502”代表沿著線130、132、134與136之於次表層部分502的總n型摻雜劑的濃度NT。於圖69c、70c與71c的曲線段502*係指沿著線130、132、134與136之於部分502的淨n型摻雜劑的濃度NNThe curves/curves segments 102', 102", 102*, 104', 104", 104*, 120, 120", 120*, 124', 124" and 124* of Figures 69-71 are associated with respectively The meanings described above in Figures 8 to 10. The curve 502' of Figures 69a, 70a and 71a refers to the concentration N I of the n-type dopant used to form the sub-surface body material portion 502 along the vertical lines 130, 132, 134 and 136. The curved section 502" of Figures 69b, 70b and 71b represents the concentration N T of the total n-type dopant along the lines 130, 132, 134 and 136 of the sub-surface portion 502. The curves of Figures 69c, 70c and 71c Segment 502* refers to the concentration N N of the net n-type dopant along portion lines 502 along lines 130, 132, 134 and 136.

參考圖71a,IGFET 500或510之於汲極104之下方的本體材料108部分者的p型摻雜劑具有二個主要分量,其在此稱為“下方”p型摻雜劑與“上方”p型摻雜劑。如曲線段502’所指示,下方p型摻雜劑於次表層本體材料部分502為高固定濃度NB1。如曲線124’所指示,上方p型摻雜劑於表面鄰接本體材料部分504的剩餘者124為低的固定濃度NB0。上方p型摻雜劑亦存在於汲極104,如進入曲線104’所涵蓋區域之曲線124’的延伸部分所指示。 Referring to Figure 71a, the p-type dopant of the bulk material 108 portion of the IGFET 500 or 510 below the drain 104 has two major components, referred to herein as "lower" p-type dopants and "above". P-type dopant. As indicated by curve segment 502', the lower p-type dopant is at a high fixed concentration N B1 at subsurface body material portion 502. As indicated by curve 124', the upper p-type dopant is at a low fixed concentration N B0 at the surface adjacent to the remainder 124 of the body material portion 504. The upper p-type dopant is also present at the drain 104 as indicated by the extension of the curve 124' entering the area covered by the curve 104'.

IGFET 500或510之於汲極104之下方的本體材料108部分者的總p型摻雜劑係由圖71b之曲線段502”與124”的 組合所指示。如由組合曲線502”/124”之變化所示,於汲極104之下方的本體材料108部分者的總p型摻雜劑的濃度NT係於跨過自於濃度NB1的次表層本體材料部分502至於濃度NB0的上方本體材料部分124而實質經歷一步級減小,且接著為於進一步朝上移動至汲極104而維持於濃度NB0。鑑於高濃度NB1通常為NB0之至少10倍,於汲極104之下方的本體材料108部分者的總p型摻雜劑的濃度NT自次表層本體材料部分502為透過上方本體材料部分124朝上移動至汲極104,而次陡峭式減小為最多10%。 The total p-type dopant of the bulk material 108 portion of the IGFET 500 or 510 below the drain 104 is indicated by the combination of the curved segments 502" and 124" of Figure 71b. The composition changes from the curve 502 "/ 124" is shown, in a concentration of 108 part by below drain 104 of body material of the total p-type dopant in the N T based on subsurface body across from the concentration of N B1 The material portion 502 substantially undergoes a one-step reduction with respect to the upper body material portion 124 of the concentration N B0 and is then maintained at the concentration N B0 for further upward movement to the drain 104 . Given the generally high concentration N B1 N B0 is at least 10-fold, 108 are in the lower part of the drain 104 of body material of the total p-type dopant concentration N T from subsurface body-material portion 502 is a permeable material portion 124 moves up to the drain 104, while the second steepest decreases to a maximum of 10%.

如上所述,高濃度值NB1係較佳為NB0之至少20倍,更佳為NB0之至少40倍。是以,於汲極104之下方的本體材料108部分者的總p型摻雜劑的濃度NT之次陡峭減小係較佳為最多20%,更佳為最多40%。 As described above, the high concentration N B1 system preferably N B0 is at least 20 times, more preferably at least 40 times the N B0. Therefore, the steep decrease in the concentration N T of the total p-type dopant in the portion of the bulk material 108 below the drain 104 is preferably at most 20%, more preferably at most 40%.

圖71c顯示的是:如由曲線段502*與124*之組合所代表,於IGFET 500或510之汲極104之下方的本體材料108部分者的淨p型摻雜劑的濃度NN垂直變化為類似於汲極104之下方的本體材料108部分者的總p型摻雜劑的濃度NT,除了:汲極104之下方的本體材料108部分者的淨p型摻雜劑的濃度NN在汲極深度yD(即:在汲極-本體接面112)下降至零。如同於本發明之前述的IGFET,於汲極104之下方的本體材料108部分者之次陡峭的摻雜劑量變曲線降低沿著IGFET 500或510之汲極-本體接面112的寄生電容。提高的類比速度因而達成於IGFET 500與510。 Figure 71c shows a vertical variation in the concentration N N of the net p-type dopant in the bulk material 108 portion below the drain 104 of the IGFET 500 or 510, as represented by the combination of the curved segments 502* and 124*. The concentration N T of the total p-type dopant that is similar to the portion of the bulk material 108 below the drain 104, except for the concentration of the net p-type dopant N N of the bulk material 108 portion below the drain 104 The drain depth y D (ie, at the drain-body junction 112) drops to zero. As with the aforementioned IGFET of the present invention, the sub-steep doping profile of the bulk material 108 portion below the drain 104 reduces the parasitic capacitance along the drain-body junction 112 of the IGFET 500 or 510. The increased analog speed is thus achieved for IGFETs 500 and 510.

轉向參考IGFET 500或510之源極102之下方的垂直 摻雜劑分佈,於圖69a之曲線段502’與124’具有實質為相同於圖71a之形狀。雖然曲線120’出現於圖69a,源極102之下方的本體材料108部分者的總p型摻雜劑係於分別的濃度NB0與NB1之下方與上方p型摻雜劑所組成,因為於圖68a與68b之實例中,p型袋部120相較於源極102為淺。於圖69b之大於源極深度yS的深度處之組合曲線段502”與124”的部分者,其形狀為實質相同於圖71b之大於汲極深度yD的深度處之組合曲線段502”/124”的部分者。是以,源極102之下方的本體材料108部分者的總p型摻雜劑的濃度NT大部分為相同於汲極104之下方的本體材料108部分者的總p型摻雜劑的濃度NT而次陡峭式變化。因此,沿著源極-本體接面110的寄生電容亦降低,藉以進一步增強IGFET 500或510之類比性能。 Turning to the vertical dopant profile below the source 102 of the reference IGFET 500 or 510, the curved segments 502' and 124' of Figure 69a have substantially the same shape as Figure 71a. Although the curve 120' appears in FIG. 69a, the total p-type dopant of the portion of the bulk material 108 below the source 102 is composed of a p-type dopant below and below the respective concentrations N B0 and N B1 because In the example of Figures 68a and 68b, the p-type pocket 120 is shallower than the source 102. A portion of the combined curve segments 502" and 124" at a depth greater than the source depth y S of FIG. 69b is shaped substantially the same as the combined curve segment 502 at a depth greater than the drain depth y D of FIG. 71b" Part of /124". Concentration is based on 108 part by the concentration of those portions of body material 108 below source electrode 102 of the total p-type dopant N T are the same in most of the drain electrode 104 below the body material of the total p-type dopant N T changes steeply. Therefore, the parasitic capacitance along the source-body junction 110 is also reduced, thereby further enhancing the analog performance of the IGFET 500 or 510.

類似於圖6之IGFET 100所發生者,於IGFET 500或510之p型袋部120可修改為相較於源極102與汲極104而在上半導體表面之下方為延伸較深。於此情形,於袋部120之p型袋部摻雜劑致使源極102之下方的本體材料108部分者的總p型摻雜劑的濃度NT,以就在源極-本體接面110之下方為有些升高且因此就在源極102的底部之下方為有些大於NB0。沿著源極-本體接面110的寄生電容相較於圖68a與68b之實例為高,但是藉著針對於袋部120之摻雜與深度的適當選取而仍為降低。此同樣為增強IGFET 500或510之類比性能。相較於源極102與汲極104而修改袋部120在上半導體表面之下方為延伸較深係不具有任何重大 的影響於IGFET 500或510之汲極特性,因為實質為無p型袋部摻雜劑於是為位在於汲極104。 Similar to the IGFET 100 of FIG. 6, the p-type pocket portion 120 of the IGFET 500 or 510 can be modified to extend deeper below the upper semiconductor surface than the source 102 and the drain 104. In this case, the p-type pocket dopant in pocket portion 120 causes the bulk material below the source electrode 102 by portion 108 of the concentration of N T the total p-type dopant to the source in the - body junction 110 Below it is some rise and therefore just below the bottom of the source 102 is somewhat larger than N B0 . The parasitic capacitance along the source-body junction 110 is higher than the examples of Figures 68a and 68b, but is still reduced by proper selection of doping and depth for the pockets 120. This is also to enhance the analog performance of IGFET 500 or 510. Compared to the source 102 and the drain 104, modifying the pocket portion 120 to extend deeper below the upper semiconductor surface does not have any significant effect on the drain characteristics of the IGFET 500 or 510 because it is substantially free of p-type pockets. The dopant is then located in the drain 104.

IGFET 500或510之通道區106大部分為相同於圖18a的IGFET 170之通道區106而不對稱縱向摻雜。由於圖7之摻雜劑分佈及關於圖7之上文所述的關聯資訊係應用於IGFET 170,此資訊係概括應用於IGFET 500與510。穿透因而避免於IGFET 500與510。IGFET 500或510之通道長度可充分降低以將其轉換成為一種短通道裝置。於該情形,圖12之表面摻雜劑分佈及關於圖12之上文所述的關聯資訊概括應用於IGFET 500與510。 The channel region 106 of IGFET 500 or 510 is mostly the same as the channel region 106 of IGFET 170 of Figure 18a and is asymmetrically longitudinally doped. Since the dopant distribution of FIG. 7 and the related information described above with respect to FIG. 7 are applied to IGFET 170, this information is generally applied to IGFETs 500 and 510. Penetration is thus avoided by IGFETs 500 and 510. The channel length of IGFET 500 or 510 can be substantially reduced to convert it into a short channel device. In this case, the surface dopant profile of FIG. 12 and the associated information described above with respect to FIG. 12 are summarized for IGFETs 500 and 510.

IGFET 500或510之各個S/D區102或104可修改為由一主要部分102M或104M與較輕度摻雜的側向延伸部分102E或104E所組成。替代或附加而言,IGFET 500或510之各個S/D區102或104可包括較輕度摻雜的下部102L或104L。於該等情形,呈現於圖14、16與17之摻雜劑分佈及關於彼等摻雜劑分佈的關聯資訊概括應用於IGFET 500與510,按照分別為以曲線/曲線段502’、502”與502*而取代於圖16與17之情形的曲線/曲線段116’與114’、116”與114”及116*與114*。 Each of the S/D regions 102 or 104 of the IGFET 500 or 510 can be modified to consist of a main portion 102M or 104M and a lightly doped laterally extending portion 102E or 104E. Alternatively or additionally, each S/D region 102 or 104 of IGFET 500 or 510 may include a lightly doped lower portion 102L or 104L. In such cases, the dopant profiles presented in Figures 14, 16 and 17 and their associated information regarding their dopant profiles are summarized for use in IGFETs 500 and 510, respectively, in curves/curves segments 502', 502" Curves/curve segments 116' and 114', 116" and 114" and 116* and 114* are replaced with 502* instead of the cases of Figs.

適用於混合訊號應用且具有於本體材料摻雜劑濃度的步級變化之另一互補IGFET構造Another complementary IGFET configuration suitable for mixed-signal applications and having a step change in dopant concentration of the bulk material

圖72a說明根據本發明所構成以特別適用於混合訊號的應用之另一種互補IGFET構造。圖72a之互補IGFET構造係由摻雜矽材料所作成,諸如:一種接合式晶圓者。電 氣絕緣材料之一圖案化場區域520沿著矽材料之上表面延伸,以界定一群組之側向分開的半導體島部,包括:島部522與524。二個不對稱的長通道IGFET 530與540係沿著上半導體表面而分別形成在島部522與524之位置。 Figure 72a illustrates another complementary IGFET configuration constructed in accordance with the present invention to be particularly suitable for mixed signal applications. The complementary IGFET structure of Figure 72a is made of a doped germanium material, such as a bonded wafer. Electricity One of the gas insulating material patterned field regions 520 extends along the upper surface of the tantalum material to define a group of laterally separated semiconductor island portions, including island portions 522 and 524. Two asymmetric long channel IGFETs 530 and 540 are formed along the upper semiconductor surface at locations of islands 522 and 524, respectively.

IGFET 530實施圖68b之IGFET 510的一種n通道裝置。源極102、汲極104與通道區106係位於島部522。IGFET 530之本體材料108係由<100>p型單矽所組成。由輕度摻雜的<100>p型單矽所組成之一下半導體層550係置於絕緣層512之下且接觸該絕緣層512,使得其為一次表層。典型為溝式者之場絕緣區域520與次表層絕緣層512為垂直分開。 IGFET 530 implements an n-channel device of IGFET 510 of Figure 68b. The source 102, the drain 104, and the channel region 106 are located on the island portion 522. The body material 108 of the IGFET 530 is comprised of <100> p-type single turns. A lower semiconductor layer 550 composed of a lightly doped <100> p-type germanium is placed under the insulating layer 512 and contacts the insulating layer 512 such that it is a primary surface layer. The field insulating region 520, which is typically a trench, is vertically separated from the sub-surface insulating layer 512.

IGFET 540實質為相同於圖68b之n通道IGFET 500且導電性型式為反向所構成的一種p通道裝置。IGFET 540因此具有由n型本體材料568之一通道區566所分開的一重度摻雜p型源極562與一輕度摻雜p型汲極564,本體材料568係由一重度摻雜的下方次表層部分572與其延伸至上半導體表面之一上方表面鄰接部分574所組成。源極562、汲極564與通道區566位於島部524。 IGFET 540 is essentially a p-channel device that is identical to n-channel IGFET 500 of Figure 68b and whose conductivity type is reversed. IGFET 540 thus has a heavily doped p-type source 562 and a lightly doped p-type drain 564 separated by a channel region 566 of n-type body material 568, the body material 568 being heavily doped underneath. The subsurface portion 572 is comprised of an abutment portion 574 that extends to an upper surface of one of the upper semiconductor surfaces. Source 562, drain 564, and channel region 566 are located on island portion 524.

本體材料568係藉著<100>n型單矽所形成。n型本體材料568之次表層部分572係延伸於p-下半導體層550之上且穿過次表層絕緣層512中的一開口,形成對於半導體層550的一側向pn接面576。次表層本體材料部分572亦形成對於IGFET 530之p+次表層本體材料部分102的一垂直pn接面578。一反向偏壓施加跨於pn接面578以將IGFET 530與540彼此隔離。 The body material 568 is formed by a <100>n-type single crucible. The subsurface portion 572 of the n-type body material 568 extends over the p-lower semiconductor layer 550 and through an opening in the sub-surface insulating layer 512 to form a lateral pn junction 576 for the semiconductor layer 550. Subsurface body material portion 572 also forms a vertical pn junction 578 for p+ subsurface body material portion 102 of IGFET 530. A reverse bias is applied across the pn junction 578 to place the IGFET 530 and 540 are isolated from each other.

n型表面鄰接本體材料部分574之一重度摻雜的袋部580沿著IGFET 540之源極562延伸。n+袋部580使通道區566為不對稱縱向摻雜劑漸變,類似於IGFET 530之通道區106的不對稱縱向摻雜劑漸變。項目584係表面鄰接本體材料部分574之輕度摻雜n型剩餘者。典型地主要由氧化矽所組成之一閘極介電層586覆於通道區566之上。一閘極電極588位於在通道區566之上方的閘極介電層586。閘極電極588部分為延伸在源極562與汲極564之上。於圖72a之實例,閘極電極588係由極重度摻雜p型聚矽所組成。 The n-type surface abuts the heavily doped pocket portion 580 of one of the body material portions 574 along the source 562 of the IGFET 540. The n+ pocket 580 causes the channel region 566 to be an asymmetrical longitudinal dopant gradation similar to the asymmetric longitudinal dopant grading of the channel region 106 of the IGFET 530. Item 584 is a surface that is adjacent to the lightly doped n-type remainder of body material portion 574. A gate dielectric layer 586, typically composed primarily of yttrium oxide, overlies the channel region 566. A gate electrode 588 is located above the gate dielectric layer 586 above the channel region 566. The gate electrode 588 portion extends over the source 562 and the drain 564. In the example of Figure 72a, the gate electrode 588 is composed of a very heavily doped p-type polyfluorene.

於次表層本體材料部分572之n型摻雜劑係存在於一大部分均勻濃度NB0’。於汲極564之下方的表面鄰接本體材料部分574之區段的n型摻雜劑為存在於其大於NB0’之一大部分均勻濃度NB1’的該區段。類似於濃度NB1與NB0,濃度NB1’通常為NB0’之至少10倍,較佳為NB0’之至少20倍,更佳為NB0’之至少40倍,典型為NB0’之接近100倍。於汲極564之下方的本體材料568部分者,IGFET 540因此具有概括相同於IGFET 530所具有於汲極104之下方的本體材料108部分者之性質的次陡峭摻雜劑量變曲線。IGFET 540之於源極562之下方的本體材料568部分者的垂直摻雜劑量變曲線同樣為相當類似於IGFET 530之於源極102之下方的本體材料108部分者的垂直摻雜劑量變曲線。是以,IGFET 540具有沿著其汲極-本體與源極-本體接面之降低的寄生電容。 The n-type dopant layer in the subsurface body material portion 572 is present in a majority of the uniform concentration N B0 '. The n-type dopant adjacent the surface of the body material portion 574 below the drain 564 is the segment present at a majority of the uniform concentration N B1 ' greater than N B0 '. Similar to the concentration N B1 and N B0, concentration N B1 'typically N B0' is at least 10 times, preferably N B0 'is at least 20 times, more preferably N B0' is at least 40 times, typically N B0 ' It is close to 100 times. In part of the bulk material 568 below the drain 564, the IGFET 540 thus has a sub-steep doping dose curve that summarizes the properties of the bulk material 108 portion of the IGFET 530 that is below the drain 104. The vertical doping dose curve for the portion of bulk material 568 of IGFET 540 below source 562 is also a vertical doping dose curve that is quite similar to the portion of bulk material 108 of IGFET 530 below source 102. Thus, IGFET 540 has a reduced parasitic capacitance along its drain-body and source-body junctions.

圖72b說明圖72a之互補IGFET構造的一種變化者。於圖72b之變化者,場絕緣區域520設有其到達次表層絕緣層512之典型為溝式的一電氣絕緣延伸部分590。場絕緣區域520與絕緣延伸部分590之組合係側向環繞IGFET 530之次表層本體材料部分502。此將IGFET 530與540彼此為介電式側向隔離。 Figure 72b illustrates a variation of the complementary IGFET configuration of Figure 72a. In the variation of Fig. 72b, the field insulating region 520 is provided with an electrically insulating extension portion 590 which is typically trenched to the subsurface insulating layer 512. The combination of field insulating region 520 and insulating extension portion 590 laterally surrounds the subsurface body material portion 502 of IGFET 530. This isolates IGFETs 530 and 540 from each other in a dielectric lateral direction.

於圖72a與72b之互補IGFET構造的導電性型式可反向。分別為對應於p型本體材料108與p-下半導體層550之造成的n型本體材料與n-下半導體層於是均為<110>n型單矽。對應於n型本體材料568之p型本體材料係<110>p型單矽。 The conductivity pattern of the complementary IGFET configuration of Figures 72a and 72b can be reversed. The n-type body material and the n-lower semiconductor layer respectively corresponding to the p-type body material 108 and the p-lower semiconductor layer 550 are then <110>n-type single turns. The p-type body material corresponding to the n-type body material 568 is <110> p-type monoterpene.

圖72c描繪圖72a之互補IGFET構造的再一種變化者。圖72d描繪圖72b之互補IGFET構造的一種對應變化者。於圖72c與72d之變化者,由輕度摻雜<110>n型單矽所組成之一下半導體層592取代p-下半導體層550。於圖72c與72d之互補IGFET構造,針對於p通道IGFET 540之n型本體材料568藉著<110>n型單矽所形成而非為<100>n型單矽。於圖72c與72d之互補IGFET構造,針對於n通道IGFET 530之p型本體材料108繼續為<100>p型單矽。 Figure 72c depicts yet another variation of the complementary IGFET configuration of Figure 72a. Figure 72d depicts a corresponding variation of the complementary IGFET configuration of Figure 72b. In the variation of FIGS. 72c and 72d, the lower semiconductor layer 550 is replaced by a lower semiconductor layer 592 composed of a lightly doped <110>n-type germanium. The complementary IGFET configuration of Figures 72c and 72d is formed for the n-type body material 568 of the p-channel IGFET 540 by a <110>n-type single turn instead of a <100>n-type single turn. In the complementary IGFET configuration of Figures 72c and 72d, the p-type body material 108 for the n-channel IGFET 530 continues to be a <100> p-type single turn.

於圖72c與72d之互補IGFET構造的導電性型式可反向。於該情形,分別為對應於n型本體材料568與n-下半導體層592之造成的p型本體材料與p-下半導體層均為<100>p型單矽。對應於p型本體材料108之n型本體材料係<110>n型單矽。 The conductivity pattern of the complementary IGFET configuration of Figures 72c and 72d can be reversed. In this case, both the p-type body material and the p-lower semiconductor layer corresponding to the n-type body material 568 and the n-lower semiconductor layer 592 are <100> p-type single turns, respectively. The n-type body material corresponding to the p-type body material 108 is <110>n-type monoterpene.

具有於本體材料摻雜劑濃度的步級變化之另一的互補IGFET構造之製造Fabrication of a complementary IGFET structure having another step change in dopant concentration of bulk material

圖72a之互補IGFET構造係於根據本發明之以下方式而製造。一種構造首先提供,其中:(a)由高的均勻濃度NB1之重度摻雜的<100>p型單矽所組成之一次表層半導體區域鄰接一次表層的電氣絕緣層,(b)由低的均勻濃度NB0之輕度摻雜的<100>p型單矽所組成之一表面鄰接的半導體區域鄰接且覆於次表層半導體區域之上,且(c)由輕度摻雜的<100>p型單矽所組成之一下半導體層鄰接且為置於次表層的絕緣層之下。輕度摻雜的下半導體層構成p-下半導體層550。 The complementary IGFET structure of Figure 72a is fabricated in accordance with the following aspects of the present invention. A configuration is first provided wherein: (a) a primary surface semiconductor region consisting of a <100> p-type single germanium heavily doped with a high uniform concentration N B1 is adjacent to the electrical insulating layer of the surface layer, (b) is low A lightly doped <100> p-type single germanium of uniform concentration N B0 is formed by a surface adjacent to the semiconductor region adjacent to and overlying the sub-surface semiconductor region, and (c) is lightly doped <100> One of the p-type single turns consists of a lower semiconductor layer adjacent to and below the insulating layer of the sub-surface layer. The lightly doped lower semiconductor layer constitutes the p-lower semiconductor layer 550.

該初始構造可作成,例如:藉由透過其形成次表層絕緣層之電氣絕緣材料以將二個半導體晶圓接合在一起。該等晶圓之一者具有其形成下半導體層550之輕度摻雜的<100>p型單矽基板。另一個晶圓具有其分別實質均勻摻雜於濃度NB1與NB0之一重度摻雜的<100>p型單矽基板與一上層輕度摻雜的<100>p型單矽外延層,以分別形成該次表層半導體區域與表面鄰接的半導體區域。 The initial configuration can be made, for example, by joining together two semiconductor wafers by forming an electrically insulating material of a sub-surface insulating layer therethrough. One of the wafers has a lightly doped <100> p-type single-turn substrate that forms the lower semiconductor layer 550. The other wafer has a <100> p-type single-turn substrate which is substantially uniformly doped to one of the concentrations N B1 and N B0 , and an upper-layer lightly doped <100> p-type single-turn epitaxial layer. A semiconductor region adjacent to the surface of the subsurface semiconductor region is formed separately.

場絕緣區域520形成沿著p-表面鄰接的半導體區域之外(上)表面,以界定針對於IGFET 530之島部522及界定針對於IGFET 540之島部524的位置。場絕緣區域520可部分延伸為透過p-表面鄰接的半導體區域,使得於圖72a所顯示之完成後的互補IGFET構造,場絕緣520延伸為深至(但是未完全透過)p型表面鄰接的本體材料部分504。替代 而言,場絕緣520可延伸為完全透過p-表面鄰接的半導體區域且部分至下層的p+次表層半導體區域。於島部522之p-表面鄰接的半導體區域部分者構成對於p型表面鄰接的本體材料部分504之前驅者。p+次表層半導體區域之下層部分實質構成p+次表層本體材料部分502。 Field insulating region 520 forms an outer (upper) surface of the semiconductor region adjacent along the p-surface to define an island portion 522 for IGFET 530 and a location defining island portion 524 for IGFET 540. The field isolation region 520 can be partially extended to pass through the p-surface adjoining semiconductor region such that after completion of the complementary IGFET configuration shown in Figure 72a, the field insulation 520 extends deep to (but not fully transmissive) the p-type surface abutting body Material portion 504. Alternative In other words, the field insulation 520 can be extended to completely penetrate the semiconductor region adjacent to the p-surface and partially to the p+ sub-surface semiconductor region of the underlying layer. The portion of the semiconductor region adjacent to the p-surface of the island portion 522 constitutes a precursor to the body material portion 504 adjacent to the p-type surface. The lower portion of the p+ subsurface semiconductor region substantially constitutes the p+ subsurface body material portion 502.

在針對於島部524之位置,一腔部形成透過p-表面鄰接的半導體區域、透過p+次表層半導體區域之下層段及透過次表層絕緣層之更下層段而朝下至p-下半導體層550。次表層絕緣層之剩餘部分構成次表層絕緣層512。重度摻雜的<100>n型單矽係於均勻濃度NB1’而外延成長於下半導體層550之如此暴露段,以實質形成n+次表層本體材料部分572。輕度摻雜的<100>n型單矽係於均勻濃度NB0’而外延成長於腔部的次表層部分572,以形成對於n型表面鄰接的本體材料部分574之一前驅者。本體材料部分572與對於本體材料部分574之前驅者形成島部524。 At a position for the island portion 524, a cavity portion is formed to penetrate the semiconductor region adjacent to the p-surface, pass through the lower layer of the p+ sub-surface semiconductor region, and pass through the lower layer of the sub-surface insulating layer to face down to the p-lower semiconductor layer 550. The remaining portion of the sub-surface insulating layer constitutes the sub-surface insulating layer 512. The heavily doped <100>n-type monoterpene is epitaxially grown in the exposed portion of the lower semiconductor layer 550 at a uniform concentration of N B1 ' to substantially form the n+ sub-surface body material portion 572. The lightly doped <100>n-type monoterpene is epitaxially grown at the sub-surface portion 572 of the cavity at a uniform concentration N B0 ' to form a precursor to one of the body material portions 574 adjacent to the n-type surface. The body material portion 572 forms an island portion 524 with respect to the former body member 574.

閘極介電層126與586分別為形成沿著針對於IGFET 530之p型表面鄰接的本體材料部分504及針對於IGFET 540之n型表面鄰接的本體材料部分574之前驅者的暴露(上)表面。閘極電極128與588分別為形成於閘極介電層126與586。n++源極102、n++汲極104與p+袋部120形成於對於表面鄰接的本體材料部分504之前驅者。對於本體材料部分504之p型前驅者的剩餘部分接著實質為構成針對於IGFET 530之部分504。p++源極562、p++汲極564與n+袋部580同樣形成於對於n型表面鄰接的本體材料部分 574之前驅者。對於n型表面鄰接的本體材料部分574之前驅者的剩餘部分接著同樣為實質構成針對於IGFET 540之部分574。於形成閘極電極128與588、n++源極102、n++汲極104、p+袋部120、p++ S/D區562與564及n+袋部580所涉及的操作可實行於種種的順序。 The gate dielectric layers 126 and 586 are exposed to the precursor material portion 574 adjacent to the p-type surface adjacent to the p-type surface of the IGFET 530 and the body material portion 574 adjacent to the n-type surface of the IGFET 540, respectively. surface. Gate electrodes 128 and 588 are formed on gate dielectric layers 126 and 586, respectively. The n++ source 102, n++ drain 104 and p+ pocket 120 are formed in front of the body material portion 504 adjacent to the surface. The remainder of the p-type precursor for body material portion 504 then substantially constitutes portion 504 for IGFET 530. The p++ source 562, the p++ drain 564 and the n+ pocket 580 are also formed in the body material portion adjacent to the n-type surface. 574 before the drive. The remainder of the previous driver for the n-type surface abutting body material portion 574 is then also substantially configured to be portion 574 for IGFET 540. The operations involved in forming gate electrodes 128 and 588, n++ source 102, n++ drain 104, p+ pocket 120, p++ S/D regions 562 and 564, and n+ pocket portion 580 can be performed in a variety of sequences.

圖72b之互補IGFET構造相同於圖72a之互補IGFET構造而根據本發明所製造,除了:對於場絕緣區域520之絕緣延伸部分590係於形成場絕緣520之過程而形成於p+次表層半導體區域。 The complementary IGFET configuration of Figure 72b is identical to the complementary IGFET configuration of Figure 72a and is fabricated in accordance with the present invention except that the insulating extension portion 590 for the field insulating region 520 is formed in the p+ subsurface semiconductor region during the formation of the field insulating 520.

圖72c與72d之互補IGFET構造分別為相同於圖72a與72b之互補IGFET構造而根據本發明所製造,除了:由輕度摻雜的<110>n型單矽所組成之一下半導體層係取代p-下半導體層550。輕度摻雜的下半導體層係n-下半導體層592。用以作成圖72c或72d之互補IGFET構造的初始構造可為以如同其用以作成圖72a或72b之互補IGFET構造的初始構造之相同方式而作成,除了:首先描述的晶圓具有一輕度摻雜的<110>n型單矽基板而非為一輕度摻雜的<100>p型單矽基板。 The complementary IGFET configurations of Figures 72c and 72d are fabricated in accordance with the present invention, respectively, in the same complementary IGFET configuration as Figures 72a and 72b, except that the lower semiconductor layer is replaced by a lightly doped <110>n-type single germanium. P-lower semiconductor layer 550. The lightly doped lower semiconductor layer is an n-lower semiconductor layer 592. The initial configuration of the complementary IGFET configuration used to form Figure 72c or 72d can be made in the same manner as the initial configuration used to create the complementary IGFET configuration of Figure 72a or 72b, except that the first described wafer has a slight The doped <110>n-type single-turn substrate is not a lightly doped <100> p-type single-turn substrate.

此外,在形成腔部為透過p-表面鄰接的半導體區域、透過p+次表層半導體區域之下層段、及透過次表層絕緣層之更下層段而朝下至n-下半導體層592之後,n+次表層的本體材料部分572係如為於濃度NB1’之重度摻雜<110>n型單矽而外延成長於腔部之下半導體層592。對於n-表面鄰接的本體材料部分574之前驅者接著如為於濃度NB0’之輕度 摻雜<100>n型單矽而外延成長於腔部之n+次表層部分572。 In addition, n+ times after the formation of the cavity portion is a semiconductor region adjacent to the p-surface adjacent, through the lower layer of the p+ sub-surface semiconductor region, and through the lower layer of the sub-surface insulating layer and down to the n-lower semiconductor layer 592 The bulk material portion 572 of the surface layer is epitaxially grown under the cavity below the semiconductor layer 592 for the heavily doped <110>n-type germanium at a concentration N B1 '. For the n-surface adjacent body material portion 574, the precursor is then epitaxially grown in the n+ subsurface portion 572 of the cavity as a lightly doped <100>n-type single turn of concentration N B0 '.

變化者Changer

儘管本發明已經關於特定實施例而描述,此說明僅為說明目的且為未構成以限制本發明之範疇,其為以下的申請專利範圍所主張。舉例而言,於半導體本體及/或於閘極電極128、288、328、368與588之矽係可以其他的半導體材料所替代。替代候選者包括:鍺、矽鍺合金、及諸如砷化鍺之3a族-5a族的合金。 While the invention has been described with respect to the specific embodiments thereof, this description is intended to be illustrative only and not to limit the scope of the invention. For example, the semiconductor body and/or the gate electrodes 128, 288, 328, 368, and 588 can be replaced by other semiconductor materials. Alternative candidates include: tantalum, niobium alloys, and alloys such as Group 3a-5a of arsenic arsenide.

金屬矽化物層可提供為沿著圖72a至72d之互補IGFET構造的IGFET 530與540之源極102與562、汲極104與564及閘極電極128與588的上表面。於圖29與30之互補IGFET構造的IGFET 210、220、230、240、380與390之合成閘極電極128/258、288/298、328/338、368/378及/或圖72a至72d之互補IGFET構造的IGFET 530與540之閘極電極128/588係可替代為實質完全由金屬所組成或實質完全由金屬矽化物所組成之閘極電極,例如:矽化鈷、或矽化鎳,摻雜劑為提供於矽化物閘極電極以控制其運作功能。種種的修改可因此由熟悉此技藝人士所作成而未脫離本發明之真正範疇,如為界定於隨附的申請專利範圍。 A metal telluride layer can be provided as the source 102 and 562, the drains 104 and 564, and the upper surfaces of the gate electrodes 128 and 588 of the IGFETs 530 and 540 constructed along the complementary IGFETs of Figs. 72a through 72d. Synthetic gate electrodes 128/258, 288/298, 328/338, 368/378 and/or Figs. 72a through 72d of IGFETs 210, 220, 230, 240, 380 and 390 of complementary IGFET constructions of Figs. 29 and 30 The gate electrode 128/588 of the IGFETs 530 and 540 of the complementary IGFET configuration may be replaced by a gate electrode consisting essentially of or substantially entirely of metal germanium, such as cobalt telluride or nickel telluride, doped The agent is provided on the telluride gate electrode to control its operational function. A variety of modifications can be made by those skilled in the art without departing from the true scope of the invention, as defined by the appended claims.

20、60、70、100、100V、140、140V、150、150V、160、160V、170、170V、180、180V、190、190V、210、210W、220、220U、220V、210W、220W、230、240、380、390、480、500、510、530、540‧‧‧絕緣閘極場效電晶體(IGFET) 20, 60, 70, 100, 100V, 140, 140V, 150, 150V, 160, 160V, 170, 170V, 180, 180V, 190, 190V, 210, 210W, 220, 220U, 220V, 210W, 220W, 230, 240, 380, 390, 480, 500, 510, 530, 540‧‧‧Insulated Gate Field Effect Transistor (IGFET)

22、200、520‧‧‧場絕緣區域 22, 200, 520‧ ‧ field insulation area

24、202、204、206、208、522、524‧‧‧島部 24, 202, 204, 206, 208, 522, 524‧ ‧ island

26、28、300、302、340、342‧‧‧源極/汲極(S/D)區 26, 28, 300, 302, 340, 342‧‧‧ source/drainage (S/D) areas

26E、28E‧‧‧側向延伸部分 26E, 28E‧‧‧ lateral extension

26M、28M‧‧‧主要部分 26M, 28M‧‧‧ main part

26E*、26M*、28E*、28M*、30*、34”、36”、38”、40”、40*、42”、42*、58”、62”、102’、102”、102*、102E’、102E”、102E*、102L’、102L”、102L*、102M’、102M”、102M*、104’、104”、104*、104E’、104E”、104E*、104L’、104L”、104L*、104M’、104M”、104M*、106”、106*、106M*、114’、114”、114*、116’、116”、116*、118”、120’、120”、120*、120M*、124’、124”、124*、192’、198’、198”、198*、262’、262”、262*、264’、264”、264*、266*、276’、276”、276*、280’、280”、280*、302”、302*、302E*、302M*、304”、304*、304E*、304M*、306*、316”、316*、318”、318*、 320”、320*、322”、322*、394’、394”、394*、450、452、454、460、462、464、502’、502”、502*‧‧‧曲線(段) 26E*, 26M*, 28E*, 28M*, 30*, 34”, 36”, 38”, 40”, 40*, 42”, 42*, 58”, 62”, 102', 102”, 102* , 102E', 102E", 102E*, 102L', 102L", 102L*, 102M', 102M", 102M*, 104', 104", 104*, 104E', 104E", 104E*, 104L', 104L ", 104L*, 104M', 104M", 104M*, 106", 106*, 106M*, 114', 114", 114*, 116', 116", 116*, 118", 120', 120", 120*, 120M*, 124', 124", 124*, 192', 198', 198", 198*, 262', 262", 262*, 264', 264", 264*, 266*, 276' , 276", 276*, 280', 280", 280*, 302", 302*, 302E*, 302M*, 304", 304*, 304E*, 304M*, 306*, 316", 316*, 318 ", 318*, 320", 320*, 322", 322*, 394', 394", 394*, 450, 452, 454, 460, 462, 464, 502', 502", 502*‧‧‧ curves (segments)

30、106、266、306、346、566‧‧‧通道區 30, 106, 266, 306, 346, 566‧‧‧ passage area

32、108、268、308、348、568‧‧‧本體材料 32, 108, 268, 308, 348, 568‧‧‧ body materials

34、114、192、488、494‧‧‧下部 34, 114, 192, 488, 494‧‧‧ lower

36、116、276、316、356‧‧‧井部 36, 116, 276, 316, 356‧‧ ‧ wells

38、118、196、278、318、358、490、496‧‧‧上部 38, 118, 196, 278, 318, 358, 490, 496 ‧ upper

40、42、120、280、320、322、360、362、580‧‧‧袋部 40, 42, 120, 280, 320, 322, 360, 362, 580‧‧ ‧ bags

44、126、286、326、366、586‧‧‧閘極介電層 44, 126, 286, 326, 366, 586‧‧ ‧ gate dielectric layer

46、128、258、288、298、328、338、368、378、588‧‧‧閘極電極 46, 128, 258, 288, 298, 328, 338, 368, 378, 588 ‧ ‧ gate electrodes

48、50、250、252、290、292、330、332、370、372‧‧‧間隔物 48, 50, 250, 252, 290, 292, 330, 332, 370, 372 ‧ ‧ spacers

52、54、56、254、256、258、294、296、298、334、336、338、374、376、378‧‧‧金屬矽化物層 52, 54, 56, 254, 256, 258, 294, 296, 298, 334, 336, 338, 374, 376, 378 ‧ ‧ metal telluride layers

102、262、302、342、562‧‧‧源極 102, 262, 302, 342, 562‧ ‧ source

102E、262E、302E、342E‧‧‧源極延伸部分 102E, 262E, 302E, 342E‧‧‧ source extension

102EP、262EP‧‧‧前驅源極延伸部分 102EP, 262EP‧‧‧Precursor source extension

102L‧‧‧下方源極部分 102L‧‧‧ below the source part

102M、262M、302M、342M‧‧‧主要源極部分 102M, 262M, 302M, 342M‧‧‧ main source parts

104、264、304、344、564‧‧‧汲極 104, 264, 304, 344, 564‧‧ ‧ bungee

104E、264E、304E、344E‧‧‧汲極延伸部分 104E, 264E, 304E, 344E‧‧‧ bungee extension

104EP、264EP‧‧‧前驅汲極延伸部分 104EP, 264EP‧‧‧Precursor bungee extension

104L‧‧‧下方汲極部分 104L‧‧‧ below the pole part

104M、264M、304M、344M‧‧‧主要汲極部分 104M, 264M, 304M, 344M‧‧‧ main bungee part

110、396‧‧‧源極-本體接面 110, 396‧‧‧ source-body junction

110#、112#、194#、396#、398#‧‧‧接面的位置 110 # , 112 # , 194 # , 396 # , 398 #‧‧‧ The location of the junction

112、398‧‧‧汲極-本體接面 112, 398‧‧‧Bungee-body junction

114P‧‧‧外延層 114P‧‧‧ Epilayer

118P、278P、318P、324P、358P‧‧‧前驅上方本體材料部分 118P, 278P, 318P, 324P, 358P‧‧‧ front part of the body material

120P、280P‧‧‧前驅袋部 120P, 280P‧‧‧ Front Bag Department

124、198、324、364、394、492、498‧‧‧本體材料剩餘者 124, 198, 324, 364, 394, 492, 498‧‧‧ the remainder of the ontology material

128P、288P、328P、368P‧‧‧前驅閘極電極 128P, 288P, 328P, 368P‧‧‧ front gate electrode

130、130U、132、132U、134、134U、136、136U‧‧‧垂直線 130, 130U, 132, 132U, 134, 134U, 136, 136U‧‧‧ vertical lines

194、576、578‧‧‧pn接面 194, 576, 578‧ ‧ pn junction

276P、316P、356P‧‧‧前驅井部 276P, 316P, 356P‧‧‧ Precursor

278Q、358Q‧‧‧島部的p-部分 278Q, 358Q‧‧ ‧ p-part of the island

302EP、304EP、342EP、344EP‧‧‧前驅S/D延伸部分 302EP, 304EP, 342EP, 344EP‧‧‧Precursor S/D extensions

262M、264M、342M、344M‧‧‧主要S/D部分 262M, 264M, 342M, 344M‧‧‧ main S/D parts

320P、322P、360P、362P‧‧‧前驅環圈袋部 320P, 322P, 360P, 362P‧‧‧Pre-drive ring pocket

342E、344E‧‧‧S/D延伸部分 342E, 344E‧‧‧S/D extension

382、392‧‧‧隔離層 382, 392‧‧‧ isolation layer

402‧‧‧屏蔽氧化物 402‧‧‧Shield Oxide

404、406、408、410‧‧‧光阻遮罩 404, 406, 408, 410‧‧‧ photoresist mask

412、414、416、430、432‧‧‧介電層 412, 414, 416, 430, 432‧‧ dielectric layers

418、420、422、424、434、436‧‧‧光阻遮罩 418, 420, 422, 424, 434, 436 ‧ ‧ photoresist mask

440、442、446、448‧‧‧電流源 440, 442, 446, 448‧‧‧ current source

444‧‧‧電壓源 444‧‧‧voltage source

470‧‧‧源極接點 470‧‧‧ source contact

472‧‧‧汲極接點 472‧‧‧汲 contact

482、512‧‧‧次表層絕緣層 482, 512‧‧‧ surface insulation

484、550、592‧‧‧下半導體層 484, 550, 592‧‧‧ lower semiconductor layer

486、590‧‧‧絕緣延伸部分 486, 590‧ ‧ insulation extension

502、572‧‧‧次表層本體材料部分 502, 572‧‧‧ surface material parts

504、574‧‧‧表面鄰接本體材料部分 504, 574‧‧‧ surface adjacent to the body material portion

584‧‧‧輕度摻雜n型剩餘者 584‧‧‧lightly doped n-type remainder

圖1係一種先前技術之對稱長n通道IGFET的前視橫截面圖。 1 is a front cross-sectional view of a prior art symmetric long n-channel IGFET.

圖2係針對於圖1的IGFET之沿著上半導體表面的淨摻雜劑濃度的曲線圖,作為自通道中心之縱向距離的一函數。 2 is a graph of net dopant concentration along the upper semiconductor surface for the IGFET of FIG. 1 as a function of the longitudinal distance from the center of the channel.

圖3a與3b係針對於圖1、4a、與4b的IGFET之於二個分別不同的井摻雜條件之沿著透過源極/汲極區的垂直線的絕對摻雜劑濃度曲線圖,作為深度的一函數。 Figures 3a and 3b are graphs of absolute dopant concentrations along the vertical lines passing through the source/drain regions for the two different well doping conditions of the IGFETs of Figures 1, 4a, and 4b. A function of depth.

圖4a與4b係分別的先前技術之不對稱長與短n通道IGFET的前視橫截面圖。 Figures 4a and 4b are front cross-sectional views of prior art asymmetric long and short n-channel IGFETs, respectively.

圖5a與5b係針對於圖4a與4b的分別IGFET之沿著上半導體表面的淨摻雜劑濃度曲線圖,作為自通道中心之縱向距離的一函數。 Figures 5a and 5b are graphs of net dopant concentration along the upper semiconductor surface for the respective IGFETs of Figures 4a and 4b as a function of the longitudinal distance from the center of the channel.

圖6係根據本發明所構成之一種不對稱長n通道IGFET的前視橫截面圖,藉以具有如同直接置於下面的半導體材料之相同導電性型式的一半導體井部。 6 is a front cross-sectional view of an asymmetric long n-channel IGFET constructed in accordance with the present invention, thereby having a semiconductor well like the same conductivity type of semiconductor material placed directly underneath.

圖7a至7c係針對於圖6、18a、68a、或68b的IGFET之沿著上半導體表面的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為縱向距離的一函數。 Figures 7a through 7c are graphs of the individual, absolute, and net dopant concentrations along the upper semiconductor surface of the IGFET of Figures 6, 18a, 68a, or 68b as a function of longitudinal distance.

圖8a至8c係圖6、11、或13的IGFET之沿著透過源極的垂直線的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為深度的一函數。 Figures 8a through 8c are graphs of the individual, absolute, and net dopant concentrations of the IGFET of Figure 6, 11, or 13 along a vertical line through the source as a function of depth.

圖9a至9c係圖6、11、13、或15的IGFET之沿著透過通道區的一對垂直線的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為深度的一函數。 Figures 9a through 9c are graphs of the individual, absolute, and net dopant concentrations of a pair of vertical lines along the pass channel region of the IGFET of Figures 6, 11, 13, or 15, as a function of depth.

圖10a至10c係圖6、11、13、18a、或18b的IGFET 之沿著透過汲極的垂直線的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為深度的一函數。 Figures 10a to 10c are IGFETs of Figures 6, 11, 13, 18a, or 18b A plot of the individual, absolute, and net dopant concentrations along the vertical line through the drain as a function of depth.

圖11係根據本發明所構成之一種不對稱短n通道IGFET的前視橫截面圖,藉以具有如同直接置於下面的半導體材料之相同導電性型式的一半導體井部。 Figure 11 is a front cross-sectional view of an asymmetric short n-channel IGFET constructed in accordance with the present invention, thereby having a semiconductor well having the same conductivity pattern as the semiconductor material directly placed underneath.

圖12a至12c係針對於圖11的IGFET之沿著上半導體表面的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為縱向距離的一函數。 Figures 12a through 12c are graphs of the individual, absolute, and net dopant concentrations along the upper semiconductor surface for the IGFET of Figure 11, as a function of longitudinal distance.

圖13係根據本發明所構成之另一種不對稱長n通道IGFET的前視橫截面圖,藉以具有如同直接置於下面的半導體材料之相同導電性型式的一半導體井部。 13 is a front cross-sectional view of another asymmetric long n-channel IGFET constructed in accordance with the present invention, thereby having a semiconductor well like the same conductivity type of semiconductor material placed directly underneath.

圖14a至14c係針對於圖13、15、18b、或18c的IGFET之沿著上半導體表面的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為縱向距離的一函數。 Figures 14a through 14c are graphs of the individual, absolute, and net dopant concentrations along the upper semiconductor surface of the IGFET of Figures 13, 15, 18b, or 18c as a function of longitudinal distance.

圖15係根據本發明所構成之又一種不對稱長n通道IGFET的前視橫截面圖,藉以具有如同直接置於下面的半導體材料之相同導電性型式的一半導體井部。 15 is a front cross-sectional view of yet another asymmetric long n-channel IGFET constructed in accordance with the present invention, thereby having a semiconductor well like the same conductivity type of semiconductor material placed directly underneath.

圖16a至16c係圖15的IGFET之沿著延伸透過源極的垂直線的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為深度的一函數。 Figures 16a through 16c are graphs of the individual, absolute, and net dopant concentrations of the IGFET of Figure 15 along a vertical line extending through the source as a function of depth.

圖17a至17c係圖15或18c的IGFET之沿著延伸透過汲極的垂直線的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為深度的一函數。 Figures 17a through 17c are graphs of the individual, absolute, and net dopant concentrations of the IGFET of Figure 15 or 18c along a vertical line extending through the drain as a function of depth.

圖18a至18c係根據本發明所構成之三種分別的長n 通道IGFET的前視橫截面圖,藉以具有如同直接置於下面的半導體材料之相同導電性型式的一半導體井部。 Figures 18a to 18c are three separate lengths constructed in accordance with the present invention. A front cross-sectional view of a channel IGFET whereby a semiconductor well having the same conductivity pattern as the semiconductor material directly placed underneath.

圖19a至19c係圖18a或18b的IGFET之沿著延伸透過源極的垂直線的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為深度的一函數。 Figures 19a through 19c are graphs of the individual, absolute, and net dopant concentrations of the IGFET of Figure 18a or 18b along a vertical line extending through the source as a function of depth.

圖20a至21c係圖18c的IGFET之沿著延伸透過源極的垂直線的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為深度的一函數。 Figures 20a through 21c are graphs of the individual, absolute, and net dopant concentrations of the IGFET of Figure 18c along a vertical line extending through the source as a function of depth.

圖21係根據本發明所構成之一種不對稱長n通道IGFET的前視橫截面圖,藉以具有如同直接置於下面的半導體材料之相同導電性型式的一半導體井部。 21 is a front cross-sectional view of an asymmetric long n-channel IGFET constructed in accordance with the present invention, thereby having a semiconductor well like the same conductivity type of semiconductor material placed directly underneath.

圖22a至22c係針對於圖21的IGFET之沿著上半導體表面的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為縱向距離的一函數。 Figures 22a through 22c are graphs of the individual, absolute, and net dopant concentrations along the upper semiconductor surface of the IGFET of Figure 21 as a function of longitudinal distance.

圖23a至23c係圖21或25的IGFET之沿著透過源極的垂直線的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為深度的一函數。 Figures 23a through 23c are graphs of the individual, absolute, and net dopant concentrations of the IGFET of Figure 21 or 25 along the vertical line through the source as a function of depth.

圖24a至24c係圖21、25、27a或27b的IGFET之沿著透過汲極的垂直線的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為深度的一函數。 Figures 24a through 24c are plots of individual, absolute, and net dopant concentrations along the vertical line through the drain of the IGFET of Figures 21, 25, 27a, or 27b as a function of depth.

圖25係根據本發明所構成之另一種不對稱長n通道IGFET的前視橫截面圖,藉以具有對於直接置於下面的半導體材料之相反導電性型式的一半導體井部。 Figure 25 is a front cross-sectional view of another asymmetric long n-channel IGFET constructed in accordance with the present invention, thereby having a semiconductor well for the opposite conductivity pattern of the semiconductor material directly placed underneath.

圖26a至26c係針對於圖25或27b的IGFET之沿著上 半導體表面的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為縱向距離的一函數。 Figures 26a to 26c are directed to the IGFET of Figure 25 or 27b. A plot of the individual, absolute, and net dopant concentrations of the semiconductor surface as a function of longitudinal distance.

圖27a與27b係根據本發明所構成之二種分別的長n通道IGFET的前視橫截面圖,藉以具有對於直接置於下面的半導體材料之相反導電性型式的一半導體井部。 27a and 27b are front cross-sectional views of two separate long n-channel IGFETs constructed in accordance with the present invention, thereby having a semiconductor well for the opposite conductivity pattern of the semiconductor material directly placed underneath.

圖28a至28c係圖27a或27b的IGFET之沿著延伸透過源極的垂直線的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為深度的一函數。 Figures 28a through 28c are graphs of the individual, absolute, and net dopant concentrations of the IGFET of Figure 27a or 27b along a vertical line extending through the source as a function of depth.

圖29.1與29.2係根據本發明所構成之一種互補式IGFET半導體構造的二個部分的前視橫截面圖。 Figures 29.1 and 29.2 are front cross-sectional views of two portions of a complementary IGFET semiconductor construction constructed in accordance with the present invention.

圖30.1與30.2係根據本發明所構成之另一種互補式IGFET半導體構造的二個部分的前視橫截面圖。 30.1 and 30.2 are front cross-sectional views of two portions of another complementary IGFET semiconductor construction constructed in accordance with the present invention.

圖31a至31o、31p.1至31r.1、與31p.2至31r.2係前視橫截面圖,代表製造圖29.1與29.2之互補式IGFET半導體構造的步驟。圖31a至31o之步驟係應用至於圖29.1與29.2之二者所示的構造部分。圖31p.1至31r.1係呈現其導致圖29.1的構造部分之進一步的步驟。圖31p.2至31r.2係呈現其導致圖29.2的構造部分之進一步的步驟。 31a to 31o, 31p.1 to 31r.1, and 31p.2 to 31r.2 are front cross-sectional views representing the steps of fabricating the complementary IGFET semiconductor construction of Figures 29.1 and 29.2. The steps of Figures 31a through 31o are applied to the structural portions shown in Figures 29.1 and 29.2. Figures 31p.1 to 31r.1 present further steps leading to the construction of Figure 29.1. Figures 31p.2 to 31r.2 present further steps leading to the construction of Figure 29.2.

圖32a至32c係前視橫截面圖,代表根據本發明之對於圖31e的步驟之一種替代者的步驟,用於製造圖29.1與29.2之互補IGFET半導體構造的一種變化者,開始於重複為圖32a之圖31d的構造。 32a through 32c are front cross-sectional views showing the steps of an alternative to the step of Fig. 31e in accordance with the present invention for fabricating a variant of the complementary IGFET semiconductor construction of Figs. 29.1 and 29.2, beginning with a repeating diagram. The construction of Figure 31d of 32a.

圖33a至33f係前視橫截面圖,代表根據本發明之對於圖31c至31f的步驟之另一種替代者的步驟,用於製造圖 29.1與29.2之互補IGFET半導體構造的一種變化者,開始於重複為圖33a之圖31b的構造。 Figures 33a to 33f are front cross-sectional views showing the steps of another alternative to the steps of Figures 31c to 31f according to the present invention for making a drawing A variation of the complementary IGFET semiconductor construction of 29.1 and 29.2 begins with repeating the configuration of Figure 31b of Figure 33a.

圖34係根據本發明所構成之一種不對稱長p通道IGFET的前視橫截面圖,以便具有直接置於下層的半導體材料之相反導電性型式且根據本發明所製造的一半導體井部,而未運用一補償n型摻雜劑植入至如同初始界定的井部之上方的半導體材料。根據圖31a至31o、31p.1至31r.1、與31p.2至31r.2之製程且運用圖32a至32c或圖33a至33f之替代步驟所製造之不對稱p通道IGFET係圖34之p通道IGFET的一種實施。 Figure 34 is a front cross-sectional view of an asymmetric long p-channel IGFET constructed in accordance with the present invention so as to have a semiconductor well portion fabricated in accordance with the present invention having an opposite conductivity pattern disposed directly beneath the underlying semiconductor material. A compensated n-type dopant is not implanted into the semiconductor material as above the initially defined well. Asymmetric p-channel IGFETs fabricated according to the processes of Figures 31a to 31o, 31p.1 to 31r.1, and 31p.2 to 31r.2 and using the alternative steps of Figures 32a to 32c or Figures 33a to 33f An implementation of a p-channel IGFET.

圖35a至35c係針對於圖34的IGFET之沿著上半導體表面的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為縱向距離的一函數。 Figures 35a through 35c are graphs of the individual, absolute, and net dopant concentrations along the upper semiconductor surface for the IGFET of Figure 34 as a function of longitudinal distance.

圖36a至36c係圖34的IGFET之沿著透過源極的垂直線的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為深度的一函數。 Figures 36a through 36c are graphs of the individual, absolute, and net dopant concentrations of the IGFET of Figure 34 along a vertical line through the source as a function of depth.

圖37a至37c係圖34的IGFET之沿著透過通道區的一對垂直線的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為深度的一函數。 Figures 37a through 37c are graphs of the individual, absolute, and net dopant concentrations of a pair of vertical lines along the transmission channel region of the IGFET of Figure 34 as a function of depth.

圖38a至38c係圖34的IGFET之沿著透過汲極的垂直線的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為深度的一函數。 Figures 38a through 38c are plots of individual, absolute, and net dopant concentrations along the vertical line through the drain of the IGFET of Figure 34 as a function of depth.

圖39與40係針對於下列者的分別電腦模擬(i)根據本發明所構成之一種不對稱短n通道IGFET,及(ii)一種參考 的對稱短n通道IGFET之淨摻雜劑濃度的三維曲線圖,作為深度與縱向距離的一函數。 Figures 39 and 40 are separate computer simulations for (i) an asymmetric short n-channel IGFET constructed in accordance with the present invention, and (ii) a reference A three-dimensional plot of the net dopant concentration of a symmetric short n-channel IGFET as a function of depth and longitudinal distance.

圖41與42係呈現針對於圖39與40之分別的電腦模擬IGFET之摻雜劑輪廓的曲線圖,作為自源極位置之深度與縱向距離的一函數。 Figures 41 and 42 present plots of dopant profiles for the respective computer-simulated IGFETs of Figures 39 and 40 as a function of depth and longitudinal distance from the source locations.

圖43係針對於圖39與40之電腦模擬IGFET的淨摻雜劑濃度的曲線圖,作為自源極位置之縱向距離的一函數。 Figure 43 is a graph of net dopant concentration for the computer-simulated IGFETs of Figures 39 and 40 as a function of the longitudinal distance from the source position.

圖44a與44b係針對於圖39與40之電腦模擬IGFET的絕對與淨摻雜劑濃度之分別的曲線圖,作為分別透過源極與汲極的一對垂直線之深度的一函數。 Figures 44a and 44b are graphs of the absolute and net dopant concentrations for the computer-simulated IGFETs of Figures 39 and 40 as a function of the depth of a pair of vertical lines passing through the source and the drain, respectively.

圖45a與45b係分別為針對於圖39與40之電腦模擬IGFET之於臨界與飽和條件之線互導與線汲極電流的曲線圖,作為閘極至源極電壓的一函數。 Figures 45a and 45b are plots of line conductance and line drain current for critical and saturation conditions for the computer-simulated IGFETs of Figures 39 and 40, respectively, as a function of gate-to-source voltage.

圖46a與46b係分別為於臨界與飽和條件之線互導與線汲極電流的曲線圖,作為閘極至源極電壓的一函數,針對於下列者的電腦模擬(i)概括對應於圖39之發明的短通道IGFET之一種發明的不對稱長n通道IGFET及(ii)概括對應於圖40之參考的短通道IGFET之一種參考的不對稱長n通道IGFET。 Figures 46a and 46b are plots of line conductance and line drain current for critical and saturation conditions, respectively, as a function of gate-to-source voltage, computer simulation for (i) generalization corresponding to the figure An inventive asymmetric long n-channel IGFET of the short channel IGFET of the invention of 39 and (ii) an asymmetrical long n-channel IGFET summarizing a reference to the short channel IGFET of the reference of FIG.

圖47係針對於下列者的電腦模擬(i)圖39之發明的IGFET,(ii)圖40之參考IGFET,及(iii)缺少一抗穿透植入物之一另一的參考對稱短n通道IGFET支線汲極電流密度的曲線圖,作為閘極至源極電壓的一函數。 Figure 47 is a computer simulation of (i) the IGFET of the invention of Figure 39, (ii) the reference IGFET of Figure 40, and (iii) the reference symmetry short of one of the other one of the anti-penetration implants. A plot of the channel IGFET branch line drain current density as a function of gate to source voltage.

圖48係針對於圖39與40之電腦模擬的IGFET之線汲 極電流的曲線圖,作為閘極至源極電壓的一函數。 Figure 48 is a line diagram of the computer simulated IGFET of Figures 39 and 40. A plot of the pole current as a function of the gate to source voltage.

圖49係一種n通道IGFET與關聯寄生電容的電路圖。 Figure 49 is a circuit diagram of an n-channel IGFET with associated parasitic capacitance.

圖50係圖49的n通道IGFET與關聯寄生電容之一種小訊號模型的電路圖。 Figure 50 is a circuit diagram of a small signal model of the n-channel IGFET and associated parasitic capacitance of Figure 49.

圖51a至51c係分別配置於共源極、共閘極、與共汲極組態之單IGFET放大器的電路圖。 Figures 51a through 51c are circuit diagrams of a single IGFET amplifier configured in a common source, a common gate, and a common drain configuration, respectively.

圖52係配置於共源極、短路輸出組態之單IGFET放大器的電路圖。 Figure 52 is a circuit diagram of a single IGFET amplifier configured in a common source, shorted output configuration.

圖53係圖52的放大器之一種小訊號模型的電路圖。 Figure 53 is a circuit diagram of a small signal model of the amplifier of Figure 52.

圖54係針對於三種不同p型摻雜劑分佈模型之淨摻雜劑濃度的曲線圖,作為自pn接面之距離的一函數。 Figure 54 is a graph of net dopant concentration for three different p-type dopant profiles as a function of distance from the pn junction.

圖55係針對於圖54的三種摻雜劑分佈模型之空乏層電容的曲線圖,作為反向偏壓的一函數。 Figure 55 is a graph of the depletion layer capacitance for the three dopant distribution models of Figure 54 as a function of reverse bias.

圖56係針對於一種接面電容器的一種模型之淨本體摻雜劑濃度的曲線圖,作為自pn接面之距離的一函數,其較輕度摻雜側係具有經歷於摻雜劑濃度的一步級變化之一摻雜劑量變曲線。 Figure 56 is a graph of the net bulk dopant concentration for a model of a junction capacitor as a function of the distance from the pn junction with the lighter doped side having a dopant concentration One of the one-step changes is a doping dose curve.

圖57係針對於模型化於圖56的接面電容器之面接面電容的曲線圖,作為反向偏壓的一函數。 Figure 57 is a graph of the junction capacitance of the junction capacitor modeled in Figure 56 as a function of reverse bias.

圖58a與58b係針對於根據本發明所構成之分別的不對稱短與長n通道IGFET之摻雜劑輪廓的合成前視橫截面圖/曲線圖,作為自通道中心之深度與縱向距離的一函數。 Figures 58a and 58b are synthetic front cross-sectional views/graphs of dopant profiles for respective asymmetric short and long n-channel IGFETs constructed in accordance with the present invention as one of the depth and longitudinal distance from the center of the channel function.

圖59係針對於圖39與40的電腦模擬IGFET之線汲極至本體電容的曲線圖,作為汲極至本體電壓的一函數。 Figure 59 is a plot of line-to-body capacitance for the computer-simulated IGFET of Figures 39 and 40 as a function of drain-to-body voltage.

圖60係針對於圖39與40的電腦模擬IGFET之線源極至本體電容的曲線圖,作為源極至本體電壓的一函數。 Figure 60 is a plot of line source to body capacitance for the computer simulated IGFET of Figures 39 and 40 as a function of source to body voltage.

圖61係針對於圖39與40的電腦模擬IGFET及圖63之另一發明IGFET之截止頻率的曲線圖,作為線汲極電流的一函數。 Figure 61 is a graph of the cutoff frequency for the computer-simulated IGFET of Figures 39 and 40 and the other inventive IGFET of Figure 63 as a function of the line drain current.

圖62係截止頻率的曲線圖,作為線汲極電流的一函數,針對於下列者的電腦模擬(i)對應於圖39之發明的短通道IGFET之一種發明的不對稱長n通道IGFET,(ii)對應於圖40之參考的短通道IGFET之一種參考的對稱長n通道IGFET,及(iii)對應於圖63之另一發明的短通道IGFET之一種另一發明的不對稱長n通道IGFET。 Figure 62 is a graph of cutoff frequency as a function of line drain current, computer simulation for (i) an asymmetrical long n-channel IGFET corresponding to the short channel IGFET of the invention of Figure 39, ( Ii) a reference symmetric long n-channel IGFET corresponding to the short channel IGFET of FIG. 40, and (iii) another inventive asymmetric long n-channel IGFET corresponding to the short channel IGFET of another invention of FIG. .

圖63係根據本發明所構成之另一種電腦模擬的不對稱短n通道IGFET的前視橫截面圖。 Figure 63 is a front cross-sectional view of another computer-simulated asymmetric short n-channel IGFET constructed in accordance with the present invention.

圖64係針對於圖39與63之電腦模擬IGFET的淨摻雜劑濃度之曲線圖,作為自一源極位置之縱向距離的一函數。 Figure 64 is a graph of net dopant concentration for the computer-simulated IGFETs of Figures 39 and 63 as a function of the longitudinal distance from a source location.

圖65係臨界電壓之曲線圖,作為通道長度的一函數,針對於(i)根據本發明所構成之不對稱n通道IGFET,(ii)其具有沿著各個源極/汲極區的環圈袋部之參考對稱n通道IGFET,及(iii)其不具有沿著各個源極/汲極區的環圈袋部之參考對稱n通道IGFET。 Figure 65 is a graph of threshold voltage as a function of channel length for (i) an asymmetric n-channel IGFET constructed in accordance with the present invention, (ii) having a ring along each source/drain region The reference portion of the pocket is a symmetric n-channel IGFET, and (iii) it does not have a reference symmetric n-channel IGFET along the ring pocket portion of each source/drain region.

圖66係根據本發明所構成之又一種互補式IGFET半導體構造的前視橫截面圖。 Figure 66 is a front cross-sectional view of yet another complementary IGFET semiconductor construction constructed in accordance with the present invention.

圖67係絕對摻雜劑濃度之曲線圖,作為深度的一函數,針對於(i)根據本發明所構成之二種不對稱n通道 IGFET,及(ii)一種參考對稱n通道IGFET。 Figure 67 is a graph of absolute dopant concentration as a function of depth for (i) two asymmetric n-channels constructed in accordance with the present invention. IGFET, and (ii) a reference symmetric n-channel IGFET.

圖68a與68b係根據本發明所構成之二種分別另外不對稱長n通道IGFET的前視橫截面圖。 Figures 68a and 68b are front cross-sectional views of two separately asymmetric long n-channel IGFETs constructed in accordance with the present invention.

圖69a至69c係圖68a或68b的IGFET之沿著透過源極的垂直線的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為深度的一函數。 Figures 69a through 69c are graphs of the individual, absolute, and net dopant concentrations of the IGFET of Figure 68a or 68b along a vertical line through the source as a function of depth.

圖70a至70c係圖68a或68b的IGFET之沿著透過通道區的一對垂直線的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為深度的一函數。 Figures 70a through 70c are graphs of the individual, absolute, and net dopant concentrations of a pair of vertical lines along the transmission channel region of the IGFET of Figure 68a or 68b as a function of depth.

圖71a至71c係圖68a或68b的IGFET之沿著延伸透過汲極的垂直線的個別、絕對、與淨摻雜劑濃度之分別的曲線圖,作為深度的一函數。 Figures 71a through 71c are graphs of the individual, absolute, and net dopant concentrations of the IGFET of Figure 68a or 68b along a vertical line extending through the drain as a function of depth.

圖72a至72d係根據本發明所構成之四種附加分別的互補IGFET半導體構造的前視橫截面圖。 Figures 72a through 72d are front cross-sectional views of four additional separate complementary IGFET semiconductor configurations constructed in accordance with the present invention.

同樣的參考符號係運用於圖式及於較佳實施例的說明以代表相同或極為類似的項目。於含有曲線圖的圖式中之具有單撇號(’)、雙撇號(”)、星號(*)、與井號(#)記號的參考符號之數字部分係分別指示於其他圖式之同樣標號的區域或區。於提供半導體井部摻雜劑之一IGFET的橫截面圖之“X”記號係指示井部摻雜劑之最大濃度的位置。電氣絕緣間隔物(未顯示)係可能位於沿著圖13、15、18b、18c、25、27b與34之IGFET的閘極電極的側壁,視彼等IGFET為如何製造而定。 The same reference numerals are used in the drawings and the description of the preferred embodiments to represent the same or very similar items. The numerical part of the reference symbol with a single apostrophe ('), double apostrophe ("), asterisk (*), and pound sign ( # ) in the graph containing the graph is indicated by other schemas, respectively. The same labeled area or region. The "X" mark of the cross-sectional view of the IGFET providing one of the semiconductor well dopants indicates the location of the maximum concentration of the well dopant. Electrically insulating spacers (not shown) are possible. The sidewalls of the gate electrodes of the IGFETs located along Figs. 13, 15, 18b, 18c, 25, 27b, and 34 are dependent on how the IGFETs are fabricated.

於摻雜劑分佈曲線圖,“個別(individual)”摻雜劑濃 度係意指各個分別引入的n型摻雜劑與各個分別引入的p型摻雜劑之個別濃度,而“絕對(absolute)”摻雜劑濃度係意指總n型摻雜劑濃度與p型摻雜劑濃度。於摻雜劑分佈曲線圖之“淨(net)”摻雜劑濃度係於絕對(或總)n型摻雜劑濃度與絕對(或總)p型摻雜劑濃度之間的差異。淨摻雜劑濃度係於絕對n型摻雜劑濃度為超過絕對p型摻雜劑濃度而指示為淨“n型”,且於絕對p型摻雜劑濃度為超過絕對n型摻雜劑濃度而指示為淨“p型”。 In the dopant profile, "individual" dopants are concentrated Degree means the individual concentrations of the respective introduced n-type dopants and the respective introduced p-type dopants, and the "absolute" dopant concentration means the total n-type dopant concentration and p Type dopant concentration. The "net" dopant concentration in the dopant profile is the difference between the absolute (or total) n-type dopant concentration and the absolute (or total) p-type dopant concentration. The net dopant concentration is indicated as a net "n-type" when the absolute n-type dopant concentration exceeds the absolute p-type dopant concentration, and exceeds the absolute n-type dopant concentration at the absolute p-type dopant concentration. The indication is a net "p-type".

100‧‧‧絕緣閘極場效電晶體(IGFET) 100‧‧‧Insulated Gate Field Effect Transistor (IGFET)

102‧‧‧源極 102‧‧‧ source

104‧‧‧汲極 104‧‧‧汲polar

106‧‧‧通道區 106‧‧‧Channel area

108‧‧‧本體材料 108‧‧‧ Body material

110‧‧‧源極-本體pn接面 110‧‧‧Source-body pn junction

112‧‧‧汲極-本體pn接面 112‧‧‧Bungee-body pn junction

114‧‧‧下部 114‧‧‧ lower

116‧‧‧井部 116‧‧‧ Wells

118‧‧‧上部 118‧‧‧ upper

120‧‧‧袋部 120‧‧‧ bag department

124‧‧‧本體材料剩餘者 124‧‧‧The remainder of the ontology material

126‧‧‧閘極介電層 126‧‧ ‧ gate dielectric layer

128‧‧‧閘極電極 128‧‧‧gate electrode

130、132、134、136‧‧‧垂直線 130, 132, 134, 136‧‧ vertical lines

Claims (100)

一種構造,包含一主要場效電晶體(FET),其包含:具有一上半導體表面之一半導體本體的主要本體材料之一主要通道區,該本體材料充分摻雜一第一導電性型式之半導體摻雜劑以作為第一導電性型式者;一對主要源極/汲極(S/D)區,其沿著該上半導體表面而位於該半導體本體,由該通道區所側向分開,且為相反於第一導電性型式之一第二導電性型式者,該本體材料側向延伸在該等S/D區之下方,於該本體材料之第一導電性型式的摻雜劑具有一濃度,其自一主要下層次表層本體材料位置朝上移動至該等S/D區的一指定者而減小最多10%,該次表層本體材料位置相較於該指定S/D區而在該上半導體表面之下方為不超過10倍深;一主要閘極介電層,覆於該通道區之上;及一主要閘極電極,覆於該通道區上方的閘極介電層上。 A configuration comprising a main field effect transistor (FET) comprising: a main channel region of a main body material having a semiconductor body of an upper semiconductor surface, the body material being sufficiently doped with a first conductivity type semiconductor a dopant as the first conductivity type; a pair of main source/drain (S/D) regions located along the upper semiconductor surface of the semiconductor body, laterally separated by the channel region, and In a second conductivity type opposite to the first conductivity type, the body material extends laterally below the S/D regions, and the dopant of the first conductivity type of the body material has a concentration Reducing a maximum of 10% from a major lower level surface layer body material moving up to a designated one of the S/D regions, the subsurface body material position being compared to the designated S/D region The surface of the upper semiconductor is not more than 10 times deep; a main gate dielectric layer overlies the channel region; and a main gate electrode overlies the gate dielectric layer above the channel region. 如申請專利範圍第1項之構造,其中,該次表層本體材料位置相較於該指定S/D區而在該上半導體表面之下方為不超過5倍深。 The structure of claim 1, wherein the subsurface body material is no more than 5 times deeper than the designated S/D region below the upper semiconductor surface. 如申請專利範圍第1或2項之構造,其中該次表層本體材料位置位於該通道與S/D區各者的大部分全部下方。 The structure of claim 1 or 2, wherein the subsurface body material is located below most of the channel and the S/D zone. 如申請專利範圍第1或2項之構造,其中於該本體材料之第一導電性型式的摻雜劑之濃度自該次表層本體材料位置朝上移動至該指定S/D區而減小為最多20%。 The structure of claim 1 or 2, wherein the concentration of the dopant of the first conductivity type of the bulk material is decreased from the position of the subsurface body material upward to the designated S/D region and is reduced to Up to 20%. 如申請專利範圍第1或2項之構造,其中,相較於在 該通道區沿著上半導體表面會合該等S/D區的一剩餘者之處,於該本體材料之第一導電性型式的摻雜劑之濃度在該通道區沿著上半導體表面會合該指定S/D區之處為較低。 For example, the structure of claim 1 or 2, wherein The channel region meets a remainder of the S/D regions along the upper semiconductor surface, and the concentration of the dopant of the first conductivity type of the bulk material meets the designation along the upper semiconductor surface in the channel region The S/D area is lower. 如申請專利範圍第5項之構造,其中,相較於在該通道區沿著上半導體表面會合該剩餘S/D區之處,於該本體材料之第一導電性型式的摻雜劑之濃度在該通道區沿著上半導體表面會合該指定S/D區之處為至少低10%。 The structure of claim 5, wherein the concentration of the dopant of the first conductivity type of the bulk material is compared to where the remaining S/D region is merged along the upper semiconductor surface in the channel region The channel region is at least 10% lower along where the upper semiconductor surface meets the designated S/D region. 如申請專利範圍第5項之構造,其中,相較於在該通道區沿著上半導體表面會合該剩餘S/D區之處,於該本體材料之第一導電性型式的摻雜劑之濃度在該通道區沿著上半導體表面會合該指定S/D區之處為至少低20%。 The structure of claim 5, wherein the concentration of the dopant of the first conductivity type of the bulk material is compared to where the remaining S/D region is merged along the upper semiconductor surface in the channel region The channel region is at least 20% lower along where the upper semiconductor surface meets the designated S/D region. 如申請專利範圍第5項之構造,其中,相較於該剩餘S/D區,該指定S/D區在該上半導體表面之下方延伸較深。 The configuration of claim 5, wherein the designated S/D region extends deeper below the upper semiconductor surface than the remaining S/D region. 如申請專利範圍第1或2項之構造,其中,於該本體材料之第一導電性型式的摻雜劑之濃度自該次表層本體材料位置朝上移動至該指定S/D區而實質地經歷一步級減小。 The structure of claim 1 or 2, wherein the concentration of the dopant of the first conductivity type of the bulk material moves upward from the position of the subsurface body material to the designated S/D region substantially Experience a one-step reduction. 如申請專利範圍第1或2項之構造,其中,各個S/D區包含一主要S/D部分與其連續於該主要S/D部分之一較輕度摻雜的側向延伸部分,該通道區由沿著上半導體表面之該等側向延伸部分所終止。 The configuration of claim 1 or 2, wherein each S/D region comprises a main S/D portion and a laterally extending portion thereof which is lightly doped continuously to one of the main S/D portions, the channel The regions are terminated by the lateral extensions along the upper semiconductor surface. 如申請專利範圍第1或2項之構造,其中該等S/D區的剩餘者包含一主要S/D部分與連續於該主要S/D部分之一較輕度摻雜的側向延伸部分,該通道區由沿上半導體表面之該指定S/D區與該剩餘S/D區的側向延伸部分終止。 The structure of claim 1 or 2, wherein the remainder of the S/D regions comprises a main S/D portion and a laterally extending portion that is lightly doped continuously to one of the main S/D portions The channel region is terminated by a lateral extension of the designated S/D region along the upper semiconductor surface and the remaining S/D regions. 如申請專利範圍第11項之構造,其中,各個S/D區界定其沿著上半導體表面之半導體摻雜劑到達一最大淨濃度,其相較於該剩餘S/D區,於該指定S/D區為較低。 The structure of claim 11, wherein each S/D region defines a semiconductor dopant along the upper semiconductor surface to reach a maximum net concentration, as compared to the remaining S/D region, at the designated S The /D area is lower. 如申請專利範圍第12項之構造,其中,於該等S/D區之摻雜劑的最大淨濃度,相較於該剩餘S/D區,於該指定S/D區為至少低20%。 The structure of claim 12, wherein the maximum net concentration of the dopants in the S/D regions is at least 20% lower than the remaining S/D regions in the designated S/D region. . 如申請專利範圍第1或2項之構造,其中,各個S/D區包含一主要S/D部分與一較輕度摻雜的下方部分,其位在該主要S/D部分之下方且與該主要S/D部分為連續。 The structure of claim 1 or 2, wherein each S/D region includes a main S/D portion and a lightly doped lower portion located below the main S/D portion and The main S/D portion is continuous. 如申請專利範圍第1或2項之構造,更包括該主要FET之相同極性的一另一FET,該另一FET包含:該本體材料之一另一通道區;一對另一S/D區,其沿著該上半導體表面而位於該半導體本體,由該另一通道區所側向分開,且為第二導電性型式者,於該本體材料之第一導電性型式的摻雜劑之濃度自一另一下層次表層本體材料位置朝上移動至各個另一S/D區而實質固定或變化為大於10%,該另一下層次表層本體材料位置大約如同該主要次表層本體材料位置為深於該上半導體表面之下方;一另一閘極介電層,其覆於該另一通道區之上;及一另一控制電極,其覆於該另一通道區之上方的另一閘極介電層之上。 The configuration of claim 1 or 2 further includes an additional FET of the same polarity of the main FET, the other FET comprising: another channel region of the body material; and a pair of other S/D regions Provided along the upper semiconductor surface in the semiconductor body, laterally separated by the other channel region, and being of the second conductivity type, the concentration of the dopant of the first conductivity type of the body material The position of the material of the other lower layer surface body is substantially the same as the position of the material material of the main subsurface layer is deeper than the position of the material of the other lower layer body is moved to the other S/D area upwards to be more than 10%. a lower surface of the upper semiconductor layer; a further gate dielectric layer overlying the other channel region; and a further control electrode covering another gate electrode over the other channel region Above the electrical layer. 如申請專利範圍第15項之構造,其中:相較於在該主要通道區沿著上半導體表面會合該等主 要S/D區的剩餘者之處,於該本體材料之第一導電性型式的摻雜劑之濃度在該主要通道區沿著上半導體表面會合該指定主要S/D區之處為較低;及於該本體材料之第一導電性型式的摻雜劑之濃度在該另一通道區會合該等另一S/D區的一者之處與在該另一通道區會合該等另一S/D區的另一者之處大約相同。 The structure of claim 15 wherein: the mains are merged along the upper semiconductor surface in the main channel region Where the remainder of the S/D region is desired, the concentration of the dopant of the first conductivity type of the bulk material is lower in the main channel region along the upper semiconductor surface where the designated main S/D region meets And a concentration of the dopant of the first conductivity type of the bulk material in the other channel region meeting one of the other S/D regions and meeting the other channel region The other part of the S/D area is about the same. 如申請專利範圍第1或2項之構造,更包括該主要FET之相反極性的一附加FET,該附加FET包含:該半導體本體的附加本體材料之一附加通道區,該附加本體材料充分摻雜第二導電性型式之半導體摻雜劑以作為第二導電性型式者;一對附加S/D區,其沿著該上半導體表面而位於該半導體本體,由該附加通道區所側向分開,且為第一導電性型式者,於該附加本體材料之第二導電性型式的摻雜劑係具有一濃度,其自一附加下層次表層本體材料位置朝上移動至該等附加S/D區之一指定附加S/D區而減小成最多10%,相較於該指定的附加S/D區,該附加下層次表層本體材料位置在該上半導體表面之下方為不超過10倍深;一附加閘極介電層,其覆於該附加通道區之上;及一附加閘極電極,其覆於該附加通道區之上方的附加閘極介電層之上。 An additional FET further comprising an opposite polarity of the main FET, the additional FET comprising: an additional channel region of the additional body material of the semiconductor body, the additional body material being sufficiently doped, as in the configuration of claim 1 or 2 a second conductivity type semiconductor dopant as the second conductivity type; a pair of additional S/D regions located along the upper semiconductor surface of the semiconductor body, laterally separated by the additional channel region, And in the first conductivity type, the dopant of the second conductivity type of the additional body material has a concentration that moves from an additional lower layer surface body material position upward to the additional S/D regions One of the specified S/D regions is reduced to a maximum of 10%, and the additional lower layer skin material position is no more than 10 times deep below the upper semiconductor surface compared to the specified additional S/D region; An additional gate dielectric layer overlying the additional channel region; and an additional gate electrode overlying the additional gate dielectric layer above the additional channel region. 如申請專利範圍第17項之構造,其中:相較於在該主要通道區沿著上半導體表面會合該等主要S/D區的剩餘者之處,於該主要本體材料之第一導電性 型式的摻雜劑之濃度在該主要通道區沿著上半導體表面會合該指定主要S/D區之處為較低;及相較於在該附加通道區沿著上半導體表面會合該等附加S/D區的剩餘者之處,於該附加本體材料之第二導電性型式的摻雜劑之濃度在該附加通道區沿著上半導體表面會合該指定附加S/D區之處為較低。 The structure of claim 17, wherein: the first conductivity of the main body material is compared to the remainder of the main S/D regions along the upper semiconductor surface along the upper channel region The concentration of the dopant of the type is lower in the main channel region along the upper semiconductor surface meeting the designated main S/D region; and the additional S is combined along the upper semiconductor surface in the additional channel region The remainder of the /D region, the concentration of the dopant of the second conductivity type of the additional body material is lower where the additional channel region meets the specified additional S/D region along the upper semiconductor surface. 如申請專利範圍第17項之構造,更包括該主要FET之相同極性的一第三FET,第三FET包含:該主要本體材料之一第三通道區;一對第三S/D區,其沿著該上半導體表面而位於該半導體本體,由第三通道區所側向分開,且為第二導電性型式者,於該主要本體材料之第一導電性型式的摻雜劑之濃度自一第三下層次表層本體材料位置朝上移動至各個第三S/D區而實質固定或變化為大10%,第三下層次表層本體材料位置大約如同該主要次表層本體材料位置為深於該上半導體表面之下方;一第三閘極介電層,其覆於第三通道區之上;及一第三控制電極,其覆於第三通道區之上方的第三閘極介電層之上。 A third FET of the same polarity of the main FET, the third FET comprising: a third channel region of the main body material; and a pair of third S/D regions, as in the configuration of claim 17 Located along the upper semiconductor surface, the semiconductor body is laterally separated by the third channel region, and is of a second conductivity type, the concentration of the dopant of the first conductivity type of the main body material is from one The third lower layer skin material is moved upward to the respective third S/D regions and substantially fixed or changed to be 10% larger, and the third lower layer skin material position is approximately as deep as the main sub surface body material position. a third gate dielectric layer overlying the third channel region; and a third control electrode overlying the third gate dielectric layer above the third channel region on. 如申請專利範圍第19項之構造,更包括為該附加FET之相同極性且因此為該主要FET之相反極性的一第四FET,第四FET包含:該附加本體材料之一第四通道區;一對第四S/D區,其沿該上半導體表面而位於該半導 體本體,由第四通道區所側向分開且為第一導電性型式者,於該附加本體材料之第二導電性型式的摻雜劑之濃度自一第四下層本體材料位置朝上移至各個第四S/D區而實質固定或變化為大於10%,第四下層本體材料位置大約如同該附加次表層本體材料位置為深於上半導體表面下方;一第四閘極介電層,其覆於第四通道區之上;及一第四閘極電極,其覆於第四通道區之上方的第四閘極介電層之上。 The configuration of claim 19, further comprising a fourth FET of the same polarity of the additional FET and thus the opposite polarity of the main FET, the fourth FET comprising: a fourth channel region of the additional body material; a pair of fourth S/D regions located along the upper semiconductor surface and located in the semiconductor The body body is laterally separated from the fourth channel region and is of a first conductivity type, and the concentration of the dopant of the second conductivity type of the additional body material is moved upward from a fourth lower layer body material position to Each fourth S/D region is substantially fixed or changed to be greater than 10%, and the fourth lower layer body material is positioned approximately as if the additional subsurface body material is located deeper than the upper semiconductor surface; a fourth gate dielectric layer Overlying the fourth channel region; and a fourth gate electrode overlying the fourth gate dielectric layer above the fourth channel region. 一種構造,包含一主要場效電晶體(FET),其包含:具有一上半導體表面之一半導體本體的主要本體材料之一主要通道區,該本體材料係一第一導電性型式者;一對主要源極/汲極(S/D)區,其沿著該上半導體表面而位於該半導體本體,由該通道區所側向分開且為相反於第一導電性型式之一第二導電性型式者,該本體材料之一主要井部延伸在該通道與S/D區之下方,該井部大致上由第一導電性型式之主要半導體井部摻雜劑所界定且相較於該本體材料之上層與下層部分為較重度摻雜,該井部摻雜劑具有一濃度,其沿著相較該等S/D區的一S/D區來說在該上半導體表面下方之程度不超過10倍深的位置處達到一主要次表層最大值,使於該本體材料之第一導電性型式的所有摻雜劑係有一濃度,其自於該井部摻雜劑之濃度的次表層最大值之位置朝上移動至指定S/D區而減小成最多10%;一主要閘極介電層,覆於該通道區之上;及一主要閘極電極,覆於該通道區上方的閘極介電層上。 A configuration comprising a main field effect transistor (FET) comprising: a main channel region of a main body material having a semiconductor body of an upper semiconductor surface, the body material being a first conductivity type; a main source/drain (S/D) region located along the upper semiconductor surface of the semiconductor body, laterally separated by the channel region and being opposite one of the first conductivity types and a second conductivity pattern One of the body materials has a major well extending below the channel and the S/D region, the well being substantially defined by the first conductivity type of the main semiconductor well dopant and compared to the body material The upper layer and the lower layer are heavily doped, and the well dopant has a concentration that does not exceed the extent of the upper semiconductor surface along an S/D region of the S/D regions. A primary subsurface maximum is achieved at a position 10 times deep, such that all dopants of the first conductivity type of the bulk material have a concentration, and a subsurface maximum of the concentration of the dopant from the well The position moves up to the designated S/D area and decreases to Up to 10%; a primary gate dielectric layer overlying the channel region; and a primary gate electrode overlying the gate dielectric layer above the channel region. 如申請專利範圍第21項之構造,其中,相較於該指定S/D區,於該井部摻雜劑之濃度的次表層最大值之位置在該上半導體表面之下方為不超過5倍深。 The structure of claim 21, wherein the position of the subsurface maximum of the concentration of the dopant at the well is no more than 5 times below the upper semiconductor surface compared to the designated S/D region. deep. 如申請專利範圍第21或22項之構造,其中,該本體材料之一袋部沿著該等S/D區的剩餘者延伸,以包含向上至該上半導體表面之通道區的部分者,該袋部由第一導電性型式的半導體袋部摻雜劑所界定,使該袋部相較於該本體材料之一鄰接部分為較重度摻雜,相較於在該通道區沿著上半導體表面會合該剩餘S/D區之處,於該本體材料之第一導電性型式的所有摻雜劑之濃度在該通道區沿著上半導體表面會合該指定S/D區之處為較低。 The structure of claim 21 or 22, wherein a pocket portion of the body material extends along a remainder of the S/D regions to include a portion of the channel region up to the upper semiconductor surface, The pocket portion is defined by the first conductivity type semiconductor pocket portion dopant such that the pocket portion is heavily doped compared to an adjacent portion of the body material, as compared to the upper semiconductor surface in the channel region Where the remaining S/D regions are merged, the concentration of all dopants in the first conductivity pattern of the bulk material is lower in the channel region along the upper semiconductor surface meeting the designated S/D region. 如申請專利範圍第23項之構造,其中,相較於在該通道區沿著上半導體表面會合該剩餘S/D區之處,於該本體材料之第一導電性型式的所有摻雜劑之濃度在該通道區沿著上半導體表面會合該指定S/D區處至少低10%。 The structure of claim 23, wherein all of the dopants of the first conductivity type of the bulk material are compared to where the remaining S/D regions are joined along the upper semiconductor surface in the channel region. The concentration is at least 10% lower in the channel region along the upper semiconductor surface meeting the designated S/D region. 如申請專利範圍第23項之構造,其中,該指定S/D區相較於該剩餘S/D區在上半導體表面之下方延伸較深。 The configuration of claim 23, wherein the designated S/D region extends deeper below the upper semiconductor surface than the remaining S/D region. 如申請專利範圍第21或22項之構造,更包括該主要FET之相同極性的一另一FET,該另一FET包含:該本體材料之一另一通道區;一對另外S/D區,其沿著該上半導體表面而位於該半導體本體,由該另一通道區所側向分開,且為第二導電性型式者,該本體材料之一另一井部延伸在該另一通道與S/D區之下方,該另一井部實質地由第一導電性型式之另一半 導體井部摻雜劑所界定,使得該另一井部相較於該本體材料之一下層部分而為較重度摻雜,該另一井部摻雜劑具有一濃度,其沿著在該另一通道與S/D區之下方的一位置而達到一另一次表層最大值,使於該本體材料之第一導電性型式的所有摻雜劑之濃度自該另一次表層最大值的位置朝上移動至各個另一S/D區而變化為大於10%;一另一閘極介電層,其覆於該另一通道區之上;及一另一閘極電極,其覆於該另一通道區之上方的另一閘極介電層之上。 The configuration of claim 21 or 22 further includes another FET of the same polarity of the main FET, the other FET comprising: another channel region of the body material; a pair of additional S/D regions, Located along the upper semiconductor surface, the semiconductor body is laterally separated by the other channel region, and is of a second conductivity type, one of the body materials extends in the other channel and the S Below the /D zone, the other well is essentially the other half of the first conductivity type The conductor well dopant is defined such that the other well is heavily doped compared to a lower portion of the bulk material, the other well dopant having a concentration along which the other A channel and a position below the S/D region reach a further surface maximum such that the concentration of all dopants in the first conductivity type of the bulk material is upward from the position of the other surface maximum Moving to each of the other S/D regions and changing to greater than 10%; a further gate dielectric layer overlying the other channel region; and a further gate electrode overlying the other Above the other gate dielectric layer above the channel region. 一種構造,包含一主要場效電晶體(FET),其包含:具有一上半導體表面之一半導體本體的主要本體材料之一主要通道區,該本體材料充分摻雜一第一導電性型式之半導體摻雜劑以作為第一導電性型式者;一對主要源極/汲極(S/D)區,其沿著該上半導體表面而位於該半導體本體,由該通道區所側向分開,且為相反於第一導電性型式之一第二導電性型式者,該本體材料包含(a)一主要次表層本體材料部分,其置於該通道與S/D區之下,且在其最接近該等S/D區之處,相較於該等S/D區而在該上半導體表面之下方為不超過10倍深,及(b)一主要表面鄰接本體材料部分,其延伸至該上半導體表面,其含有該通道區,並其覆於且會合該次表層本體材料部分,於該本體材料之第一導電性型式的摻雜劑具有一濃度,其自該次表層本體材料部分朝上跨過至該表面鄰接本體材料部分而主要經歷大於10%之一步級減小,且進一步透過該表面鄰接 本體材料部分朝上移動至該等S/D區之一指定者,而維持相較於該次表層本體材料部分為較低至少10%;一主要閘極介電層,覆於該通道區之上;及一主要閘極電極,覆於該通道區上方的閘極介電層上。 A configuration comprising a main field effect transistor (FET) comprising: a main channel region of a main body material having a semiconductor body of an upper semiconductor surface, the body material being sufficiently doped with a first conductivity type semiconductor a dopant as the first conductivity type; a pair of main source/drain (S/D) regions located along the upper semiconductor surface of the semiconductor body, laterally separated by the channel region, and In the case of a second conductivity type opposite to the first conductivity type, the body material comprises (a) a major sub-surface body material portion disposed under the channel and the S/D region and at its closest Where the S/D regions are no more than 10 times deeper than the upper semiconductor surface than the S/D regions, and (b) a major surface abuts the body material portion, extending to the upper portion a semiconductor surface comprising the channel region and covering and meeting the subsurface body material portion, the dopant of the first conductivity type of the body material having a concentration from the subsurface body material portion facing upward Across the surface adjacent to the body material portion And the main experience is greater than 10% of the step reduction, and further through the surface abutment The body material portion moves upwardly to one of the S/D regions and is maintained at least 10% lower than the subsurface body material portion; a primary gate dielectric layer overlying the channel region And a primary gate electrode overlying the gate dielectric layer above the channel region. 如申請專利範圍第27項之構造,其中,該次表層本體材料部分係在其最接近該等S/D區之處,相較於該等S/D區在該上半導體表面之下方為不超過5倍深。 The structure of claim 27, wherein the subsurface body material portion is located closest to the S/D regions, and is not below the upper semiconductor surface of the S/D regions. More than 5 times deep. 如申請專利範圍第27或28項之構造,其中,相較於在該通道區沿著上半導體表面會合該等S/D區的剩餘者之處,於該本體材料之第一導電性型式的摻雜劑之濃度在該通道區沿著上半導體表面會合該指定S/D區之處為較低。 The structure of claim 27 or 28, wherein the first conductivity type of the body material is compared to the remainder of the S/D regions along the upper semiconductor surface in the channel region The concentration of the dopant is lower in the channel region along where the upper semiconductor surface meets the designated S/D region. 如申請專利範圍第29項之構造,其中,相較於在該通道區沿著上半導體表面會合該剩餘S/D區之處,於該本體材料之第一導電性型式的摻雜劑之濃度在該通道區沿著上半導體表面會合該指定S/D區處至少低10%。 The structure of claim 29, wherein the concentration of the dopant of the first conductivity type of the bulk material is compared to where the remaining S/D region is merged along the upper semiconductor surface in the channel region At least 10% lower at the channel region along the upper semiconductor surface meeting the designated S/D region. 如申請專利範圍第27或28項之構造,其中,第一導電性型式之摻雜劑的濃度係大約固定的貫穿該次表層本體材料部分。 The structure of claim 27 or 28, wherein the concentration of the dopant of the first conductivity type is approximately fixed throughout the material portion of the subsurface body. 如申請專利範圍第27或28項之構造,更包括該主要FET之相反極性的一附加FET,該附加FET包含:該半導體本體的附加本體材料之一附加通道區,該附加材料充分摻雜第二導電性型式之半導體摻雜劑以作為第二導電性型式者;一對附加S/D區,其沿著該上半導體表面而位於該半 導體本體,由該附加通道區所側向分開,且為第一導電性型式者,該附加本體材料包含(a)一附加次表層本體材料部分,其置於該附加通道與S/D區之下,且在其最接近該等附加S/D區之處,相較於該等附加S/D區而在該上半導體表面之下方延伸不超過10倍深,及(b)一附加表面鄰接本體材料部分,其延伸至該上半導體表面,其含有該附加通道區,並其覆於且會合該附加次表層本體材料部分,於該附加本體材料之第二導電性型式的摻雜劑具有一濃度,其自該附加次表層本體材料部分朝上跨過至該附加表面鄰接本體材料部分而主要經歷一步級減小成最多10%,且進一步自該附加表面鄰接本體材料部分朝上移動經由該等附加S/D區之一指定附加S/D區而相較於該附加次表層本體材料部分為維持低至少10%;一附加閘極介電層,其覆於該附加通道區之上;及一附加閘極電極,其覆於該附加通道區之上方的該附加閘極介電層之上。 An additional FET including the opposite polarity of the main FET, the additional FET comprising: an additional channel region of the additional body material of the semiconductor body, the additional material is fully doped, as in the configuration of claim 27 or 28 a two-conductivity type of semiconductor dopant as the second conductivity type; a pair of additional S/D regions located along the upper semiconductor surface a conductor body laterally separated by the additional channel region and having a first conductivity type, the additional body material comprising (a) an additional sub-surface body material portion disposed in the additional channel and the S/D region And, where it is closest to the additional S/D regions, extends no more than 10 times deep below the upper semiconductor surface compared to the additional S/D regions, and (b) an additional surface abutment a body material portion extending to the upper semiconductor surface, the additional channel region comprising and covering the additional sub-surface body material portion, the dopant of the second conductivity type of the additional body material having a a concentration that extends from the portion of the additional sub-surface body material upwardly to the additional surface abutting the body material portion and is primarily subjected to a stepwise reduction of up to 10%, and further moving upwardly from the additional surface abutting the body material portion via the One of the additional S/D regions specifies an additional S/D region that is at least 10% lower than the additional sub-surface body material portion; an additional gate dielectric layer overlying the additional channel region; And an additional gate electrode Overlying above the additional channel zone of the additional gate dielectric over the dielectric layer. 如申請專利範圍第32項之構造,其中:相較於在該主要通道區沿著上半導體表面會合該等主要S/D區的剩餘者之處,於該主要本體材料之第一導電性型式的摻雜劑之濃度在該主要通道區沿著上半導體表面會合該指定主要S/D區之處為較低;及相較於在該附加通道區沿著上半導體表面會合該等附加S/D區的剩餘者之處,於該附加本體材料之第二導電性型式的摻雜劑之濃度在該附加通道區沿著上半導體表面會 合該指定附加S/D區之處為較低。 The structure of claim 32, wherein: the first conductivity type of the main body material is compared to the remainder of the main S/D regions along the upper semiconductor surface along the upper channel region The concentration of the dopant is lower in the main channel region along the upper semiconductor surface meeting the designated main S/D region; and the additional S/ is combined along the upper semiconductor surface in the additional channel region. The remainder of the D region, the concentration of the dopant of the second conductivity type of the additional body material in the additional channel region along the upper semiconductor surface The place where the additional S/D area is specified is lower. 如申請專利範圍第32項之構造,其中:第一導電性型式之摻雜劑的濃度係大約固定的貫穿該主要次表層本體材料部分;且第二導電性型式之摻雜劑的濃度係大約固定的貫穿該附加次表層本體材料部分。 The structure of claim 32, wherein: the concentration of the dopant of the first conductivity type is approximately fixed throughout the portion of the main sub-surface body material; and the concentration of the dopant of the second conductivity type is approximately A portion of the material that extends through the additional subsurface body. 一種製造一半導體結構之方法,該方法包含:引入一第一導電性型式的第一半導體摻雜劑至一半導體本體以界定針對於一主要場效電晶體(FET)之第一導電性型式的一主要井部;針對該FET界定一主要閘極電極,在意圖作為第一導電性型式的一主要通道區之該半導體本體的一區段之上方且為由主要閘極介電層所將其垂直分開;引入其相反於第一導電性型式之一第二導電性型式的第一半導體摻雜劑至該半導體本體,以針對該FET界定由該通道區所側向分開之第二導電性型式的一對主要源極/汲極(S/D)區;及實行附加處理以完成該FET之製造,使得在完成製造該結構之後(a)該半導體本體具有一上半導體表面,(b)該通道區與井部為第一導電性型式且側向延伸在該等S/D區之下方的主要本體材料之部分者,且(c)該半導體本體中該第一導電性型式的所有半導體摻雜劑具有一濃度,自一主要下層次表層本體材料位置朝上移動至該等S/D區之一指定者而減小為最多10%,該次表層本體材料位置相較於該指 定S/D區而在該上半導體表面之下方為不超過10倍深。 A method of fabricating a semiconductor structure, the method comprising: introducing a first conductivity type of a first semiconductor dopant to a semiconductor body to define a first conductivity type for a primary field effect transistor (FET) a primary well; defining a primary gate electrode for the FET, above a portion of the semiconductor body intended to be a primary channel region of the first conductivity type and being addressed by the primary gate dielectric layer Vertically separating; introducing a first semiconductor dopant opposite to the second conductivity type of the first conductivity type to the semiconductor body to define a second conductivity pattern laterally separated by the channel region for the FET a pair of primary source/drain (S/D) regions; and performing additional processing to complete fabrication of the FET such that (a) the semiconductor body has an upper semiconductor surface after completion of fabrication of the structure, (b) The channel region and the well portion are part of a first conductivity type and laterally extending below the main body material below the S/D regions, and (c) all semiconductor doping of the first conductivity type in the semiconductor body Miscellaneous agent Concentration, moving from a major underlying subsurface body-material location up to the designator of such one S / D zone is reduced to at most 10%, of the subsurface body-material location as compared to the finger The S/D region is defined to be no more than 10 times deep below the upper semiconductor surface. 如申請專利範圍第35項之方法,其中引入第一導電性型式的第一摻雜劑及實行附加處理之動作,該處理動作係實行於以下條件:使得在完成製造該結構之後,第一導電性型式的所有摻雜劑之濃度自該次表層本體材料位置向上移動至該指定S/D區並減小成最多10%。 The method of claim 35, wherein the first conductivity type first dopant is introduced and an additional processing action is performed, the processing operation being performed under the condition that the first conductive after the fabrication of the structure is completed The concentration of all dopants in the pattern is moved upward from the subsurface body material location to the designated S/D region and reduced to a maximum of 10%. 如申請專利範圍第35或36項之方法,其中在完成製造該結構之後,該次表層本體材料位置相較於該指定S/D區在該上半導體表面之下方為不超過5倍深。 The method of claim 35, wherein after the fabrication of the structure, the subsurface body material is positioned no more than 5 times deeper than the designated S/D region below the upper semiconductor surface. 如申請專利範圍第35或36項之方法,其中在完成製造該結構之後,第一導電性型式的所有摻雜劑之濃度自該次表層本體材料位置朝上移動至該指定S/D區而減小成最多20%。 The method of claim 35, wherein after the fabrication of the structure, the concentration of all dopants of the first conductivity type moves upward from the subsurface body material to the designated S/D region. Reduce to a maximum of 20%. 如申請專利範圍第35或36項之方法,更包括:引入第一導電性型式的第二半導體摻雜劑至該半導體本體,以界定一袋部沿著該等S/D區的剩餘者向上延伸至其接著存在的上表面,使在完成製造該結構之後,(a)該袋部構成該本體材料的一部分,且相較於該本體材料的鄰接材料為較重度摻雜,及(b)相較於在該通道區沿著上半導體表面會合該剩餘S/D區之處,於該本體材料之第一導電性型式的所有摻雜劑具有在該通道區沿著上半導體表面會合該指定S/D區之處為較低的一濃度。 The method of claim 35 or 36, further comprising: introducing a second conductivity type second semiconductor dopant to the semiconductor body to define a pocket portion along the remaining of the S/D regions Extending to its subsequently present upper surface such that after completion of the fabrication of the structure, (a) the pocket forms part of the body material and is more heavily doped than the adjacent material of the body material, and (b) All of the dopants of the first conductivity type of the bulk material have a meeting along the upper semiconductor surface in the channel region as compared to the remaining S/D regions along the upper semiconductor surface in the channel region The S/D zone is at a lower concentration. 如申請專利範圍第39項之方法,其中在完成製造該結構之後,相較於在該通道區沿著上半導體表面會合該剩 餘S/D區之處,於該本體材料之第一導電性型式的所有摻雜劑之濃度在該通道區沿著上半導體表面會合該指定S/D區之處為至少低10%。 The method of claim 39, wherein after the fabrication of the structure is completed, the remaining portion is merged along the upper semiconductor surface in the channel region. Where the remaining S/D regions, the concentration of all dopants in the first conductivity pattern of the bulk material is at least 10% lower where the channel region meets the designated S/D region along the upper semiconductor surface. 如申請專利範圍第35項之方法,更包括:引入第一導電性型式的第二半導體摻雜劑至該主要本體材料,以界定第一導電性型式的一前驅上方本體材料部分,使該前驅本體材料部分覆於該井部之上。 The method of claim 35, further comprising: introducing a first conductivity type of the second semiconductor dopant to the main body material to define a portion of the precursor material above the precursor of the first conductivity type, such that the precursor A portion of the body material overlies the well. 如申請專利範圍第35或36項之方法,其中:該半導體本體的部分者(a)覆於隨著直接在引入第一導電性型式的第一半導體摻雜劑之動作後而存在的該井部之上,且(b)於是為第二導電性型式者;及第一導電性型式的第一摻雜劑之部分者於實行附加處理之動作期間係朝上擴散至該半導體本體的前述部分者,藉以使在引入第一導電性型式的第一摻雜劑之動作後而未顯著受到第一或第二導電性型式的其他摻雜之該半導體本體的前述部分者之實質全部以轉換為第一導電性型式。 The method of claim 35, wherein the portion of the semiconductor body (a) covers the well that exists after the action of directly introducing the first semiconductor dopant of the first conductivity type Above the portion, and (b) then being a second conductivity type; and a portion of the first dopant of the first conductivity type is diffused upwardly to the aforementioned portion of the semiconductor body during an additional processing operation Therefore, the substantial portion of the aforementioned portion of the semiconductor body that is not significantly affected by the first or second conductivity type after the first dopant is introduced into the first conductivity type is converted into The first conductivity type. 如申請專利範圍第35或36項之方法,其中引入第二導電性型式的第一半導體摻雜劑之動作包含:引入第二導電性型式的側向延伸部分半導體摻雜劑透過於一側向延伸部分遮罩之一開口、透過該半導體本體之接著存在的上表面、且至該半導體本體之一對側向分開的主要部分,運用該側向延伸部分遮罩、該閘極電極及沿著該閘極電極的任何材料作為一摻雜劑阻擋屏蔽;提供間隔物材料至該閘極電極之橫向側;及 引入第二導電性型式的主要部分半導體摻雜劑透過於一主要部分遮罩之一開口、透過該半導體本體之接著存在的上表面、且至該半導體本體之一對側向分開的另一部分,運用該主要部分遮罩、該閘極電極及該間隔物材料作為一摻雜劑阻擋屏蔽。 The method of claim 35, wherein the introducing the second conductivity type of the first semiconductor dopant comprises: introducing a second conductivity type of the laterally extending portion of the semiconductor dopant through the lateral direction Extending a portion of the opening of the mask, passing through an upper surface of the semiconductor body, and a laterally spaced apart portion of the semiconductor body, the laterally extending portion of the mask, the gate electrode, and along Any material of the gate electrode acts as a dopant blocking shield; providing a spacer material to the lateral side of the gate electrode; Introducing a main portion of the semiconductor dopant of the second conductivity type through an opening of one of the main portions of the mask, through the subsequently existing upper surface of the semiconductor body, and to another portion of the semiconductor body that is laterally separated from each other, The main portion of the mask, the gate electrode and the spacer material are used as a dopant blocking shield. 如申請專利範圍第35或36項之方法,其中,引入第二導電性型式的第一半導體摻雜劑之動作包含:實行下列一者(a)以一主要部分劑量將第二導電性型式的主要部分半導體摻雜劑引入至該半導體本體且至該半導體本體之接著存在的上表面之下方的一主要部分平均深度,及(b)於一下方部分劑量將第二導電性型式的下方部分半導體摻雜劑引入至該半導體本體且至該半導體本體之接著存在的上表面之下方的一下方部分平均深度,該主要部分劑量係大於下方部分劑量,該下方部分平均深度係大於主要部分平均深度;及實行引入該主要部分與下方部分摻雜劑之另一者,使該主要部分摻雜劑界定分別為該等S/D區之一對側向分開的主要S/D部分,使該下方部分摻雜劑界定分別為該等S/D區之一對側向分開的下方S/D部分,使該等下方S/D部分相較於該等主要S/D部分為較輕度摻雜、分別為置於該等主要S/D部分之下且分別為垂直連續於該等主要S/D部分。 The method of claim 35, wherein the introducing the second conductivity type of the first semiconductor dopant comprises: performing one of the following (a) applying the second conductivity type to a main portion of the dose; a main portion of the semiconductor dopant is introduced to the semiconductor body and has a major portion of the average depth below the upper surface of the semiconductor body, and (b) a lower portion doses the lower portion of the second conductivity type semiconductor a dopant is introduced into the semiconductor body and to a lower portion of the lower surface of the semiconductor body below the upper surface, the main portion of the dose is greater than the lower portion of the dose, the lower portion of the average depth is greater than the main portion of the average depth; And performing the introduction of the other portion and the lower portion of the dopant to cause the main portion of the dopant to define a main S/D portion that is laterally separated from one of the S/D regions, respectively, such that the lower portion The dopant defines a lower S/D portion that is laterally separated from one of the S/D regions, such that the lower S/D portions are lighter than the main S/D portions. Miscellaneous, respectively placed under the main S/D portions and vertically perpendicular to the main S/D portions. 如申請專利範圍第35或36項之方法,其中:引入第一導電性型式的第一摻雜劑之動作包括:引入第一導電性型式的附加第一半導體摻雜劑至該半導體本 體,以界定針對於該主要FET之相同極性的一另一FET之第一導電性型式的一另一井部;閘極電極界定動作包括針對該另一FET界定另一閘極電極,其在意圖作為第一導電性型式的另一通道區之該半導體本體的一區段之上方且由另一閘極介電層將其垂直地分開;引入第二導電性型式的第一摻雜劑之動作包括引入第二導電性型式的另一第一半導體摻雜劑至該半導體本體,以針對該另一FET界定由該另一通道區所側向分開之第二導電性型式的一對另外S/D區;及實行附加處理之動作包括完成該另一FET之製造,使得在完成製造該結構之後,(a)該另一通道區與另一井部係該本體材料之部分者,(b)該本體材料係延伸在該等另外S/D區之下方,且(c)第一導電性型式的另一第一摻雜劑具有一濃度,其自一另一下層次表層本體材料位置朝上移動至各個另外S/D區而實質為固定或改變成大於10%,該另一下層次表層本體材料位置約如同該主要次表層本體材料位置而在該上半導體表面之下方的深度。 The method of claim 35, wherein the act of introducing the first dopant of the first conductivity type comprises: introducing an additional first semiconductor dopant of the first conductivity type to the semiconductor a further well defining a first conductivity pattern of another FET for the same polarity of the primary FET; the gate electrode delimiting action includes defining another gate electrode for the other FET, Directly separating a portion of the semiconductor body of the other conductivity region of the first conductivity type and vertically separating it by another gate dielectric layer; introducing a first dopant of the second conductivity type The action includes introducing a second conductivity type of another first semiconductor dopant to the semiconductor body to define a pair of additional S of the second conductivity pattern laterally separated by the other channel region for the other FET /D zone; and the act of performing additional processing includes completing the fabrication of the other FET such that (a) the other channel region and the other well portion are part of the body material after the fabrication of the structure is completed, (b) The bulk material extends below the additional S/D regions, and (c) the first conductivity of the first conductivity type has a concentration that is upward from a further lower layer of the surface body material Move to each additional S/D area and be physically fixed or changed Larger than 10%, the further underlying subsurface body-material location approximately as the main subsurface body-material location and the depth below the surface of the semiconductor. 如申請專利範圍第35或36項之方法,其中:該方法包括引入第二導電性型式的第二半導體摻雜劑至一半導體本體以界定針對於該主要FET之相反極性的一附加FET之第二導電性型式的一附加井部;閘極電極界定動作包括針對該附加FET界定一附加閘極電極,其在意圖作為第二導電性型式的一附加通道區之 該半導體本體的一區段之上方且由附加閘極介電層將其垂直分開;該方法更包括引入第一導電性型式的第二半導體摻雜劑至該半導體本體,以針對該另一FET界定由該附加通道區所側向分開之第二導電性型式的一對附加S/D區;及實行附加處理之動作包括完成該附加FET之製造,使得在完成製造該結構之後,(a)該附加通道區與附加井部係附加本體材料之部分者,該附加本體材料係第二導電性型式者且延伸在該等附加S/D區之下方,且(b)該半導體本體中該第二導電性型式的所有半導體摻雜劑具有一濃度,其自一附加下層次表層本體材料位置朝上移動至該等附加S/D區之一指定附加S/D區而減小成最多10%,該附加下層次表層本體材料位置相較於該指定的附加S/D區在該上半導體表面下方為不超過10倍深。 The method of claim 35, wherein the method comprises introducing a second conductivity type second semiconductor dopant to a semiconductor body to define an additional FET for the opposite polarity of the main FET. An additional well portion of the two conductivity type; the gate electrode defining action includes defining an additional gate electrode for the additional FET, which is intended to be an additional channel region of the second conductivity type The semiconductor body is over a section of the semiconductor body and vertically separated by an additional gate dielectric layer; the method further includes introducing a first conductivity type second semiconductor dopant to the semiconductor body for the other FET Defining a pair of additional S/D regions of the second conductivity pattern laterally separated by the additional channel region; and performing the additional processing includes completing the fabrication of the additional FET such that after the fabrication of the structure is completed, (a) The additional channel region and the additional well portion are part of an additional body material that is a second conductivity type and extends below the additional S/D regions, and (b) the semiconductor body All of the semiconductor dopants of the two conductivity type have a concentration that moves from an additional lower layer surface body material position upward to one of the additional S/D regions to specify an additional S/D region and is reduced to a maximum of 10% The additional lower layer skin material location is no more than 10 times deeper than the designated additional S/D region below the upper semiconductor surface. 如申請專利範圍第46項之方法,其中:引入第一導電性型式的第一摻雜劑之動作包括:引入第一導電性型式的另一第一半導體摻雜劑至該半導體本體,以界定針對於該主要FET之相同極性的一第三FET之第一導電性型式的一第三井部;閘極電極界定動作包括針對該第三FET界定一第三閘極電極,其在意圖作為第一導電性型式的一第三通道區之該半導體本體的一區段之上方且由第三閘極介電層將其垂直分開;引入第二導電性型式的第一摻雜劑之動作包括引入第 二導電性型式的另一第一半導體摻雜劑至該半導體本體,以針對該第三FET界定由第三通道區所側向分開之第二導電性型式的一對第三S/D區;及實行附加處理之動作包括完成第三FET之製造,使得在完成製造該結構之後,(a)第三通道區與第三井部係亦為該主要本體材料之部分,該主要本體材料延伸在該等第三S/D區之下方,且(b)第一導電性型式的所有摻雜劑之濃度自一第三下層次表層本體材料位置朝上移動至各個第三S/D區而近似固定或改變為大於10%,第三下層次表層本體材料位置約如同該主要次表層本體材料位置而在該上半導體表面之下方的深度。 The method of claim 46, wherein the act of introducing the first dopant of the first conductivity type comprises: introducing another first semiconductor dopant of the first conductivity type to the semiconductor body to define a third well portion of a first conductivity type of a third FET of the same polarity of the primary FET; the gate electrode defining action includes defining a third gate electrode for the third FET, which is intended as a conductive region of a third channel region over a portion of the semiconductor body and vertically separated by a third gate dielectric layer; the act of introducing a second conductivity type first dopant includes introducing First a second conductivity type of another first semiconductor dopant to the semiconductor body to define a pair of third S/D regions of a second conductivity pattern laterally separated by the third channel region for the third FET; And performing the additional processing includes completing the fabrication of the third FET such that after the fabrication of the structure is completed, (a) the third channel region and the third well portion are also portions of the primary body material, the primary body material extending over Below the third S/D regions, and (b) the concentration of all dopants of the first conductivity type is moved upward from a third lower layer skin material position to each of the third S/D regions Fixed or changed to greater than 10%, the third lower level skin material is positioned about the same depth as the primary subsurface body material location below the upper semiconductor surface. 如申請專利範圍第47項之方法,其中:引入第二導電性型式的第二摻雜劑之動作包括引入第二導電性型式的另一第二半導體摻雜劑至該半導體本體,以界定針對於該附加FET之相同極性且因此為該主要FET之相反極性的一第四FET之第二導電性型式的一第四井部;閘極電極界定動作包括針對該第四FET界定一第四閘極電極,其在意圖作為第二導電性型式的一第四通道區之該半導體本體的一區段之上方且由第四閘極介電層將其垂直分開;引入第一導電性型式的第二摻雜劑之動作包括引入第一導電性型式的另一第二半導體摻雜劑至該半導體本體,以針對該第四FET界定由第四通道區所側向分開之第一導電性型式的一對第四S/D區;及 實行附加處理之動作包括:完成第四FET之製造,使第四通道區與第四井部係該附加本體材料之部分者,該附加本體材料延伸在該等第四S/D區之下方,且使第二導電性型式的另一第二摻雜劑具有一濃度,其自一第四下層次表層本體材料位置朝上移動至各個第四S/D區而實質為固定或改變為大於10%,第四下層次表層本體材料位置約如同該附加次表層本體材料位置而在該上半導體表面之下方的深度。 The method of claim 47, wherein the act of introducing the second dopant of the second conductivity type comprises introducing another second semiconductor dopant of the second conductivity type to the semiconductor body to define a fourth well portion of a second conductivity type of the fourth FET of the same polarity of the additional FET and thus the opposite polarity of the main FET; the gate electrode defining action includes defining a fourth gate for the fourth FET a pole electrode that is vertically separated by a fourth gate dielectric layer over a section of the semiconductor body that is intended to be a fourth channel region of the second conductivity type; a first conductivity type is introduced The action of the second dopant includes introducing another second semiconductor dopant of the first conductivity type to the semiconductor body to define a first conductivity type laterally separated by the fourth channel region for the fourth FET a pair of fourth S/D zones; and The act of performing the additional processing includes: completing the fabrication of the fourth FET such that the fourth channel region and the fourth well portion are part of the additional body material, the additional body material extending below the fourth S/D region, And causing another second dopant of the second conductivity type to have a concentration that moves from a fourth lower layer surface body material position upward to each of the fourth S/D regions to be substantially fixed or changed to be greater than 10 %, the fourth lower level surface layer body material is located at a depth below the upper semiconductor surface as the additional sub-surface body material position. 一種方法,包含:引入一第一導電性型式的第一半導體摻雜劑至一半導體本體以界定針對於一場效電晶體(FET)之第一導電性型式的一井部,使該半導體本體的材料(a)覆於隨著直接在引入第一導電性型式的第一摻雜劑之動作後而存在的該井部之上,且(b)於是為相反於第一導電性型式之一第二導電性型式者;針對該FET界定一閘極電極,其在意圖作為第一導電性型式的通道區之該半導體本體材料上方且由閘極介電材料予以垂直分開;後續引入第二導電性型式的第一半導體摻雜劑至該半導體本體,以針對該FET形成由該通道區所側向分開之第二導電性型式的第一和第二源極/汲極(S/D)區;及實行附加處理以完成該FET之製造,使(a)第一導電性型式的第一摻雜劑之部分者係於實行附加處理之動作期間而朝上擴散至該井部上方之半導體本體材料,藉以使其在 引入第一導電性型式的第一摻雜劑之動作後而未顯著受到第一或第二導電性型式的其他摻雜之該半導體本體的前述部分者之實質全部以轉換為第一導電性型式,且(b)該通道區至少部分與該井部上方之半導體本體的至少一部分如此轉換材料來構成。 A method comprising: introducing a first conductivity type of a first semiconductor dopant to a semiconductor body to define a well portion for a first conductivity type of a field effect transistor (FET), such that the semiconductor body The material (a) is overlying the well portion that exists immediately after the action of introducing the first dopant of the first conductivity type, and (b) is then opposite to the first conductivity type a two-conductivity type; defining a gate electrode for the FET that is vertically separated above the semiconductor body material of the channel region intended to be the first conductivity type and vertically separated by a gate dielectric material; subsequently introducing a second conductivity a first semiconductor dopant of the type to the semiconductor body to form first and second source/drain (S/D) regions of the second conductivity pattern laterally separated by the channel region for the FET; And performing additional processing to complete the fabrication of the FET such that (a) a portion of the first dopant of the first conductivity type is diffused upwardly to the semiconductor body material over the well during an additional processing operation To make it Introducing the first conductivity of the first dopant after the first conductivity type is introduced, and is not significantly affected by the first or second conductivity type of the other portions of the semiconductor body to be converted into the first conductivity type And (b) the channel region is constructed at least in part with at least a portion of the semiconductor body above the well. 如申請專利範圍第49項之方法,其中(a)實行附加處理之動作係至少部分以提高的溫度來完成,且(b)引入第一導電性型式的第一摻雜劑之動作包含:離子植入第一導電性型式的第一摻雜劑。 The method of claim 49, wherein (a) the act of performing the additional treatment is performed at least partially at an elevated temperature, and (b) the act of introducing the first dopant of the first conductivity type comprises: ions A first dopant of a first conductivity type is implanted. 如申請專利範圍第49或50項之方法,其中第一導電性型式的第一摻雜劑之該部分者於升高溫度所進行之該附加處理的至少一個部分之期間而朝上擴散。 The method of claim 49, wherein the portion of the first dopant of the first conductivity type diffuses upward during the at least one portion of the additional treatment performed at elevated temperature. 如申請專利範圍第49或50項之方法,更包括引入第一導電性型式的附加半導體摻雜劑至該半導體本體,以界定一袋部大部分僅沿著該等S/D區的第一S/D區向上延伸至其接續存在的上表面,使在實行附加處理之動作後,(a)該半導體本體具有一上半導體表面,(b)該通道區與井部為第一導電性型式者且側向延伸在該等S/D區之下方的本體材料部分,(c)該袋部構成部分該本體材料且相較於該本體材料的鄰接材料而為較重度摻雜,及(d)相較於在該通道區沿著上半導體表面會合該第一S/D區之處,於該本體材料之第一導電性型式的所有摻雜劑具有在該通道區沿著上半導體表面會合該第二S/D區處為較低的一濃度。 The method of claim 49 or 50, further comprising introducing a first conductivity type of additional semiconductor dopant to the semiconductor body to define a first portion of the pocket portion only along the first S/D region The S/D region extends upwardly to its contiguous upper surface such that after the additional processing is performed, (a) the semiconductor body has an upper semiconductor surface, and (b) the channel region and the well portion are of a first conductivity type And extending laterally below the portion of the body material below the S/D regions, (c) the pocket portion forming part of the body material and being more heavily doped than the abutting material of the body material, and (d Comparing all of the dopants of the first conductivity type of the bulk material with the upper semiconductor surface in the channel region compared to the first S/D region meeting along the upper semiconductor surface in the channel region The second S/D zone is at a lower concentration. 如申請專利範圍第52項之方法,其中在實行附加處 理之動作後,相較於在該通道區沿著上半導體表面會合該第一S/D區之處,於該本體材料之第一導電性型式的所有摻雜劑之濃度在該通道區沿著上半導體表面會合該第二S/D區處為至少低10%。 For example, the method of applying for the scope of patent No. 52, in which the additional point is implemented After the action, the concentration of all dopants in the first conductivity type of the bulk material is in the channel region compared to the region where the first S/D region is merged along the upper semiconductor surface in the channel region. The upper semiconductor surface meets at least 10% lower at the second S/D region. 如申請專利範圍第49或50項之方法,其中,引入第二導電性型式的第一半導體摻雜劑之動作包含:引入第二導電性型式的側向延伸部分半導體摻雜劑透過於一側向延伸部分遮罩之一開口、透過該半導體本體之然後存在的上表面且至該半導體本體之一對側向分開的主要部分,運用該側向延伸部分遮罩、該閘極電極及沿著該閘極電極的任何材料作為一摻雜劑阻擋屏蔽;提供間隔物材料至該閘極電極之橫向側;及引入第二導電性型式的主要部分半導體摻雜劑透過於一主要部分遮罩之一開口、透過該半導體本體之然後存在的上表面且至該半導體本體之一對側向分開的附加部分,運用該主要部分遮罩、該閘極電極及該間隔物材料作為一摻雜劑阻擋屏蔽。 The method of claim 49, wherein the introducing the second conductivity type of the first semiconductor dopant comprises: introducing a second conductivity type of the laterally extending portion of the semiconductor dopant through the side Applying the laterally extending portion of the mask to the main portion of the extension portion, through the upper surface of the semiconductor body and then to the laterally spaced apart portion of the semiconductor body, the gate electrode and the gate electrode Any material of the gate electrode is shielded as a dopant; a spacer material is provided to the lateral side of the gate electrode; and a main portion of the semiconductor dopant introduced into the second conductivity type is transmitted through a main portion of the mask An opening, an additional portion that is then transmitted through the upper surface of the semiconductor body and laterally separated from one of the semiconductor bodies, the main portion mask, the gate electrode and the spacer material are blocked as a dopant shield. 一種方法,包含:提供一初始構造,其中,(a)一第一導電性型式的一次表層半導體區域鄰接且覆於一次表層電氣絕緣層之上,(b)第一導電性型式之較輕度摻雜的表面鄰接半導體區域鄰接且覆於該次表層半導體區域之上,(c)該等半導體區域摻雜第一導電性型式的摻雜劑,使第一導電性型式的摻雜劑具有自該次表層半導體區域朝上跨過至該表面鄰接半導體區 域而實質經歷一步級減小成最多10%的一濃度,及(d)一下半導體層鄰接且置於該次表層絕緣層之下;形成一腔部透過該等半導體區域與該次表層絕緣層朝下至該下半導體層,藉此,(a)該次表層半導體區域之一剩餘部分構成第一導電性型式的一主要次表層本體材料部分,及(b)該表面鄰接半導體區域之一剩餘部分構成第一導電性型式之一較輕度摻雜的前驅主要表面鄰接本體材料部分;引入其相反於第一導電性型式之一第二導電性型式的半導體材料至該腔部,以作成(a)第二導電性型式的一附加次表層本體材料部分,其延伸向下至該下半導體層以形成一pn接面,及(b)第二導電性型式之一較輕度摻雜的前驅附加表面鄰接本體材料部分,該等附加半導體部分摻雜第二導電性型式的摻雜劑,使第二導電性型式的摻雜劑具有自該附加次表層本體材料部分朝上跨過至該附加表面鄰接本體材料部分而實質經歷一步級減小成最多%的一濃度;及提供(a)第二導電性型式的一對主要源極/汲極(S/D)區於該前驅主要表面鄰接本體材料部分且沿著其上表面,使該主要表面鄰接本體材料部分之一主要通道區係側向分開該等主要S/D區,(b)第一導電性型式的一對附加S/D區於該前驅附加表面鄰接本體材料部分且沿著其上表面,使該附加本體材料部分之一附加通道區係側向分開該等附加S/D區,(c)分別在該主要與附加通道區之上方的主要與附加閘極介電層,及(d)分別在該主要與附加通道區之上方的 該主要與附加閘極介電層之上方的主要與附加閘極電極。 A method comprising: providing an initial configuration, wherein (a) a first conductivity type of a first surface semiconductor region is adjacent to and overlying a surface electrical insulating layer, (b) a first conductivity type is lighter The doped surface is adjacent to and overlying the subsurface semiconductor region, and (c) the semiconductor regions are doped with a dopant of the first conductivity type such that the dopant of the first conductivity type has a self The subsurface semiconductor region spans upward to the surface adjacent to the semiconductor region The domain undergoes a stepwise reduction to a concentration of up to 10%, and (d) the semiconductor layer is adjacent and placed under the subsurface insulating layer; forming a cavity through the semiconductor regions and the subsurface insulating layer Downward to the lower semiconductor layer, whereby (a) the remaining portion of the subsurface semiconductor region constitutes a major subsurface body material portion of the first conductivity type, and (b) the surface is adjacent to one of the semiconductor regions remaining a portion of the first conductive type partially constituting the lighterly doped precursor main surface adjacent to the body material portion; introducing a semiconductor material opposite to the second conductive type of the first conductive pattern to the cavity portion to be a) an additional subsurface body material portion of the second conductivity type extending downwardly to the lower semiconductor layer to form a pn junction, and (b) a lightly doped precursor of the second conductivity type An additional surface abutting the body material portion, the additional semiconductor portion being doped with a dopant of the second conductivity type such that the dopant of the second conductivity type has a portion that extends upward from the additional subsurface body material portion Adding a surface adjacent to the bulk material portion to substantially undergo a stepwise reduction to a concentration of up to %; and providing (a) a second conductivity type of a pair of primary source/drain (S/D) regions on the precursor major surface Adjacent to and along the upper surface of the body material, the primary surface abuts the primary channel region of one of the body material portions and laterally separates the primary S/D regions, (b) a pair of additional S/s of the first conductivity pattern The D zone is adjacent to the body material portion along the upper surface of the precursor, and the additional channel region of the additional body material portion is laterally separated from the additional S/D regions, (c) respectively in the main and additional The main and additional gate dielectric layers above the channel region, and (d) above the main and additional channel regions, respectively The primary and additional gate electrodes are primarily above the additional gate dielectric layer. 如申請專利範圍第55項之方法,其中:第一導電性型式的摻雜劑之濃度大約固定的貫穿該主要次表層本體材料部分;且第二導電性型式的摻雜劑之濃度大約固定的貫穿該附加次表層本體材料部分。 The method of claim 55, wherein: the concentration of the dopant of the first conductivity type is approximately fixed throughout the portion of the main sub-surface body material; and the concentration of the dopant of the second conductivity type is approximately fixed Throughout the additional subsurface body material portion. 如申請專利範圍第56項之方法,更包括:選擇性引入第一導電性型式的主要半導體袋部摻雜劑至該前驅主要表面鄰接本體材料部分,以界定沿著該等主要S/D區的一S/D區延伸之一主要袋部,藉此,該主要袋部相較於該主要本體材料部分的鄰接材料而較重度摻雜於第一導電性型式;及選擇性引入第二導電性型式的附加半導體袋部摻雜劑至該前驅附加表面鄰接本體材料部分,以界定沿著該等附加S/D區的一S/D區延伸之一附加袋部,藉此,該附加袋部相較於附加表面鄰接本體材料部分的鄰接材料而較重度摻雜於第二導電性型式。 The method of claim 56, further comprising: selectively introducing a first conductivity type of the main semiconductor pocket dopant to the precursor main surface adjacent to the body material portion to define along the main S/D regions One of the S/D regions extends one of the main pocket portions, whereby the primary pocket portion is heavily doped to the first conductivity pattern compared to the adjacent material of the main body material portion; and selectively introduces the second conductivity a pattern of additional semiconductor pocket dopants to the precursor additional surface adjacent the body material portion to define an additional pocket along an S/D zone extending along the additional S/D regions, whereby the additional pocket The portion is more heavily doped to the second conductivity pattern than the abutting material of the additional surface abutting the body material portion. 如申請專利範圍第55至57項任一項之方法,其中:沿著自該主要次表層本體材料部分延伸上至該等主要S/D區的指定S/D區之一位置,於該主要表面鄰接本體材料部分之第一導電性型式的摻雜劑之濃度相較於該主要次表層本體材料部分亦為至少較低10%;及沿著自該附加次表層本體材料部分延伸上至該等附加S/D區的指定者之一位置,於該附加表面鄰接本體材料部分 之第二導電性型式的摻雜劑之濃度相較於該附加次表層本體材料部分為至少低一因數10。 The method of any one of claims 55 to 57, wherein: along a portion extending from the main sub-surface body material portion to a designated S/D region of the main S/D regions, The concentration of the first conductivity type dopant of the surface adjacent to the body material portion is at least 10% lower than the primary subsurface body material portion; and extending along the portion from the additional subsurface body material a position of one of the designators of the additional S/D zone, adjacent to the body material portion at the additional surface The concentration of the dopant of the second conductivity type is at least a factor of 10 lower than the portion of the additional subsurface body material. 一種方法,包含:引入一第一導電性型式的主要本體摻雜劑至相反於第一導電性型式之一第二導電性型式的起始半導體材料部分者,以轉換該起始材料部分者成為第一導電性型式的表面鄰接主要本體材料,使該主要本體摻雜劑具有相當均勻濃度的貫穿於該主要本體材料,該起始材料的一剩餘部分者構成第二導電性型式的表面鄰接附加本體材料;引入第一導電性型式的主要井部摻雜劑至該主要本體材料以形成一主要井部,其在該主要本體材料之一次表層位置為到達該主要井部的一最大濃度;引入第二導電性型式的附加井部摻雜劑至該附加本體材料以形成一附加井部,其在該附加本體材料之一次表層位置為到達該附加井部的一最大濃度;及提供(a)第二導電性型式的一對表面鄰接主要源極/汲極(S/D)區於該主要本體材料,使該主要本體材料之一主要通道區側向分開該等主要S/D區,且使該主要本體材料之第一導電性型式的所有摻雜劑具有自該主要井部摻雜劑之最大濃度的一位置向上移動至該等主要S/D區的一指定者而減小成最多10%之一濃度,(b)第一導電性型式的一對附加S/D區於該附加本體材料,使該附加本體材料之一附加通道區係側向分開該等附加S/D區,且使於該附加本體材料之第二導電性型式的所有摻雜劑具有自該附加井部摻雜 劑之最大濃度的位置向上移動至該等附加S/D區的一指定附加S/D區而減小成最多10%之一濃度,(c)分別在該主要與附加通道區之上方的主要與附加閘極介電層,及(d)分別在該主要與附加通道區之上方的該主要與附加閘極介電層之上方的主要與附加閘極電極。 A method comprising: introducing a primary bulk dopant of a first conductivity type to a portion of a starting semiconductor material of a second conductivity type opposite one of the first conductivity type to convert the portion of the starting material The surface of the first conductivity type is adjacent to the main body material such that the main body dopant has a relatively uniform concentration throughout the main body material, and a remaining portion of the starting material constitutes a surface of the second conductivity type adjacent to the addition a bulk material; introducing a primary well dopant of a first conductivity type to the primary body material to form a primary well portion at a primary surface location of the primary body material to a maximum concentration reaching the primary well portion; Adding a second well conductivity type of additional well dopant to the additional body material to form an additional well portion at a primary surface location of the additional body material to a maximum concentration of the additional well portion; and providing (a) A pair of surfaces of the second conductivity pattern abut the main source/drain (S/D) region of the main body material such that one of the main body materials is the main channel region Separating the primary S/D regions and causing all of the dopants of the first conductivity type of the primary bulk material to move up from a position of the maximum concentration of the primary well dopant to the primary S/ A designated one of the D regions is reduced to a concentration of at most 10%, and (b) a pair of additional S/D regions of the first conductivity type are attached to the additional body material, such that one of the additional body materials is added to the channel region Separating the additional S/D regions laterally and causing all dopants of the second conductivity pattern of the additional body material to have doping from the additional well The position of the maximum concentration of the agent is moved up to a specified additional S/D zone of the additional S/D zone to a concentration of up to 10%, and (c) is predominantly above the primary and additional channel zones, respectively And an additional gate dielectric layer, and (d) primary and additional gate electrodes over the primary and additional gate dielectric layers above the primary and additional channel regions, respectively. 如申請專利範圍第59項之方法,其中:該第一與第二導電性型式分別為p型與n型;及該第一導電性的主要摻雜劑包含鋁。 The method of claim 59, wherein: the first and second conductivity types are p-type and n-type, respectively; and the first conductivity-based main dopant comprises aluminum. 一種半導體結構,其包括:具有一上方表面的半導體本體的第一和第二本體材料區域,該本體材料區域會被第一導電性形式的半導體摻雜劑摻雜,俾使成為第一導電性形式;以及與位於沿著半導體本體的上方半導體表面中的第一導電性形式相反的第二導電性形式之第一區和第二區,該等第一本體材料區域和第二本體材料區域分別延伸在該等第一區和第二區的下方並且分別予以交會,以便分別和該等第一區和第二區形成第一pn接面與第二pn接面,俾使得(a)每一個pn接面會在該本體的上方表面下方抵達一極大深度,(b)該第一導電性形式的摻雜劑會出現在兩個區中且所具有的濃度會在個別的第一次表層本體材料位置及第二次表層本體材料位置(分別位於該等第一本體材料區域和第二本體材料區域中且分別橫向延伸在該等第一區和第二區的下方)處局部達到第一次表層極大濃度和第二次表層極大濃度,(c)相較於該等第一pn接面與第二pn接面的極大深度, 該等第一次表層本體材料位置及第二次表層本體材料位置會分別出現在該本體的上方表面下方不到10倍深的地方,且(d)該第一導電性形式的摻雜劑的濃度會:(i)從該第一次表層本體材料位置處沿著一選定的第一垂直線經該第一區向上移到該本體的上方表面時遞減成最多10%,(ii)從該第一次表層本體材料位置處沿著該第一垂直線移到該第一pn接面時以實質單調方式遞減,且(iii)從該第二次表層本體材料位置處沿著一選定的第二垂直線經由該第二區向上移到該本體的上方表面時達到至少一額外的次表層極大濃度。 A semiconductor structure comprising: first and second body material regions of a semiconductor body having an upper surface, the body material regions being doped with a semiconductor dopant in a first conductive form to cause first conductivity a first region and a second region in a second conductive form opposite the first conductive form in the upper semiconductor surface of the semiconductor body, the first body material region and the second body material region, respectively Extending below the first and second regions and respectively reciprocating to form a first pn junction and a second pn junction with the first and second regions, respectively, such that (a) each The pn junction will reach a maximum depth below the upper surface of the body, (b) the first conductive form of dopant will appear in both regions and have a concentration in the individual first surface layer body The material position and the second surface body material position (located in the first body material region and the second body material region, respectively, and extending laterally below the first and second regions, respectively) are partially reached Subsurface maximum concentration and the maximum concentration of the second skin layer, (c) compared to the maximum depth of the first pn junction and such a second pn junction, The first surface layer body material position and the second surface layer body material position respectively appear less than 10 times deep below the upper surface of the body, and (d) the first conductive form of the dopant The concentration will: (i) decrement to a maximum of 10% from the position of the first surface body material along a selected first vertical line through the first region up to the upper surface of the body, (ii) from the The first surface layer body material position is decremented in a substantially monotonous manner as it moves along the first vertical line to the first pn junction, and (iii) from the second surface layer body material location along a selected first The two vertical lines reach at least one additional subsurface maximum concentration as they move up through the second zone to the upper surface of the body. 如申請專利範圍第61項的半導體結構,其中該第一導電性形式的摻雜劑的濃度從該第一次表層本體材料位置處沿著該第一垂直線經由該第一區移到該本體的上方表面時遞減成最多20%。 The semiconductor structure of claim 61, wherein the concentration of the dopant of the first conductive form is moved from the first surface layer body material along the first vertical line to the body via the first region The upper surface is decremented to a maximum of 20%. 如申請專利範圍第61項的半導體結構,其中該第一導電性形式的摻雜劑的濃度從該第一次表層本體材料濃度位置處沿著該第一垂直線經由該第一區移到該本體的上方表面時遞減成最多40%。 The semiconductor structure of claim 61, wherein the concentration of the dopant of the first conductive form is moved to the first vertical line along the first vertical line from the first vertical line via the first region to the The upper surface of the body is decremented to a maximum of 40%. 如申請專利範圍第61至63項中任一項的半導體結構,其中該第一導電性形式的摻雜劑的濃度從該第二次表層本體材料位置處沿著該第二垂直線經由該第二區向上移到該本體的上方表面時會遞減成大於10%。 The semiconductor structure of any one of claims 61 to 63, wherein a concentration of the dopant of the first conductive form is from the second surface body material position along the second vertical line via the first When the two zones are moved up to the upper surface of the body, they are decremented to more than 10%. 如申請專利範圍第64項的半導體結構,其中該第一導電性形式的摻雜劑的濃度在該第二區中每一個額外次表層濃度極大值之深度處會沿著該第一垂直線經由該第一區 以大部分單調方式來改變。 The semiconductor structure of claim 64, wherein the concentration of the dopant of the first conductive form is along the first vertical line at a depth of each additional subsurface concentration maximum in the second region. The first district Change in most monotonous ways. 如申請專利範圍第61至63項中任一項的半導體結構,其中在從該第一次表層本體材料位置處向下移到該第一pn接面之極大深度的10倍深度處時,該第一次表層極大濃度實質上為該第一導電性形式的摻雜劑的濃度中僅有的局部次表層極大值。 The semiconductor structure of any one of clauses 61 to 63, wherein when moving downward from the position of the first surface layer body material to a depth of 10 times the maximum depth of the first pn junction, The first surface maximum concentration is substantially the only local subsurface maximum of the dopant concentration of the first conductive form. 一種包括類極性場效電晶體(FET)的結構,該等FET會被提供沿著一半導體本體的上方表面,該半導體本體的本體材料會被第一導電性形式的半導體摻雜劑摻雜,俾使成為第一導電性形式,每一個FET皆包括:該本體材料的一通道區;第一和第二源極/汲極(S/D)區,其等係沿著半導體本體的上方表面而位於半導體本體中、被該通道區橫向分離、且作為和第一導電性形式相反的第二導電性形式以便和該本體材料形成個別的pn接面,俾使得(a)每一個pn接面會在該本體的上方表面下方抵達一極大深度,(b)該本體材料會橫向延伸在該等S/D區兩者的下方,及(c)第一導電性形式的摻雜劑會出現在該等S/D區兩者中且濃度會在一主要次表層本體材料位置(其會橫向延伸在大部分全部該等通道區與S/D區中每一者的下方)處局部達到一主要次表層極大濃度,及(d)相較於針對每一個S/D區的pn接面的極大深度,該主要次表層本體材料位置會出現在該本體的上方表面下方不到10倍深的地方;一閘極介電層,其係上覆該通道區;以及 一閘極電極,其係上覆該通道區上的閘極介電層,其中該第一導電性形式的摻雜劑的濃度會:(i)從針對該第一FET的主要次表層本體材料位置處沿著一選定的第一垂直線經由該第一FET的S/D區中一指定S/D區向上移到該本體的上方表面時遞減成最多10%,(ii)從針對該第一FET的主要次表層本體材料位置處沿著該垂直線移到該第一FET的指定S/D區的pn接面時以實質單調方式遞減,及(iii)在該本體的上方表面與針對該第二FET的主要次表層本體材料位置之間達到至少一額外的次表層極大濃度,俾使得該第二FET的每一個額外次表層極大濃度會出現在一額外的次表層本體材料位置處,其會橫向延伸在該第二FET用來上覆其通道區且至少一部分其S/D區中每一個S/D區的閘極電極的大部分全部材料的下方。 A structure comprising a polar-like field effect transistor (FET), the FET being provided along an upper surface of a semiconductor body, the body material of the semiconductor body being doped with a semiconductor dopant in a first conductive form, The first conductive form, each FET includes: a channel region of the body material; first and second source/drain (S/D) regions, which are along the upper surface of the semiconductor body And in a semiconductor body, laterally separated by the channel region, and as a second conductive form opposite the first conductive form to form an individual pn junction with the body material, such that (a) each pn junction Will reach a maximum depth below the upper surface of the body, (b) the body material will extend laterally below both S/D regions, and (c) the first conductive form of dopant will appear The concentration in both of the S/D regions will locally reach a major portion at a major subsurface body material location that will extend laterally beyond most of the channel regions and each of the S/D regions. Subsurface maximum concentration, and (d) compared to each S/D The maximum depth of the pn junction of the main subsurface body-material location views appear in place beneath the upper surface of the body is less than 10 times the depth; a gate dielectric layer overlying the channel region which is based on; and a gate electrode overlying the gate dielectric layer on the channel region, wherein the concentration of the dopant in the first conductivity form is: (i) from a primary subsurface body material for the first FET The position is reduced to at most 10% along a selected first vertical line via a designated S/D region of the S/D region of the first FET to the upper surface of the body, (ii) from a primary sub-surface body material location of a FET that decreases in a substantially monotonous manner as it moves along the vertical line to a pn junction of a designated S/D region of the first FET, and (iii) on the upper surface of the body At least one additional subsurface maximum concentration is achieved between the primary subsurface body material locations of the second FET, such that each additional subsurface maximum concentration of the second FET occurs at an additional subsurface body material location, It extends laterally below most of the material of the gate electrode of the second FET for overlying its channel region and at least a portion of each of its S/D regions. 如申請專利範圍第67項的結構,其中該第一導電性形式的摻雜劑的濃度從對於該第一FET的主要次表層本體材料位置處沿著該第一垂直線經由該第一FET的指定S/D區移到該本體的上方表面時遞減成最多20%。 The structure of claim 67, wherein the concentration of the first conductivity form dopant is from the first sub-surface body material location of the first FET along the first vertical line via the first FET Specifies that the S/D area is decremented to a maximum of 20% when moved to the upper surface of the body. 如申請專利範圍第67項的結構,其中該第一導電性形式的摻雜劑的濃度從對於該第一FET的主要次表層本體材料位置處沿著該第一垂直線經由該第一FET的指定S/D區移到該本體的上方表面時遞減成最多40%。 The structure of claim 67, wherein the concentration of the first conductivity form dopant is from the first sub-surface body material location of the first FET along the first vertical line via the first FET Specifies that the S/D zone is decremented to a maximum of 40% when moved to the upper surface of the body. 如申請專利範圍第67至69項中任一項的結構,其中該第一導電性形式的摻雜劑的濃度從對於該第二FET的主要次表層本體材料位置處沿著一選定的垂直線經由該第 二FET的任一S/D區向上移到該本體的上方表面時會遞減成大於10%。 The structure of any one of clauses 67 to 69, wherein the concentration of the dopant of the first conductivity form is along a selected vertical line from the position of the main subsurface body material for the second FET. Via the first When any S/D region of the two FETs is moved up to the upper surface of the body, it is decremented to greater than 10%. 如申請專利範圍第70項的結構,其中該第一導電性形式的摻雜劑的濃度在對於該第二FET的每一個額外次表層極大濃度之深度處會沿著該第一垂直線以大部分單調方式來改變。 The structure of claim 70, wherein the concentration of the dopant of the first conductive form is greater along the first vertical line at a depth of each additional subsurface maximum concentration for the second FET Partial monotonous way to change. 如申請專利範圍第67至69項中任一項的結構,其中在從對於該第一FET的主要次表層本體材料位置處沿著該第一垂直線向下移到對於該第一FET的指定S/D區的pn接面之極大深度的10倍深度處時,該第一FET的主要次表層極大濃度實質上為該第一導電性形式的摻雜劑的濃度中僅有的局部次表層極大值。 The structure of any one of clauses 67 to 69, wherein the downward movement to the first FET is performed along the first vertical line from a position of the primary subsurface body material for the first FET When the depth of the pn junction of the S/D region is 10 times deep, the main subsurface maximum concentration of the first FET is substantially the only partial subsurface of the dopant concentration of the first conductive form. maximum. 如申請專利範圍第67至69項中任一項的結構,其中每一個FET的每一個S/D區包括一主要部及一較輕度摻雜的橫向延伸部,其橫向接續該主要部且橫向延伸在該FET的閘極電極的下方,俾使得其通道區沿著該本體的上方表面終止於其橫向延伸部。 The structure of any one of claims 67 to 69, wherein each S/D region of each FET includes a main portion and a lightly doped lateral extension that laterally continues the main portion and Extending laterally below the gate electrode of the FET, the channel terminates its channel region along its upper surface along its upper surface. 如申請專利範圍第67至69項中任一項的結構,其中每一個FET的本體材料的袋部會沿著其第一S/D區延伸至其通道區中,且摻雜程度重過該本體材料的橫向相鄰材料。 The structure of any one of claims 67 to 69, wherein the pocket portion of the body material of each FET extends along its first S/D region into its channel region, and the doping level is greater than A laterally adjacent material of the body material. 如申請專利範圍第74項的結構,其中該第一FET的袋部會讓其通道區不對稱於其S/D區。 The structure of claim 74, wherein the pocket portion of the first FET has its channel region asymmetrical to its S/D region. 如申請專利範圍第74項的結構,其中該本體材料的 另一袋部會沿著該第二FET之第二S/D區延伸至其通道區中,且摻雜程度重過該本體材料的橫向相鄰材料。 For example, the structure of claim 74, wherein the body material The other pocket extends along the second S/D region of the second FET into its channel region and is doped to a greater extent than the laterally adjacent material of the body material. 一種製造半導體結構的方法,該方法包括:將第一導電性形式的半導體摻雜劑引入一半導體本體以定義第一本體材料區域和第二本體材料區域,俾使每一個本體材料區域都成為第一導電性形式;以及將和第一導電性形式相反的第二導電性形式的半導體摻雜劑引入該半導體本體以分別定義該第二導電性形式的第一區和第二區,俾使得在完成該結構的製造後(a)該等第一本體材料區域和第二本體材料區域會分別和該等第一區和第二區形成第一pn接面與第二pn接面且分別延伸在該等第一區和第二區的下方,(b)每一個pn接面會在該半導體本體的上方表面下方延伸至一極大深度,(c)該第一導電性形式的半導體摻雜劑會出現在該等區兩者中,(d)該半導體本體中之第一導電性形式的全部半導體摻雜劑的濃度會在個別第一次表層本體材料位置及第二次表層本體材料位置(分別位於該等第一本體材料區域和第二本體材料區域中且分別橫向延伸在該等第一區和第二區的下方)處局部達到第一次表層極大濃度和第二次表層極大濃度,(e)相較於該等第一pn接面與第二pn接面的極大深度,該等第一次表層本體材料位置及第二次表層本體材料位置分別出現在該本體的上方表面下方不到10倍深的地方,(f)該第一導電性形式的全部摻雜劑的濃度會:(i)從該第一次表層本體材料位置處沿著一選定的第一垂直線經由該第一區向上移到該本 體的上方表面時遞減成最多10%,(ii)從該第一次表層本體材料位置處沿著該第一垂直線移到該第一pn接面時以實質單調方式遞減,及(iii)從該第二次表層本體材料位置處沿著一選定的第二垂直線經由該第二區向上移到該本體的上方表面時達到至少一額外的次表層極大濃度。 A method of fabricating a semiconductor structure, the method comprising: introducing a first conductivity form of a semiconductor dopant into a semiconductor body to define a first body material region and a second body material region, such that each body material region becomes a conductive form; and introducing a second conductive form of semiconductor dopant opposite the first conductive form into the semiconductor body to define a first region and a second region of the second conductive form, respectively After the fabrication of the structure is completed (a) the first body material region and the second body material region respectively form a first pn junction and a second pn junction with the first and second regions and respectively extend Below the first and second regions, (b) each pn junction extends below the upper surface of the semiconductor body to a maximum depth, (c) the first conductivity form of the semiconductor dopant Appearing in both of the regions, (d) the concentration of all semiconductor dopants in the first conductive form in the semiconductor body will be at the individual first surface layer body material location and the second surface layer body material location ( Positioning the first surface layer maximum concentration and the second surface layer maximum concentration locally in the first body material region and the second body material region, respectively, and extending laterally below the first and second regions, respectively. (e) the first surface body material position and the second surface body material position respectively appear below the upper surface of the body, compared to the maximum depths of the first pn junction and the second pn junction Up to 10 times deep, (f) the concentration of all dopants in the first conductivity form will be: (i) from the first surface layer body material location along the selected first vertical line via the first One area moves up to the book The upper surface of the body is decremented to a maximum of 10%, (ii) decreasing in a substantially monotonous manner from the position of the first surface body material along the first vertical line to the first pn junction, and (iii) At least one additional subsurface maximum concentration is achieved from the second surface body material location along a selected second vertical line as it moves up through the second region to the upper surface of the body. 如申請專利範圍第77項的方法,其中在完成該結構的製造之後,該第一導電性形式的全部摻雜劑的濃度從該第二次表層本體材料位置處沿著該第二垂直線向上移到該本體的上方表面時會遞減成大於10%。 The method of claim 77, wherein after the fabrication of the structure is completed, the concentration of all dopants of the first conductive form is from the second surface layer material location along the second vertical line When moved to the upper surface of the body, it is reduced to more than 10%. 如申請專利範圍第77或78項的方法,其中在完成該結構的製造之後,該第一導電性形式的摻雜劑的濃度在該第二區中的每一個額外次表層濃度極大值之深度處會沿著該第一垂直線以大部分單調方式來改變。 The method of claim 77, wherein the concentration of the dopant of the first conductive form is greater than the maximum value of each additional subsurface concentration in the second region after the fabrication of the structure is completed. The change will be in most monotonous manner along the first vertical line. 如申請專利範圍第77或78項的方法,其中在完成該結構的製造之後,在從該第一次表層本體材料位置處沿著該第一垂直線向下移到該第一pn接面之極大深度的10倍深度處時,該第一次表層極大濃度實質上為該第一導電性形式的所有摻雜劑的濃度中僅有的局部次表層極大值。 The method of claim 77, wherein after completing the fabrication of the structure, moving down the first vertical line from the first surface body material location to the first pn junction At a depth of 10 times the maximum depth, the first surface maximum concentration is substantially the only local subsurface maximum of all dopant concentrations of the first conductive form. 一種製造包括第一和第二類極性場效電晶體(FET)的結構的方法,該方法包括:將第一導電性形式的半導體摻雜劑引入一半導體本體中以分別定義第一本體材料區域和第二本體材料區域,俾使在完成該結構的製造之後,每一個本體材料區域都成為第一導電性形式; 分別定義該等FET的一對閘極電極,俾使得每一個標號的FET之閘極電極係位於預期要成為該FET之一通道區的一部分同樣標號的本體材料區域上方、並且會藉由一對應的閘極介電層予以垂直分離;以及將和第一導電性形式相反的第二導電性形式的半導體摻雜劑引入該半導體本體以為每一個FET形成由FET的通道區所橫向分離之第二導電性形式的第一和第二源極/汲極(S/D)區,俾使得在完成該結構的製造後(a)每一個標號的本體材料區域會分別和該同樣標號的FET的S/D區形成一對pn接面且分別橫向延伸在該同樣標號的FET的S/D區下方,(b)每一個pn接面會在該半導體本體的上方表面下方延伸至一極大深度,(c)該第一導電性形式的半導體摻雜劑會出現在每一個S/D區中,(d)該半導體本體中該第一導電性形式的全部半導體摻雜劑的濃度針對該第一FET會在該本體的上方表面下方的一第一主要次表層本體材料位置處達到一第一主要次表層極大濃度,且針對該第二FET會在該本體的上方表面下方的一第二主要次表層本體材料位置處達到一第二主要次表層極大濃度,(e)相較於該FET之每一個S/D區的pn接面的極大深度,每一個標號的主要次表層本體材料位置會橫向延伸在大部分全部該同樣標號的FET的通道區與S/D區中之每一者下方且出現在該本體的上方表面下方不到10倍深的地方,及(f)該第一導電性形式的全部摻雜劑的濃度會:(i)從該第一主要次表層本體材料位置處沿著一選定的垂直線經由該第一FET的S/D區中一指定 S/D區向上移到該本體的上方表面時遞減成最多10%,(ii)從該第一主要次表層本體材料位置處沿著該垂直線移到該第一FET的指定S/D區的pn接面時以實質單調方式遞減,及(iii)在該本體的上方表面與該第二FET的第二主要次表層本體材料位置之間達到至少一額外的次表層極大濃度,俾使得每一個額外次表層極大濃度會出現在一對應的額外次表層本體材料位置處,其會橫向延伸在該第二FET用以上覆其通道區且至少一部分其S/D區中每一個S/D區的閘極電極的大部分全部材料的下方。 A method of fabricating a structure comprising first and second types of polar field effect transistors (FETs), the method comprising: introducing a first conductivity form of a semiconductor dopant into a semiconductor body to define a first body material region, respectively And a second body material region, such that after the fabrication of the structure is completed, each of the body material regions becomes the first conductive form; Defining a pair of gate electrodes of the FETs, respectively, such that the gate electrode of each labeled FET is located above the body material region of the same number that is expected to be part of the channel region of the FET, and will have a corresponding The gate dielectric layer is vertically separated; and a second conductivity form of semiconductor dopant opposite the first conductivity form is introduced into the semiconductor body to form a second laterally separated by the channel region of the FET for each FET The first and second source/drain (S/D) regions of the conductive form, such that after the fabrication of the structure is completed (a) each of the labeled body material regions will be respectively associated with the same labeled FET S The /D region forms a pair of pn junctions and extends laterally below the S/D regions of the same labeled FET, respectively, (b) each pn junction extends below the upper surface of the semiconductor body to a maximum depth, c) the first conductive form of the semiconductor dopant will be present in each of the S/D regions, (d) the concentration of all of the semiconductor dopants of the first conductive form in the semiconductor body for the first FET Will be below the upper surface of the body A first primary subsurface body material reaches a first primary subsurface maximum concentration, and the second FET reaches a second major at a second major subsurface body material location below the upper surface of the body The subsurface maximum concentration, (e) is greater than the maximum depth of the pn junction of each S/D region of the FET, and the primary subsurface bulk material location of each label extends laterally over most of the same labeled FET. The channel region is below each of the S/D regions and appears less than 10 times deep below the upper surface of the body, and (f) the concentration of all dopants in the first conductive form is: (i) designating from the first primary subsurface body material location along a selected vertical line via the S/D region of the first FET The S/D region is decremented to a maximum of 10% when moved up to the upper surface of the body, (ii) moved from the first primary subsurface body material location along the vertical line to a designated S/D region of the first FET The pn junction is decremented in a substantially monotonous manner, and (iii) at least an additional subsurface maximum concentration is achieved between the upper surface of the body and the second primary subsurface body material location of the second FET, such that each An additional subsurface maximum concentration will occur at a corresponding additional subsurface body material location that extends laterally over the second FET over its channel region and at least a portion of its S/D region. Most of the gate electrode is underneath all of the material. 如申請專利範圍第81項的方法,其中在完成該結構的製造之後,該第一導電性形式的所有摻雜劑的濃度從該第二主要次表層本體材料位置處沿著一選定的第二垂直線經由該第二FET的任一S/D區向上移到該本體的上方表面時會遞減成大於10%。 The method of claim 81, wherein after the fabrication of the structure is completed, the concentration of all dopants of the first conductive form is from the second primary subsurface body material location along a selected second The vertical line is decremented to greater than 10% as it moves up any of the S/D regions of the second FET to the upper surface of the body. 如申請專利範圍第81或82項的方法,其中在完成該結構的製造之後,該第一導電性形式的所有摻雜劑的濃度在對於該第二FET的每一個額外次表層極大濃度之深度處會沿著該第一垂直線以大部分單調方式來改變。 The method of claim 81, wherein the concentration of all dopants in the first conductive form is at a depth of each additional subsurface maximum concentration for the second FET after completion of fabrication of the structure The change will be in most monotonous manner along the first vertical line. 如申請專利範圍第81或82項的方法,其中從該第一主要次表層本體材料位置沿該第一垂直線向下移到對於該第一FET的指定S/D區的pn接面之極大深度的10倍深度處時,該第一主要次表層極大濃度實質上為該第一導電性形式的所有摻雜劑的濃度中僅有的局部次表層極大值。 The method of claim 81, wherein the first primary subsurface body material location moves down the first vertical line to a maximum of a pn junction for a designated S/D region of the first FET. At a depth of 10 times the depth, the first major subsurface maximum concentration is substantially the only local subsurface maximum of all dopant concentrations of the first conductive form. 如申請專利範圍第81或82項的方法,其中定義該 等閘極電極的動作大部分會接續在引入該第一導電性形式的摻雜劑的動作後面被實施。 For example, the method of claim 81 or 82, wherein the definition is The operation of the gate electrode is mostly carried out after the action of introducing the dopant of the first conductivity form. 如申請專利範圍第81或82項的方法,其中引入該第二導電性形式的摻雜劑的動作大部分會接續在定義該等閘極電極的動作後面被實施。 The method of claim 81 or 82, wherein the act of introducing the dopant of the second conductivity form is carried out mostly after the action of defining the gate electrodes. 如申請專利範圍第81或82項的方法,其中引入該等第二導電性形式的摻雜劑的動作必須形成每一個FET的每一個S/D區,以便包括一主要部及一較輕度摻雜的橫向延伸部,其會橫向接續該主要部並且橫向延伸在該FET的閘極電極的下方,俾使得在完成該結構的製造之後,每一個FET的通道區會沿著該本體的上方表面終止於其延伸部。 The method of claim 81 or 82, wherein the act of introducing the dopants of the second conductivity form must form each S/D region of each FET to include a main portion and a lighter a doped lateral extension that laterally continues the main portion and extends laterally below the gate electrode of the FET such that after completion of fabrication of the structure, the channel region of each FET is along the top of the body The surface terminates in its extension. 如申請專利範圍第81或82項的方法,其進一步包含將該第一導電性形式的額外摻雜劑引入該半導體本體中,以使每一個標號的本體材料區域的袋部會沿著該同樣標號的FET的第一S/D區延伸至其通道區中,且摻雜程度重過該第一本體材料區域的橫向相鄰材料。 The method of claim 81 or 82, further comprising introducing the additional dopant in the first conductive form into the semiconductor body such that the pocket portion of each of the labeled body material regions will follow the same The first S/D region of the labeled FET extends into its channel region and is doped to a greater extent than the laterally adjacent material of the first body material region. 如申請專利範圍第88項的方法,其中該第一FET的袋部會讓其通道區不對稱於其S/D區。 The method of claim 88, wherein the pocket portion of the first FET causes its channel region to be asymmetrical to its S/D region. 如申請專利範圍第88項的方法,其中引入該第一導電性形式的額外摻雜劑的動作使該第二本體材料區域中另一袋部會沿著該二FET的第二S/D區延伸至其通道區中,且摻雜程度重過該第二本體材料區域的橫向相鄰材料。 The method of claim 88, wherein the act of introducing the additional dopant in the first conductive form causes another pocket portion of the second body material region to follow a second S/D region of the second FET Extending into its channel region and doping to a greater extent than laterally adjacent material of the second body material region. 一種從半導體本體製造半導體結構之方法,包含:針對一主要場效電晶體(FET)界定一主要閘極電極,其 在意圖作為第一導電性型式的主要通道區之半導體本體的一區段上方且為由一主要閘極介電層予以垂直分開;引入相反於第一導電性型式之一第二導電性型式的半導體摻雜劑至半導體本體,以針對該FET界定由該通道區所側向分開之相反於第一導電性型式的第二導電性型式的一對主要源極/汲極(S/D)區,使得在完成製造該結構之後,(a)該半導體本體具有一上半導體表面,(b)該通道區為第一導電性型式且側向延伸在該等S/D區下方的部分主要本體材料,且(c)該半導體本體中該第一導電性型式的所有半導體摻雜劑的濃度在自一主要下層次表層本體材料位置(相較於一指定S/D區而在該上半導體表面下方為不超過10倍深)朝上移動至該等S/D區之指定S/D區時會遞減成最多10%。 A method of fabricating a semiconductor structure from a semiconductor body, comprising: defining a primary gate electrode for a primary field effect transistor (FET), Above a section of the semiconductor body intended to be the main channel region of the first conductivity type and vertically separated by a primary gate dielectric layer; introducing a second conductivity pattern opposite one of the first conductivity patterns Substituting a semiconductor dopant to the semiconductor body to define a pair of primary source/drain (S/D) regions of the second conductivity pattern opposite the first conductivity pattern laterally separated by the channel region for the FET After the fabrication of the structure is completed, (a) the semiconductor body has an upper semiconductor surface, (b) the channel region is a first conductivity type and a portion of the main body material laterally extending below the S/D regions And (c) the concentration of all of the semiconductor dopants of the first conductivity type in the semiconductor body is from a major lower level surface layer body material location (below the upper semiconductor surface compared to a specified S/D region) When moving up to the designated S/D area of the S/D area up to 10 times deep, it will be reduced to a maximum of 10%. 如申請專利範圍第91項之方法,其中在完成製造該結構之後,該次表層本體材料位置相較於該指定S/D區在該上半導體表面之下方為不超過5倍深。 The method of claim 91, wherein after the fabrication of the structure, the subsurface body material is positioned no more than 5 times deeper than the designated S/D region below the upper semiconductor surface. 如申請專利範圍第91項之方法,其中在完成製造該結構後,第一導電性型式的所有摻雜劑之濃度自該次表層本體材料位置朝上移至該指定S/D區時會遞減成最多10%。 The method of claim 91, wherein after the fabrication of the structure, the concentration of all dopants of the first conductivity type decreases from the position of the subsurface body material upward to the designated S/D region. Up to 10%. 如申請專利範圍第91項之方法,更包括將第一導電性型式的半導體摻雜劑引入該半導體本體以界定一袋部,該袋部沿著該等S/D區的剩餘S/D區向上延伸至接著存在的上表面,使在在完成製造該結構之後,(a)該袋部構成該本體材料的一部分,且相較於該本體材料的一鄰接材料為較重度摻雜,及(b)相較於在該通道區沿著上半導體表面會 合該剩餘S/D區之處,於該本體材料中該第一導電性型式的所有摻雜劑材料上具有一濃度在該通道區沿著上半導體表面會合該指定S/D區之處為較低。 The method of claim 91, further comprising introducing a first conductivity type semiconductor dopant into the semiconductor body to define a pocket portion along a remaining S/D region of the S/D regions Extending upwardly to the upper surface that is then present, such that after the fabrication of the structure is completed, (a) the pocket forms part of the body material and is more heavily doped than an adjacent material of the body material, and b) compared to the upper semiconductor surface in the channel region Where the remaining S/D regions are combined, a concentration of all of the dopant material of the first conductivity type in the bulk material meets the designated S/D region along the upper semiconductor surface in the channel region Lower. 如申請專利範圍第91項之方法,其中:閘極電極界定動作包括界定針對於與該主要FET相同極性的另一FET之另一閘極電極,其在意圖作為第一導電性型式的另一通道區之半導體本體的一區段上方且由另一閘極介電層予以垂直分開;引入該第二導電性型式的摻雜劑之動作包括將第二導電性型式的另一第一半導體摻雜劑引入該半導體本體,以針對該另一FET界定由該另一通道區所側向分開之第二導電性型式的一對另外S/D區,使得在完成製造該結構之後,(a)該另一通道區係亦延伸在該等另外S/D區下方之部分本體材料,且(b)第一導電性型式的所有摻雜劑的濃度在自另一下層次表層本體材料位置(在該上半導體表面下方的深度約如同該主要次表層本體材料位置)朝上移動至各個另外S/D區時大致上為固定或改變為大於10%。 The method of claim 91, wherein: the gate electrode defining action comprises defining another gate electrode for another FET of the same polarity as the main FET, which is intended to be another one of the first conductivity type A portion of the semiconductor body of the channel region is vertically separated by another gate dielectric layer; and the act of introducing the dopant of the second conductivity type includes doping another first semiconductor of the second conductivity pattern a dopant is introduced into the semiconductor body to define a pair of additional S/D regions of the second conductivity pattern laterally separated by the other channel region for the other FET, such that after the fabrication of the structure is completed, (a) The other channel region also extends over a portion of the bulk material below the additional S/D regions, and (b) the concentration of all dopants of the first conductivity pattern is at a location from another lower layer skin material (in the The depth below the upper semiconductor surface is approximately fixed or changed to greater than 10% when moving up to each additional S/D region as the primary subsurface body material location. 如申請專利範圍第91項之方法,其中:閘極電極界定動作包括界定針對於與該主要FET相反極性的附加FET之附加閘極電極,其在意圖作為第二導電性型式的附加通道區之半導體本體的一區段上方且由附加閘極介電層予以垂直分開;該方法更包括將第一導電性型式的半導體摻雜劑引入該半導體本體,以針對該附加FET定義由該附加通道區所 側向分開之第一導電性型式的一對附加S/D區,使得在完成製造該結構之後,(a)該附加通道區係該第二導電性型式且延伸在該等附加S/D區下方之部分本體材料,且(b)該半導體本體中該第二導電性型式的所有半導體摻雜劑的濃度在自一附加下層次表層本體材料位置(相較於一指定附加S/D區而在該上半導體表面下方不超過10倍深)朝上移動至該等附加S/D區之指定附加S/D區時會遞減成最多10%。 The method of claim 91, wherein: the gate electrode delimiting action comprises an additional gate electrode defining an additional FET opposite the polarity of the main FET, which is intended to be an additional channel region of the second conductivity type A portion of the semiconductor body is vertically separated by an additional gate dielectric layer; the method further includes introducing a first conductivity type semiconductor dopant into the semiconductor body to define the additional channel region for the additional FET Place a pair of additional S/D regions of the first conductivity pattern that are laterally separated such that after the fabrication of the structure is completed, (a) the additional channel region is the second conductivity pattern and extends in the additional S/D regions a portion of the underlying body material, and (b) the concentration of all of the semiconductor dopants of the second conductivity type in the semiconductor body is from an additional lower level surface layer body material location (as compared to a specified additional S/D region) Up to 10% of the designated additional S/D zone moving up to the additional S/D zone is moved up to no more than 10 times deep below the upper semiconductor surface. 如申請專利範圍第96項之方法,其中:閘極電極界定動作包括界定針對於與該主要FET相同極性的第三FET之第三閘極電極,其在意圖作為第一導電性型式的第三通道區之半導體本體的一區段上方且由第三閘極介電層予以垂直分開;引入該第二導電性型式的摻雜劑之動作包括將第二導電性型式的另一第一半導體摻雜劑引入該半導體本體,以針對該第三FET界定由該第三通道區所側向分開之第二導電性型式的一對第三S/D區,使得在完成製造該結構之後,(a)該第三通道區係亦延伸在該等第三S/D區下方之部分本體材料,且(b)第一導電性型式的所有摻雜劑的濃度在自第三下層次表層本體材料位置(在該上半導體表面下方的深度約如同該主要次表層本體材料位置)朝上移動至各個第三S/D區時大致上為固定或改變為大於10%。 The method of claim 96, wherein: the gate electrode delimiting action includes defining a third gate electrode for a third FET of the same polarity as the main FET, which is intended to be the third of the first conductivity type A portion of the semiconductor body of the channel region is vertically separated by a third gate dielectric layer; the act of introducing the dopant of the second conductivity type includes doping another first semiconductor of the second conductivity pattern a dopant is introduced into the semiconductor body to define a pair of third S/D regions of the second conductivity pattern laterally separated by the third channel region for the third FET, such that after the fabrication of the structure is completed, (a The third channel region also extends over a portion of the bulk material below the third S/D regions, and (b) the concentration of all dopants of the first conductivity type is at a location from the third lower layer skin material (the depth below the upper semiconductor surface is about the same as the primary subsurface body material location) moving upwards to each of the third S/D regions is substantially fixed or changed to greater than 10%. 如申請專利範圍第97項之方法,其中:閘極電極界定動作包括界定針對於與該附加FET相同極性且因而與該主要FET相反極性的第四FET之第四閘極 電極,其在意圖作為第二導電型式的第四通道區之半導體本體的一區段上方且由第四閘極介電層予以垂直分開;引入該第二導電性型式的摻雜劑之動作包括將第二導電性型式的另一第一半導體摻雜劑引入該半導體本體,以針對該第四FET界定由該第四通道區所側向分開之第一導電性型式的一對第四S/D區,使得在完成製造該結構之後,(a)該第四通道區係亦延伸在該等第四S/D區下方之部分本體材料,且(b)第二導電性型式的所有摻雜劑的濃度在自第四下層次表層本體材料位置(在該上半導體表面下方的深度約如同該主要次表層本體材料位置)朝上移動至各個第四S/D區時大致上為固定或改變為大於10%。 The method of claim 97, wherein: the gate electrode delimiting action comprises defining a fourth gate of a fourth FET for the same polarity as the additional FET and thus opposite the polarity of the main FET An electrode above the segment of the semiconductor body intended to be the fourth channel region of the second conductivity type and vertically separated by a fourth gate dielectric layer; the act of introducing the dopant of the second conductivity type comprises Introducing a second conductivity type of another first semiconductor dopant into the semiconductor body to define a pair of fourth S/ of the first conductivity pattern laterally separated by the fourth channel region for the fourth FET Zone D, such that after completion of the fabrication of the structure, (a) the fourth channel region also extends over a portion of the bulk material below the fourth S/D regions, and (b) all doping of the second conductivity pattern The concentration of the agent is substantially fixed or changed when moving from the fourth lower layer skin material position (the depth below the upper semiconductor surface is about the same as the main subsurface body material position) to the respective fourth S/D regions. It is greater than 10%. 如申請專利範圍第91至98項中任一項之方法,更包含在引入該第二導電性型式的摻雜劑之動作之前,將該第一導電性型式的半導體摻雜劑引入意圖為該等主要S/D區之半導體材料的半導體材料下層材料的至少材料。 The method of any one of claims 91 to 98, further comprising introducing the first conductivity type semiconductor dopant into the method prior to the act of introducing the dopant of the second conductivity type At least the material of the underlying material of the semiconductor material of the semiconductor material of the main S/D region. 如申請專利範圍第99項之方法,其中在引入該第一導電性型式的摻雜劑之動作被實行,使得在完成製造該結構之後,該第一導電性型式的摻雜劑沿著該主要下表層本體材料位置會達到極大濃度。 The method of claim 99, wherein the act of introducing the dopant of the first conductivity type is performed such that after the fabrication of the structure is completed, the dopant of the first conductivity type is along the main The position of the underlying body material will reach a very high concentration.
TW097134813A 2007-10-31 2008-09-11 Structure and fabrication of semiconductor architecture having field-effect transistors especially suitable for analog applications TWI426564B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/981,481 US7642574B2 (en) 2005-08-29 2007-10-31 Semiconductor architecture having field-effect transistors especially suitable for analog applications
US11/981,355 US7838369B2 (en) 2005-08-29 2007-10-31 Fabrication of semiconductor architecture having field-effect transistors especially suitable for analog applications

Publications (2)

Publication Number Publication Date
TW200924075A TW200924075A (en) 2009-06-01
TWI426564B true TWI426564B (en) 2014-02-11

Family

ID=40591338

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097134813A TWI426564B (en) 2007-10-31 2008-09-11 Structure and fabrication of semiconductor architecture having field-effect transistors especially suitable for analog applications

Country Status (6)

Country Link
JP (1) JP2011519469A (en)
KR (1) KR20100084642A (en)
CN (1) CN101971347A (en)
DE (1) DE112008002924B4 (en)
TW (1) TWI426564B (en)
WO (1) WO2009058187A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8084827B2 (en) * 2009-03-27 2011-12-27 National Semiconductor Corporation Structure and fabrication of like-polarity field-effect transistors having different configurations of source/drain extensions, halo pockets, and gate dielectric thicknesses
JP5423269B2 (en) 2009-09-15 2014-02-19 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof
JP5560812B2 (en) * 2010-03-23 2014-07-30 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof
KR102180554B1 (en) 2013-12-04 2020-11-19 삼성디스플레이 주식회사 Thin film transistor and method for fabricating the same
US10424581B2 (en) * 2016-04-18 2019-09-24 Samsung Electronics Co., Ltd. Sub 59 MV/decade SI CMOS compatible tunnel FET as footer transistor for power gating
US11251095B2 (en) * 2016-06-13 2022-02-15 Globalfoundries Singapore Pte. Ltd. High gain transistor for analog applications
US11288430B2 (en) * 2017-11-27 2022-03-29 Globalfoundries U.S. Inc. Producing models for dynamically depleted transistors using systems having simulation circuits
CN108615675B (en) * 2018-05-04 2020-12-11 长江存储科技有限责任公司 Substrate doping structure and forming method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576966B1 (en) * 1995-04-12 2003-06-10 National Semiconductor Corporation Field-effect transistor having multi-part channel
US6927116B2 (en) * 1996-05-23 2005-08-09 Kabushiki Kaisha Toshiba Semiconductor device having a double-well structure and method for manufacturing the same
US7145191B1 (en) * 2000-03-31 2006-12-05 National Semiconductor Corporation P-channel field-effect transistor with reduced junction capacitance
US7176530B1 (en) * 2004-03-17 2007-02-13 National Semiconductor Corporation Configuration and fabrication of semiconductor structure having n-channel channel-junction field-effect transistor
US7235450B2 (en) * 2003-12-10 2007-06-26 Dongbu Electronics, Co., Ltd. Methods for fabricating semiconductor devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127700A (en) 1995-09-12 2000-10-03 National Semiconductor Corporation Field-effect transistor having local threshold-adjust doping
US6548642B1 (en) 1997-07-21 2003-04-15 Ohio University Synthetic genes for plant gums
US6566204B1 (en) * 2000-03-31 2003-05-20 National Semiconductor Corporation Use of mask shadowing and angled implantation in fabricating asymmetrical field-effect transistors
US6548842B1 (en) * 2000-03-31 2003-04-15 National Semiconductor Corporation Field-effect transistor for alleviating short-channel effects

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576966B1 (en) * 1995-04-12 2003-06-10 National Semiconductor Corporation Field-effect transistor having multi-part channel
US6927116B2 (en) * 1996-05-23 2005-08-09 Kabushiki Kaisha Toshiba Semiconductor device having a double-well structure and method for manufacturing the same
US7145191B1 (en) * 2000-03-31 2006-12-05 National Semiconductor Corporation P-channel field-effect transistor with reduced junction capacitance
US7235450B2 (en) * 2003-12-10 2007-06-26 Dongbu Electronics, Co., Ltd. Methods for fabricating semiconductor devices
US7176530B1 (en) * 2004-03-17 2007-02-13 National Semiconductor Corporation Configuration and fabrication of semiconductor structure having n-channel channel-junction field-effect transistor

Also Published As

Publication number Publication date
WO2009058187A1 (en) 2009-05-07
TW200924075A (en) 2009-06-01
KR20100084642A (en) 2010-07-27
CN101971347A (en) 2011-02-09
DE112008002924B4 (en) 2019-03-28
DE112008002924T5 (en) 2010-12-02
JP2011519469A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
TWI426564B (en) Structure and fabrication of semiconductor architecture having field-effect transistors especially suitable for analog applications
US8148777B1 (en) Structure and fabrication of insulated-gate field-effect transistor with hypoabrupt change in body dopant concentration below source/drain zone
US8309420B1 (en) Fabrication of semiconductor architecture having field-effect transistors especially suitable for analog applications
US7642574B2 (en) Semiconductor architecture having field-effect transistors especially suitable for analog applications
US20130126970A1 (en) Configuration and fabrication of semiconductor structure using empty and filled wells
JP2012522361A (en) Construction and fabrication of a semiconductor structure having an asymmetric field effect transistor with a tuned pocket portion along the source / drain zone
US6677210B1 (en) High voltage transistors with graded extension
JP2012522366A (en) Construction and fabrication of a semiconductor structure in which the source and drain extensions of a field effect transistor are defined by different dopants
JP2012522363A (en) Construction and manufacture of a semiconductor structure having an extended drain field effect transistor
WO2010110901A1 (en) Fabrication and structure of asymmetric field-effect transistors using l-shaped spacers
JP2012522371A (en) Construction and fabrication of field effect transistors using empty wells in combination with source / drain extensions or / and halo pockets
JP2012522369A (en) Configuration and fabrication of homopolar field effect transistors having different configurations of source / drain extensions, halo pockets and gate dielectric thicknesses
JP2012522365A (en) Construction and fabrication of asymmetric field effect transistors with asymmetric channel zones and differently configured source / drain extensions
JP2012522370A (en) Construction and fabrication of field effect transistors having nitrided gate dielectric layers with tailored vertical nitrogen concentration distribution
WO2006121564A2 (en) High voltage field effect device and method
JP2012522367A (en) Construction and fabrication of field effect transistors having source / drain extensions defined by a plurality of local concentration maxima
US20110074493A1 (en) Configurable np channel lateral drain extended mos-based transistor
US20080026515A1 (en) Silicide block isolated junction field effect transistor source, drain and gate