TWI425333B - Control device semiconductor apparatus - Google Patents
Control device semiconductor apparatus Download PDFInfo
- Publication number
- TWI425333B TWI425333B TW099102460A TW99102460A TWI425333B TW I425333 B TWI425333 B TW I425333B TW 099102460 A TW099102460 A TW 099102460A TW 99102460 A TW99102460 A TW 99102460A TW I425333 B TWI425333 B TW I425333B
- Authority
- TW
- Taiwan
- Prior art keywords
- control
- learning
- filter
- output
- transfer function
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title description 5
- 238000000034 method Methods 0.000 claims description 24
- 230000006870 function Effects 0.000 claims description 23
- 230000001360 synchronised effect Effects 0.000 claims description 22
- 230000006641 stabilisation Effects 0.000 claims description 19
- 238000011105 stabilization Methods 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 29
- 230000004044 response Effects 0.000 description 20
- 230000015654 memory Effects 0.000 description 11
- 238000004088 simulation Methods 0.000 description 9
- 230000002457 bidirectional effect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000003504 photosensitizing agent Substances 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70358—Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/706835—Metrology information management or control
- G03F7/706837—Data analysis, e.g. filtering, weighting, flyer removal, fingerprints or root cause analysis
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/706835—Metrology information management or control
- G03F7/706839—Modelling, e.g. modelling scattering or solving inverse problems
- G03F7/706841—Machine learning
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70716—Stages
- G03F7/70725—Stages control
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70775—Position control, e.g. interferometers or encoders for determining the stage position
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67276—Production flow monitoring, e.g. for increasing throughput
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Artificial Intelligence (AREA)
- Computer Hardware Design (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Feedback Control In General (AREA)
- Control Of Position Or Direction (AREA)
- Numerical Control (AREA)
Description
本發明相關於控制裝置。The invention relates to a control device.
在掃描曝光設備或高架型機械工具中,以高精確性同步控制複數個移動構件之位置或複數個控制軸的位置。因此,傳統上,已實施主從同步控制。在該主從同步控制中,複數個移動構件之一者係作為主體使用,其他移動構件係作為從屬使用,且當擾動在該主體中發生時,該等從屬跟隨該主體的移位。以此方式,同步精確性受到改善。發生在該等從屬中的擾動係藉由控制該等從屬而降低。In a scanning exposure apparatus or an overhead type machine tool, the position of a plurality of moving members or the positions of a plurality of control axes are synchronously controlled with high accuracy. Therefore, conventionally, master-slave synchronization control has been implemented. In the master-slave synchronization control, one of the plurality of moving members is used as a body, and the other moving members are used as slaves, and when the disturbance occurs in the body, the slaves follow the displacement of the body. In this way, synchronization accuracy is improved. The disturbances occurring in the slaves are reduced by controlling the slaves.
此外,已提出雙向同步控制以更加改善晶圓台及光罩台之間的同步精確性(日本特許公開專利申請案編號第08-241126號)。在該雙向同步控制中,當擾動在控制目標之任一者中發生時,將該主體及該從屬操作為使得彼等二者同時補償該同步誤差,無須區分彼此。此外,日本專利申請案案號第2006-310849號揭示將疊代學習控制施用至其的主從同步控制。In addition, two-way synchronous control has been proposed to further improve the synchronization accuracy between the wafer table and the reticle stage (Japanese Laid-Open Patent Application No. 08-241126). In the two-way synchronous control, when the disturbance occurs in any of the control targets, the subject and the slave are operated such that they both compensate the synchronization error at the same time, without distinguishing between each other. Further, Japanese Patent Application No. 2006-310849 discloses master-slave synchronization control to which iterative learning control is applied.
認為該雙向同步控制(或相似地,用於二或多個控制軸的多邊同步控制)的同步效能可能較該主從同步控制之同步效能為佳。然而,前者的控制系統具有複雜結構,且難以得到或調整該控制系統。結果,難以改善同步精確性。It is believed that the synchronization performance of the two-way synchronization control (or similarly, the multilateral synchronization control for two or more control axes) may be better than the synchronization performance of the master-slave synchronization control. However, the former control system has a complicated structure and it is difficult to obtain or adjust the control system. As a result, it is difficult to improve the synchronization accuracy.
根據本發明之實施樣態,一控制裝置包括:一第一控制電路,組態成控制該第一控制目標的一位置;一第二控制電路,組態成控制該第二控制目標的一位置;一計算單元,組態成計算該第一控制目標及該第二控制目標之間的一同步誤差;一疊代學習控制電路,包括將該同步誤差輸入至彼等的第一及第二學習濾波器,並組態為基於該第一學習濾波器之一輸出將一控制輸入前授至該第一控制目標及基於該第二學習濾波器之一輸出將一控制輸入前授至該第二控制目標。According to an embodiment of the present invention, a control device includes: a first control circuit configured to control a position of the first control target; and a second control circuit configured to control a position of the second control target a calculation unit configured to calculate a synchronization error between the first control target and the second control target; an iterative learning control circuit including inputting the synchronization error to the first and second learning of the same a filter, and configured to, based on the output of one of the first learning filters, impart a control input to the first control target and to deliver a control input to the second based on the output of the second learning filter Control objectives.
本發明之其他特性及實施樣態會從以下對模範實施例的詳細描述及對該等隨附圖式之參考而變得更明顯。Other features and embodiments of the present invention will become more apparent from the following detailed description of exemplary embodiments.
在下文中,將描述第一模範實施例。Hereinafter, a first exemplary embodiment will be described.
圖1係描繪同步控制半導體曝光設備中之晶圓台及光罩台的位置之控制裝置的方塊圖。該控制裝置包括控制晶圓台之位置的控制電路7(第一控制電路)及控制光罩台之位置的控制電路8(第二控制電路),並同步該二控制電路。1 is a block diagram depicting a control device for synchronously controlling the position of a wafer stage and a reticle stage in a semiconductor exposure apparatus. The control device includes a control circuit 7 (first control circuit) that controls the position of the wafer table, and a control circuit 8 (second control circuit) that controls the position of the wafer table, and synchronizes the two control circuits.
偵測單元11及12係偵測控制目標之晶圓台(第一控制目標)及光罩台(第二控制目標)的位置yW 及yR 。假設該晶圓台的轉移函數為PW 且該光罩台之轉移函數為PR 。減法單元13及14將該等偵測單元的輸出從目標軌跡r及Nr(N係曝光倍率)減去,並將其間的偏差eW 及eR 輸入至反饋控制器(將轉移函數指稱為KW 及KR )。計算單元15計算同步誤差yS[k] ,其係輸出NyW 及yR 之間的差,並將該同步誤差輸入至疊代學習控制電路ILC。將疊代學習控制電路ILC的輸出加至輸出uW 及uR ,其係反饋控制器KW 及KR 的控制輸入,並將該等相加值提供給該等控制目標。The detecting units 11 and 12 detect the positions y W and y R of the wafer stage (first control target) and the reticle stage (second control target) of the control target. It is assumed that the transfer function of the wafer stage is P W and the transfer function of the mask stage is P R . The subtraction units 13 and 14 subtract the outputs of the detection units from the target trajectories r and Nr (N-type exposure magnification), and input the deviations e W and e R therebetween into the feedback controller (refer to the transfer function as K) W and K R ). The calculation unit 15 calculates the synchronization error y S[k] which is the difference between the outputs Ny W and y R and inputs the synchronization error to the iterative learning control circuit ILC. The output of the iterative learning control circuit ILC is applied to the outputs u W and u R , which are the control inputs of the feedback controllers K W and K R and provide the added values to the control targets.
就此而言,在本發明之此模範實施例中,該同步誤差補償係在晶圓台PW 及光罩台PR 二者上實施,從而實施雙向同步控制。此外,疊代學習控制係針對該同步誤差補償實施。該疊代學習控制重覆地在目標軌跡上實施跟蹤控制,以減少該同步誤差。其次,將參考圓1描繪之該控制區塊及圖2描繪的流程圖描述該疊代學習控制。疊代學習控制電路ILC包括學習濾波器L,其中輸入訊號係同步誤差yS[k] 、穩定濾波器QW 及QR ,不讓學習所不需要的頻帶通過、記憶體1及2儲存來自該等穩定濾波器的輸出。In this regard, in this exemplary embodiment of the invention, the synchronization error compensation is implemented on both the wafer table P W and the reticle stage R R to implement two-way synchronous control. In addition, iterative learning control is implemented for this synchronization error compensation. The iterative learning control repeatedly implements tracking control on the target trajectory to reduce the synchronization error. Next, the iterative learning control will be described with reference to the control block depicted by circle 1 and the flow chart depicted in FIG. The iterative learning control circuit ILC includes a learning filter L in which the input signal is synchronized with the error y S[k] , the stabilization filters Q W and Q R , and the frequency band not required for learning is passed, and the memory 1 and 2 are stored. The output of these stabilization filters.
在步驟S1中,實施第一操作。在此步驟中,該晶圓台及該光罩台無須以來自該疊代學習控制電路之任何輸入控制。將同步誤差yS[1] 輸出至學習濾波器L,並將學習濾波器L的輸出經由穩定濾波器QW 及QR (第一穩定濾波器及第二穩定濾波器)作為fW[2] 及fR[2] 存入記憶體1及2(第一記憶體裝置及第二記憶體裝置)中。在步驟S2中,第k個(k>1)操作開始。在此情形中,因為實施數位控制,將第k操作期間之至第i樣本的控制輸入指稱為fW[k]i 及fR[k]i ,且將其之同步誤差指稱為yS[k]i 。此處,假設一操作中的樣本總數為j。該等初始條件如下:同步誤差的最大值ySmax 為0;且樣本的數字i為0。在步驟S3中,將之前儲存在該等記憶體中的控制輸入fW[k]i 及fR[k]i 前饋並加至輸出uWi 及uRi 。以此方式,在第k操作中,該等控制目標受控制。In step S1, the first operation is performed. In this step, the wafer stage and the reticle stage need not be controlled by any input from the iterative learning control circuit. The synchronization error y S[1] is output to the learning filter L, and the output of the learning filter L is passed through the stabilization filters Q W and Q R (the first stabilization filter and the second stabilization filter) as f W[2 ] and f R[2] are stored in the memories 1 and 2 (the first memory device and the second memory device). In step S2, the kth (k>1) operation starts. In this case, since the digital control is implemented, the control inputs to the i-th sample during the kth operation are referred to as f W[k]i and f R[k]i , and the synchronization error thereof is referred to as y S [ k]i . Here, assume that the total number of samples in an operation is j. The initial conditions are as follows: the maximum value of the synchronization error y Smax is 0; and the number i of the sample is zero. In step S3, the control inputs f W[k]i and f R[k]i previously stored in the memories are fed forward and added to the outputs u Wi and u Ri . In this way, in the kth operation, the control targets are controlled.
在第k操作中,第(k+1)控制輸入係在步驟S4中產生,然後儲存在記憶體1及2中。更具體地說,將同步誤差yS[k]i 輸入至學習濾波器L,並藉由加法器16及17將該學習濾波器的輸出加至控制輸入fW[k]i 及fR[k]i 。然後,將該等相加值經由穩定濾波器QW 及QR 作為fW[k+1]i 及fR[k+1]i 存入記憶體1及2中。在步驟S5中,同步誤差yS[k]i 與該同步誤差的最大值ySmax 比較。若同步誤差yS[k]i 多於該同步誤差的最大值ySmax ,更新最大值ySmax 。在步驟S6中,若j<i(在步驟S6中為是),該程序前進至步驟S7。若j>i(在步驟S6中為否),設定i=i+1,且該程序前進至步驟S3。在步驟S7中,第k操作結束。在步驟S8中,該同步誤差的最大值ySmax 與預定設定值比較。若該最大值ySmax 少於該設定值(在步驟S8中為是),決定該偏差足夠小且學習結束。若該同步誤差的最大值ySmax 多於該設定值(在步驟S8中為否),設定k=k+1且該程序前進至步驟S2。In the kth operation, the (k+1)th control input is generated in step S4 and then stored in the memories 1 and 2. More specifically, the synchronization error y S[k]i is input to the learning filter L, and the output of the learning filter is added to the control inputs f W[k]i and f R by the adders 16 and 17 [ k]i . Then, the added values are stored in the memories 1 and 2 via the stabilization filters Q W and Q R as f W[k+1]i and f R[k+1]i . In step S5, the synchronization error y S[k]i is compared with the maximum value y Smax of the synchronization error. If the synchronization error y S [k] i is more than the maximum synchronization error y Smax, updates the maximum y Smax. In step S6, if j < i (YES in step S6), the program proceeds to step S7. If j>i (NO in step S6), i=i+1 is set, and the program proceeds to step S3. In step S7, the kth operation ends. In step S8, the maximum value y Smax of the synchronization error is compared with a predetermined set value. If the maximum value y Smax is less than the set value (YES in step S8), it is determined that the deviation is sufficiently small and the learning ends. If the maximum value y Smax of the synchronization error is larger than the set value (NO in step S8), k = k + 1 is set and the routine proceeds to step S2.
圖3A係描繪學習濾波器L之詳細結構的方塊圖。學習濾波器L包括第一學習濾波器L1 及第二學習濾波器L2 ,彼等包括與下列運算式1及2實質相等的轉移函數:FIG. 3A is a block diagram depicting the detailed structure of the learning filter L. The learning filter L includes a first learning filter L 1 and a second learning filter L 2 , which include transfer functions substantially equivalent to the following arithmetic expressions 1 and 2:
此外,學習濾波器L包括將第一學習濾波器L1 的輸出加至第二學習濾波器L2 之輸出的濾波器F1 以及將第二學習濾波器L2 的輸出加至第一學習濾波器L1 之輸出的濾波器F2 。將該同步誤差輸入至學習濾波器L1 及L2 。學習濾波器L1 之輸出通過濾波器F1 並加至學習濾波器L2 的輸出。相似地,學習濾波器L2 之輸出通過濾波器F2 並加至學習濾波器L1 的輸出。因此,將該二學習濾波器之一者的輸出之一部分加至另一學習濾波器的輸出。將濾波器F2 的輸出已加至其之學習濾波器L1 的輸出輸入至加法器16,並將濾波器F1 的輸出已加至其之學習濾波器L2 之輸出輸入至加法器17。Further, the learning filter L includes a filter F 1 that adds the output of the first learning filter L 1 to the output of the second learning filter L 2 and adds the output of the second learning filter L 2 to the first learning filter. Filter F 2 of the output of L 1 . This synchronization error is input to the learning filters L 1 and L 2 . The output of the learning filter L 1 passes through the filter F 1 and is applied to the output of the learning filter L 2 . Similarly, the output of the learning filter L 2 passes through the filter F 2 and is applied to the output of the learning filter L 1 . Therefore, one of the outputs of one of the two learning filters is added to the output of the other learning filter. The output of the learning filter L 1 to which the output of the filter F 2 has been applied is input to the adder 16, and the output of the learning filter L 2 to which the output of the filter F 1 has been applied is input to the adder 17 .
圖3B顯示描繪於圖3A描繪的該學習濾波器之修改的方塊圖。學習濾波器L包括第一學習濾波器L1 及第二學習濾波器L2 ,彼等包括與運算式1及2實質相等的轉移函數。此外,學習濾波器L包括濾波器F1 '及濾波器F2 ',並分類為包括彼此序列地連接之學習濾波器L1 、濾波器F1 '、以及學習濾波器L2 的控制區塊群組A,以及包括彼此序列地連接之學習濾波器L2 、濾波器F2 '、以及學習濾波器L1 的控制區塊群組B。更具體地說,將學習濾波器L1 的輸出乘於學習濾波器L2 的輸出。將該同步誤差輸入至該二控制區塊群組。將控制區塊群組A的輸出輸入至加法器16,並將控制區塊群組B的輸出輸入至加法器17。FIG. 3B shows a block diagram depicting a modification of the learning filter depicted in FIG. 3A. The learning filter L includes a first learning filter L 1 and a second learning filter L 2 , which include transfer functions substantially equal to the arithmetic expressions 1 and 2. Further, the learning filter L includes a filter F 1 ' and a filter F 2 ', and is classified into a control block including a learning filter L 1 , a filter F 1 ', and a learning filter L 2 which are serially connected to each other. The group A, and the learning block L 2 , the filter F 2 ′, and the control block group B of the learning filter L 1 are connected in series with each other. More specifically, the output of the learning filter L 1 is multiplied by the output of the learning filter L 2 . The synchronization error is input to the two control block groups. The output of the control block group A is input to the adder 16, and the output of the control block group B is input to the adder 17.
該學習濾波器可能具有圖3C所描繪的該結構。學習濾波器L包括第一學習濾波器71及第二學習濾波器72。學習濾波器71包括晶圓台及光罩台的轉移函數PW 及PR ,以及該等反饋控制器的轉移函數KW 及KR 。學習濾波器72也包括晶圓台及光罩台的轉移函數PW 及PR ,以及該等反饋控制器的轉移函數KW 及KR 。將學習濾波器71的輸出輸入至加法器16,並將學習濾波器72的輸出輸入至加法器17。若於圖3A描繪的L1+L2F2為學習濾波器71且於圖3A描繪的L2+L1F1為學習濾波器72,描繪在圖3A中的該結構包括在描繪於圖3C中的該結構中。相似地,若描繪於圖3B中的控制區塊群組A為學習濾波器71且描繪於圖3B中的控制區塊群組B為學習濾波器72,描繪在圖3B中的該結構也包括在描繪於圖3C中的該結構中。The learning filter may have the structure depicted in Figure 3C. The learning filter L includes a first learning filter 71 and a second learning filter 72. The learning filter 71 includes transfer functions P W and P R of the wafer stage and the reticle stage, and transfer functions K W and K R of the feedback controllers. The learning filter 72 also includes transfer functions P W and P R of the wafer stage and the reticle stage, and transfer functions K W and K R of the feedback controllers. The output of the learning filter 71 is input to the adder 16, and the output of the learning filter 72 is input to the adder 17. If L1 + L2F2 depicted in FIG. 3A is the learning filter 71 and L2+L1F1 depicted in FIG. 3A is the learning filter 72, the structure depicted in FIG. 3A is included in the structure depicted in FIG. 3C. Similarly, if the control block group A depicted in FIG. 3B is the learning filter 71 and the control block group B depicted in FIG. 3B is the learning filter 72, the structure depicted in FIG. 3B also includes This structure is depicted in Figure 3C.
其次,將描述取得該學習濾波器的方法。首先,實施控制目標的模型化,以取得學習濾波器L。假設該晶圓台及該光罩台係一質量系統,該晶圓台及該光罩台的移位為xW 及xR ,控制輸入為uW 及uR ,且彼等之質量為mW 及mR ,該晶圓台及該光罩台係由下列運動方程式表示:Next, a method of obtaining the learning filter will be described. First, the modeling of the control target is performed to obtain the learning filter L. Assuming that the wafer stage and the reticle stage are a mass system, the wafer stage and the reticle stage are shifted by x W and x R , the control inputs are u W and u R , and their mass is m W and m R , the wafer stage and the mask stage are represented by the following equations of motion:
將狀態向量表示如下:The state vector is represented as follows:
狀態方程式及藉由運算式3及4得到的輸出方程式表示如下:The equation of state and the output equations obtained by Equations 3 and 4 are expressed as follows:
y W =[1 0]x W =C W x W (7) y W =[1 0] x W = C W x W (7)
y R =[1 0]x R =C R x R (9)。 y R =[1 0] x R = C R x R (9).
為取得雙向疊代學習控制系統,待取得描繪於圖4中的增強系統,其中觀測輸出係該晶圓台的移位yW 、光罩台的移位yR 、以及該晶圓台及該光罩台之間的同步誤差yS 。在圖4中,PW 顯示運算式6及7所表示之該晶圓台的模型,且PR 顯示運算式8及9所表示之該光罩台的模型。因為N係投影倍率,將該晶圓台及該光罩台之間的同步誤差yS 描述為NyW -yR 。將該狀態方程式及該增強系統的輸出方程式表示如下:To obtain a two-way iterative learning control system, the enhancement system depicted in FIG. 4 is obtained, wherein the observation output is the displacement y W of the wafer stage, the displacement of the reticle stage y R , and the wafer stage and the Synchronization error y S between the reticle stages. In FIG. 4, P W shows the model of the wafer stage indicated by Equations 6 and 7, and P R shows the model of the mask table indicated by Equations 8 and 9. The synchronization error y S between the wafer stage and the reticle stage is described as Ny W -y R because of the N-type projection magnification. The equation of state and the augmentation system The output equation is expressed as follows:
x e =[x W x R ] T ,u e =[u W u R ] T (12)。 x e =[ x W x R ] T , u e =[ u W u R ] T (12).
圖5描繪將該疊代學習控制施用於其之同步控制的方塊圖。Figure 5 depicts a block diagram of the synchronization control to which the iterative learning control is applied.
係運算式10所表示的增強系統。在第k疊代操作中,反饋控制器輸出控制輸入uW[k] 及uR[k] 以跟蹤該晶圓台及該光罩台的目標軌跡r及Nr。eW[k] 及eR[k] 代表該晶圓台及該光罩台之目標軌跡r及Nr與移位yW[k] 及yR[k] 的跟蹤誤差。將該晶圓台及該光罩台之間的同步誤差yS[k] 輸入至學習濾波器L。將該學習濾波器之輸出加至第k疊代操作中的前饋輸入fW[k] 及fR[k] ,然後經由以下的穩定濾波器在該記憶體m中儲存為第(k+1)前饋輸入fW[k+1] 及fR[k+1] ,該穩定濾波器不讓不需要學習的頻帶通過: The enhancement system represented by Equation 10. In the kth iteration, the feedback controller Output control inputs u W[k] and u R[k] are used to track the target trajectories r and Nr of the wafer stage and the reticle stage. e W[k] and e R[k] represent tracking errors of the target trajectories r and Nr of the wafer stage and the reticle stage and the shifts y W[k] and y R[k] . The synchronization error y S[k] between the wafer stage and the reticle stage is input to the learning filter L. Adding the output of the learning filter to the feedforward inputs f W[k] and f R[k] in the kth iteration, and then passing the following stabilization filter Stored in the memory m as the (k+1) feedforward input f W[k+1] and f R[k+1] , the stabilization filter does not allow the frequency band that does not need to be learned to pass:
在此情形中,該疊代學習控制的學習規則界定如下:In this case, the learning rules of the iterative learning control are defined as follows:
f [ k ] =[f W [ k ] f R [ k ] ] T (15)。 f [ k ] =[ f W [ k ] f R [ k ] ] T (15).
將閉迴路系統Pc1 界定成如圖6所描繪,其中意指該增強系統且意指該反饋控制系統。藉由使用閉迴路系統Pc1 ,圖5所描繪之該方塊圖與圖7所描繪的該結構等效地交換。閉迴路系統Pc1 的輸出僅係同步誤差yS[k] ,然而,至穩定濾波器的輸入係至該晶圓台及該光罩台的前饋輸入。因此,取得具有一輸入及二輸出的學習濾波器L。因為下列方程式係建立自圖6:The closed loop system P c1 is defined as depicted in Figure 6, wherein Means the enhanced system and Means the feedback control system. The block diagram depicted in FIG. 5 is equivalently exchanged with the structure depicted in FIG. 7 by using a closed loop system P c1 . The output of the closed-loop system P c1 is only the synchronization error y S[k] , however, to the stabilization filter The input is tied to the wafer stage and the feedforward input of the reticle stage. Therefore, the learning filter L having one input and two outputs is obtained. Because the following equations are built from Figure 6:
yS[k] =Pc1 f[k] (16)。y S[k] =P c1 f [k] (16).
f[k+1] 及f[k] 之間的以下關係係藉由運算式14而建立:The following relationship between f [k+1] and f [k] is established by Equation 14:
若認為該同步誤差yS[k] 的收斂等同於藉由該疊代學習控制之該前饋輸入的收斂,可滿足下列條件:If the convergence of the synchronization error y S[k] is considered to be equivalent to the convergence of the feedforward input by the iterative learning control, the following conditions can be satisfied:
滿足上述條件的多輸入多輸出學習濾波器L係藉由將圖7中之虛線所包圍的部分使用為使用一般化控制對象並使用H∞ 控制理論而取得。The multiplexed learning filter L that satisfies the above conditions is obtained by using the portion surrounded by the broken line in Fig. 7 as a generalized control object and using the H ∞ control theory.
在此模範實施例中,假設該晶圓台及該光罩電路之質量mW 及mR 為40kg。假設該晶圓台及該光罩台的期望伺服帶寬係根據機械結構的條件而彼此不同,並將該反饋控制系統設計成使得該伺服帶寬為350Hz及250Hz。此處,假設反饋控制系統係用於各台之分散式控制系統,且不考慮該反饋控制系統的雙向性質。當考慮該反饋控制系統的雙向性質時,該系統也可能相似地設計如下。首先,用於該晶圓台及該光罩台的穩定濾波器QW 及QR 二者係使用具有300Hz之截止頻率的第5階巴特渥斯濾波器設計。第二,如圖6所描繪的,取得增強系統Pc1 。其次,形成如運算式13所表示的穩定濾波器,並使用增強系統Pc1 及穩定濾波器產生由圖7之虛線所表示的該一般化對象。最後,藉由使用該H∞ 控制理論取得學習濾波器L。In this exemplary embodiment, it is assumed mass m R m W and the wafer table and the reticle circuits to 40kg. Assuming that the desired servo bandwidth of the wafer stage and the reticle stage are different from each other according to the conditions of the mechanical structure, and the feedback control system It is designed such that the servo bandwidth is 350 Hz and 250 Hz. Here, assume a feedback control system It is used in decentralized control systems for each station, regardless of the bidirectional nature of the feedback control system. When considering the bidirectional nature of the feedback control system, the system may also be similarly designed as follows. First, both the stabilization filters Q W and Q R for the wafer stage and the reticle stage are designed using a 5th order Battens filter having a cutoff frequency of 300 Hz. Second, as depicted in Figure 6, an enhancement system P c1 is obtained . Next, a stable filter as shown in Equation 13 is formed. And use the enhanced system P c1 and the stabilization filter The generalized object represented by the dashed line of Fig. 7 is generated. Finally, the learning filter L is obtained by using the H ∞ control theory.
圖8係描繪已取得學習濾波器之增益的圖。根據同步誤差產生至該晶圓電路及該光罩台之前饋輸入的該等學習濾波器係分別由實線及虛線表示。Figure 8 is a diagram depicting the gain of the learned filter. The learning filters that are generated by the synchronization error to the wafer circuit and the feedforward input of the reticle stage are respectively indicated by solid lines and broken lines.
其次,將描述使用根據本模範實施例之控制裝置同步控制該晶圓台及該光罩台的模擬回應。在該模擬中,將用於跟蹤目標驅動的前饋輸入提供入該疊代學習控制及反饋控制,該前饋輸入係藉由將二階微分位置輪廓所得到的該加速度乘於質量而得到。此外,在該模擬中,將零相位低通濾波器使用為該穩定濾波器QW 及QR 。因為該零相位低通濾波器不能即時濾波資料,每當一疊代操作結束時,將同步誤差yS 存入記憶體1及2中並實施由運算式14所表示的學習。Next, a simulation response for synchronously controlling the wafer stage and the reticle stage using the control device according to the present exemplary embodiment will be described. In this simulation, a feedforward input for tracking target drive is provided to the iterative learning control and feedback control, the feedforward input being obtained by multiplying the acceleration obtained by the second order differential position profile by the mass. Further, in this simulation, a zero-phase low-pass filter is used as the stabilization filters Q W and Q R . Since the zero-phase low-pass filter cannot instantaneously filter the data, the synchronization error y S is stored in the memories 1 and 2 and the learning represented by the arithmetic expression 14 is performed each time the iterative operation ends.
圖9係描繪係該晶圓台及該光罩台的目標軌跡之位置輪廓的圖。投影倍率為1/4。圖10A至10D描繪當第一至第四操作實施時的模擬回應。實線指示該晶圓台之目標軌跡的跟蹤誤差,且虛線指示該光罩台之目標軌跡的跟蹤誤差。該晶圓台的跟蹤誤差為四倍。Figure 9 is a diagram depicting the positional profile of the target track of the wafer table and the reticle stage. The projection magnification is 1/4. 10A to 10D depict a simulated response when the first to fourth operations are performed. The solid line indicates the tracking error of the target trajectory of the wafer table, and the broken line indicates the tracking error of the target trajectory of the reticle stage. The wafer table has a tracking error of four times.
圖11A至11D描繪若疊代學習控制係在該晶圓台及該光罩台上獨立地實施(換言之,未實施主從同步控制或雙向同步控制)時,當第一至第四操作實施時的模擬回應。在下文中,將此控制指稱為獨立疊代學習控制,並與主從同步控制或雙向同步控制區分。11A to 11D depict that when the iterative learning control system is independently implemented on the wafer table and the reticle stage (in other words, the master-slave synchronization control or the two-way synchronization control is not implemented), when the first to fourth operations are performed The analog response. In the following, this control is referred to as independent iterative learning control and is distinguished from master-slave synchronization control or two-way synchronization control.
如可從圖10A至11D看到的,根據本模範實施例,當疊代次數上昇時,該晶圓台的跟蹤誤差更接近該光罩台之跟蹤誤差。As can be seen from Figures 10A through 11D, according to the present exemplary embodiment, when the number of iterations rises, the tracking error of the wafer table is closer to the tracking error of the reticle stage.
在本模範實施例中,將該晶圓台的伺服帶寬設定成高於該光罩台的伺服帶寬。因此,當未發生擾動時,作為主體使用的該晶圓台及作為從屬使用之該光罩台可彼此同步。在該疊代學習控制施用至其的該雙向同步控制中,學習係實施為使得該晶圓台的移位自動地跟蹤該光罩台之移位,從而減少該同步誤差。In the present exemplary embodiment, the servo bandwidth of the wafer stage is set to be higher than the servo bandwidth of the reticle stage. Therefore, when no disturbance occurs, the wafer stage used as a main body and the reticle stage used as a slave can be synchronized with each other. In the two-way synchronization control to which the iterative learning control is applied, the learning system is implemented such that the displacement of the wafer table automatically tracks the displacement of the reticle stage, thereby reducing the synchronization error.
在圖12中,實線指示由圖10A至10D所描繪之疊代學習控制施用至其的該雙向同步控制所導致的同步誤差,且虛線指示由圖11A至11D所描繪之獨立疊代學習控制所導致的同步誤差。在圖12中,該水平軸指示時間。圖12描繪該第四操作在0.1秒之前的回應。In FIG. 12, the solid line indicates the synchronization error caused by the two-way synchronization control to which the iterative learning control is depicted by FIGS. 10A to 10D, and the broken line indicates the independent iterative learning control depicted by FIGS. 11A to 11D. The resulting synchronization error. In Figure 12, the horizontal axis indicates time. Figure 12 depicts the response of this fourth operation before 0.1 seconds.
在該獨立疊代學習控制中,該同步誤差保持在約為0.09秒。然而,在該疊代學習控制施用於其的該雙向同步控制中,該同步誤差在0.07秒時約為零。更具體地說,在該疊代學習控制施用於其的該雙向同步控制中,可能以相同的疊代數量迅速地收斂該同步誤差。In this independent iterative learning control, the synchronization error is maintained at approximately 0.09 seconds. However, in the two-way synchronous control to which the iterative learning control is applied, the synchronization error is about zero at 0.07 seconds. More specifically, in the two-way synchronous control to which the iterative learning control is applied, it is possible to quickly converge the synchronization error with the same number of iterations.
在該疊代學習控制施用於其的該雙向同步控制中,該學習濾波器係使用將該等台之間的動態特徵列入考慮之模型設計,該等台包括於圖6描繪的該反饋控制系統。同時,在根據習知技術的雙向同步控制中,同步路徑控制器待藉由試誤法根據該台的動態特徵及在該反饋控制系統中的變異而調整。然而,在本發明之本模範實施例中,該學習濾波器係僅基於該台及該控制系統的模型而設計,且適當的同步控制係僅藉由該疊代操作而達成。因此,可能相對地易於取得或調整同步控制系統。In the two-way synchronization control to which the iterative learning control is applied, the learning filter uses a model design that takes into account dynamic features between the stations, the stations including the feedback control depicted in FIG. system. Meanwhile, in the two-way synchronous control according to the prior art, the synchronous path controller is to be adjusted by the trial and error method according to the dynamic characteristics of the station and the variation in the feedback control system. However, in the exemplary embodiment of the present invention, the learning filter is designed based only on the platform and the model of the control system, and appropriate synchronization control is achieved only by the iterative operation. Therefore, it may be relatively easy to obtain or adjust the synchronous control system.
其次,將描述當將正弦波擾動施加至該晶圓台時之同步控制模擬的回應。圖13A至13D描繪當第一至第四操作在該疊代學習控制施用於其之該雙向同步控制中實施時的模擬回應。在圖13A至13D中,實線指示該晶圓台的跟蹤誤差,且虛線指示該光罩台的跟蹤誤差。圖14A至14D描繪當第一至第四操作在該獨立疊代學習控制中實施時的模擬回應,其係比較範例。Next, a response to the synchronous control simulation when a sine wave disturbance is applied to the wafer stage will be described. 13A to 13D depict simulated responses when the first to fourth operations are performed in the two-way synchronization control to which the iterative learning control is applied. In FIGS. 13A to 13D, the solid line indicates the tracking error of the wafer stage, and the broken line indicates the tracking error of the reticle stage. 14A to 14D depict simulation responses when the first to fourth operations are implemented in the independent iterative learning control, which are comparative examples.
當擾動施加至該晶圓台時,該晶圓台的可控制性惡化。在此情形中,在該疊代學習控制施用於其之該雙向同步控制中,由於該擾動施加至該晶圓台而發生的該同步誤差係由至該光罩台的控制輸入所補償。因此,將該光罩台同步化以跟蹤該晶圓台,且該晶圓台在高頻帶內在至0.05秒的操作期間內跟蹤該光罩台。像這樣,將該雙向同步控制特徵化為該等台補償於其間的同步誤差而無須區分主體及從屬。在習知技術中,難以調整該雙向同步控制的控制系統。然而,在本發明之本模範實施例中,可能藉由重複地實施疊代操作而輕易地調整該控制系統。When the disturbance is applied to the wafer stage, the controllability of the wafer stage deteriorates. In this case, in the two-way synchronous control to which the iterative learning control is applied, the synchronization error that occurs due to the disturbance applied to the wafer stage is compensated by the control input to the reticle stage. Thus, the reticle stage is synchronized to track the wafer stage, and the wafer stage tracks the reticle stage during the high frequency band for an operation period of up to 0.05 seconds. In this manner, the two-way synchronization control is characterized as the synchronization errors compensated by the stations without distinction between the subject and the slave. In the prior art, it is difficult to adjust the control system of the two-way synchronous control. However, in the present exemplary embodiment of the present invention, it is possible to easily adjust the control system by repeatedly performing the iterative operation.
在圖15中,實線指示由圖13A至13D所描繪之疊代學習控制施用至其的該雙向同步控制所產生的同步誤差,且虛線指示由圖14A至14D所描繪之獨立疊代學習控制所產生的同步誤差。與無擾動時相似,在該疊代學習控制施用於其的該雙向同步控制中,相較於該獨立疊代學習控制,可能以相同的疊代數量迅速地收斂該同步誤差。In Fig. 15, the solid line indicates the synchronization error generated by the two-way synchronization control to which the iterative learning control is depicted by Figs. 13A to 13D, and the broken line indicates the independent iterative learning control depicted by Figs. 14A to 14D. The resulting synchronization error. Similar to the undisturbed time, in the two-way synchronous control to which the iterative learning control is applied, the synchronization error may be quickly converged with the same number of iterations as compared to the independent iterative learning control.
圖16描繪在該疊代學習控制施用於其之該雙向同步控制及該疊代學習控制施用於其的該主從同步控制之回應間的比較。在圖16中,實線指示該疊代學習控制施用於其之該雙向同步控制的同步誤差。粗虛線指示該疊代學習控制施用於其之該主從同步控制的同步誤差,且細虛線指示該獨立疊代學習控制的同步誤差。Figure 16 depicts a comparison between the two-way synchronization control applied to the iterative learning control and the response of the master-slave synchronization control to which the iterative learning control is applied. In Fig. 16, the solid line indicates the synchronization error of the two-way synchronous control to which the iterative learning control is applied. The thick dashed line indicates the synchronization error of the master-slave synchronization control to which the iterative learning control is applied, and the thin dashed line indicates the synchronization error of the independent iterative learning control.
圖16描繪在從0.05秒至0.07秒之週期期間的回應。此處,該晶圓台及光罩台的穩定濾波器QW 及QR 具有相同的截止頻率,且該疊代學習控制施用於其的該雙向同步控制略佳於該疊代學習控制施用於其的該主從同步控制,但彼等之間無太大不同。此係因為該光罩台作為主體使用,該晶圓台作為從屬使用,且該雙向同步控制的效果難以出現。因此,將該晶圓台之穩定濾波器QR 的截止頻率改變成357Hz並重新設計該學習濾波器。Figure 16 depicts the response during a period from 0.05 seconds to 0.07 seconds. Here, the stabilizing filters Q W and Q R of the wafer stage and the reticle stage have the same cutoff frequency, and the two-way synchronous control applied to the iterative learning control is slightly better than the iterative learning control applied to The master-slave synchronization control, but there is not much difference between them. This is because the reticle stage is used as a main body, and the wafer stage is used as a slave, and the effect of the two-way synchronous control is hard to occur. Therefore, the cutoff frequency of the stabilizing filter Q R of the wafer stage is changed to 357 Hz and the learning filter is redesigned.
以此方式,將具有較寬頻率成份的前饋輸入施加至該光罩台,且該光罩台之同步誤差的雙向補償改善。在此情形中,產生超出該光罩台之伺服帶寬的前饋輸入。因此,該前饋輸入待調整為使得其不激發該光罩台的振動模式。在該主從同步控制中,因為沒有至該光罩台的前饋輸入,無須實施該調整。結果,如圖16所描繪的,該疊代學習控制施用於其之該雙向同步控制可將該同步誤差最小化。In this way, a feedforward input having a wider frequency component is applied to the reticle stage, and the bidirectional compensation of the synchronization error of the reticle stage is improved. In this case, a feedforward input that exceeds the servo bandwidth of the reticle stage is generated. Therefore, the feedforward input is to be adjusted such that it does not excite the vibration mode of the reticle stage. In the master-slave synchronization control, since there is no feedforward input to the reticle stage, it is not necessary to perform the adjustment. As a result, as described in FIG. 16, the two-way synchronization control to which the iterative learning control is applied can minimize the synchronization error.
圖24係概要地描繪根據本發明模範實施例之包括該控制裝置的掃描曝光設備。根據本實施例的該曝光設備僅係範例,且本發明未受限於其。從照明光學系統181發出的光入射在係原始板的光罩182上。光罩182上的圖樣微縮並以微縮投影鏡頭184的投影倍率投影,且圖樣影像形成在成像表面上。Figure 24 is a schematic depiction of a scanning exposure apparatus including the control device in accordance with an exemplary embodiment of the present invention. The exposure apparatus according to the present embodiment is merely an example, and the present invention is not limited thereto. Light emitted from the illumination optical system 181 is incident on the photomask 182 of the original board. The pattern on the mask 182 is miniature and projected at the projection magnification of the miniature projection lens 184, and the pattern image is formed on the imaging surface.
將光罩182載置在可移動光罩台183上,且該光罩台183的位置資訊始終以雷射干涉儀190量測。將用於反射該干涉儀之量測光的反射鏡189固定至光罩台183。將光阻施加至晶圓185的表面上,其係待曝光的基材,並將形成在曝光製程中的閃光配置在該晶圓的表面上。將晶圓185裝載在移動晶圓台186上,且晶圓186的位置資訊始終以干涉儀188量測。將用於反射該干涉儀之量測光的反射鏡187固定至晶圓台186。在掃描(曝光)期間,晶圓台186及光罩台183係同步受控制的。The reticle 182 is placed on the movable reticle stage 183, and the position information of the reticle stage 183 is always measured by the laser interferometer 190. A mirror 189 for measuring the amount of light of the interferometer is fixed to the mask stage 183. A photoresist is applied to the surface of the wafer 185 which is to be exposed to the substrate, and a flash formed in the exposure process is disposed on the surface of the wafer. The wafer 185 is loaded onto the moving wafer table 186, and the position information of the wafer 186 is always measured by the interferometer 188. A mirror 187 for measuring the amount of light of the interferometer is fixed to the wafer table 186. Wafer table 186 and reticle stage 183 are simultaneously controlled during scanning (exposure).
根據本發明模範實施例的疊代學習控制裝置180基於從干涉儀190及干涉儀188輸出的位置資訊產生控制訊號。然後,疊代學習控制裝置180控制光罩台183及晶圓台186的位置,在曝光開始之前實施疊代操作數次,並產生控制輸入。在曝光開始之後,疊代學習控制裝置180可能或可能不更新該控制輸入。The iterative learning control device 180 according to the exemplary embodiment of the present invention generates a control signal based on the position information output from the interferometer 190 and the interferometer 188. Then, the iterative learning control device 180 controls the positions of the mask table 183 and the wafer table 186, performs the iterative operation several times before the start of exposure, and generates a control input. After the exposure begins, iterative learning control device 180 may or may not update the control input.
其次,將描述根據本發明模範實施例之製造裝置(例如。半導體裝置或液晶顯示裝置)的方法。此處,製造半導體裝置的方法將描述為範例。Next, a method of manufacturing a device (for example, a semiconductor device or a liquid crystal display device) according to an exemplary embodiment of the present invention will be described. Here, a method of manufacturing a semiconductor device will be described as an example.
半導體裝置係藉由將積體電路形成在晶圓上的前製程及將積體電路晶片形成在晶圓上的後製程而製造為產品。該前製程包括使用上述曝光設備將具有光敏劑施加於其上之晶圓曝光的製程及顯影該晶圓之製程。該後製程包括組合製程(切塊及壓焊)及封裝製程(封裝)。該液晶顯示裝置係以形成透明電極之製程製造。形成透明電極的製程包括將光敏劑施加在具有透明導電膜熱黏著於其之玻璃基材上的製程、使用上述曝光設備將具有光敏劑施加於其上之玻璃基材曝光的製程、以及顯影該玻璃基材的製程。The semiconductor device is manufactured as a product by a pre-process in which an integrated circuit is formed on a wafer and a post-process in which an integrated circuit wafer is formed on a wafer. The pre-process includes a process of exposing a wafer having a photosensitizer thereto using the above exposure apparatus and a process of developing the wafer. The post process includes a combined process (dicing and pressure welding) and a packaging process (package). The liquid crystal display device is manufactured by a process of forming a transparent electrode. The process for forming a transparent electrode includes a process of applying a photosensitizer on a glass substrate having a transparent conductive film thermally adhered thereto, a process of exposing a glass substrate having a photosensitizer thereto using the above exposure apparatus, and developing the film The process of glass substrate.
根據本模範實施例的裝置製造方法,相較於習知技術,可能製造高品質裝置。According to the device manufacturing method of the present exemplary embodiment, it is possible to manufacture a high quality device as compared with the prior art.
第一模範實施例相關於該雙向同步控制。在第二模範實施例中,將描述多邊同步控制的範例。在該第二模範實施例中,將省略與第一模範實施例中的組件相似之組件的描述。The first exemplary embodiment relates to the two-way synchronization control. In the second exemplary embodiment, an example of multilateral synchronization control will be described. In this second exemplary embodiment, a description of components similar to those in the first exemplary embodiment will be omitted.
圖17係描繪根據第二模範實施例之控制裝置的控制方塊圖。該控制裝置包括控制系統PS 及疊代學習控制電路ILC,該控制系統包括複數個目標。該控制系統PS 輸出w1 、w2 、…、wn (n係待同步之軸的數量),且算術單元31、32、以及33計算同步誤差h1 、h2 、…、hn-1 。將同步誤差h1 、h2 、…、hn-1 輸入至疊代學習控制電路ILC。疊代學習控制電路ILC基於該等輸入產生前饋控制輸入f1 、f2 、…、fm ,並輸出己產生的控制輸入至控制系統PS 。Figure 17 is a control block diagram depicting a control device according to a second exemplary embodiment. The control apparatus includes a control system P S and iterative learning control circuit ILC, the control system comprising a plurality of targets. The control system P S outputs w 1 , w 2 , ..., w n (n is the number of axes to be synchronized), and the arithmetic units 31, 32, and 33 calculate synchronization errors h 1 , h 2 , ..., h n- 1 . The synchronization errors h 1 , h 2 , . . . , h n-1 are input to the iterative learning control circuit ILC. The iterative learning control circuit ILC generates feedforward control inputs f 1 , f 2 , . . . , f m based on the inputs and outputs the generated control inputs to the control system P S .
圖18係描繪該控制系統PS 之詳細結構的方塊圖。該控制系統包括具有m個輸入及1個輸出的控制目標P(m及1係等於或大於2的自然數)、偵測該控制目標之位置y的偵測單元6、具有1個輸入及m個輸出的反饋控制器K、以及將該偵測單元之輸出從目標軌跡r減去的減法單元5。前饋控制輸入係經由加法器4至該控制目標的輸入。控制系統PS 取得待於該控制目標之1個輸出之間同步的n個輸出(n係等於或大於2的自然數),並計算用於任意配置該等己取得輸出的矩陣CW 。Figure 18 is a block diagram showing the detailed structure of the control system P S . The control system includes a control target P (m and 1 is a natural number equal to or greater than 2) having m inputs and 1 output, a detecting unit 6 detecting a position y of the control target, having 1 input and m The output feedback controller K and the subtraction unit 5 that subtracts the output of the detection unit from the target trajectory r. The feedforward control input is via the adder 4 to the input of the control target. The control system P S obtains n outputs (n is a natural number equal to or greater than 2) to be synchronized between the one output of the control target, and calculates a matrix C W for arbitrarily configuring the acquired outputs.
圖19係描繪該疊代學習控制電路ILC之詳細結構的方塊圖。該疊代學習控制電路重複地在該目標軌跡上實施跟蹤控制,與第一模範實施例相似。所有該等移動構件(控制軸)具有相同的目標軌跡r,或一個移動構件(控制軸)的目標軌跡係其他移動構件(控制軸)之位置的整數倍。Fig. 19 is a block diagram showing the detailed structure of the iterative learning control circuit ILC. The iterative learning control circuit repeatedly performs tracking control on the target trajectory, similar to the first exemplary embodiment. All of the moving members (control axes) have the same target trajectory r, or the target trajectory of one moving member (control axis) is an integral multiple of the position of the other moving members (control axes).
疊代學習控制電路ILC包括學習濾波器L、將學習濾波器L之學習頻帶截止的m個穩定濾波器群組Q1 、Q2 、…、Qm 、以及儲存該等穩定濾波器之輸出的記憶體裝置91至94。The iterative learning control circuit ILC includes a learning filter L, m stable filter groups Q 1 , Q 2 , . . . , Q m that cut off the learning band of the learning filter L, and stores the outputs of the stabilization filters. Memory devices 91 to 94.
當疊代學習操作的數量為k時,學習濾波器L基於n-1個同步誤差h1[k] 、h2[k] 、…、hn-1[k] 產生m個控制輸入f1[k] 、f2[k] 、…、fm[k] ,彼等係輸入。將已產生的輸入前饋至與各控制輸入對應的移動構件(控制軸)。When the number of iterative learning operations is k, the learning filter L generates m control inputs f 1 based on n-1 synchronization errors h 1[k] , h 2[k] , . . . , h n-1[k] [k] , f 2[k] , ..., f m[k] , which are input. The generated input is fed forward to a moving member (control axis) corresponding to each control input.
因此,在該模範實施例中,將該控制輸入及該同步誤差表示如下:Thus, in the exemplary embodiment, the control input and the synchronization error are expressed as follows:
f[k] =[f1[k] ,…,fm[k] ]T (19),以及f [k] = [f 1[k] ,...,f m[k] ] T (19), and
h[k] =[h1[k] ,…,hn-1[k] ]T (20)。h [k] = [h 1[k] ,...,h n-1[k] ] T (20).
因為數位控制係以與第一模範實施例相似的方式實施,將第k操作中的第i樣本之該控制輸入及該同步誤差指稱為f[k]i 及h[k]i 。Since the digital control is implemented in a similar manner to the first exemplary embodiment, the control input of the i-th sample in the kth operation and the synchronization error are referred to as f [k]i and h [k]i .
因為根據第二模範實施例的程序流程與根據第一模範實施例的程序流程實質相同,將不重覆其之詳細描述。首先,在第k(k>2)操作中,將控制輸入f[k]i 施加至該控制目標。在此情形中,將同步誤差h[k]i 輸入至學習濾波器L。學習濾波器L的輸出係藉由加法器81至84加至控制輸入f[k]i ,且該相加值經由穩定濾波器Q1 、Q2 、…、Qm 作為以下之第(k+1)控制輸入儲存在該等記憶體中:Since the program flow according to the second exemplary embodiment is substantially the same as the program flow according to the first exemplary embodiment, a detailed description thereof will not be repeated. First, in the kth (k>2) operation, a control input f [k]i is applied to the control target. In this case, the synchronization error h [k]i is input to the learning filter L. The output of the learning filter L is applied to the control input f [k]i by the adders 81 to 84, and the added value is passed through the stabilization filters Q 1 , Q 2 , ..., Q m as the following (k+) 1) Control inputs are stored in these memories:
f[k+1]i =[f1[k+1] ,…,fm[k+1] ]T (21)。f [k+1]i = [f 1[k+1] ,...,f m[k+1] ] T (21).
將該操作重覆實施至決定一操作期間之所有同步誤差的最大值hmax 足夠小。This operation was repeated to decide all embodiments a synchronization error during a maximum value h max of the operation is sufficiently small.
其次,將描述多邊疊代學習控制模擬的結果。在該模擬中,控制目標具有四軸。假設各軸係一質量系統,且其質量為40kg。Second, the results of the simulation of the multilateral iterative learning control will be described. In this simulation, the control target has four axes. It is assumed that each shaft is a mass system and its mass is 40 kg.
當將該等軸的輸出描述為w1 、w2 、w3 、以及w4 時,將該等軸之間的同步誤差描寫如下:When the outputs of the isometric are described as w 1 , w 2 , w 3 , and w 4 , the synchronization error between the axes is described as follows:
h1 =w1 -w2 (22)h 1 =w 1 -w 2 (22)
h2 =w2 -w3 (23),以及h 2 =w 2 -w 3 (23), and
h3 =w3 -w4 (24)。h 3 = w 3 - w 4 (24).
反饋控制器係針對各軸設計,且彼等之伺服頻寬為355Hz、306Hz、217Hz、以及177Hz。所有該等穩定濾波器均係具有300Hz截止頻率的5階巴特渥斯濾波器,且具有三個輸入及四個輸出之學習濾波器係藉由與第一模範實施例相同的製程取得。The feedback controller is designed for each axis and their servo bandwidths are 355 Hz, 306 Hz, 217 Hz, and 177 Hz. All of these stabilization filters are 5th order Battens filters with a 300 Hz cutoff frequency, and the learning filter with three inputs and four outputs is obtained by the same process as the first exemplary embodiment.
圖22描繪當將上述控制裝置用於控制所有軸以跟蹤該目標軌跡時的第5疊代操作的跟蹤誤差。使用以圖9中之實線所表示的該目標軌跡。第一軸係以實線表示、第二軸係以粗虛線表示、第三軸係以單點鏈線表示、而第四軸係以虛線表示。將具有不同頻率的正弦波擾動施加至該第一及第三軸。圖20描繪在該疊代學習控制實施之前的跟蹤誤差,其係比較範例。Figure 22 depicts the tracking error of the 5th iteration operation when the above control device is used to control all axes to track the target trajectory. The target trajectory indicated by the solid line in Fig. 9 is used. The first axis is indicated by a solid line, the second axis is indicated by a thick broken line, the third axis is represented by a single-dot chain line, and the fourth axis is indicated by a broken line. Sinusoidal disturbances having different frequencies are applied to the first and third axes. Figure 20 depicts the tracking error prior to the implementation of the iterative learning control, which is a comparative example.
圖23描繪在第五疊代操作中的該等軸之間的同步誤差。第一軸及第二軸之間的同步誤差係以實線表示,第二軸及第三軸之間的同步誤差係以虛線表示,且第三軸及第四軸之間的同步誤差係以單點鏈線表示。圖21描繪在該疊代學習控制實施之前的同步誤差,其係比較範例。Figure 23 depicts the synchronization error between the axes in the fifth iteration operation. The synchronization error between the first axis and the second axis is indicated by a solid line, the synchronization error between the second axis and the third axis is indicated by a broken line, and the synchronization error between the third axis and the fourth axis is Single point chain line representation. Figure 21 depicts the synchronization error prior to the implementation of the iterative learning control, which is a comparative example.
可從圖22看出,所有該等軸的跟蹤誤差均彼此實質相等。可從圖23看出,該等軸之間的同步誤差減少。可從圖22及20之間的比較看出,不存在為其他軸跟蹤的特定軸。換言之,多邊同步控制藉由該疊代學習控制實現。As can be seen from Figure 22, the tracking errors of all of the equiaxions are substantially equal to each other. As can be seen from Figure 23, the synchronization error between the axes is reduced. As can be seen from the comparison between Figures 22 and 20, there are no specific axes tracked for other axes. In other words, the multilateral synchronization control is achieved by the iterative learning control.
根據本模範實施例,在雙向(多邊)同步控制中,在簡單地取得或調整控制系統的同時,改善該同步精確性係可能的。According to the present exemplary embodiment, in the bidirectional (multilateral) synchronous control, it is possible to improve the synchronization accuracy while simply acquiring or adjusting the control system.
當已參考模範實施例而描述本發明後,待理解本發明並未受限於該等已揭示之模範實施例。下文之申請專利範圍待受最廣泛之解釋以包含所有修改、等效結構、以及功能。While the invention has been described with reference to exemplary embodiments, it is understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the claims below is to be construed in the broadest scope of
1、2、91、92、93、94、m...記憶體1, 2, 91, 92, 93, 94, m. . . Memory
4、16、17、81、82、83、84...加法器4, 16, 17, 81, 82, 83, 84. . . Adder
5...減法單元5. . . Subtraction unit
6...偵測單元6. . . Detection unit
7、8...控制電路7, 8. . . Control circuit
11、12...偵測單元11,12. . . Detection unit
13、14...減法單元13, 14. . . Subtraction unit
15...計算單元15. . . Computing unit
31、32、33...算術單元31, 32, 33. . . Arithmetic unit
71、L1 ...第一學習濾波器71, L 1 . . . First learning filter
72、L2 ...第二學習濾波器72, L 2 . . . Second learning filter
180...疊代學習控制裝置180. . . Iterative learning control device
181...照明光學系統181. . . Lighting optical system
182...光罩182. . . Mask
183...可移動光罩台183. . . Movable reticle
184...微縮投影鏡頭184. . . Miniature projection lens
185...晶圓185. . . Wafer
186、PW ...晶圓台186, P W . . . Wafer table
187、189...反射鏡187, 189. . . Reflector
188、190...雷射干涉儀188, 190. . . Laser interferometer
CW ...矩陣C W . . . matrix
eR 、eW ...偏差e R , e W . . . deviation
eR[k] 、eW[k] ...跟蹤誤差e R[k] , e W[k] . . . Tracking error
F1 、F2 、F1 '、F2 '...濾波器F 1 , F 2 , F 1 ', F 2 '. . . filter
f[k]i 、fm[k] 、fR[k] 、fW[k] 、uR[k] 、uW[k] ...控制輸入f [k]i , f m[k] , f R[k] , f W[k] , u R[k] , u W[k] . . . Control input
hn-1 、yS 、yS[k] ...同步誤差h n-1 , y S , y S[k] . . . Synchronization error
ILC...疊代學習控制電路ILC. . . Iterative learning control circuit
K、KR 、KW 、‧‧‧反饋控制器K, K R , K W , ‧‧‧Feedback controller
L‧‧‧學習濾波器L‧‧‧ learning filter
N‧‧‧投影倍率N‧‧‧ Projection magnification
NyW 、uR 、uW 、wn ‧‧‧輸出N yW , u R , u W , w n ‧‧‧ output
P‧‧‧控制目標P‧‧‧Control target
‧‧‧增強系統 ‧‧‧Enhanced system
Pc1 ‧‧‧閉迴路系統P c1 ‧‧‧ Closed loop system
PR ‧‧‧光罩台P R ‧‧‧mask table
PS ‧‧‧控制系統P S ‧‧‧Control System
Qm ‧‧‧穩定濾波器群組Q m ‧‧‧stabilization filter group
QW 、QR 、‧‧‧穩定濾波器Q W , Q R , ‧‧‧stable filter
r、Nr‧‧‧目標軌跡r, Nr‧‧‧ target trajectory
y‧‧‧位置Y‧‧‧ position
yR 、yW 、yR[k] 、yW[k] ‧‧‧移位y R , y W , y R[k] , y W[k] ‧‧‧ Shift
併入並構成本說明書之一部分的該等隨附圖式描繪本發明之模範實施例、特性、及實施樣態,連同該描述用於解釋本發明之原理。The exemplary embodiments, features, and implementations of the present invention are described in conjunction with the accompanying drawings, and the description
圖1係描繪根據第一模範實施例之疊代學習控制的方塊圖。1 is a block diagram depicting iterative learning control in accordance with a first exemplary embodiment.
圖2係描繪根據第一模範實施例之疊代學習控制的流程圖。2 is a flow chart depicting iterative learning control in accordance with a first exemplary embodiment.
圖3A、3B、以及3C係描繪於圖1描繪的學習濾波器之詳細結構的方塊圖。3A, 3B, and 3C are block diagrams showing the detailed structure of the learning filter depicted in FIG. 1.
圖4係描繪相關於將晶圓台及光罩台的移位,以及同步誤差作為輸出之增強系統的方塊圖。4 is a block diagram depicting an enhancement system associated with shifting wafer table and reticle stage, and synchronization error as an output.
圖5係描繪使用圖4所描繪的該增強系統之雙向疊代學習控制的方塊圖。Figure 5 is a block diagram depicting bidirectional iterative learning control using the enhanced system depicted in Figure 4.
圖6係描繪閉迴路系統的方塊圖,其係描繪於圖4之增強系統及反饋系統的組合。Figure 6 is a block diagram depicting a closed loop system depicted in the combination of the enhanced system and the feedback system of Figure 4.
圖7係描繪用於取得疊代學習濾波器之一般化控制對象的方塊圖。Figure 7 is a block diagram depicting a generalized control object for obtaining an iterative learning filter.
圖8係描繪已取得學習濾波器之增益的圖。Figure 8 is a diagram depicting the gain of the learned filter.
圖9係描繪該晶圓台及該光罩台之目標軌跡的圖。Figure 9 is a diagram depicting the target trajectory of the wafer stage and the reticle stage.
圖10A至10D係描繪作為根據第一模範實施例的模擬回應之跟蹤誤差的圖。10A to 10D are diagrams depicting tracking errors as analog responses according to the first exemplary embodiment.
圖11A至11D係描繪作為獨立疊代學習控制模擬的回應之跟蹤誤差的圖。11A through 11D are graphs depicting tracking errors as a response to an independent iterative learning control simulation.
圖12係描繪作為根據第一模範實施例的模擬回應之同步誤差的圖。Figure 12 is a diagram depicting synchronization errors as a simulated response in accordance with a first exemplary embodiment.
圖13A至13D係描繪當擾動在第一模範實施例中發生時,作為模擬回應之跟蹤誤差的圖。Figures 13A through 13D are graphs depicting tracking error as a simulated response when a disturbance occurs in a first exemplary embodiment.
圖14A至14D係描繪當施用擾動時,作為獨立疊代學習控制模擬的回應之跟蹤誤差的圖。Figures 14A through 14D are graphs depicting tracking errors as a response to an independent iterative learning control simulation when a disturbance is applied.
圖15係描繪當擾動在第一模範實施例中發生時,作為模擬回應之同步誤差的圖。Figure 15 is a graph depicting the synchronization error as a simulated response when a disturbance occurs in the first exemplary embodiment.
圖16係描繪作為根據第一模範實施例的模擬回應之同步誤差的圖。Figure 16 is a diagram depicting synchronization errors as simulated responses in accordance with a first exemplary embodiment.
圖17係描繪根據第二模範實施例之疊代學習控制的方塊圖。Figure 17 is a block diagram depicting iterative learning control in accordance with a second exemplary embodiment.
圖18係描繪於圖17中描繪的控制系統PS 之詳細結構的圖。Figure 18 is a diagram depicting the detailed structure of the control system P S depicted in Figure 17.
圖19係描繪於圖18中描繪的疊代學習控制電路ILC之詳細結構的圖。FIG. 19 is a diagram depicting the detailed structure of the iterative learning control circuit ILC depicted in FIG.
圖20係描繪當根據第二模範實施例的疊代學習控制未實施時,作為模擬回應之跟蹤誤差的圖。Figure 20 is a diagram depicting tracking error as a simulated response when iterative learning control according to the second exemplary embodiment is not implemented.
圖21係描繪當根據第二模範實施例的疊代學習控制未實施時,作為模擬回應之同步誤差的圖。Figure 21 is a diagram depicting the synchronization error as a simulated response when the iterative learning control according to the second exemplary embodiment is not implemented.
圖22係描繪作為根據第二模範實施例的模擬回應之跟蹤誤差的圖。Figure 22 is a diagram depicting tracking error as a simulated response in accordance with a second exemplary embodiment.
圖23係描繪作為根據第二模範實施例的模擬回應之同步誤差的圖。Figure 23 is a diagram depicting synchronization errors as a simulated response in accordance with a second exemplary embodiment.
圖24係描繪曝光設備的圖。Figure 24 is a diagram depicting an exposure apparatus.
1、2...記憶體1, 2. . . Memory
16、17...加法器16, 17. . . Adder
7、8...控制電路7, 8. . . Control circuit
11、12...偵測單元11,12. . . Detection unit
13、14...減法單元13, 14. . . Subtraction unit
15...計算單元15. . . Computing unit
eR 、eW ...偏差e R , e W . . . deviation
fR[k] 、fW[k] ...控制輸入f R[k] , f W[k] . . . Control input
KR 、KW ...反饋控制器K R , K W . . . Feedback controller
L...學習濾波器L. . . Learning filter
N...投影倍率N. . . Projection magnification
uR 、uW ...輸出u R , u W . . . Output
QW 、QR ...穩定濾波器Q W , Q R . . . Stabilization filter
yR 、yW ...移位y R , y W . . . Shift
ys[k]...同步誤差Ys[k]. . . Synchronization error
PW ...晶圓台P W . . . Wafer table
PR ...光罩台P R . . . Mask table
ILC...疊代學習控制電路ILC. . . Iterative learning control circuit
fW[k+1]i 、fR[k+1]i ...存入記憶體f W[k+1]i , f R[k+1]i . . . Deposited in memory
Claims (17)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009022723A JP5235707B2 (en) | 2009-02-03 | 2009-02-03 | Control device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201030486A TW201030486A (en) | 2010-08-16 |
TWI425333B true TWI425333B (en) | 2014-02-01 |
Family
ID=42398374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099102460A TWI425333B (en) | 2009-02-03 | 2010-01-28 | Control device semiconductor apparatus |
Country Status (4)
Country | Link |
---|---|
US (1) | US8244385B2 (en) |
JP (1) | JP5235707B2 (en) |
KR (1) | KR101290502B1 (en) |
TW (1) | TWI425333B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8401676B2 (en) * | 2010-08-18 | 2013-03-19 | International Business Machines Corporation | Performance improvement of signal transformation schemes for ultra-fast scanning |
US20120319637A1 (en) * | 2011-06-20 | 2012-12-20 | Nikon Corporation | Synchronization control devices and methods |
JP6245596B2 (en) * | 2013-03-12 | 2017-12-13 | 国立大学法人豊橋技術科学大学 | Control apparatus and control method |
KR101885749B1 (en) | 2013-12-20 | 2018-08-06 | 에이에스엠엘 네델란즈 비.브이. | Lithographic apparatus and device manufacturing method |
NL2014752A (en) * | 2014-06-03 | 2016-03-31 | Asml Netherlands Bv | Object positioning system, control system, lithographic apparatus, object positioning method and device manufacturing method. |
JP6325504B2 (en) * | 2015-10-28 | 2018-05-16 | ファナック株式会社 | Servo control device having a function of automatically adjusting a learning controller |
US10250170B2 (en) | 2016-08-24 | 2019-04-02 | Mitsubishi Electric Corporation | Motor control device |
JP7148268B2 (en) | 2018-05-01 | 2022-10-05 | キヤノン株式会社 | Control apparatus, lithographic apparatus, and method of manufacturing an article |
JP7508325B2 (en) | 2020-10-02 | 2024-07-01 | キヤノン株式会社 | Feedback control device, lithography apparatus, measurement apparatus, processing apparatus, planarization apparatus, article manufacturing method, computer program, and feedback control method |
CN112847340B (en) * | 2020-12-25 | 2022-09-16 | 深圳市优必选科技股份有限公司 | Control method, control device and robot |
CN113031518B (en) * | 2021-03-19 | 2021-09-17 | 广东海洋大学 | Numerical control machine tool rapid error compensation control system and method based on iterative learning |
US11360455B1 (en) | 2021-03-19 | 2022-06-14 | Guangdong Ocean University | Error compensation system and method for numerical control (NC) machine tool based on iterative learning control |
CN113311705B (en) * | 2021-05-19 | 2022-03-25 | 广州大学 | High-order iterative self-learning control method and device for robotic fish and storage medium |
WO2023007596A1 (en) * | 2021-07-27 | 2023-02-02 | 理化工業株式会社 | Control device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5900707A (en) * | 1996-06-19 | 1999-05-04 | Canon Kabushiki Kaisha | Stage-drive control apparatus and method, and scan-projection type exposure apparatus |
US6727977B2 (en) * | 2001-06-06 | 2004-04-27 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method, and device manufactured thereby |
US20050231706A1 (en) * | 2004-04-14 | 2005-10-20 | Nikon Corporation | Feedforward control with reduced learning time for lithographic system to improve throughput and accuracy |
TW200821736A (en) * | 2006-07-24 | 2008-05-16 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
US7468782B2 (en) * | 2005-04-25 | 2008-12-23 | Asml Netherlands B.V. | Lithographic apparatus, position quantity controller and control method with feedforward signal |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08241126A (en) * | 1995-03-02 | 1996-09-17 | Canon Inc | Method and unit for synchronous position control |
JP3755862B2 (en) * | 1999-05-26 | 2006-03-15 | キヤノン株式会社 | Synchronized position control apparatus and method |
US6724332B1 (en) * | 2002-08-13 | 2004-04-20 | Cirrus Logic, Inc. | Noise shaping circuits and methods with feedback steering overload compensation and systems using the same |
TWI254190B (en) * | 2003-09-22 | 2006-05-01 | Asml Netherlands Bv | Lithographic apparatus, device manufacturing method, and device manufactured thereby |
WO2005036620A1 (en) * | 2003-10-10 | 2005-04-21 | Nikon Corporation | Exposure method, exposure device, and device manufacturing method |
US8451431B2 (en) * | 2009-01-27 | 2013-05-28 | Nikon Corporation | Control systems and methods applying iterative feedback tuning for feed-forward and synchronization control of microlithography stages and the like |
US20100222898A1 (en) * | 2009-01-27 | 2010-09-02 | Nikon Corporation | Stage-control systems and methods including inverse closed loop with adaptive controller |
-
2009
- 2009-02-03 JP JP2009022723A patent/JP5235707B2/en active Active
-
2010
- 2010-01-28 TW TW099102460A patent/TWI425333B/en not_active IP Right Cessation
- 2010-02-01 US US12/698,014 patent/US8244385B2/en not_active Expired - Fee Related
- 2010-02-02 KR KR1020100009367A patent/KR101290502B1/en active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5900707A (en) * | 1996-06-19 | 1999-05-04 | Canon Kabushiki Kaisha | Stage-drive control apparatus and method, and scan-projection type exposure apparatus |
US6727977B2 (en) * | 2001-06-06 | 2004-04-27 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method, and device manufactured thereby |
US20050231706A1 (en) * | 2004-04-14 | 2005-10-20 | Nikon Corporation | Feedforward control with reduced learning time for lithographic system to improve throughput and accuracy |
US7468782B2 (en) * | 2005-04-25 | 2008-12-23 | Asml Netherlands B.V. | Lithographic apparatus, position quantity controller and control method with feedforward signal |
TW200821736A (en) * | 2006-07-24 | 2008-05-16 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
TW201030486A (en) | 2010-08-16 |
JP5235707B2 (en) | 2013-07-10 |
KR20100089771A (en) | 2010-08-12 |
US20100198371A1 (en) | 2010-08-05 |
US8244385B2 (en) | 2012-08-14 |
KR101290502B1 (en) | 2013-07-26 |
JP2010181955A (en) | 2010-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI425333B (en) | Control device semiconductor apparatus | |
KR101068319B1 (en) | Position control apparatus including iterative learning circuit, exposure apparatus, method for manufacturing device, and iterative learning method for use in position control apparatus having iterative learning circuit including learning filter | |
TWI388944B (en) | Lithographic apparatus and device manufacturing method | |
CN105045044B (en) | Optical devices, projection optical system, the manufacture method of exposure device and article | |
JP2004281697A (en) | Aligner and method for correcting aberration | |
JP2002222760A (en) | Method and apparatus for exposure and method of manufacturing device | |
JP7371190B2 (en) | Control device, exposure device, and article manufacturing method | |
US9625831B1 (en) | Exposure apparatus, exposure method and manufacturing method of semiconductor device | |
CN103488053B (en) | Exposure sources and device producing method | |
WO2022124281A1 (en) | Control device, adjustment method, lithography device, and method for manufacturing article | |
WO2022054724A1 (en) | Control device, method for adjusting control device, lithography device, and article manufacturing method | |
JP4449697B2 (en) | Overlay inspection system | |
JP2010039003A (en) | Stage device, exposure apparatus and stage control method | |
TWI855266B (en) | Control device and adjustment method thereof, photolithography device and article manufacturing method | |
JP2010114164A (en) | Exposure method, exposure apparatus, and lithography system | |
TW202305878A (en) | Processing apparatus and article manufacturing method | |
JP2024062786A (en) | Control method, control unit, lithography device, and article producing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |