TWI424148B - Small form-factor distance sensor - Google Patents

Small form-factor distance sensor Download PDF

Info

Publication number
TWI424148B
TWI424148B TW099131268A TW99131268A TWI424148B TW I424148 B TWI424148 B TW I424148B TW 099131268 A TW099131268 A TW 099131268A TW 99131268 A TW99131268 A TW 99131268A TW I424148 B TWI424148 B TW I424148B
Authority
TW
Taiwan
Prior art keywords
distance
determining
mobile device
point
distal surface
Prior art date
Application number
TW099131268A
Other languages
Chinese (zh)
Other versions
TW201137316A (en
Inventor
Manish Mahajan
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW201137316A publication Critical patent/TW201137316A/en
Application granted granted Critical
Publication of TWI424148B publication Critical patent/TWI424148B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves

Description

小形狀因數的距離感測器Small form factor distance sensor

本文中所揭示的標的係關於決定從行動設備到遠端物體的距離或者該遠端物體的大小。The subject matter disclosed herein relates to determining the distance from a mobile device to a remote object or the size of the remote object.

設備可以藉由量測投射到遠端表面並反射回該設備的聲能、光能、紅外線(IR)能及/或射頻(RF)能的傳播時間來量測至該遠端表面的距離。例如,手持式設備可以向數公尺外的表面投射光束以量測其距離。遺憾的是,此類設備對準該表面的角度通常會影響距離量測。另外,此類設備通常量測至該設備所對準的表面上的點的距離,該點未必是該表面上最接近該設備的點。The device can measure the distance to the distal surface by measuring the propagation time of the acoustic energy, light energy, infrared (IR) energy, and/or radio frequency (RF) energy projected onto the distal surface and reflected back to the device. For example, a handheld device can project a beam of light a few meters away to measure its distance. Unfortunately, the angle at which such devices are aligned with the surface typically affects the distance measurement. Additionally, such devices typically measure the distance to a point on the surface to which the device is aimed, which is not necessarily the point on the surface that is closest to the device.

在一個特定實施中,一種方法包括旋轉可旋轉的微反射體以將能量導向至遠端表面,其中該可旋轉的微反射體可被置於行動設備中,並且其中該旋轉是相對於該行動設備的;及至少部分地基於來自該遠端表面的源於定向能量的反射能量來量測距離。然而,應當理解,此僅僅是一種示例性實施,且所主張的標的不限於此特定實施。In one particular implementation, a method includes rotating a rotatable micro-reflector to direct energy to a distal surface, wherein the rotatable micro-reflector can be placed in a mobile device, and wherein the rotation is relative to the action And measuring the distance based at least in part on the reflected energy from the distal surface that is derived from the directed energy. However, it should be understood that this is merely an exemplary implementation and that the claimed subject matter is not limited to this particular implementation.

貫穿本說明書引用的「一實例」、「一特徵」、「實例」或「特徵」意謂結合該特徵及/或實例所描述的特定特徵、結構或特性包含在所主張的標的的至少一個特徵及/或實例中。因此,用語「在一個實例中」、「一實例」、「在一個特徵中」或「一特徵」貫穿本說明書在各處的出現並非必須全部代表相同特徵及/或實例。此外,該等特定特徵、結構或特性可在一或多個實例及/或特徵中加以組合。The use of "a" or "an" or "an" or "an" or "an" or "an" And / or examples. Thus, appearances of the phrases "in" " " " " " " " " " " " " " " " " " " " " In addition, the particular features, structures, or characteristics may be combined in one or more examples and/or features.

在一實施中,諸如蜂巢式電話、PDA及類似設備的手持式設備可包括用於決定至遠端表面的最短距離的距離感測器。例如,此類距離感測器可包括用於發射和接收聲能、光能、IR能及/或RF能的發射器和接收器;用於當發射能量來往於遠端表面時決定該發射能量的傳播時間的時間模組;以及調適成決定至該表面上的多個點的距離的處理器。詳言之,此類距離感測器可決定至該表面的多個決定距離中的最近距離或最短距離。另外,此類距離感測器可具有充分小的形狀因數以嵌合在諸如蜂巢式電話或PDA之類的手持式設備中。在特定實施中,距離感測器可以能夠沿多個角度發射聲能、光能、IR能及/或RF能。個別角度可以分別對應於遠端表面上的特定距離量測點。沿個別角度決定至遠端表面的距離可以產生多個距離量測。此類量測中的最短距離可以對應於至遠端表面的最短距離,如以下更詳細地解釋一般。例如,若以對遠端表面呈傾斜角度的方式來握持包括作出此類距離量測的距離感測器的手持式設備,則此類實施可以是有用的。在此狀況下,僅沿該傾斜角度的距離量測可能未必包括至遠端表面的最短距離。以下參照圖1A和圖1B來論述該想法。In one implementation, a handheld device such as a cellular telephone, PDA, and the like can include a distance sensor for determining the shortest distance to the distal surface. For example, such distance sensors can include transmitters and receivers for transmitting and receiving acoustic energy, optical energy, IR energy, and/or RF energy; for determining the emitted energy when transmitting energy to and from the distal surface a time module of propagation time; and a processor adapted to determine the distance to a plurality of points on the surface. In particular, such a distance sensor can determine the closest or shortest distance to a plurality of determined distances to the surface. Additionally, such distance sensors can have a sufficiently small form factor to fit in a handheld device such as a cellular phone or PDA. In a particular implementation, the distance sensor can be capable of emitting acoustic energy, light energy, IR energy, and/or RF energy at multiple angles. Individual angles may correspond to specific distance measurement points on the distal surface, respectively. Determining the distance to the distal surface along individual angles can result in multiple distance measurements. The shortest distance in such measurements may correspond to the shortest distance to the distal surface, as explained in more detail below. Such an implementation may be useful, for example, if a handheld device including a distance sensor that makes such distance measurements is held at an oblique angle to the distal surface. In this case, only the distance measurement along the tilt angle may not necessarily include the shortest distance to the distal surface. This idea is discussed below with reference to Figures 1A and 1B.

圖1A是根據一實施圖示用於量測至表面140的距離的距離感測器100的示意圖。此類距離感測器可以置於諸如蜂巢式電話之類的手持式設備中,如以上所提及一般。在一個特定實施中,距離感測器100可以傳送並接收包括大體上定向的具有次音頻或超音頻的聲波的聲能。在另一特定實施中,距離感測器100可以傳送並接收包括RF輻射及/或具有可見波長或IR波長的鐳射光的電磁(EM)能。當然,此類對聲能和EM能的描述僅是實例,並且所主張的標的並不被如此限定。距離感測器100可以向表面140上的點130發射此類能量110。能量110可包括能量脈衝,例如,具有開始時間和結束時間的聲能及/或EM能的相對較短的波列。例如,此類脈衝可被編碼以提供用於將多個收到脈衝彼此區分開的手段。隨後,從表面140反射的能量120可返回到距離感測器100,其中可以執行對發射與接收器處的接收之間所流逝的時間的量測。此類流逝時間可被稱為傳播時間。使用關於由距離感測器發射和接收的聲能及/或EM能的速度以及測得的傳播時間的知識,可以決定從距離感測器到遠端表面的距離。如圖1B中所示,可以按相對於表面140呈傾斜角度125的方式來握持距離感測器100。例如,此類角度可以不垂直於遠端表面140。在此類角度下,距離感測器100可能將能量150發射到表面140上的點170處,儘管點180可能是表面140上至距離感測器100最近的點。相應地,沿角度125的發射能量150和反射能量160可能相對於來往最近點180的距離而言行進較大的距離。遺憾的是,所得的至表面140的測得距離可能大於至表面140的最近距離。在特定實施中,使用者可能以傾斜角度來操作此類置於手持式設備中的距離感測器而不知曉此類傾斜角度,因為即使難以覺察的相對較小的傾斜角度亦可以引入顯著的距離量測誤差。在另一特定實施中,距離感測器可以能夠沿多個角度發射聲能及/或EM能,以使得無論是否以相對於表面呈傾斜角度的方式來握持距離感測器皆可決定至遠端表面的最近距離,如以下詳細論述一般。FIG. 1A is a schematic illustration of a distance sensor 100 for measuring the distance to surface 140, in accordance with an implementation. Such distance sensors can be placed in a handheld device such as a cellular telephone, as mentioned above. In one particular implementation, distance sensor 100 can transmit and receive acoustic energy including substantially oriented acoustic waves with sub-audio or super-audio. In another particular implementation, the distance sensor 100 can transmit and receive electromagnetic (EM) energy including RF radiation and/or laser light having a visible or IR wavelength. Of course, such descriptions of acoustic energy and EM energy are merely examples, and the claimed subject matter is not so limited. The distance sensor 100 can emit such energy 110 to a point 130 on the surface 140. Energy 110 may include energy pulses, such as relatively short wave trains of acoustic energy and/or EM energy with start and end times. For example, such pulses can be encoded to provide a means for distinguishing multiple received pulses from each other. Subsequently, energy 120 reflected from surface 140 can be returned to distance sensor 100, where a measurement of the elapsed time between transmission and reception at the receiver can be performed. Such elapsed time can be referred to as propagation time. Using knowledge about the speed of the acoustic energy and/or EM energy emitted and received by the distance sensor and the measured propagation time, the distance from the distance sensor to the distal surface can be determined. As shown in FIG. 1B, the distance sensor 100 can be held at an oblique angle 125 relative to the surface 140. For example, such angles may not be perpendicular to the distal surface 140. At such angles, the distance sensor 100 may emit energy 150 to a point 170 on the surface 140, although the point 180 may be the point on the surface 140 that is closest to the sensor 100. Accordingly, the transmitted energy 150 and the reflected energy 160 along the angle 125 may travel a greater distance relative to the distance to the nearest point 180. Unfortunately, the resulting measured distance to surface 140 may be greater than the closest distance to surface 140. In certain implementations, the user may operate such distance sensors placed in the handheld device at an oblique angle without knowing such tilt angles, as even relatively imperceptible relatively small tilt angles may introduce significant Distance measurement error. In another particular implementation, the distance sensor can be capable of emitting acoustic energy and/or EM energy at a plurality of angles such that whether or not the distance sensor is held at an oblique angle relative to the surface can be determined to The closest distance to the distal surface is as discussed in detail below.

圖2是根據一實施圖示量測至表面220的若干距離的手持式設備210的示圖。手持式設備210可包括蜂巢式電話、PDA及類似設備並且包含距離感測器230。如以上所提及的此類距離感測器可以具有小形狀因數以使該距離感測器能夠嵌合在手持式設備210中。如圖2中所示,此類距離感測器230可以沿多個角度向表面220上的多個距離量測點發射聲能及/或EM能。在特定實施中,距離感測器230可包括安裝在半導體裝置上的一或多個可旋轉的微反射體。以下更詳細地解釋的此類可旋轉的微鏡可以例如提供以上所提及的小形狀因數。當然,此類結合手持式設備210對距離感測器的描述僅是實例,並且所主張的標的並不被如此限定。在一實例中,使用者240可能無意地以相對於表面220呈傾斜角度的方式握持手持式設備210以將能量束D1導向表面220。然而,能量束D1可能並不被導向表面220上最接近手持式設備210的點,以使得所得的距離量測可能大於此類至最近點的量測。2 is a diagram of a handheld device 210 that measures several distances to surface 220 in accordance with an implementation. The handheld device 210 can include a cellular phone, a PDA, and the like and includes a distance sensor 230. Such a distance sensor as mentioned above may have a small form factor to enable the distance sensor to be mated in the handheld device 210. As shown in FIG. 2, such distance sensor 230 can emit acoustic energy and/or EM energy to a plurality of distance measuring points on surface 220 along a plurality of angles. In a particular implementation, the distance sensor 230 can include one or more rotatable micro-reflectors mounted on the semiconductor device. Such a rotatable micromirror, explained in more detail below, may for example provide the small form factor mentioned above. Of course, such a description of the distance sensor in conjunction with the handheld device 210 is merely an example, and the claimed subject matter is not so limited. In an example, the user 240 may inadvertently hold the handheld device 210 at an oblique angle relative to the surface 220 to direct the energy beam D1 to the surface 220. However, the energy beam D1 may not be directed to the point on the surface 220 that is closest to the handheld device 210 such that the resulting distance measurement may be greater than such measurements to the nearest point.

在搜尋此類至最近點的距離中,距離感測器230可以隨後將能量束D2重新導向表面220上的另一點以沿能量束D2的方向來量測至表面220的距離。此類重定向過程可以持續下去,諸如針對能量束D3和能量束D4。在此類過程之後,距離感測器230可能已沿多個方向量測了多個至表面220的距離。相應地,最短測得距離可以對應於至表面220的最短距離。在特定實施中,量測至表面的最短距離的準確度可以藉由在經由較小的角度來重定向能量束的同時增加至該表面的距離量測的次數的方式來提高,如以下更詳細地論述一般。當然,距離感測器的此類過程僅是實例,並且所主張的標的並不被如此限定。In searching for such distances to the nearest point, the distance sensor 230 can then redirect the energy beam D2 to another point on the surface 220 to measure the distance to the surface 220 along the direction of the energy beam D2. Such a redirection process can continue, such as for energy beam D3 and energy beam D4. After such a process, the distance sensor 230 may have measured a plurality of distances to the surface 220 in multiple directions. Accordingly, the shortest measured distance may correspond to the shortest distance to surface 220. In a particular implementation, the accuracy of measuring the shortest distance to the surface can be improved by increasing the number of distance measurements to the surface while redirecting the energy beam via a smaller angle, as described in more detail below. The general discussion. Of course, such a process of the distance sensor is merely an example, and the claimed subject matter is not so limited.

圖3是用於決定至表面的最短距離的過程300的流程圖,並且圖4是根據一個實施圖示表面400上用於最短距離決定的距離量測點的示意圖。諸如圖1中所示的距離感測器100之類的距離感測器可以順序地向沿著線410大體上線性佈置的點430A、點430B、點430C和點430D發射諸如聲能及/或EM能之類的能量。第一點430A和線410所沿的方向可以至少部分地基於距離感測器的取向,該距離感測器可由可選擇此類方向的使用者握持。圖2可以例如圖示如下狀況,其中由於使用者可以手動地握持距離感測器,故可以至少部分隨機地選擇此類方向。線410的特定方向在過程300中不需要是重要的,如以下詳細解釋一般。在方塊310處,線410上的初始點430A可被選擇並且其距離可被量測。在方塊320處,距離感測器的諸如發射器部分之類的部分可以旋轉步進角度以向後續點430B發射能量。此類旋轉的步進角度以及表面400上的點430A與點430B之間的相應間距可以至少部分地基於特定過程300的所要解析度及/或準確度來選擇,如以下詳細論述一般。此類步進角度可以包括被用於發射能量的後續旋轉直至此類旋轉的方向反向的常數值,如以下詳細描述的方塊360處一般。3 is a flow diagram of a process 300 for determining the shortest distance to a surface, and FIG. 4 is a schematic diagram illustrating distance measurement points for the shortest distance determination on surface 400 in accordance with one implementation. A distance sensor, such as distance sensor 100 shown in FIG. 1, can sequentially emit, for example, acoustic energy and/or to points 430A, 430B, 430C, and 430D that are substantially linearly disposed along line 410. Energy such as EM energy. The direction along which the first point 430A and line 410 are located may be based, at least in part, on the orientation of the distance sensor, which may be held by a user who can select such a direction. Fig. 2 may, for example, illustrate a situation in which such a direction may be selected at least partially randomly since the user can manually hold the distance sensor. The particular direction of line 410 need not be important in process 300, as explained in detail below. At block 310, an initial point 430A on line 410 can be selected and its distance can be measured. At block 320, a portion of the distance sensor, such as the transmitter portion, can be rotated by a step angle to transmit energy to the subsequent point 430B. The step angle of such rotation and the corresponding spacing between points 430A and 430B on surface 400 can be selected based, at least in part, on the desired resolution and/or accuracy of a particular process 300, as discussed in detail below. Such step angles may include constant values that are used to transmit subsequent rotation of energy until the direction of such rotation is reversed, as generally described at block 360 below.

隨後,在方塊330處,向點430B發射的能量的至少一部分可以反射回距離感測器,在距離感測器處反射能量可被接收。至點430B的距離可以至少部分地基於發射/收到能量的測得傳播時間來決定。在方塊340處,可以作出關於隨後測得的例如至點430B的距離是否大於先前測得的例如至點430A的距離的決定。若不是,則過程300可以返回方塊320,在此距離感測器的一部分可以再次旋轉與前一旋轉的步進角度相同的步進角度以將能量導向後續點430C。再一次,在方塊340處,可以作出關於隨後測得的例如至點430C的距離是否大於上一次測得的例如至點430B的距離的決定。若不是,則過程300可以再次返回方塊320,在此距離感測器的發射器部分可以再次旋轉與前一旋轉的步進角度相同的步進角度以將能量導向後續點430D。此類將能量導向表面上的點、旋轉步進角度、將能量導向表面上的另一點等的過程可以在每當隨後測得的距離小於先前測得的距離時重複。此類重複過程可以允許距離感測器的發射角度逼近表面400上沿著線410最接近距離感測器的點。至此類點的測得距離可被稱為相對最小值,因為該測得距離可能是至沿著線410的點的測得距離中的最小值。相反,若最新近測得的距離大於先前測得的距離,則可能出現關於距離感測器的發射角度已超過線410上的此類點的指示。Subsequently, at block 330, at least a portion of the energy emitted to point 430B can be reflected back to the distance sensor where the reflected energy can be received. The distance to point 430B can be determined based, at least in part, on the measured propagation time of the transmitted/received energy. At block 340, a determination can be made as to whether the subsequently measured distance, for example, to point 430B is greater than a previously measured distance, such as to point 430A. If not, the process 300 can return to block 320 where a portion of the distance sensor can again rotate the same step angle as the step angle of the previous rotation to direct energy to the subsequent point 430C. Again, at block 340, a determination can be made as to whether the subsequently measured distance, for example, to point 430C is greater than the last measured distance, for example, to point 430B. If not, process 300 may again return to block 320 where the transmitter portion of the distance sensor may again rotate the same step angle as the step angle of the previous rotation to direct energy to subsequent point 430D. Such a process of directing energy to points on the surface, rotating step angles, directing energy to another point on the surface, etc., may be repeated each time the subsequently measured distance is less than the previously measured distance. Such an iterative process may allow the angle of incidence of the proximity sensor to approximate the point on surface 400 that is closest to the distance sensor along line 410. The measured distance to such a point may be referred to as a relative minimum because the measured distance may be the smallest of the measured distances to points along line 410. Conversely, if the most recently measured distance is greater than the previously measured distance, an indication may be made that the angle of incidence of the proximity sensor has exceeded such a point on line 410.

在圖4中所圖示的當前實例中,在方塊330處測得的至點430D的距離大於至點430C的測得距離,如在方塊340處所決定一般。相應地,在方塊350處,可以例如作出關於旋轉的角度是否對應於加諸於距離感測器的解析度限制的決定。若不是,則可以執行對至表面400上的點的距離比至點430D的距離更短的距離的搜尋。此類對應於一更短距離的點可被假定為在點430C與點430D之間的線410上。相應地,如在方塊360處一般,距離感測器的發射器部分可以使其旋轉方向反向並且將其步進角度例如減小一半或者來自先前步進角度的其他分數。當然,其他步進角度減小量是可能的,並且所主張的標的並不被如此限定。以此方式,可以如在方塊330處一般決定至點430E的距離。在方塊340處,可以作出關於隨後測得的例如至點430E的距離是否大於先前測得的例如至點430D的距離的決定。若是,則在方塊350處,可以例如作出關於旋轉的當前角度是否對應於加諸於距離感測器的解析度限制的決定。若不是,則可以執行對至表面400上的點的距離比至點430E的距離更短的距離的搜尋。然而,若達到此類解析度限制,則可以隨後如方塊370處一般執行用於搜尋表面400上沿大體上與線410正交的線420的最近點的過程。In the current example illustrated in FIG. 4, the distance to point 430D measured at block 330 is greater than the measured distance to point 430C, as determined at block 340. Accordingly, at block 350, a determination can be made, for example, as to whether the angle of rotation corresponds to a resolution limit imposed on the distance sensor. If not, a search for a distance to a point on the surface 400 that is shorter than the distance to the point 430D can be performed. Such a point corresponding to a shorter distance can be assumed to be on line 410 between point 430C and point 430D. Accordingly, as generally at block 360, the emitter portion of the distance sensor can have its direction of rotation reversed and its step angle reduced, for example, by half or from other fractions of previous step angles. Of course, other step angle reductions are possible, and the claimed subject matter is not so limited. In this manner, the distance to point 430E can be determined as generally at block 330. At block 340, a determination can be made as to whether a subsequently measured distance, such as to point 430E, is greater than a previously measured distance, such as to point 430D. If so, at block 350, a determination can be made, for example, as to whether the current angle of rotation corresponds to a resolution limit imposed on the distance sensor. If not, a search can be performed for a distance that is shorter than the distance to point 430E from the point on surface 400. However, if such a resolution limit is reached, then the process for searching for the closest point on surface 400 along line 420 that is substantially orthogonal to line 410 can be performed as generally performed at block 370.

在特定實施中,與在其中線420與線410呈傾斜角的狀況相比,大體上與線410正交的線420可以例如導致相對較快的用於決定表面400上的最近點的過程。此類正交性可以提供用於按試錯法的方式來量測表面400上的點直至決定最近距離的高效率過程。方塊370處的過程可以例如包括類似於方塊310到方塊360的彼等動作的動作。詳言之,發射器可以旋轉以將能量導向點440A,以使得可以決定至此點的距離。繼續圖4中所圖示的實例,發射器可以在決定至點440A的距離大於至點430E的距離之後旋轉步進角度以將能量導向點440B。如以上針對用於決定至點430C、點430D和點430E的距離的過程所描述的,可以量測至點440C、點440D和點440E的距離以決定表面400上沿著線420的最近點。至此類點的測得距離可被稱為相對最小值,因為該測得距離可能是至沿著線420的點的測得距離中的最小值。由於線420可包括已被決定為表面400上沿著線410的最近點的點430E,故沿著線420的最近點可以如方塊380處一般被選擇為表面400上落在量測解析度限制之內的最近點。在圖4中所圖示的實例中,點440E是最近點。In a particular implementation, line 420 that is generally orthogonal to line 410 may, for example, result in a relatively faster process for determining the closest point on surface 400, as compared to a condition in which line 420 is at an oblique angle to line 410. Such orthogonality may provide a high efficiency process for measuring points on surface 400 in a trial and error manner until the closest distance is determined. The process at block 370 may, for example, include actions similar to those of blocks 310 through 360. In particular, the transmitter can be rotated to direct energy to point 440A so that the distance to this point can be determined. Continuing with the example illustrated in FIG. 4, the transmitter may rotate the step angle to direct energy to point 440B after determining that the distance to point 440A is greater than the distance to point 430E. As described above for the process for determining the distance to point 430C, point 430D, and point 430E, the distance to point 440C, point 440D, and point 440E can be measured to determine the closest point along line 420 on surface 400. The measured distance to such a point may be referred to as a relative minimum because the measured distance may be the smallest of the measured distances to points along line 420. Since line 420 can include point 430E that has been determined to be the closest point along line 410 on surface 400, the closest point along line 420 can be selected as generally at block 380 for surface 400 to fall within the measurement resolution limit. The closest point within. In the example illustrated in Figure 4, point 440E is the closest point.

圖5是根據一個實施圖示用於量測至表面550上的多個距離量測點的距離的距離感測器500的示意圖。在接收到從發射器510發射的能量之後,可旋轉的反射體520可以經由開口530將能量540導向表面550上的各種距離量測點。處理器508可以向旋轉控制器525傳送資訊,該旋轉控制器525可以向可旋轉的反射體520發送至少部分地決定該可旋轉的反射體的角位置的信號。在一個特定實施中,可旋轉的反射體520可以包括用於反射由發射器510發射的EM能的反射體。此類反射體可以例如由從旋轉控制器525接收信號的步進馬達來旋轉。在另一特定實施中,可旋轉的反射體520可以包括用於反射由發射器510發射的EM能的微反射體陣列。此類陣列的反射角度可以例如至少部分地由來自旋轉控制器525的對該陣列中的多個微反射體進行操作的信號來決定。旋轉控制器525可以一致地對此類微反射體陣列進行操作,以使得多個微反射體具有相同的反射角或者個別微反射體可以具有彼此不同的反射角,如以下將論述一般。在又一特定實施中,可旋轉的反射體520和發射器510可被組合成旋轉發射器(未圖示)以按各種角度來導引聲能。此類旋轉發射器的角度可以例如至少部分地由來自旋轉控制器525的可以對諸如步進馬達之類的馬達進行操作的信號來決定。當然,此類發射器僅是實例,並且所主張的標的並不被如此限定。FIG. 5 is a schematic illustration of a distance sensor 500 for measuring distances to a plurality of distance measurement points on surface 550, according to one implementation. After receiving the energy emitted from the emitter 510, the rotatable reflector 520 can direct energy 540 to various distance measurement points on the surface 550 via the opening 530. Processor 508 can transmit information to rotation controller 525, which can send a signal to rotatable reflector 520 that at least partially determines the angular position of the rotatable reflector. In one particular implementation, the rotatable reflector 520 can include a reflector for reflecting the EM energy emitted by the emitter 510. Such a reflector can be rotated, for example, by a stepper motor that receives signals from the rotation controller 525. In another particular implementation, the rotatable reflector 520 can include an array of micro-reflectors for reflecting the EM energy emitted by the emitter 510. The angle of reflection of such an array can be determined, for example, at least in part by signals from the rotation controller 525 that operate on the plurality of micro-reflectors in the array. The rotation controller 525 can consistently operate such a micro-reflector array such that the plurality of micro-reflectors have the same angle of reflection or the individual micro-reflectors can have different angles of reflection from each other, as will be discussed below. In yet another particular implementation, the rotatable reflector 520 and emitter 510 can be combined into a rotating emitter (not shown) to direct acoustic energy at various angles. The angle of such a rotary transmitter can be determined, for example, at least in part by signals from the rotation controller 525 that can operate a motor, such as a stepper motor. Of course, such transmitters are merely examples, and claimed subject matter is not so limited.

在一實施中,可旋轉的反射體520可以包括兩個或兩個以上彼此正交的旋轉自由度。例如,如圖所示,可旋轉的反射體520可以包括圖5的平面中的旋轉自由度。另外,可旋轉的反射體520可以包括垂直於圖5的平面的旋轉自由度(未圖示)。相應地,可旋轉的反射體520可以沿橫跨表面550的諸如圖4中的表面400上的正交線410和線420之類的一或多個方向反射能量540。In one implementation, the rotatable reflector 520 can include two or more rotational degrees of freedom that are orthogonal to one another. For example, as shown, the rotatable reflector 520 can include rotational degrees of freedom in the plane of FIG. Additionally, the rotatable reflector 520 can include rotational degrees of freedom (not shown) that are perpendicular to the plane of FIG. Accordingly, the rotatable reflector 520 can reflect energy 540 along one or more directions across the surface 550, such as orthogonal lines 410 and lines 420 on the surface 400 in FIG.

接收器515可以在能量540被從發射器510發射時算起的傳播時延之後接收從表面550反射的能量545。此類延遲可以由時間模組505量測,時間模組505可以例如監視從處理器508向發射器510傳送的使該發射器開始發射能量540的信號。相應地,時間模組505可以量測能量540被發射與能量545被接收之間的時間差。當然,此類用於量測能量的傳播時間的方法僅是實例,並且所主張的標的並不被如此限定。返回圖5,使用者I/O 518可以經由處理器508向距離感測器500提供使用者存取及/或控制。Receiver 515 can receive energy 545 reflected from surface 550 after the propagation delay from when energy 540 is transmitted from transmitter 510. Such delays may be measured by time module 505, which may, for example, monitor signals transmitted from processor 508 to transmitter 510 that cause the transmitter to begin transmitting energy 540. Accordingly, time module 505 can measure the time difference between the energy 540 being emitted and the energy 545 being received. Of course, such a method for measuring the propagation time of energy is merely an example, and the claimed subject matter is not so limited. Returning to FIG. 5, user I/O 518 can provide user access and/or control to distance sensor 500 via processor 508.

在一實施中,發射器可以例如包括可機械地旋轉的能夠沿多個角度將聲能、光能、IR能及/或RF能導向待量測的表面的反射體。此類可旋轉的反射體可以包括微反射體設備,諸如安裝在半導體裝置上的亦被稱為數位鏡設備的微鏡陣列。取決於哪種類型的能量要被反射,此類可旋轉的反射體可以包括各種塗層及/或處理以提高反射率。此類可旋轉的反射體亦可包括各種反射表面形狀,諸如平面的、球形的、抛物線形的、凹的、凸的反射表面形狀等。此類可旋轉的反射體可以具有相對較小的形狀因數,從而例如尤其允許可旋轉的反射體嵌合在手持式設備中。當然,此類微反射體設備僅是小形狀因數的可旋轉反射體的實例,並且所主張的標的並不被如此限定。In one implementation, the emitter may, for example, comprise a mechanically rotatable reflector capable of directing acoustic energy, light energy, IR energy and/or RF energy to a surface to be measured at a plurality of angles. Such a rotatable reflector may comprise a micro-reflector device, such as a micro-mirror array, also referred to as a digital mirror device, mounted on a semiconductor device. Depending on which type of energy is to be reflected, such rotatable reflectors can include various coatings and/or treatments to increase reflectivity. Such rotatable reflectors can also include various reflective surface shapes such as planar, spherical, parabolic, concave, convex reflective surface shapes, and the like. Such a rotatable reflector can have a relatively small form factor, such as in particular allowing the rotatable reflector to be fitted in a hand-held device. Of course, such a micro-reflector device is only an example of a small form factor rotatable reflector, and the claimed subject matter is not so limited.

圖6是根據一個實施圖示用於同時向多個方向發射光能的發射器系統600的示意圖。此類系統可以例如被包括在諸如圖5中所示的距離感測器500之類的距離感測器中。發射器系統600可以包括配置成發射光能615的發射器610,該光能615包括諸如第一波長和第二波長之類的多個波長。來自發射器610的光能615可遭遇到配置成將光能劃分成相異波長的波長分離器618。相應地,光能615可被劃分成具有第一波長的光束630和具有第二波長的光束640。微反射體陣列620可以包括微鏡,諸如數位鏡設備的其角度可個別地設定的彼等微鏡。此類經劃分的光束可以沿大體上相同的路徑或者分叉的路徑行進,儘管在任一種狀況下,此類光束皆可以入射到微反射體陣列620的一或多個部分上。6 is a schematic diagram of a transmitter system 600 for simultaneously emitting light energy in multiple directions, according to one implementation. Such a system may, for example, be included in a distance sensor such as distance sensor 500 shown in FIG. The transmitter system 600 can include a transmitter 610 configured to emit light energy 615 that includes a plurality of wavelengths, such as a first wavelength and a second wavelength. Light energy 615 from emitter 610 can encounter wavelength separator 618 configured to divide the light energy into distinct wavelengths. Accordingly, the light energy 615 can be divided into a light beam 630 having a first wavelength and a light beam 640 having a second wavelength. The micro-reflector array 620 can include micromirrors, such as their micromirrors of the digital mirror device whose angles can be individually set. Such divided beams may travel along substantially the same path or a bifurcated path, although in either case such beams may be incident on one or more portions of the micro-reflector array 620.

在特定實施中,例如,微反射體陣列620的一部分可被設定在第一角度處而同時另一部分可被設定在第二角度處。因此,光束630可以按第一角度反射,從而導致光束635,並且光束640可以按第二角度反射,從而導致光束645。光束635可被投射到表面650上沿第一線的距離量測點上,並且光束645可被投射到表面650上沿與第一線正交的第二線的距離量測點上。第一線和第二線可以例如類似於圖4中的表面400上的可被用於圖3中的過程300的正交線410和線420。以此方式,可以同時量測至沿第一線和第二線的點的距離,從而縮短了量測至表面650的最近距離可能花費的時間。光束635和光束645的多個波長及/或經編碼脈衝可以允許接收器(未圖示)將光束635的來自表面650的反射與光束645的來自表面650的反射區分開。此類接收器可以量測光束635和光束645的傳播時間,如以上所論述一般。當然,此類用於劃分能量以在從表面反射的多個能量束中進行區分的方法僅是實例,並且所主張的標的並不被如此限定。In a particular implementation, for example, a portion of the micro-reflector array 620 can be set at a first angle while another portion can be set at a second angle. Thus, beam 630 can be reflected at a first angle, resulting in beam 635, and beam 640 can be reflected at a second angle, resulting in beam 645. Beam 635 can be projected onto the surface 650 at a distance measurement point along the first line, and beam 645 can be projected onto surface 650 at a distance measurement point along a second line that is orthogonal to the first line. The first line and the second line may, for example, be similar to orthogonal lines 410 and lines 420 on surface 400 of FIG. 4 that may be used in process 300 of FIG. In this way, the distance to the points along the first line and the second line can be simultaneously measured, thereby shortening the time it takes to measure the closest distance to the surface 650. The plurality of wavelengths and/or encoded pulses of beam 635 and beam 645 may allow a receiver (not shown) to separate the reflection of beam 635 from surface 650 from the reflection of beam 645 from surface 650. Such a receiver can measure the propagation time of beam 635 and beam 645, as discussed above. Of course, such a method for dividing energy to distinguish among a plurality of energy beams reflected from a surface is merely an example, and the claimed subject matter is not so limited.

在另一實施中,諸如蜂巢式電話、PDA及類似設備的手持式設備可包括用於決定遠端物體的表面上的兩點之間的距離的大小感測器。若該兩點對應於此類遠端物體的各邊緣,則該兩點之間的距離可以例如包括該物體的大小。此類大小感測器可以包括距離感測器,距離感測器包括用於發射和接收聲能、光能、IR能及/或RF能的發射器和接收器以及用於當發射能量來往於遠端表面時決定該發射能量的傳播時間的時間模組。大小感測器亦可包括專用處理器,專用處理器被調適成決定至表面上的點的距離以及使用此類決定距離來演算兩個此類點之間的距離。另外,此類大小感測器可具有充分小的形狀因數以嵌合在諸如蜂巢式電話或PDA之類的手持式設備中。在特定實施中,距離感測器可以能夠沿多個角度發射聲能、光能、IR能及/或RF能。個別角度可以分別對應於遠端表面上的特定距離量測點。沿個別角度決定至遠端表面的距離可以產生多個距離量測。例如,兩個此類量測可被用來演算遠端表面上兩個相應點之間的距離。In another implementation, a handheld device such as a cellular telephone, PDA, and the like can include a size sensor for determining the distance between two points on the surface of the distal object. If the two points correspond to the edges of such a distal object, the distance between the two points may, for example, include the size of the object. Such size sensors may include distance sensors including transmitters and receivers for transmitting and receiving acoustic energy, light energy, IR energy and/or RF energy, and for transmitting energy to and from The time module of the distal surface that determines the propagation time of the emitted energy. The size sensor can also include a dedicated processor that is adapted to determine the distance to a point on the surface and to use such a determined distance to calculate the distance between two such points. Additionally, such size sensors can have a sufficiently small form factor to fit in a handheld device such as a cellular phone or PDA. In a particular implementation, the distance sensor can be capable of emitting acoustic energy, light energy, IR energy, and/or RF energy at multiple angles. Individual angles may correspond to specific distance measurement points on the distal surface, respectively. Determining the distance to the distal surface along individual angles can result in multiple distance measurements. For example, two such measurements can be used to calculate the distance between two corresponding points on the distal surface.

圖7是圖示距遠端表面750一距離處握持手持式設備740的使用者720的示圖。根據一實施,該手持式設備可以包括量測至表面750的若干距離的距離感測器730。此類距離感測器可以包括置於諸如蜂巢式電話之類的手持式設備740中的距離感測器的一部分,如以上所提及一般。在一個特定實施中,類似於圖1中所示的距離感測器100,距離感測器730可以傳送並接收包括大體上定向的具有次音頻或超音頻的聲波的聲能。在另一特定實施中,距離感測器730可以傳送並接收包括RF輻射及/或具有可見波長或IR波長的鐳射光的電磁(EM)能。當然,此類對聲能和EM能的描述僅是實例,並且所主張的標的並不被如此限定。同樣,類似於圖1中所示的距離感測器100,距離感測器730可以向表面750上的點705及/或點710發射此類能量。此類能量可以包括能量脈衝,例如,具有開始時間和結束時間的聲能及/或EM能的相對較短的波列。例如,此類脈衝可被編碼以提供用於將多個收到脈衝彼此區分開的手段。隨後,從表面750反射的能量可返回到距離感測器730,其中可以執行發射與接收器處的接收之間所流逝的時間的量測。此類流逝時間可被稱為傳播時間。使用關於由距離感測器發射和接收的聲能及/或EM能的速度以及測得的傳播時間的知識,可以決定從距離感測器到遠端表面的距離。如圖7中所示,可以按相對於表面750呈傾斜角度725的方式來握持距離感測器730。例如,此類角度不需要垂直於遠端表面750。在此類角度下,距離感測器730可被調適成向表面750上的點705或點710發射能量,而無需使用者720改變距離感測器730的位置。換言之,距離感測器730可以向各種方向重定向發射能量,而無需旋轉手持式設備740。FIG. 7 is a diagram illustrating a user 720 holding the handheld device 740 at a distance from the distal surface 750. According to an implementation, the handheld device can include a distance sensor 730 that measures several distances to the surface 750. Such distance sensors may include a portion of a distance sensor placed in a handheld device 740, such as a cellular telephone, as generally mentioned above. In one particular implementation, similar to the distance sensor 100 shown in FIG. 1, the distance sensor 730 can transmit and receive acoustic energy including substantially oriented acoustic waves with sub-audio or super-audio. In another particular implementation, the distance sensor 730 can transmit and receive electromagnetic (EM) energy including RF radiation and/or laser light having a visible or IR wavelength. Of course, such descriptions of acoustic energy and EM energy are merely examples, and the claimed subject matter is not so limited. Likewise, similar to the distance sensor 100 shown in FIG. 1, the distance sensor 730 can emit such energy to points 705 and/or points 710 on the surface 750. Such energy may include energy pulses, such as relatively short wave trains of acoustic energy and/or EM energy with start and end times. For example, such pulses can be encoded to provide a means for distinguishing multiple received pulses from each other. Subsequently, the energy reflected from surface 750 can be returned to distance sensor 730 where a measurement of the elapsed time between transmission and reception at the receiver can be performed. Such elapsed time can be referred to as propagation time. Using knowledge about the speed of the acoustic energy and/or EM energy emitted and received by the distance sensor and the measured propagation time, the distance from the distance sensor to the distal surface can be determined. As shown in FIG. 7, the distance sensor 730 can be gripped at an oblique angle 725 relative to the surface 750. For example, such angles need not be perpendicular to the distal surface 750. At such angles, the distance sensor 730 can be adapted to emit energy to a point 705 or point 710 on the surface 750 without the user 720 changing the position of the distance sensor 730. In other words, the distance sensor 730 can redirect the transmitted energy in various directions without rotating the handheld device 740.

圖8是根據一實施圖示量測至表面850的若干距離的手持式設備840的詳圖。手持式設備840可包括蜂巢式電話、PDA及類似設備並且包含距離感測器830。如以上所提及的此類感測器可以具有小形狀因數以使該感測器能夠嵌合在手持式設備840中。如圖8中所示,此類距離感測器830可以沿多個角度向表面850上的多個距離量測點發射聲能及/或EM能。在特定實施中,距離感測器830可包括安裝在半導體裝置上的一或多個可旋轉的微反射體。以下更詳細地解釋的此類可旋轉的微鏡可以例如提供以上所提及的小形狀因數。當然,此類結合手持式設備840對距離感測器的描述僅是實例,並且所主張的標的並不被如此限定。在一實例中,使用者820可以朝表面850握持手持式設備840以沿著至表面850上的點805的距離D1來導引能量束以量測距離D1。距離感測器830可以隨後沿著至表面850上的另一點810的距離D2來重定向能量束以量測沿D2方向至表面850的距離。此類重定向的角度825可以由距離感測器830量測,如以下詳細解釋一般。在此類用於量測距離D1和距離D2的過程之後,距離感測器830可以演算表面850上的兩點805與810之間的距離D3。此類演算可以涉及測得距離D1和距離D2以及測得角度825。當然,涉及距離感測器的此類過程僅是實例,並且所主張的標的並不被如此限定。FIG. 8 is a detailed diagram of a handheld device 840 that measures several distances to surface 850 in accordance with an implementation. Handheld device 840 can include a cellular phone, a PDA, and the like and includes a distance sensor 830. Such a sensor as mentioned above may have a small form factor to enable the sensor to be mated in the handheld device 840. As shown in FIG. 8, such distance sensor 830 can emit acoustic energy and/or EM energy to a plurality of distance measuring points on surface 850 along a plurality of angles. In a particular implementation, the distance sensor 830 can include one or more rotatable micro-reflectors mounted on the semiconductor device. Such a rotatable micromirror, explained in more detail below, may for example provide the small form factor mentioned above. Of course, such a description of the distance sensor in conjunction with the handheld device 840 is merely an example, and the claimed subject matter is not so limited. In an example, the user 820 can hold the handheld device 840 toward the surface 850 to direct the energy beam along the distance D1 to the point 805 on the surface 850 to measure the distance D1. The distance sensor 830 can then redirect the energy beam along a distance D2 to another point 810 on the surface 850 to measure the distance along the D2 direction to the surface 850. Such redirected angles 825 can be measured by distance sensor 830, as explained in detail below. After such a process for measuring distance D1 and distance D2, distance sensor 830 can calculate the distance D3 between two points 805 and 810 on surface 850. Such calculations may involve measuring distance D1 and distance D2 and measuring angle 825. Of course, such processes involving distance sensors are merely examples, and claimed subject matter is not so limited.

圖9是根據一實施的用於決定至遠端表面的距離的過程900的流程圖。返回圖8中所示的實施,此類表面可以例如包括表面850。在方塊910處,握持手持式設備840的使用者820可以將能量導向表面上的第一點805。此類能量可以例如由被包括在手持式設備機載的距離感測器830中的發射器來發射。如以上所描述的,該發射器可以向第一點發射能量束。相應地,在方塊920處,可以量測至第一點的距離D1。在一個特定實施中,使用者820可以選擇沿物體的邊緣(未圖示)的第一點並且隨後選擇沿物體的相對邊緣的第二點以量測該物體的大小。在另一特定實施中,使用者可以在物體表面上的任何地方選擇第一點和第二點以量測該兩點之間的距離。返回過程900,在方塊930處,距離感測器830可包括一或多個微反射體(圖11和圖12),其可被旋轉以朝第二點重定向量測方向。此類旋轉可以例如藉由使用者820啟動手持式設備840上的一或多個控制項(未圖示)的方式來執行。此類控制項可以致動該一或多個微反射體的旋轉。諸如圖8中所示的角度825之類的旋轉角度可以由距離感測器來量測和儲存。在特定實施中,使用者可以握持手持式設備使其大體上固定在用來將該手持式設備對準第一點的位置中。在方塊940處,使用者可以使用經重定向的能量來量測至第二點的距離。在方塊950處,使用至第一點和第二點的測得距離以及微反射體從第一點對向第二點的旋轉角度,可以使用諸如餘弦定律之類的幾何關係來演算第一點與第二點之間的距離。9 is a flow diagram of a process 900 for determining a distance to a distal surface in accordance with an implementation. Returning to the implementation shown in FIG. 8, such a surface may, for example, include a surface 850. At block 910, the user 820 holding the handheld device 840 can direct energy to a first point 805 on the surface. Such energy may be emitted, for example, by a transmitter included in the distance sensor 830 onboard the handheld device. As described above, the transmitter can emit an energy beam to the first point. Accordingly, at block 920, the distance D1 to the first point can be measured. In one particular implementation, the user 820 can select a first point along an edge (not shown) of the object and then select a second point along the opposite edge of the object to measure the size of the object. In another particular implementation, the user can select the first point and the second point anywhere on the surface of the object to measure the distance between the two points. Returning to process 900, at block 930, the distance sensor 830 can include one or more micro-reflectors (Figs. 11 and 12) that can be rotated to redirect the measurement direction toward the second point. Such rotation may be performed, for example, by the user 820 initiating one or more controls (not shown) on the handheld device 840. Such a control can actuate the rotation of the one or more micro-reflectors. A rotation angle such as angle 825 shown in Figure 8 can be measured and stored by a distance sensor. In certain implementations, the user can hold the handheld device substantially in place in a position to align the handheld device with the first point. At block 940, the user can use the redirected energy to measure the distance to the second point. At block 950, using the measured distance to the first point and the second point and the angle of rotation of the micro-reflector from the first point to the second point, the first point can be calculated using a geometric relationship such as cosine law The distance from the second point.

圖10是根據一實施的用於決定至遠端表面的距離的過程1000的流程圖。再次返回圖8中所示的實施,此類表面可以例如包括表面850。在方塊1010處,握持手持式設備840的使用者820可以將發射器對準表面上的第一點805,該發射器可以例如被包括在手持式設備機載的距離感測器830中。如以上所描述的,該發射器可以向第一點發射能量束。相應地,在方塊1020處,可以量測至第一點的距離D1。在方塊1030處,使用者820可以旋轉手持式設備840,從而朝第二點旋轉發射能量束以量測至第二點的距離D2。在特定實施中,距離感測器830可以包括諸如測角器及/或羅盤之類的量測角度及/或方向的換能器。使用此類換能器,可以量測手持式設備840從第一點的方向旋轉到第二點的方向的諸如角度825之類的角度。距離感測器830可以隨後儲存此類角度。在方塊1040處,使用者可以使用經重定向的能量來量測至第二點的距離。在方塊1050處,使用至第一點和第二點的測得距離以及手持式設備從第一點對向第二點的旋轉角度,可以使用諸如餘弦定律之類的幾何關係來演算第一點與第二點之間的距離,如以上所提及一般。10 is a flow diagram of a process 1000 for determining a distance to a distal surface in accordance with an implementation. Returning again to the implementation shown in FIG. 8, such a surface may, for example, include a surface 850. At block 1010, the user 820 holding the handheld device 840 can align the transmitter with a first point 805 on the surface, which transmitter can be included, for example, in the distance sensor 830 onboard the handheld device. As described above, the transmitter can emit an energy beam to the first point. Accordingly, at block 1020, the distance D1 to the first point can be measured. At block 1030, the user 820 can rotate the handheld device 840 to rotate the transmitted energy beam toward the second point to measure the distance D2 to the second point. In a particular implementation, the distance sensor 830 can include a transducer that measures the angle and/or direction, such as a goniometer and/or a compass. Using such a transducer, an angle, such as angle 825, of the handheld device 840 rotated from the direction of the first point to the direction of the second point can be measured. The distance sensor 830 can then store such angles. At block 1040, the user can use the redirected energy to measure the distance to the second point. At block 1050, using the measured distance to the first point and the second point and the angle of rotation of the handheld device from the first point to the second point, the first point can be calculated using a geometric relationship such as cosine law The distance from the second point is as mentioned above.

圖11是根據一個實施圖示包括用於量測至表面1150上的多個距離量測點的距離的距離感測器的行動設備1100的示意圖。此類行動設備可包括可經由天線1122傳送和接收信號的雙向通訊系統1128,諸如蜂巢通訊系統、藍芽、RFID及/或WiFi,僅列舉幾個實例。在接收到從發射器1110發射的能量之後,可旋轉的反射體1120可經由開口1130將能量1140導向表面1150上的各種距離量測點。專用處理器1108可以向旋轉控制器1125傳送資訊,該旋轉控制器1125可以向可旋轉的反射體1120發送至少部分決定該可旋轉的反射體的角位置的信號。在一個特定實施中,可旋轉的反射體1120可以包括用於反射由發射器1110發射的EM能的反射體。此類反射體可以例如由從旋轉控制器1125接收信號的步進馬達來旋轉。在另一特定實施中,可旋轉的反射體1120可以包括用於反射由發射器1110發射的EM能的微反射體陣列。此類陣列的反射角度可以例如至少部分地由來自旋轉控制器1125的操作該陣列中的多個微反射體的信號來決定。旋轉控制器1125可以一致地操作此類微反射體陣列,以使得多個微反射體具有大體上相同的反射角或者個別微反射體可以具有彼此不同的反射角,如以下將論述一般。在又一特定實施中,可旋轉的反射體1120和發射器1110可被組合成旋轉發射器(未圖示)以按各種角度來導引聲能。此類旋轉發射器的角度可以例如至少部分地由來自旋轉控制器1125的可以操作諸如步進馬達之類的馬達的信號來決定。當然,此類發射器僅是實例,並且所主張的標的並不被如此限定。11 is a schematic diagram of a mobile device 1100 including a distance sensor for measuring distances to a plurality of distance measurement points on surface 1150, in accordance with one implementation. Such mobile devices may include a two-way communication system 1128 that may transmit and receive signals via antenna 1122, such as a cellular communication system, Bluetooth, RFID, and/or WiFi, just to name a few examples. After receiving the energy emitted from the emitter 1110, the rotatable reflector 1120 can direct the energy 1140 to various distance measurement points on the surface 1150 via the opening 1130. The dedicated processor 1108 can transmit information to the rotation controller 1125, which can send a signal to the rotatable reflector 1120 that at least partially determines the angular position of the rotatable reflector. In one particular implementation, the rotatable reflector 1120 can include a reflector for reflecting the EM energy emitted by the emitter 1110. Such a reflector can be rotated, for example, by a stepper motor that receives signals from the rotation controller 1125. In another particular implementation, the rotatable reflector 1120 can include an array of micro-reflectors for reflecting the EM energy emitted by the emitter 1110. The angle of reflection of such an array can be determined, for example, at least in part by signals from the rotation controller 1125 that operate a plurality of micro-reflectors in the array. The rotation controller 1125 can operate such a micro-reflector array consistently such that the plurality of micro-reflectors have substantially the same angle of reflection or the individual micro-reflectors can have different angles of reflection from each other, as will be discussed below. In yet another particular implementation, the rotatable reflector 1120 and emitter 1110 can be combined into a rotating emitter (not shown) to direct acoustic energy at various angles. The angle of such a rotary transmitter can be determined, for example, at least in part by signals from a rotary controller 1125 that can operate a motor, such as a stepper motor. Of course, such transmitters are merely examples, and claimed subject matter is not so limited.

接收器1115可以在能量1140被從發射器1110發射時算起的傳播時延之後接收從表面1150反射的能量1145。此類延遲可以由時間模組1105量測,時間模組1105可以例如監視從處理器1108向發射器1110傳送的使該發射器開始發射能量1140的信號。相應地,時間模組1105可以量測能量1140被發射與能量1145被接收之間的時間差。當然,此類用於量測能量的傳播時間的方法僅是實例,並且所主張的標的並不被如此限定。返回圖11,使用者I/O 1118可以經由處理器1108向距離感測器1100提供使用者存取及/或控制。例如,此類控制可以包括對可旋轉的反射體1120的旋轉控制以將能量1140從表面上的第一點重定向至該表面上的第二點,如以上所描述一般。Receiver 1115 can receive energy 1145 reflected from surface 1150 after the propagation delay from when energy 1140 is transmitted from transmitter 1110. Such delays may be measured by time module 1105, which may, for example, monitor signals transmitted from processor 1108 to transmitter 1110 that cause the transmitter to begin transmitting energy 1140. Accordingly, the time module 1105 can measure the time difference between the energy 1140 being transmitted and the energy 1145 being received. Of course, such a method for measuring the propagation time of energy is merely an example, and the claimed subject matter is not so limited. Returning to FIG. 11 , user I/O 1118 can provide user access and/or control to distance sensor 1100 via processor 1108 . For example, such control can include rotation control of the rotatable reflector 1120 to redirect energy 1140 from a first point on the surface to a second point on the surface, as generally described above.

在一實施中,諸如發射器1110之類的發射器可以例如包括可機械地旋轉的能夠沿多個角度將聲能、光能、IR能及/或RF能導向待量測的表面的反射體。此類可旋轉的反射體可以包括微反射體設備,諸如安裝在半導體裝置上的亦被稱為數位鏡設備的微鏡陣列。取決於哪種類型的能量要被反射,此類可旋轉的反射體可以包括各種塗層及/或處理以提高反射率。此類可旋轉的反射體亦可包括各種反射表面形狀,諸如平面的、球形的、抛物線形的、凹的、凸的反射表面形狀等。此類可旋轉的反射體可以具有相對較小的形狀因數,從而例如尤其允許可旋轉的反射體嵌合在手持式設備中。當然,此類微反射體設備僅是小形狀因數的可旋轉反射體的實例,並且所主張的標的並不被如此限定。In an implementation, an emitter such as emitter 1110 may, for example, comprise a mechanically rotatable reflector capable of directing acoustic, optical, IR, and/or RF energy at a plurality of angles to a surface to be measured. . Such a rotatable reflector may comprise a micro-reflector device, such as a micro-mirror array, also referred to as a digital mirror device, mounted on a semiconductor device. Depending on which type of energy is to be reflected, such rotatable reflectors can include various coatings and/or treatments to increase reflectivity. Such rotatable reflectors can also include various reflective surface shapes such as planar, spherical, parabolic, concave, convex reflective surface shapes, and the like. Such a rotatable reflector can have a relatively small form factor, such as in particular allowing the rotatable reflector to be fitted in a hand-held device. Of course, such a micro-reflector device is only an example of a small form factor rotatable reflector, and the claimed subject matter is not so limited.

圖12是根據一個實施圖示包括用於量測至表面1250上的多個距離量測點的距離的距離感測器的行動設備1200的示意圖。此類行動設備可包括可經由天線1222傳送和接收信號的雙向通訊系統1228,諸如蜂巢通訊系統、藍芽、RFID及/或WiFi,僅列舉幾個實例。在接收到從發射器1210發射的能量之後,可關於行動設備固定的反射體1220可以經由開口1230將能量1240導向表面1250上的各種距離量測點。專用處理器1208可以從調適成量測各種運動平面中的角度的一或多個換能器1260接收資訊。例如,換能器1260可以包括一或多個羅盤及/或測角器。相應地,從換能器1260向處理器1208傳達的此類資訊可以包括行動設備1200的旋轉角度。在特定實施中,反射體1220可以包括用於反射由發射器1210發射的EM能的微反射體陣列。當然,此類對行動設備的描述僅是實例,並且所主張的標的並不被如此限定。12 is a schematic diagram of a mobile device 1200 including a distance sensor for measuring distances to a plurality of distance measurement points on surface 1250, in accordance with one implementation. Such mobile devices may include a two-way communication system 1228 that can transmit and receive signals via antenna 1222, such as a cellular communication system, Bluetooth, RFID, and/or WiFi, to name a few examples. Upon receipt of the energy emitted from the transmitter 1210, the reflector 1220, which may be fixed with respect to the mobile device, may direct energy 1240 to various distance measurement points on the surface 1250 via the opening 1230. Dedicated processor 1208 can receive information from one or more transducers 1260 that are adapted to measure angles in various motion planes. For example, transducer 1260 can include one or more compasses and/or goniometers. Accordingly, such information communicated from the transducer 1260 to the processor 1208 can include the angle of rotation of the mobile device 1200. In a particular implementation, the reflector 1220 can include an array of micro-reflectors for reflecting the EM energy emitted by the emitter 1210. Of course, such descriptions of the mobile device are merely examples, and the claimed subject matter is not so limited.

類似於針對圖11所描述的過程,接收器1215可以在能量1240被從發射器1210發射時算起的傳播時延之後接收從表面1250反射的能量1245。此類延遲可以由時間模組1205量測,時間模組1205可以例如監視從處理器1208向發射器1210傳送的使該發射器開始發射能量1240的信號。相應地,時間模組1205可以量測能量1240被發射與能量1245被接收之間的時間差。當然,此類用於量測能量的傳播時間的方法僅是實例,並且所主張的標的並不被如此限定。返回圖12,使用者I/O 1218可以經由處理器1208向距離感測器1330提供使用者存取及/或控制。Similar to the process described with respect to FIG. 11, receiver 1215 can receive energy 1245 reflected from surface 1250 after the propagation delay from when energy 1240 is transmitted from transmitter 1210. Such delays may be measured by time module 1205, which may, for example, monitor signals transmitted from processor 1208 to transmitter 1210 that cause the transmitter to begin transmitting energy 1240. Accordingly, the time module 1205 can measure the time difference between the energy 1240 being transmitted and the energy 1245 being received. Of course, such a method for measuring the propagation time of energy is merely an example, and the claimed subject matter is not so limited. Returning to FIG. 12, user I/O 1218 can provide user access and/or control to distance sensor 1330 via processor 1208.

圖13是根據一實施圖示量測至表面1350的若干距離的非固定的手持式設備1340的示圖。例如可能在從量測至表面上的第一點1305的距離之時到量測至該表面上的第二點1310的距離之時,發生手持式設備的此類移動。或許使用者不平穩地握持該手持式設備會導致此類移動,及/或使用者可能在運動中而同時執行距離量測。關於圖8中所示的實施,手持式設備1340可以包括蜂巢式電話、PDA及類似設備,並包含距離感測器1330。如以上所提及的此類感測器可以具有小形狀因數以使該感測器能夠嵌合在手持式設備1340中。此類距離感測器230可以沿多個角度向表面1350上的多個距離量測點發射聲能及/或EM能,如以上所描述一般。FIG. 13 is a diagram of a non-stationary handheld device 1340 that measures several distances to surface 1350 in accordance with an implementation. Such movement of the handheld device may occur, for example, when measuring the distance from the first point 1305 on the surface to the distance measured to the second point 1310 on the surface. Perhaps the user's improper holding of the handheld device may result in such movement, and/or the user may perform distance measurements while in motion. Regarding the implementation shown in FIG. 8, the handheld device 1340 can include a cellular phone, a PDA, and the like, and includes a distance sensor 1330. Such a sensor as mentioned above may have a small form factor to enable the sensor to be mated in the handheld device 1340. Such distance sensor 230 can emit acoustic energy and/or EM energy at a plurality of angles to a plurality of distance measuring points on surface 1350, as generally described above.

在特定實施中,距離感測器1330可包括安裝在半導體裝置上的一或多個可旋轉的微反射體。以上所解釋的此類可旋轉的微鏡可以例如提供以上所提及的小形狀因數。當然,此類結合手持式設備1340對距離感測器的描述僅是實例,並且所主張的標的並不被如此限定。在一實例中,使用者1320可以朝表面1350握持手持式設備1340以沿著至表面1350上的點1305的距離D4來導引能量束以量測距離D4。距離感測器1330可以隨後沿著至表面1350上的另一點1310的距離D5來重定向能量束以量測沿D5方向至表面1350的距離。在另一實施中,使用者1320可以藉由旋轉手持式設備1340來將能量束重定向至另一點1310,其中手持式設備例如不需要包括可旋轉的反射體。此類重定向的角度可以由手持式設備1340可包括的諸如測角器及/或羅盤之類的量測角度及/或方向的換能器來量測。換言之,此類換能器可以量測手持式設備1340被從第一點的方向旋轉到第二點的方向的角度。距離感測器1330可以隨後儲存此類角度。In a particular implementation, the distance sensor 1330 can include one or more rotatable micro-reflectors mounted on the semiconductor device. Such a rotatable micromirror as explained above may, for example, provide the small form factor mentioned above. Of course, such a description of the distance sensor in conjunction with the handheld device 1340 is merely an example, and the claimed subject matter is not so limited. In an example, the user 1320 can hold the handheld device 1340 toward the surface 1350 to direct the energy beam along the distance D4 to the point 1305 on the surface 1350 to measure the distance D4. The distance sensor 1330 can then redirect the energy beam along a distance D5 to another point 1310 on the surface 1350 to measure the distance along the D5 direction to the surface 1350. In another implementation, the user 1320 can redirect the energy beam to another point 1310 by rotating the handheld device 1340, wherein the handheld device, for example, does not need to include a rotatable reflector. The angle of such redirection can be measured by a transducer that can include angles and/or directions, such as goniometers and/or compasses, that handheld device 1340 can include. In other words, such a transducer can measure the angle at which the handheld device 1340 is rotated from the direction of the first point to the direction of the second point. The distance sensor 1330 can then store such angles.

手持式設備1340可被調適成使用各種定位系統來量測其位置,包括諸如可提供位置、速度及/或時間資訊的全球定位系統(GPS)、廣域擴增系統(WAAS)和全球導航衛星系統(GLONASS)之類的衛星定位系統(SPS)。在特定實施中,可以藉由擷取SPS信號或者來自不同於SPS的定位技術(諸如WiFi信號、藍芽、RFID、超寬頻(UWB)、廣域網路(WAN)、數位TV及/或細胞服務區塔臺ID,僅列舉幾個實例)的信號來向手持式設備1340提供位置資訊。此類信號可以例如經由圖12中所示的天線1222來接收。相應地,手持式設備1340可被調適成量測從D4被量測的位置到D5被量測的位置的位移ΔXYZ。在此類用於量測距離D4和距離D5、ΔXYZ以及從第一點1305到第二點1310的重定向角度的過程之後,距離感測器1330可以演算表面1350上的兩點1305與1310之間的距離D6。當然,涉及距離感測器的此類過程僅是實例,並且所主張的標的並不被如此限定。Handheld device 1340 can be adapted to measure its position using a variety of positioning systems, including, for example, Global Positioning System (GPS), Wide Area Augmentation System (WAAS), and Global Navigation Satellite, which provide position, speed, and/or time information. Satellite Positioning System (SPS) such as the system (GLONASS). In a particular implementation, the SPS signal can be captured or from a different location technology than the SPS (such as WiFi signal, Bluetooth, RFID, Ultra Wideband (UWB), Wide Area Network (WAN), digital TV and/or cell service area The tower ID, just to name a few examples), provides location information to the handheld device 1340. Such signals may be received, for example, via antenna 1222 as shown in FIG. Accordingly, the handheld device 1340 can be adapted to measure the displacement ΔXYZ from the position at which D4 was measured to the position at which D5 was measured. After such a process for measuring the distance D4 and the distance D5, ΔXYZ and the reorientation angle from the first point 1305 to the second point 1310, the distance sensor 1330 can calculate the two points 1305 and 1310 on the surface 1350. The distance between D6. Of course, such processes involving distance sensors are merely examples, and claimed subject matter is not so limited.

本文中描述的方法體系取決於根據特定特徵及/或實例的應用而可以藉由各種手段來實施。例如,此類方法體系可在硬體、韌體、軟體及/或其組合中實施。在硬體實施中,例如,處理單元可在一或多個特定應用積體電路(ASICs)、數位信號處理器(DSPs)、數位信號處理設備(DSPDs)、可程式邏輯設備(PLDs)、現場可程式閘陣列(FPGAs)、處理器、控制器、微控制器、微處理器、電子設備或者設計成執行本文中描述的功能的其他設備及/或其組合內實施。The methodologies described herein can be implemented by various means depending on the particular features and/or applications of the examples. For example, such methodologies can be implemented in hardware, firmware, software, and/or combinations thereof. In a hardware implementation, for example, the processing unit may be in one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), on-site Programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, electronics, or other devices designed to perform the functions described herein and/or combinations thereof are implemented.

對於韌體及/或軟體實施,該等方法體系可以用執行本文中所描述功能的模組(例如,程序、函數等等)來實施。任何有形地實施指令的機器可讀取媒體可被用來實施本文中所描述的方法體系。例如,表示諸如數位電子信號之類的電子信號的軟體代碼可被儲存在例如行動站的記憶體之類的記憶體中並分別由諸如圖5或圖11中的處理器508或處理器1108之類的專用處理器執行。記憶體可以實施在處理器內部或處理器外部。如本文中所使用的,術語「記憶體」代表任何類型的長期、短期、揮發性、非揮發性或其他記憶體,並且不被限定於任何特定的記憶體類型或記憶體數目或記憶儲存於其上的媒體的類型。For firmware and/or software implementations, the methodologies can be implemented with modules (eg, programs, functions, etc.) that perform the functions described herein. Any machine readable medium tangibly embodying instructions can be used to implement the methodologies described herein. For example, a software code representing an electronic signal such as a digital electronic signal can be stored in a memory such as a memory of a mobile station and respectively by a processor 508 or processor 1108 such as in FIG. 5 or FIG. The class's dedicated processor executes. The memory can be implemented inside the processor or external to the processor. As used herein, the term "memory" means any type of long-term, short-term, volatile, non-volatile or other memory and is not limited to any particular memory type or memory number or memory stored in The type of media on it.

在一或多個示例性實施例中,所描述的功能可以在硬體、軟體、韌體或其任何組合中實施。若在軟體中實施,則各功能可被儲存為表示電腦可讀取媒體上的信號的一或多個指令或代碼。電腦可讀取媒體包括實體電腦儲存媒體。傳輸媒體包括實體傳輸媒體。儲存媒體可以是能被電腦存取的任何可用媒體。舉例而言(但並非限制),此類電腦可讀取媒體可包括RAM、ROM、EEPROM、CD-ROM或其他光碟儲存、磁碟儲存或其他磁性儲存設備或能被用來儲存指令或資料結構形式的所要程式碼且能被電腦存取的任何其他媒體;如本文中所使用的磁碟(disk)和光碟(disc)包括壓縮光碟(CD)、鐳射光碟、光碟、數位多功能光碟(DVD)、軟碟和藍光光碟,其中磁碟通常磁性地再現資料,而光碟用鐳射光學地再現資料。上述的組合亦應被包括在電腦可讀取媒體的範疇內。In one or more exemplary embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or codes representing signals on a computer readable medium. Computer readable media includes physical computer storage media. The transmission medium includes physical transmission media. The storage medium can be any available media that can be accessed by the computer. By way of example and not limitation, such computer-readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage or other magnetic storage device or can be used to store instructions or data structures. Any other medium in the form of a desired code that can be accessed by a computer; as used herein, a disk and a disc include a compact disc (CD), a laser disc, a compact disc, and a digital versatile disc (DVD). ), floppy disks and Blu-ray discs, in which the disk usually reproduces data magnetically, while the disk optically reproduces data with laser light. The above combinations should also be included in the scope of computer readable media.

雖然已說明和描述了目前認為是示例性特徵的內容,但是本領域技藝人士將理解,可作出其他各種修改並且可換用等效技術方案而不會偏離所主張的標的。此外,可作出許多修改以使特定境況適應於所主張的標的的教示而不會偏離本文中所描述的中心概念。因此,所主張的標的並非意欲被限定於所揭示的特定實例,相反,如此主張的標的亦可包括落入所附請求項及其等效技術方案的範疇內的所有態樣。While the present invention has been described and described, it will be understood by those skilled in the art In addition, many modifications may be made to adapt a particular situation to the teachings of the claimed subject matter without departing from the central concepts described herein. Therefore, the claimed subject matter is not intended to be limited to the specific examples disclosed, and the scope of the claimed subject matter may be included within the scope of the appended claims and their equivalents.

100...距離感測器100. . . Distance sensor

110...能量110. . . energy

120...能量120. . . energy

125...傾斜角度125. . . slope

130...點130. . . point

140...表面140. . . surface

150...發射能量150. . . Emission energy

160...反射能量160. . . Reflected energy

170...點170. . . point

180...點180. . . point

210...手持式設備210. . . Handheld device

220...表面220. . . surface

230...距離感測器230. . . Distance sensor

240...使用者240. . . user

300...過程300. . . process

310...方塊310. . . Square

320...方塊320. . . Square

330...方塊330. . . Square

340...方塊340. . . Square

350...方塊350. . . Square

360...方塊360. . . Square

370...方塊370. . . Square

380...方塊380. . . Square

400...表面400. . . surface

410...線410. . . line

420...線420. . . line

430A...點/第一點/初始點430A. . . Point / first point / initial point

430B...點/後續點430B. . . Point/subsequent point

430C...點/後續點430C. . . Point/subsequent point

430D...點/後續點430D. . . Point/subsequent point

430E...點430E. . . point

440A...點440A. . . point

440B...點440B. . . point

440C...點440C. . . point

440D...點440D. . . point

440E...點440E. . . point

500...距離感測器500. . . Distance sensor

505...時間模組505. . . Time module

508...處理器508. . . processor

510...發射器510. . . launcher

515...接收器515. . . receiver

518...使用者I/O518. . . User I/O

520...可旋轉的反射體520. . . Rotatable reflector

525...旋轉控制器525. . . Rotary controller

530...開口530. . . Opening

545...能量545. . . energy

550...表面550. . . surface

600...發射器系統600. . . Transmitter system

610...發射器610. . . launcher

615...光能615. . . Light energy

618...波長分離器618. . . Wavelength separator

620...微反射體陣列620. . . Micro-reflector array

630...光束630. . . beam

635...光束635. . . beam

640...光束640. . . beam

645...光束645. . . beam

650...表面650. . . surface

705...點705. . . point

710...點710. . . point

720...使用者720. . . user

730...距離感測器730. . . Distance sensor

740...手持式設備740. . . Handheld device

750...表面750. . . surface

805...第一點805. . . The first point

810...另一點810. . . another point

820...使用者820. . . user

830...距離感測器830. . . Distance sensor

840...手持式設備840. . . Handheld device

850...表面850. . . surface

900...過程900. . . process

910...方塊910. . . Square

920...方塊920. . . Square

930...方塊930. . . Square

940...方塊940. . . Square

950...方塊950. . . Square

1000...過程1000. . . process

1010...方塊1010. . . Square

1020...方塊1020. . . Square

1030...方塊1030. . . Square

1040...方塊1040. . . Square

1050...方塊1050. . . Square

1100...行動設備1100. . . Mobile device

1105...時間模組1105. . . Time module

1108...處理器1108. . . processor

1110...發射器1110. . . launcher

1115...接收器1115. . . receiver

1118...使用者I/O1118. . . User I/O

1120...可旋轉的反射體1120. . . Rotatable reflector

1122...天線1122. . . antenna

1125...旋轉控制器1125. . . Rotary controller

1128...雙向通訊系統1128. . . Two-way communication system

1130...開口1130. . . Opening

1140...能量1140. . . energy

1145...能量1145. . . energy

1150...表面1150. . . surface

1200...行動設備1200. . . Mobile device

1205...時間模組1205. . . Time module

1208...處理器1208. . . processor

1210...發射器1210. . . launcher

1215...接收器1215. . . receiver

1218...使用者I/O1218. . . User I/O

1220...反射體1220. . . Reflector

1222...天線1222. . . antenna

1228...雙向通訊系統1228. . . Two-way communication system

1230...開口1230. . . Opening

1240...能量1240. . . energy

1245...能量1245. . . energy

1250...表面1250. . . surface

1260...換能器1260. . . Transducer

1305...第一點1305. . . The first point

1310...第二點1310. . . Second point

1320...使用者1320. . . user

1330...距離感測器1330. . . Distance sensor

1340...手持式設備1340. . . Handheld device

1350...表面1350. . . surface

將參照以下附圖來描述非限定性和非窮盡性的特徵,其中類似元件符號貫穿各種附圖始終代表類似部分。The non-limiting and non-exhaustive features will be described with reference to the following drawings, wherein like reference numerals refer to the like.

圖1A是根據一實施圖示用於量測至表面的距離的距離感測器的示意圖。1A is a schematic diagram of a distance sensor for measuring a distance to a surface, according to an implementation.

圖1B是根據一實施圖示以相對於距離可被量測的表面呈一角度的方式握持的距離感測器的示意圖。1B is a schematic illustration of a distance sensor held in an angle relative to a surface that can be measured relative to a distance, according to an implementation.

圖2是根據一實施圖示量測至表面的若干距離的手持式設備的示圖。2 is a diagram of a handheld device that measures several distances to a surface in accordance with an implementation.

圖3是根據一實施的用於決定至表面的最短距離的過程的流程圖。3 is a flow chart of a process for determining the shortest distance to a surface, in accordance with an implementation.

圖4是根據一實施圖示表面上用於最短距離決定的距離量測點的示意圖。4 is a schematic diagram illustrating distance measurement points for shortest distance determination on a surface, according to an implementation.

圖5是根據一實施圖示用於量測至表面上的多個量測點的距離的距離感測器的示意圖。5 is a schematic diagram of a distance sensor for measuring distances to a plurality of measurement points on a surface, according to an implementation.

圖6是根據一實施圖示用於同時向多個方向發射光能的發射器系統的示意圖。6 is a schematic diagram of a transmitter system for simultaneously emitting light energy in multiple directions, according to an implementation.

圖7是根據一實施圖示量測至表面的若干距離的手持式設備的示圖。7 is a diagram of a handheld device that measures several distances to a surface in accordance with an implementation.

圖8是根據一實施圖示量測至表面的若干距離的手持式設備的詳圖。8 is a detailed view of a handheld device that measures several distances to a surface in accordance with an implementation.

圖9是根據一實施的用於決定遠端表面上的距離的過程的流程圖。9 is a flow chart of a process for determining a distance on a distal surface in accordance with an implementation.

圖10是根據另一實施的用於決定遠端表面上的距離的過程的流程圖。10 is a flow chart of a process for determining a distance on a distal surface in accordance with another implementation.

圖11是根據一實施圖示用於量測至表面上的多個量測點的距離的距離感測器的示意圖。11 is a schematic diagram of a distance sensor for measuring distances to a plurality of measurement points on a surface, according to an implementation.

圖12是根據一實施圖示用於量測至表面上的量測點的距離的距離感測器的示意圖。12 is a schematic diagram of a distance sensor for measuring a distance to a measurement point on a surface, according to an implementation.

圖13是根據一實施圖示量測至表面的若干距離的非固定的手持式設備的示圖。13 is a diagram of a non-stationary handheld device that measures several distances to a surface in accordance with an implementation.

210...手持式設備210. . . Handheld device

220...表面220. . . surface

230...距離感測器230. . . Distance sensor

240...使用者240. . . user

Claims (38)

一種用以決定從一行動設備至一遠端表面的一距離的方法,包括以下步驟:以一第一方向旋轉一可旋轉的微反射體,以將能量定向至該遠端表面,該可旋轉的微反射體被置於該行動設備中,其中該旋轉是相對於該行動設備的;當以該第一方向旋轉該可旋轉的微反射體時,至少部分地基於來自該遠端表面的源於該定向能量的反射能量,以不同的旋轉角度連續地量測至該遠端表面的距離;及一旦決定當前量測的一距離超出先前量測的一距離,即反轉該旋轉的一方向,使得該可旋轉的微反射體以一第二方向旋轉。 A method for determining a distance from a mobile device to a distal surface, comprising the steps of: rotating a rotatable micro-reflector in a first direction to direct energy to the distal surface, the rotatable a micro-reflector disposed in the mobile device, wherein the rotation is relative to the mobile device; when the rotatable micro-reflector is rotated in the first direction, based at least in part on a source from the distal surface The reflected energy of the directional energy is continuously measured to the distance of the distal surface at different rotation angles; and once the distance of the current measurement is determined to exceed a distance measured by the previous measurement, the direction of the rotation is reversed The rotatable micro-reflector is rotated in a second direction. 如請求項1之用以決定從一行動設備至一遠端表面的一距離的方法,進一步包括以下步驟:至少部分地基於該可旋轉的微反射體的一旋轉角度以及該反射能量,來量測該遠端表面上的一第一點與一第二點之間的一距離。 The method of claim 1 for determining a distance from a mobile device to a distal surface, further comprising the step of: at least in part based on a rotational angle of the rotatable micro-reflector and the reflected energy A distance between a first point and a second point on the distal surface is measured. 如請求項2之用以決定從一行動設備至一遠端表面的一距離的方法,其中該量測該第一點與該第二點之間的該距離的步驟進一步包括以下步驟:旋轉該可旋轉的微反射體以將能量定向至該第一點; 決定至該第一點的一第一距離;將該可旋轉的微反射體旋轉一第一角度以向該第二點投射能量;電子地決定和儲存該第一角度;決定至該第二點的一第二距離;及使用該第一距離的值、該第二距離的值和該第一角度的值來演算該第一點與該第二點之間的該距離。 The method of claim 2 for determining a distance from a mobile device to a distal surface, wherein the step of measuring the distance between the first point and the second point further comprises the step of rotating the a rotatable micro-reflector to direct energy to the first point; Determining a first distance to the first point; rotating the rotatable micro-reflector by a first angle to project energy to the second point; electronically determining and storing the first angle; determining to the second point a second distance; and using the value of the first distance, the value of the second distance, and the value of the first angle to calculate the distance between the first point and the second point. 如請求項1之用以決定從一行動設備至一遠端表面的一距離的方法,其中該可旋轉的微反射體被安裝在一半導體裝置上。 A method of claim 1 for determining a distance from a mobile device to a distal surface, wherein the rotatable micro-reflector is mounted on a semiconductor device. 如請求項3之用以決定從一行動設備至一遠端表面的一距離的方法,其中該決定該第一角度的步驟是使用置於該行動設備中的一測角器及(或)一羅盤來執行的。 The method of claim 3 for determining a distance from a mobile device to a distal surface, wherein the step of determining the first angle is using a goniometer and/or a Compass to perform. 如請求項1之用以決定從一行動設備至一遠端表面的一距離的方法,進一步包括以下步驟:選擇置於該行動設備上的使用者控制項來旋轉該可旋轉的微反射體。 The method of claim 1 for determining a distance from a mobile device to a distal surface, further comprising the step of selecting a user control item placed on the mobile device to rotate the rotatable micro-reflector. 如請求項1之用以決定從一行動設備至一遠端表面的一距離的方法,其中該旋轉係回應於選擇置於該行動設備上的使用者控制項。 A method of claim 1 for determining a distance from a mobile device to a distal surface, wherein the rotation is responsive to selecting a user control item placed on the mobile device. 如請求項1之用以決定從一行動設備至一遠端表面的一距離的方法,其中該能量包括聲波。 A method of claim 1 for determining a distance from a mobile device to a distal surface, wherein the energy comprises sound waves. 如請求項1之用以決定從一行動設備至一遠端表面的一距離的方法,其中該能量包括光波。 A method of claim 1 for determining a distance from a mobile device to a distal surface, wherein the energy comprises a light wave. 如請求項2之用以決定從一行動設備至一遠端表面的一距離的方法,其中該演算該第一點與該第二點之間的該距離的步驟進一步地使用位移值。 The method of claim 2 for determining a distance from a mobile device to a distal surface, wherein the step of calculating the distance between the first point and the second point further uses a displacement value. 如請求項10之用以決定從一行動設備至一遠端表面的一距離的方法,其中該等位移值是至少部分地基於代表位置資訊的收到射頻(RF)信號來決定的。 A method of claim 10 for determining a distance from a mobile device to a remote surface, wherein the displacement values are determined based at least in part on a received radio frequency (RF) signal representative of the location information. 如請求項11之用以決定從一行動設備至一遠端表面的一距離的方法,其中該等RF信號包括衛星定位系統信號及/或基於陸地的信標。 A method of claim 11 for determining a distance from a mobile device to a remote surface, wherein the RF signals comprise satellite positioning system signals and/or land based beacons. 如請求項1之用以決定從一行動設備至一遠端表面的一距離的方法,進一步包括以下步驟:至少部分地基於該反射能量,來決定至該遠端表面上離該行動設備最近的一點的一距離。 The method of claim 1 for determining a distance from a mobile device to a distal surface, further comprising the step of determining, based at least in part on the reflected energy, the closest to the mobile device on the distal surface A distance of a little. 如請求項13之用以決定從一行動設備至一遠端表面的一距離的方法,其中該決定至該遠端表面上離該行動設備最近的該點的該距離的步驟進一步包括以下步驟:旋轉該可旋轉的微反射體,以將能量定向至線性地佈置在該遠端表面上的一第一點集;決定至該第一點集中的個別點的距離;選擇至該第一點集中的該等個別點的該等決定距離中的一相對最小值;旋轉該可旋轉的微反射體,以向線性地佈置的與該表面上的該第一點集正交的一第二點集投射能量,其中該第二點集包括對應於該相對最小值的一點;決定至該第二點集中的個別點的距離;及將至該第二點集中的個別點的該等決定距離中的一相對最小值選擇為至該遠端表面的一最短距離。 The method of claim 13 for determining a distance from a mobile device to a distal surface, wherein the step of determining the distance to the point on the distal surface that is closest to the mobile device further comprises the steps of: Rotating the rotatable micro-reflector to direct energy to a first set of points linearly disposed on the distal surface; determining a distance to an individual point in the first set of points; selecting to the first set of points a relative minimum of the determined distances of the individual points; rotating the rotatable micro-reflector to a linearly arranged second set of points orthogonal to the first set of points on the surface Projecting energy, wherein the second set of points includes a point corresponding to the relative minimum; a distance determined to an individual point in the second set of points; and the determined distances to individual points of the second set of points A relative minimum is selected as a shortest distance to the distal surface. 如請求項14之用以決定從一行動設備至一遠端表面的一距離的方法,其中該決定至該第一點集和該第二點集中的個別點的距離的步驟進一步包括以下步驟:量測能量往返於第一點集和第二點集中的該等個別點的傳播時間。 The method of claim 14 for determining a distance from a mobile device to a remote surface, wherein the step of determining a distance to the first point set and the individual points in the second point set further comprises the steps of: The measurement energy travels to and from the individual points of the first set of points and the second set of points. 如請求項15之用以決定從一行動設備至一遠端表面的一距離的方法,其中該旋轉該可旋轉的微反射體的步驟是針對該等多個點中的該等個別點依序執行的。 The method of claim 15 for determining a distance from a mobile device to a distal surface, wherein the step of rotating the rotatable micro-reflector is for the individual points of the plurality of points implemented. 如請求項16之用以決定從一行動設備至一遠端表面的一距離的方法,其中執行該反轉步驟以回應一後繼測得的傳播時間的一增加。 A method of claim 16 for determining a distance from a mobile device to a remote surface, wherein the inverting step is performed in response to an increase in a subsequent measured propagation time. 一種用以決定從一行動設備至一遠端表面的一距離的設備,包括:一可旋轉的微反射體,其用於將能量定向至該遠端表面,其中該旋轉是相對於該設備的;及一處理器,當微反射體為第一方向的時候,其用於至少部分地基於來自該遠端表面的源於該定向能量的反射能量,以不同的旋轉角度連續地量測至該遠端表面的距離,其中配置該可旋轉的微反射體以反轉該旋轉的一方向,使得該可旋轉的微反射體以一第二方向旋轉,以回應該處理器判定當前量測的一距離超出先前量測的一距離之決定。 An apparatus for determining a distance from a mobile device to a distal surface, comprising: a rotatable micro-reflector for directing energy to the distal surface, wherein the rotation is relative to the device And a processor for continuously measuring the reflected energy at the different rotational angles based at least in part on the reflected energy from the distal surface derived from the directional energy when the micro-reflector is in the first direction a distance from the distal surface, wherein the rotatable micro-reflector is configured to reverse a direction of the rotation such that the rotatable micro-reflector rotates in a second direction to respond to the processor determining a current measurement The distance is determined by a distance beyond the previous measurement. 如請求項18之用以決定從一行動設備至一遠端表面的一距離的設備,其中該處理器被調適成至少部分地基於該可旋轉的微反射體的一旋轉角度和該反射能量,來量測該遠端表面上的一第一點與一第二點之間的一距離。 The apparatus of claim 18 for determining a distance from a mobile device to a distal surface, wherein the processor is adapted to be based at least in part on a rotational angle of the rotatable micro-reflector and the reflected energy, A distance between a first point and a second point on the distal surface is measured. 如請求項18之用以決定從一行動設備至一遠端表面的一距離的設備,其中該可旋轉的微反射體被安裝在一半導 體裝置上。 The apparatus of claim 18 for determining a distance from a mobile device to a distal surface, wherein the rotatable micro-reflector is mounted in a half-guide On the body device. 如請求項19之用以決定從一行動設備至一遠端表面的一距離的設備,進一步包括用於量測該旋轉角度的一測角器及(或)一羅盤。 The apparatus of claim 19 for determining a distance from a mobile device to a distal surface, further comprising a goniometer and/or a compass for measuring the angle of rotation. 如請求項18之用以決定從一行動設備至一遠端表面的一距離的設備,進一步包括用於旋轉該可旋轉的微反射體的使用者控制項。 The apparatus of claim 18 for determining a distance from a mobile device to a distal surface further includes a user control for rotating the rotatable micro-reflector. 如請求項18之用以決定從一行動設備至一遠端表面的一距離的設備,其中該能量包括聲波。 A device as claimed in claim 18 for determining a distance from a mobile device to a distal surface, wherein the energy comprises sound waves. 如請求項18之用以決定從一行動設備至一遠端表面的一距離的設備,其中該能量包括光波。 A device as claimed in claim 18 for determining a distance from a mobile device to a distal surface, wherein the energy comprises light waves. 如請求項18之用以決定從一行動設備至一遠端表面的一距離的設備,其中該處理器被調適成至少部分地基於該反射能量,來決定至該遠端表面上離該設備最近的一點的一距離。 The apparatus of claim 18 for determining a distance from a mobile device to a distal surface, wherein the processor is adapted to determine, at least in part based on the reflected energy, to the remote surface that is closest to the device A distance of a point. 一種用以決定從一行動設備至一遠端表面的一距離的非暫態電腦可讀取媒體,該非暫態電腦可讀取媒體包括儲存 於其上的機器可讀取指令;當一計算平臺執行該等機器可讀取指令時,調適該等機器可讀取指令使該計算平臺:以一第一方向旋轉一可旋轉的微反射體,以將能量定向至該遠端表面,該可旋轉的微反射體被置於該行動設備中,其中該旋轉是相對於該行動設備的;當以該第一方向旋轉該可旋轉的微反射體時,至少部分地基於來自該遠端表面的源於該定向能量的反射能量,以不同的旋轉角度連續地量測至該遠端表面的距離;一旦決定當前量測的一距離超出先前量測的一距離,即反轉該旋轉的一方向,使得該可旋轉的微反射體以一第二方向旋轉。 A non-transitory computer readable medium for determining a distance from a mobile device to a remote surface, the non-transitory computer readable medium including storage The machine readable instructions thereon; when a computing platform executes the machine readable instructions, adapting the machine readable instructions to cause the computing platform to: rotate a rotatable micro-reflector in a first direction To orient energy to the distal surface, the rotatable micro-reflector being placed in the mobile device, wherein the rotation is relative to the mobile device; when the rotatable micro-reflection is rotated in the first direction At least in part, based on the reflected energy from the distal surface derived from the directional energy, continuously measuring the distance to the distal surface at different angles of rotation; once determining that the distance of the current measurement exceeds the previous amount A distance measured, i.e., a direction in which the rotation is reversed, causes the rotatable micro-reflector to rotate in a second direction. 如請求項26之用以決定從一行動設備至一遠端表面的一距離的非暫態電腦可讀取媒體,其中當該計算平臺執行該等指令時,進一步調適該等指令使該計算平臺:至少部分地基於該可旋轉的反射體的一旋轉角度和該反射能量來量測該遠端表面上的一第一點與一第二點之間的一距離。 A non-transitory computer readable medium as claimed in claim 26 for determining a distance from a mobile device to a remote surface, wherein when the computing platform executes the instructions, the instructions are further adapted to cause the computing platform : measuring a distance between a first point and a second point on the distal surface based at least in part on a rotational angle of the rotatable reflector and the reflected energy. 如請求項27之用以決定從一行動設備至一遠端表面的一距離的非暫態電腦可讀取媒體,其中當該計算平臺執行該等指令時,進一步調適該等指令使該計算平臺:旋轉該可旋轉的微反射體以將能量定向至該第一點;決定至該第一點的一第一距離; 將該可旋轉的微反射體旋轉一第一角度以向該第二點投射能量;電子地決定和儲存該第一角度;決定至該第二點的一第二距離;及使用該第一距離的值、該第二距離的值和該第一角度的值來演算該第一點與該第二點之間的該距離。 A non-transitory computer readable medium as claimed in claim 27 for determining a distance from a mobile device to a remote surface, wherein when the computing platform executes the instructions, the instructions are further adapted to cause the computing platform Rotating the rotatable micro-reflector to direct energy to the first point; determining a first distance to the first point; Rotating the rotatable micro-reflector at a first angle to project energy to the second point; electronically determining and storing the first angle; determining a second distance to the second point; and using the first distance The value of the second distance, the value of the second distance, and the value of the first angle calculate the distance between the first point and the second point. 如請求項26之用以決定從一行動設備至一遠端表面的一距離的非暫態電腦可讀取媒體,其中該可旋轉的微反射體被安裝在一半導體裝置上。 A non-transitory computer readable medium as claimed in claim 26 for determining a distance from a mobile device to a distal surface, wherein the rotatable micro-reflector is mounted on a semiconductor device. 如請求項26之用以決定從一行動設備至一遠端表面的一距離的非暫態電腦可讀取媒體,其中該能量包括聲波。 A non-transitory computer readable medium as claimed in claim 26 for determining a distance from a mobile device to a remote surface, wherein the energy comprises sound waves. 如請求項26之用以決定從一行動設備至一遠端表面的一距離的非暫態電腦可讀取媒體,其中該能量包括光波。 A non-transitory computer readable medium as claimed in claim 26 for determining a distance from a mobile device to a distal surface, wherein the energy comprises light waves. 如請求項26之用以決定從一行動設備至一遠端表面的一距離的非暫態電腦可讀取媒體,其中當該計算平臺執行該等指令時,進一步調適該等指令使該計算平臺:至少部分地基於該反射能量來決定至該遠端表面上離該行動設備最近的一點的一距離。 A non-transitory computer readable medium as claimed in claim 26 for determining a distance from a mobile device to a remote surface, wherein when the computing platform executes the instructions, the instructions are further adapted to cause the computing platform : determining a distance to a point on the distal surface that is closest to the mobile device based at least in part on the reflected energy. 如請求項32之用以決定從一行動設備至一遠端表面的 一距離的非暫態電腦可讀取媒體,其中當該計算平臺執行該等指令時,進一步調適該等指令使該計算平臺:旋轉該可旋轉的微反射體,以將能量定向至線性地佈置在該遠端表面上的一第一點集;決定至該第一點集中的個別點的距離;選擇至該第一點集中的該等個別點的該等決定距離中的一相對最小值;旋轉該可旋轉的微反射體,以向線性地佈置的與該表面上的該第一點集正交的一第二點集投射能量,其中該第二點集包括對應於該相對最小值的一點;決定至該第二點集中的個別點的距離;及將至該第二點集中的個別點的該等決定距離中的一相對最小值選擇為至該遠端表面的一最短距離。 The request item 32 is used to determine from a mobile device to a distal surface. A non-transitory computer readable medium at a distance, wherein when the computing platform executes the instructions, the instructions are further adapted to cause the computing platform to: rotate the rotatable micro-reflector to direct energy to a linear arrangement a first set of points on the distal surface; determining a distance to an individual point in the first set of points; selecting a relative minimum of the determined distances to the individual points of the first set of points; Rotating the rotatable micro-reflector to project energy to a linearly arranged second set of points orthogonal to the first set of points on the surface, wherein the second set of points includes a corresponding minimum a point; determining a distance to an individual point in the second point set; and selecting a relative minimum of the determined distances to the individual points in the second point set as a shortest distance to the distal surface. 如請求項33之用以決定從一行動設備至一遠端表面的一距離的非暫態電腦可讀取媒體,其中當該計算平臺執行該等指令時,進一步調適該等指令使該計算平臺:量測能量往返於第一點集和第二點集中的該等個別點的傳播時間。 a non-transitory computer readable medium as claimed in claim 33 for determining a distance from a mobile device to a remote surface, wherein when the computing platform executes the instructions, the instructions are further adapted to cause the computing platform : Measuring the propagation time of the energy to and from the individual points in the first set of points and the second set of points. 如請求項34之用以決定從一行動設備至一遠端表面的一距離的非暫態電腦可讀取媒體,其中當該計算平臺執行該等指令時,進一步調適該等指令使該計算平臺:回應於一後繼測得的傳播時間的一增加,使該旋轉該可旋 轉的微反射體的該旋轉的該方向反向。 a non-transitory computer readable medium as claimed in claim 34 for determining a distance from a mobile device to a remote surface, wherein when the computing platform executes the instructions, the instructions are further adapted to cause the computing platform Responding to an increase in the propagation time measured in succession, causing the rotation to rotate This direction of rotation of the rotating micro-reflector is reversed. 一種用以決定從一行動設備至一遠端表面的一距離的裝置,包括:用於旋轉一可旋轉的微反射體,以將能量定向至該遠端表面的構件,該可旋轉的微反射體被置於該行動設備中,其中該旋轉是相對於該行動設備的;及用於當以該第一方向旋轉該可旋轉的微反射體時,至少部分地基於來自該遠端表面的源於該定向能量的反射能量,以不同的旋轉角度連續地量測至該遠端表面的距離的構件,其中配置該用於旋轉的構件以反轉該旋轉的一方向,使得該可旋轉的微反射體以一第二方向旋轉,以回應該用於量測的構件判定當前量測的一距離超出先前量測的一距離之決定。 A device for determining a distance from a mobile device to a distal surface, comprising: means for rotating a rotatable micro-reflector to direct energy to the distal surface, the rotatable micro-reflection a body is placed in the mobile device, wherein the rotation is relative to the mobile device; and for rotating the rotatable micro-reflector in the first direction, based at least in part on a source from the distal surface a member for continuously measuring the distance to the distal surface at different angles of rotation of the reflected energy of the directional energy, wherein the member for rotating is configured to reverse a direction of the rotation such that the rotatable micro The reflector rotates in a second direction to determine the component that should be used for the measurement to determine a distance that the current measurement exceeds a previously measured distance. 如請求項1之用以決定從一行動設備至一遠端表面的一距離的方法,進一步包括以下步驟:在反轉該旋轉的該方向之後,當以該第二方向旋轉該可旋轉的微反射體時,持續以不同的旋轉角度連續地量測至該遠端表面的距離。 The method of claim 1 for determining a distance from a mobile device to a distal surface, further comprising the step of rotating the rotatable micro in the second direction after inverting the direction of the rotation In the case of a reflector, the distance to the distal surface is continuously measured continuously at different angles of rotation. 如請求項37之用以決定從一行動設備至一遠端表面的一距離的方法,其中相較於以該第一方向旋轉該可旋轉 的微反射體時所做的該量測,以該第二方向旋轉該可旋轉的微反射體時所做的該量測與在連續量測之間的一較小步進尺寸(step-size)相關。A method for determining a distance from a mobile device to a distal surface as claimed in claim 37, wherein the rotatable is rotatable in the first direction The measurement made by the micro-reflector, the measurement made when the rotatable micro-reflector is rotated in the second direction and a small step size between successive measurements (step-size) ) related.
TW099131268A 2009-09-15 2010-09-15 Small form-factor distance sensor TWI424148B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/560,176 US8396685B2 (en) 2009-09-15 2009-09-15 Small form-factor distance sensor

Publications (2)

Publication Number Publication Date
TW201137316A TW201137316A (en) 2011-11-01
TWI424148B true TWI424148B (en) 2014-01-21

Family

ID=43099988

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099131268A TWI424148B (en) 2009-09-15 2010-09-15 Small form-factor distance sensor

Country Status (7)

Country Link
US (3) US8396685B2 (en)
EP (1) EP2478333A1 (en)
JP (1) JP5676618B2 (en)
KR (1) KR101413809B1 (en)
CN (2) CN104634314B (en)
TW (1) TWI424148B (en)
WO (1) WO2011034961A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8497981B2 (en) * 2009-09-15 2013-07-30 Qualcomm Incorporated Small form-factor size sensor
US8396685B2 (en) 2009-09-15 2013-03-12 Qualcomm Incorporated Small form-factor distance sensor
US8949069B2 (en) * 2009-12-16 2015-02-03 Intel Corporation Position determination based on propagation delay differences of multiple signals received at multiple sensors
KR101403945B1 (en) * 2012-10-31 2014-07-01 한국 천문 연구원 Photoelectrical Control Apparatus for Satellite Laser Ranging System
US9581431B1 (en) 2014-03-18 2017-02-28 Jeffrey M. Sieracki Method and system for parallactically synced acquisition of images about common target
WO2014193334A1 (en) 2013-05-26 2014-12-04 Intel Corporation Apparatus, system and method of communicating positioning information
WO2015005912A1 (en) 2013-07-10 2015-01-15 Intel Corporation Apparatus, system and method of communicating positioning transmissions
KR101471137B1 (en) * 2013-09-04 2014-12-11 숭실대학교산학협력단 Handheld tachometer
KR102223282B1 (en) 2014-08-07 2021-03-05 엘지전자 주식회사 Mobile terminal having smart measuring tape and object size measuring method thereof
JP2016080572A (en) * 2014-10-20 2016-05-16 朝日航洋株式会社 Laser measurement system
DE102015223024A1 (en) * 2015-11-23 2017-05-24 Robert Bosch Gmbh Laser distance measuring device
EP3220164B1 (en) * 2016-03-14 2018-03-07 Sick Ag Method for operating a distance measuring monitoring sensor and monitoring sensor
JP6775342B2 (en) 2016-07-19 2020-10-28 株式会社トプコン Laser remote length measuring device
JP6807628B2 (en) 2016-09-30 2021-01-06 株式会社トプコン Measuring device and measuring method
EP3396226B1 (en) * 2017-04-27 2023-08-23 Advanced Digital Broadcast S.A. A method and a device for adjusting a position of a display screen
US10471947B1 (en) * 2018-04-27 2019-11-12 Honeywell International Inc. Determining estimated remaining use of brake assembly by transceiver
EP3623843B1 (en) 2018-09-11 2021-01-13 Leica Geosystems AG Hand-held laser range finder
US10941826B2 (en) 2018-09-12 2021-03-09 Honeywell International Inc. Determining estimated remaining use of brake assembly
EP3650803B1 (en) 2018-11-12 2021-04-14 Hexagon Technology Center GmbH Distance measuring system and associated measuring methods
DE102018219481A1 (en) * 2018-11-15 2020-05-20 Robert Bosch Gmbh Assembly for a LiDAR sensor and LiDAR sensor
US11703590B2 (en) * 2018-11-19 2023-07-18 Suteng Innovation Technology Co., Ltd. Lidar signal receiving circuits, lidar signal gain control methods, and lidars using the same
CN111862574A (en) * 2020-07-17 2020-10-30 深圳创维-Rgb电子有限公司 Distance measurement reminding processing method and device based on remote controller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487669A (en) * 1993-03-09 1996-01-30 Kelk; George F. Mobility aid for blind persons
TW200533892A (en) * 2004-04-09 2005-10-16 Hon Hai Prec Ind Co Ltd Laser range finder
US7225548B2 (en) * 2004-05-17 2007-06-05 Sr2 Group, Llc System and method for aligning multiple sighting devices

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3010019A (en) * 1958-11-10 1961-11-21 Sohst Walter Optical aiming device
CH386121A (en) * 1959-04-29 1964-12-31 Zeiss Carl Fa Optical distance measuring device with coincidence adjustment
US3530468A (en) * 1968-02-23 1970-09-22 Rca Corp Triangulation radar system
US4484069A (en) * 1981-10-15 1984-11-20 St. Regis Paper Company Apparatus and method for sensing distance
JPS6128010A (en) 1984-07-10 1986-02-07 Toray Ind Inc Method for manufacture yarn at high speed
JPS62162911A (en) 1986-01-14 1987-07-18 N T T Gijutsu Iten Kk Measuring instrument
JPS62172287A (en) * 1986-01-27 1987-07-29 Matsushita Electric Works Ltd Ultrasonic range finder
JPH0319906A (en) * 1989-03-15 1991-01-29 Toray Ind Inc Cleaning of melt-spinning spinneret
US5198877A (en) * 1990-10-15 1993-03-30 Pixsys, Inc. Method and apparatus for three-dimensional non-contact shape sensing
JPH0555089A (en) * 1991-08-28 1993-03-05 Toshiba Corp Press-bonding method for terminal of electrolytic capacitor
JP3474605B2 (en) * 1993-06-25 2003-12-08 株式会社トプコン Object reflection object detection device
JP2722314B2 (en) * 1993-12-20 1998-03-04 日本信号株式会社 Planar type galvanometer mirror and method of manufacturing the same
JPH0990037A (en) * 1995-09-21 1997-04-04 Nikon Corp Range finder
JP3410929B2 (en) * 1996-11-19 2003-05-26 株式会社東芝 Scanning imaging device and scanning laser light receiving device
JP3909377B2 (en) 1997-02-14 2007-04-25 株式会社安川電機 Outdoor distance measuring device
US5903235A (en) * 1997-04-15 1999-05-11 Trimble Navigation Limited Handheld surveying device and method
US5898484A (en) * 1997-05-30 1999-04-27 Harris; Steven E. Hand-held distance-measurement device with an enhanced viewfinder
JPH11344311A (en) 1998-06-03 1999-12-14 Matsushita Electric Ind Co Ltd Digital camera
DE19836812A1 (en) 1998-08-14 2000-02-24 Leica Geosystems Ag Hand laser measuring device for distance measurement; has integrated computer to store measurement routines for performing common use-related measuring tasks
DE10016309A1 (en) * 2000-03-31 2001-10-11 Bosch Gmbh Robert Distance measuring device
WO2002033817A1 (en) * 2000-10-16 2002-04-25 Rudolf Schwarte Method and device for detecting and processing signal waves
DE10117953A1 (en) * 2001-04-10 2002-10-24 Hilti Ag Positioning aid for hand tools
EP2275775B1 (en) 2002-01-16 2015-09-23 Faro Technologies, Inc. Laser-based coordinate measuring device and laser-based method for measuring coordinates
JP2003302209A (en) * 2002-04-09 2003-10-24 Nippon Signal Co Ltd:The Optical length measuring apparatus
JP3711973B2 (en) * 2002-10-09 2005-11-02 株式会社日立製作所 Projection display
ATE494561T1 (en) * 2002-11-15 2011-01-15 Leica Geosystems Ag METHOD AND DEVICE FOR CALIBRATION OF A MEASURING SYSTEM
JP2004205221A (en) * 2002-12-20 2004-07-22 Matsushita Electric Works Ltd Portable distance measuring apparatus
JP2004260778A (en) 2003-02-28 2004-09-16 Koichiro Nishio Digital camera, control method and program
JP4379056B2 (en) * 2003-08-12 2009-12-09 富士ゼロックス株式会社 Three-dimensional imaging apparatus and method
JP2007505299A (en) * 2003-09-12 2007-03-08 ライカ ジオシステムズ アクチェンゲゼルシャフト Pixel
US7130034B2 (en) * 2004-04-26 2006-10-31 The Boeing Company Metrology system and method for measuring five degrees-of-freedom for a point target
DE102005004321A1 (en) * 2005-01-31 2006-08-10 Robert Bosch Gmbh Method for measuring the length of a route and device for carrying out the method
US7568289B2 (en) * 2005-03-14 2009-08-04 Robert Bosch Company Limited Handheld optical distance measurement device
JP4656975B2 (en) 2005-03-16 2011-03-23 株式会社リコー Image display device, image display method, and program for causing computer to execute the method
JP4944462B2 (en) * 2006-03-14 2012-05-30 株式会社トプコン Geographic data collection device
US7285793B2 (en) * 2005-07-15 2007-10-23 Verisurf Software, Inc. Coordinate tracking system, apparatus and method of use
DE102005048013B4 (en) 2005-10-07 2016-02-11 Robert Bosch Gmbh Mobile phone with extended functionality
US20070237424A1 (en) * 2006-03-29 2007-10-11 Matsushita Electric Industrial Co., Ltd. Method and apparatus instrumenting a camera to: measure, model and insert target objects at their right size into pictures
DE102006031580A1 (en) 2006-07-03 2008-01-17 Faro Technologies, Inc., Lake Mary Method and device for the three-dimensional detection of a spatial area
JP2008203188A (en) 2007-02-22 2008-09-04 Nikon Vision Co Ltd Range measurement device
US8497981B2 (en) * 2009-09-15 2013-07-30 Qualcomm Incorporated Small form-factor size sensor
US8396685B2 (en) 2009-09-15 2013-03-12 Qualcomm Incorporated Small form-factor distance sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487669A (en) * 1993-03-09 1996-01-30 Kelk; George F. Mobility aid for blind persons
TW200533892A (en) * 2004-04-09 2005-10-16 Hon Hai Prec Ind Co Ltd Laser range finder
US7225548B2 (en) * 2004-05-17 2007-06-05 Sr2 Group, Llc System and method for aligning multiple sighting devices

Also Published As

Publication number Publication date
US9146308B2 (en) 2015-09-29
KR20120061977A (en) 2012-06-13
WO2011034961A1 (en) 2011-03-24
US20140180634A1 (en) 2014-06-26
CN104634314A (en) 2015-05-20
CN102695940B (en) 2015-04-01
US8798959B2 (en) 2014-08-05
EP2478333A1 (en) 2012-07-25
JP5676618B2 (en) 2015-02-25
US20150077285A1 (en) 2015-03-19
CN104634314B (en) 2017-07-21
JP2013504771A (en) 2013-02-07
US20110066399A1 (en) 2011-03-17
US8396685B2 (en) 2013-03-12
CN102695940A (en) 2012-09-26
TW201137316A (en) 2011-11-01
KR101413809B1 (en) 2014-06-30

Similar Documents

Publication Publication Date Title
TWI424148B (en) Small form-factor distance sensor
KR102191592B1 (en) Laser radar system based on time-of-flight method
US7876457B2 (en) Laser metrology system and method
CA2871502C (en) High speed 360 degree scanning lidar head
WO2007124009A3 (en) Camera based six degree-of-freedom target measuring and target tracking device with rotatable mirror
JPS59212924A (en) Position detector for traveling object
US8692983B1 (en) Optical, laser-based, or lidar measuring systems and method
US8497981B2 (en) Small form-factor size sensor
CN102141386B (en) Method for measuring included angle between optical axis and reference plane of satellite optical communication terminal
US7773203B2 (en) Laser distance-measuring apparatus and control methods thereof
JPWO2018143093A1 (en) Measuring device
WO2016030714A1 (en) A method for optical position detection, optical position detection device and optical position detection system
WO2020177076A1 (en) Detection apparatus initial-state calibration method and apparatus
WO2020133384A1 (en) Laser ranging device and mobile platform
US20210341588A1 (en) Ranging device and mobile platform
JPS642901B2 (en)
WO2020237500A1 (en) Ranging apparatus and method for controlling scanning field of view thereof
WO2020142920A1 (en) Signal amplification method and device, distance measuring device
CN111537977B (en) Sensing device of two-dimensional optical radar manufactured by conical reflecting mirror
RU2704712C1 (en) Method of autonomous control of spacecraft formation
CN207216020U (en) A kind of laser range finder
JP2000187076A (en) Distance measuring device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees