TWI423306B - Adaptive nanotopography sculpting - Google Patents

Adaptive nanotopography sculpting Download PDF

Info

Publication number
TWI423306B
TWI423306B TW98119027A TW98119027A TWI423306B TW I423306 B TWI423306 B TW I423306B TW 98119027 A TW98119027 A TW 98119027A TW 98119027 A TW98119027 A TW 98119027A TW I423306 B TWI423306 B TW I423306B
Authority
TW
Taiwan
Prior art keywords
polymerizable material
nanotopography
pattern
droplet pattern
planar
Prior art date
Application number
TW98119027A
Other languages
Chinese (zh)
Other versions
TW201003738A (en
Inventor
Avinash Panga
Sidlgata V Sreenivasan
Original Assignee
Univ Texas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Texas filed Critical Univ Texas
Publication of TW201003738A publication Critical patent/TW201003738A/en
Application granted granted Critical
Publication of TWI423306B publication Critical patent/TWI423306B/en

Links

Description

適應性奈米形貌刻蝕技術Adaptive nanotopography etching 相關申請案的交互參考Cross-references for related applications

本申請案主張申請於2008年6月9日之美國臨時申請案第61/060,007號在35 U.S.C.§119(e)(1)規定下的利益,該臨時申請案併入此處作為參考。This application claims the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit.

本發明係有關於適應性奈米形貌刻蝕技術。The present invention relates to adaptive nanotopography etching techniques.

背景資訊Background information

奈米製造包括非常微小構造(例如具有100奈米或更小等級的表面特徵)的製造。奈米製造產生相當大之衝擊的一個應用領域為積體電路的加工。當半導體加工工業繼續致力於更大的產率,同時增加形成在基材上之每單位面積的電路時,奈米製造因而變得更形重要。奈米製造提供更好的製程控制,同時減少形成構造之最小特徵的尺寸。使用奈米製造之其他正在發展的領域包括生物技術、光學技術、機械系統等等。Nanofabrication includes the fabrication of very minute constructions, such as surface features having a rating of 100 nanometers or less. One area of application in which nanofabrication produces considerable impact is the processing of integrated circuits. Nanofabrication has thus become more important as the semiconductor processing industry continues to focus on greater yields while increasing the number of circuits per unit area formed on the substrate. Nanofabrication provides better process control while reducing the size of the smallest features that form the structure. Other emerging areas of manufacturing using nanotechnology include biotechnology, optical technology, mechanical systems, and the like.

今日使用之例示奈米製造技術通常稱作壓印微影術。例示之壓印微影術製程被詳細描述於數個公開刊物中,諸如美國專利公開案第2004/0065976號,美國專利公開案第2004/0065252號,與美國專利第6,936,194號,其等全部內容併入此處作為參考。The instant nanofabrication technique used today is commonly referred to as imprint lithography. The exemplified embossing lithography process is described in detail in several publications, such as U.S. Patent Publication No. 2004/0065976, U.S. Patent Publication No. 2004/0065252, and U.S. Patent No. 6,936,194, the entire contents of which are incorporated herein by reference. This is incorporated herein by reference.

各個上述美國專利公開案及專利揭露的壓印微影技術包括於可成形層(可聚合的)中形成凸紋圖案及將對應凸紋圖案的圖案轉換進入下方基材內。基材可被耦合於移動載物台上以獲得所要的定位來便利圖案化製程。圖案化製程使用與基材空間上分離的樣板,而且施加可成形液體於樣板與基材之間。固化可成形液體以形成具有圖案的堅硬層,該圖案與接觸可成形液體之樣板表面的形狀相符合。固化後,樣板與堅硬層分離使得樣板與基材空間上分離。然後基材及堅硬層進行額外的加工以將凸紋影像轉換進入對應堅硬層中圖案的基材中。The embossing lithography techniques disclosed in each of the above-mentioned U.S. Patent Publications and Patents include forming a relief pattern in a formable layer (polymerizable) and converting a pattern of the corresponding relief pattern into the underlying substrate. The substrate can be coupled to a moving stage to achieve the desired positioning to facilitate the patterning process. The patterning process uses a template that is spatially separated from the substrate and applies a formable liquid between the template and the substrate. The formable liquid is cured to form a patterned hard layer that conforms to the shape of the surface of the template that contacts the formable liquid. After curing, the template is separated from the hard layer to spatially separate the template from the substrate. The substrate and hard layer are then subjected to additional processing to convert the relief image into the substrate corresponding to the pattern in the hard layer.

使用壓印微影術的加工技術依賴實質平面下方基材或實質平面下方層的存在。例如,於層層堆疊半導體裝置製造期間,製造的可信度及容易度依賴實質平面基材的形貌。Processing techniques using embossing lithography rely on the presence of a substrate below the substantially planar plane or a layer below the substantially planar plane. For example, during fabrication of a layer-stacked semiconductor device, the reliability and ease of fabrication depend on the topography of the substantially planar substrate.

於半導體製造的內容中,術語”平面化”廣泛地用以描述兩種製程:材料沉積製程之後的晶圓表面形貌改良(例如,層間介電質(ILD)的平面化);或移除沉積膜以提供凹陷區域內的材料(例如淺溝槽隔離(STI)、鑲嵌製程等等)。In the context of semiconductor fabrication, the term "planarization" is used broadly to describe two processes: wafer surface topography improvement after material deposition process (eg, planarization of interlayer dielectric (ILD)); or removal The film is deposited to provide material within the recessed regions (eg, shallow trench isolation (STI), damascene processes, etc.).

已經發展出各種平面化方法包括熱及回流技術、玻璃上旋轉(SOG)製程及類似方法。然而,由現行方法所得到的平面程度可能係受限制的。例如,通常使用的平面化技術之一,化學機械製造技術(CMP),通常依賴基於材料圖案密度的材料移除速率。高圖案密度的地帶比低圖案密度的地帶具有更多的接觸面積。這可導致在低圖案密度地帶必須施加更多的壓力,如此使得在低密度地帶內具有較高的材料移除速率。低密度地帶首先被平面化,然後當材料以固定速率移除後,高密度地帶獲得局部平面化。這會在高密度與低密度地帶之間形成類似階梯的結構,並於平面化膜之內提供長範圍的厚度變化。防止的技術,諸如仿填充與圖案阻抗,被用於減少圖案密度的變化。然而,此等技術增加平面化製程的複雜度。Various planarization methods have been developed including thermal and reflow techniques, glass on-glass (SOG) processes, and the like. However, the degree of planarity obtained by current methods may be limited. For example, one of the commonly used planarization techniques, chemical mechanical manufacturing (CMP), typically relies on material removal rates based on material pattern density. A zone of high pattern density has more contact area than a zone of lower pattern density. This can result in more pressure being applied in the low pattern density zone, thus resulting in a higher material removal rate in the low density zone. The low density zone is first planarized, and then the localization is achieved in the high density zone after the material is removed at a fixed rate. This creates a step-like structure between the high density and low density zones and provides a long range of thickness variations within the planarization film. Prevention techniques, such as imitation fill and pattern impedance, are used to reduce variations in pattern density. However, these techniques increase the complexity of the planarization process.

可以取代CMP的接觸平面化提供以可光固化材料旋轉塗覆的基材,且預烘烤以除去殘留溶劑。超平坦表面可被按壓在旋轉塗覆晶圓上以強迫材料回流,且可使用壓力來均勻地分布材料來達成平面化。然而,平面化的品質會被圖案密度變化抵銷。旋轉塗覆一般認為可在基材上形成均勻的流體分布。如此,具有密度變化的區域一般將具有相同的流體分布。當材料以超平坦表面按壓時,材料容易從高表面特徵密度地帶流至低表面密度地帶。由於材料的高黏度性及/或來自超平坦表面及基材間形成之細溝的材料移動性可能會限制回流。此外,超平坦表面與基材間的流體力量會造成流體膜內的抗拉應力。當超平坦表面移除時,此應力會釋放因而導致表面平面性的破壞。A contact planarization that can replace CMP provides a substrate that is spin coated with a photocurable material and pre-baked to remove residual solvent. The ultra-flat surface can be pressed onto the spin-coated wafer to force the material back down, and pressure can be used to evenly distribute the material to achieve planarization. However, the quality of the flattening is offset by the change in pattern density. Spin coating is generally believed to provide a uniform fluid distribution on the substrate. As such, regions with varying density will generally have the same fluid distribution. When the material is pressed against an ultra-flat surface, the material readily flows from a high surface feature density zone to a low surface density zone. The high viscosity of the material and/or material mobility from the ultra-flat surface and the rills formed between the substrates may limit backflow. In addition, the fluid force between the ultra-flat surface and the substrate can cause tensile stresses within the fluid film. When the ultra-flat surface is removed, this stress is released and thus causes surface planarity damage.

況且,CP通常不會造成表面特徵密度的大幅變化。例如,若含低圖案密度的底模中具有廣大的地帶,則材料不能回流以填充空洞,因而可能影響球狀平面性。此外,CP通常無法解釋基材及/或超平坦表面之表面形貌的不同。例如,當超平坦表面對著基材按壓時,在它們之間的材料厚度可能會產生變化。使用非常厚的材料膜會改善流體的流動性,然而,很難將相同的平面性轉送至基材,這是因為後續材料移除製程(例如蝕刻、拋光等等)的非一致性對於較厚的膜會非常地顯著。Moreover, CPs generally do not cause large variations in surface feature density. For example, if a bottom mold having a low pattern density has a large strip, the material cannot be reflowed to fill the void, and thus may affect the spherical planarity. In addition, CPs generally cannot explain the difference in surface topography of substrates and/or ultra-flat surfaces. For example, when an ultra-flat surface is pressed against a substrate, the thickness of the material between them may vary. The use of a very thick film of material improves the fluidity of the fluid, however, it is difficult to transfer the same planarity to the substrate because the inconsistency of subsequent material removal processes (eg etching, polishing, etc.) is thicker The film will be very noticeable.

依據本發明之一實施例,係特地提出一種使用壓印微影術系統形成具有所欲形狀特性之表面的方法,包括:決定一第一表面的奈米形貌;決定一第二表面的所欲形狀特性;評估該第一表面的奈米形貌及該第二表面的所欲形狀特性以提供一液滴圖案;依據該液滴圖案將可聚合材料置於一樣板及該第一表面之間;使該樣板接觸該可聚合材料;固化該可聚合材料;蝕刻該可聚合材料以提供具有該所欲形狀特性的第二表面。In accordance with an embodiment of the present invention, a method of forming a surface having a desired shape characteristic using an embossing lithography system is specifically provided, comprising: determining a nanotopography of a first surface; determining a second surface Desiring a shape characteristic; evaluating a nanotopography of the first surface and a desired shape characteristic of the second surface to provide a droplet pattern; placing the polymerizable material on the same plate and the first surface according to the droplet pattern Contacting the template with the polymerizable material; curing the polymerizable material; etching the polymerizable material to provide a second surface having the desired shape characteristics.

依據本發明之另一實施例,係特地提出一種使用壓印微影術系統形成具有所欲奈米形貌之表面的方法,包括:決定一表面的奈米形貌;評估該表面的奈米形貌以決定該表面的奈米形貌與一所欲的奈米形貌相較之下的高度校正;基於該表面的奈米形貌與該所欲的奈米形貌相較之下的高度校正提供一密度地圖;基於該密度地圖決定一液滴圖案;依據該液滴圖案將可聚合材料置於壓印微影術樣板及該表面之間;使該樣板接觸該可聚合材料;固化該可聚合材料;蝕刻該可聚合材料以提供具有該所欲奈米形貌的表面。In accordance with another embodiment of the present invention, a method of forming a surface having a desired nanotopography using an embossing lithography system is specifically provided, comprising: determining a nanotopography of a surface; evaluating the surface of the nanometer The topography determines the height of the nanotopography of the surface compared to a desired nanotopography; the nanotopography based on the surface is compared to the desired nanotopography Height correction provides a density map; determining a droplet pattern based on the density map; placing a polymerizable material between the imprint lithography template and the surface according to the droplet pattern; contacting the template with the polymerizable material; curing The polymerizable material; the polymerizable material is etched to provide a surface having the desired nanotopography.

依據本發明之又一實施例,係特地提出一種使用壓印微影術系統形成平面表面的方法,包括:決定一表面的奈米形貌;評估該表面的奈米形貌以決定一液滴圖案來提供用於具有第一蝕刻速率之第一可聚合材料及具有第二蝕刻速率之第二可聚合材料的該平面表面;依據該液滴圖案置放該第一可聚合材料及該第二可聚合材料於一壓印微影術樣板及該表面之間;使該樣板接觸該第一可聚合材料及該第二可聚合材料的至少一者;固化該第一可聚合材料及該第二可聚合材料的至少一者;蝕刻該第一可聚合材料及該第二可聚合材料的至少一者以提供該平面表面。According to still another embodiment of the present invention, a method for forming a planar surface using an embossing lithography system is specifically provided, comprising: determining a nanotopography of a surface; and evaluating a nanotopography of the surface to determine a droplet Patterning to provide the planar surface for a first polymerizable material having a first etch rate and a second polymerizable material having a second etch rate; placing the first polymerizable material and the second according to the droplet pattern The polymerizable material is between an imprint lithography template and the surface; contacting the template with at least one of the first polymerizable material and the second polymerizable material; curing the first polymerizable material and the second At least one of the polymerizable materials; etching at least one of the first polymerizable material and the second polymerizable material to provide the planar surface.

圖式簡單說明Simple illustration

為了更詳細地了解本發明,參考附隨圖式所顯示的實施例提供對於本發明實施例的描述。然而,應注意的是附隨圖式僅顯示本發明的典型實施例,所以不應被認為係對本發明範圍的限制。In order to understand the present invention in detail, the description of the embodiments of the invention is provided by reference to the accompanying drawings. It is to be understood, however, that the appended claims

第1圖顯示依據本發明一實施例之壓印微影系統的簡化側視圖。1 shows a simplified side view of an imprint lithography system in accordance with an embodiment of the present invention.

第2圖顯示第1圖所示之具有圖案層置於其間之基材的簡化側視圖。Figure 2 shows a simplified side view of the substrate with the patterned layer placed therebetween as shown in Figure 1.

第3圖顯示由於下方基材而造成之多數膜層之形貌變化的簡化側視圖。Figure 3 shows a simplified side view of the topographical changes of most of the layers due to the underlying substrate.

第4A圖及第4B圖各自顯示局部形貌平面性變異及球狀形貌平面性變異的簡化側視圖。Figures 4A and 4B each show a simplified side view of the planarity variation of the local topography and the planarity variation of the spherical morphology.

第5A-5D圖顯示使用適應性奈米形貌刻蝕技術形成具有所欲形狀特性之表面的簡化側視圖。5A-5D show a simplified side view of a surface having the desired shape characteristics using an adaptive nanotopography etch technique.

第6圖顯示使用適應性奈米形貌刻蝕技術形成具有所欲形狀特性表面之方法之一實施例的流程圖。Figure 6 shows a flow diagram of one embodiment of a method of forming a surface having a desired shape characteristic using an adaptive nanotopography etching technique.

第7圖顯示提供用於適應性奈米形貌刻蝕技術之一液滴圖案之地圖化過程之一實施例的流程圖。Figure 7 shows a flow diagram of one embodiment of a mapping process that provides a droplet pattern for one of the adaptive nanotopography etching techniques.

第8圖顯示用於預拋光基材表面之方法之一實施例的流程圖。Figure 8 shows a flow diagram of one embodiment of a method for pre-polishing a substrate surface.

第9圖顯示具有非平坦所欲形狀特性之表面的簡化側視圖。Figure 9 shows a simplified side view of a surface having non-flat, desired shape characteristics.

第10A-10C圖顯示形成具有非平坦所欲形狀特性之表面的簡化側視圖。Figures 10A-10C show simplified side views of the surface forming features having non-flat, desired shapes.

詳細說明Detailed description

參考圖式,特別是第1圖,其顯示用於在基材12上形成凸紋圖案的微影系統10。基材12可耦合至基材夾頭14。如所示者,基材夾頭14為一真空夾頭,然而,基材夾頭14可為任何夾頭,其包括但不限於真空、針型、溝型、靜電或電磁夾頭及/或類似物,例示夾頭描述於美國專利第6,873,087號,其併入此處作為參考。Referring to the drawings, and in particular, FIG. 1, a lithography system 10 for forming a relief pattern on a substrate 12 is shown. Substrate 12 can be coupled to substrate chuck 14. As shown, the substrate chuck 14 is a vacuum chuck, however, the substrate chuck 14 can be any chuck including, but not limited to, vacuum, needle, groove, electrostatic or electromagnetic chucks and/or Analogs, exemplified chucks are described in U.S. Patent No. 6,873,087, incorporated herein by reference.

基材12及基材夾頭14可被支撐於載物台16上。載物台16可提供關於x、y軸及z軸的移動。載物台16、基材12及基材夾頭14可被定位於基底(未圖示)上。The substrate 12 and the substrate holder 14 can be supported on the stage 16. Stage 16 can provide movement about the x, y, and z axes. The stage 16, substrate 12 and substrate chuck 14 can be positioned on a substrate (not shown).

基材12與樣板18空間上分離。樣板18可包括從樣板18朝向基材12延伸的台面20,台面20上具有圖案化的表面22。更且,台面20可被稱作模件20。或者,樣板18可以不需台面20。The substrate 12 is spatially separated from the template 18. The template 18 can include a mesa 20 extending from the template 18 toward the substrate 12 having a patterned surface 22 thereon. Moreover, the table top 20 can be referred to as a module 20. Alternatively, the template 18 may not require the countertop 20.

樣板18及/或模件20可由下述材料形成,其等包括但不限於熔矽石、石英、矽、有機聚合物、矽氧烷聚合物、硼矽酸玻璃、氟碳聚合物、金屬、硬化藍寶石及/或類似物。如所示者,雖然圖案化表面22包括由數個空間上分離之凹處24與突起26界定之表面特徵,然而本發明實施例不限於此種構形。圖案化表面22可以界定構成要被形成於基材12上之圖案基礎的任何原始圖案。The template 18 and/or the mold 20 may be formed from materials including, but not limited to, fused vermiculite, quartz, ruthenium, organic polymers, siloxane polymers, borosilicate glass, fluorocarbon polymers, metals, Hardened sapphire and/or the like. As shown, although the patterned surface 22 includes surface features defined by a plurality of spatially separated recesses 24 and protrusions 26, embodiments of the invention are not limited to such configurations. The patterned surface 22 can define any original pattern that forms the basis of the pattern to be formed on the substrate 12.

樣板18可耦合至夾頭28。夾頭28可構形為,但不限於,真空、針型、溝型、靜電或電磁及/或其他類似的夾頭型式。例示之夾頭進一步描述於美國專利第6,873,087號,其併入此處作為參考。更且,夾頭28可耦合至壓印頭30,使得夾頭28及/或壓印頭30可構形成便利樣板18的移動。The template 18 can be coupled to the collet 28. The collet 28 can be configured, but not limited to, a vacuum, a needle, a groove, an electrostatic or electromagnetic, and/or the like. The exemplified collet is further described in U.S. Patent No. 6,873,087, incorporated herein by reference. Moreover, the collet 28 can be coupled to the imprint head 30 such that the collet 28 and/or the imprint head 30 can be configured to facilitate movement of the template 18.

系統10可更包括一流體分配系統32。流體分配系統32可被用以將可聚合材料34沉積於基材12上。可聚合材料34可使用下述技術諸如液滴分配、旋轉塗覆、浸漬塗覆、化學蒸氣沉積(CVD)、物理蒸氣沉積(PVD)、薄膜沉積、厚膜沉積及/或相似方式而被置於基材12上。依據設計上的考量,在所欲體積被界定於模件20及基材12之間之前或之後,可聚合材料34可被沉積於基材12上。可聚合材料34可包括單體混合物,如描述於美國專利第7,157,036號及美國專利公開案第2005/0187339號者,其等全部併入此處作為參考。System 10 can further include a fluid dispensing system 32. Fluid dispensing system 32 can be used to deposit polymerizable material 34 onto substrate 12. The polymerizable material 34 can be placed using techniques such as droplet dispensing, spin coating, dip coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), thin film deposition, thick film deposition, and/or the like. On the substrate 12. Depending on design considerations, the polymerizable material 34 can be deposited on the substrate 12 before or after the desired volume is defined between the mold 20 and the substrate 12. The polymerizable material 34 can include a mixture of monomers, as described in U.S. Patent No. 7,157,036, and U.S. Patent Publication No. 2005/0187339, the entire disclosure of which is incorporated herein by reference.

參考第1及2圖,系統10更包括沿著路徑42耦合至直接能量40的一能量源38。壓印頭30與載物台16被構形為將樣板18及基材12置於與路徑42重疊的位置。系統10可被處理器54調控以與載物台16、壓印頭30、流體分配系統32及/或源38溝通,且依儲存於記憶體56中之電腦可讀取程式而運作。Referring to Figures 1 and 2, system 10 further includes an energy source 38 coupled to direct energy 40 along path 42. The embossing head 30 and the stage 16 are configured to place the template 18 and the substrate 12 in a position overlapping the path 42. The system 10 can be regulated by the processor 54 to communicate with the stage 16, the imprint head 30, the fluid dispensing system 32, and/or the source 38, and operates in accordance with a computer readable program stored in the memory 56.

壓印頭30或載物台16任一者或兩者可變化模件20與基材12之間的距離以界定其間可為可聚合材料34填滿的所欲體積。例如壓印頭30可施力至樣板18使得模件20接觸可聚合材料34。在所欲體積以可聚合材料34填滿之後,源38產生能量40,如寬帶紫外線輻射,使得可聚合材料34固化及/或交聯以符合基材12表面44的形狀並圖案化表面22,且界定基材12上的圖案層46。圖案層46包括殘留層48與數個如突起50與凹處52所示之表面特徵,而且突起50具有厚度t1 及殘留層具有厚度t2Either or both of the embossing head 30 or stage 16 can vary the distance between the module 20 and the substrate 12 to define a desired volume therebetween that can be filled with the polymerizable material 34. For example, the imprint head 30 can be forced to the template 18 such that the module 20 contacts the polymerizable material 34. After the desired volume is filled with the polymerizable material 34, the source 38 produces energy 40, such as broadband ultraviolet radiation, such that the polymerizable material 34 cures and/or crosslinks to conform to the shape of the surface 44 of the substrate 12 and pattern the surface 22, And defining a patterned layer 46 on the substrate 12. Pattern layer 46 includes a residual layer 48 and a plurality of surface features such as protrusions 50 of the recess 52 as shown, and the projections 50 having a thickness t 1 and residual layer having a thickness t 2.

上述系統及製程可進一步使用於美國專利第6,932,934號、美國專利公開案第2004/0124566號、美國專利公開案第2004/0188381號與美國專利公開案第2004/0211754號(其等併入此處作為參考)中所描述的壓印微影製程與系統。The above system and process can be further used in U.S. Patent No. 6,932,934, U.S. Patent Publication No. 2004/0124566, U.S. Patent Publication No. 2004/0188381, and U.S. Patent Publication No. 2004/0211754 The imprint lithography process and system described in the reference).

參考第3圖,材料沉積製程通常提供維持與下方基材62相同形貌的材料膜層60。隨著膜層60數目的增加,表面特徵64的階梯高度hF會增加至所得的階梯高度hR1,然後進一步增加至所得的階梯高度hR2,如第3圖所示。此種增加會導致形貌的變化。Referring to FIG. 3, the material deposition process generally provides a film layer 60 of material that maintains the same topography as the underlying substrate 62. As the number of layers 60 increases, the step height hF of the surface features 64 increases to the resulting step height hR1 and then further increases to the resulting step height hR2, as shown in FIG. This increase can lead to changes in topography.

大的形貌變化會阻礙製造過程及/或造成信賴性的問題。例如,在半導體加工中,為了將大的形貌變化降到最小,晶圓被拋光以改善表面平面性。粗糙度、位前(site front)二次表面形貌與球狀背板指示範圍(GBIR)係用於定量低、中及大型空間波長中之表面形貌的測量方式。用於90 nm交點製造的典型300 mm頂級晶圓具有少於1 nm的粗糙度、約90 nm的SFQR及2微米的GBIR。比較上,75 mm頂級晶圓具有少於5 nm的粗糙度、1000 nm的SFQR及10微米的GBIR。然而,為了滿足嚴格的平面性需求,晶圓會進行數次拋光步驟,這通常會增加成本。此外,小尺寸晶圓,以及其他材料晶圓,通常無法滿足嚴格平面性需求,而且因此通常無法用於製造具有次微米表面特徵的裝置。Large changes in topography can hinder the manufacturing process and/or cause reliability problems. For example, in semiconductor processing, in order to minimize large topographical variations, the wafer is polished to improve surface planarity. Roughness, site front secondary surface topography and spherical backplane indication range (GBIR) are used to quantify the measurement of surface topography in low, medium and large spatial wavelengths. A typical 300 mm top-level wafer for 90 nm intersection fabrication has a roughness of less than 1 nm, an SFQR of approximately 90 nm, and a GBIR of 2 microns. In comparison, the 75 mm top wafer has a roughness of less than 5 nm, an SFQR of 1000 nm, and a GBIR of 10 microns. However, in order to meet stringent planarity requirements, the wafer will undergo several polishing steps, which typically adds cost. In addition, small-sized wafers, as well as other material wafers, often fail to meet stringent planarity requirements and are therefore often not available for fabrication of devices with submicron surface features.

第4A圖及第4B圖顯示局部形貌平面性變異66及球狀形貌平面性變異68,諸如那些在半導體製造期間所見者。當沉積材料符合反映下方表面變化的下方表面特徵時,會產生局部形貌平面性變異66。這些變異66可具有相同的尺度等級(例如表面特徵高度)及/或可具有低空間波長。Figures 4A and 4B show local topographical planarity variations 66 and spherical topographical variations 68, such as those seen during semiconductor fabrication. When the deposited material conforms to the underlying surface features that reflect the change in the underlying surface, a local topographical variability 66 is produced. These variations 66 may have the same scale level (e.g., surface feature height) and/or may have low spatial wavelengths.

如第4B圖所示,球狀形貌平面性變異68可為較大尺度及具有底模大小等級的空間波長。在下方圖案密度具有重大變化的地帶上方可觀察到球狀形貌平面性變異68。雖然26x33mm大小的圖案化領域可讓整個領域同時暴露以進行圖案化,但是由於整個晶圓表面形貌(例如厚度變化)之故會存在有大的形貌變化,如與目標圖案地帶相反者。此大的形貌變化可在晶圓直徑的等級。As shown in FIG. 4B, the spherical topography variation 68 can be a larger scale and a spatial wavelength having a bottom size rating. A spheroidal planarity variation 68 can be observed above the zone where the pattern density is significantly changed. While the 26x33mm sized patterning field allows the entire field to be simultaneously exposed for patterning, there are large topographical variations due to the overall wafer surface topography (eg, thickness variations), as opposed to the target pattern. This large topographical change can be graded at the wafer diameter.

當於空間波長領域中分析時,表面的高度變化可被歸類為三個組份:標稱形狀(空間波長的高度變化>20mm)、奈米形貌(空間波長的高度變化在0.2-20 mm之間)及表面粗糙度(空間波長的高度變化<0.2 mm)。適應性奈米形貌刻蝕技術,如此處所描述者,可被用於改變奈米形貌。此外,適應性奈米形貌刻蝕技術,如此處所描述者,可被用於改變粗糙度。例如,適應性奈米形貌刻蝕技術可改變基材(例如裸矽晶圓)、具有次微米表面特徵基材及相似物的表面粗糙度。應注意的是,適應性奈米形貌刻蝕技術可被用於改變奈米形貌及/或粗糙度而不致改變表面的標稱形狀。When analyzed in the spatial wavelength domain, the height variation of the surface can be classified into three components: the nominal shape (height change in spatial wavelength > 20 mm), and the nanomorphology (the variation in spatial wavelength is 0.2-20) Between mm) and surface roughness (height change in spatial wavelength <0.2 mm). Adaptive nanotopography etching techniques, as described herein, can be used to alter the nanotopography. In addition, adaptive nanotopography etching techniques, as described herein, can be used to alter the roughness. For example, adaptive nanotopography etch techniques can alter the surface roughness of substrates (eg, bare enamel wafers), sub-micron surface feature substrates, and the like. It should be noted that adaptive nanotopography etching techniques can be used to alter the nanotopography and/or roughness without altering the nominal shape of the surface.

參考第5A-5D圖,適應性奈米形貌刻蝕技術可用於奈米刻蝕技術且適應地使奈米形貌變異(如局部及/或球狀形貌平面性變異)降至最小。奈米刻蝕技術由第一表面74開始,且藉由沉積與蝕刻回適當深度,提供所欲表面形貌(例如平面)的第二表面76。Referring to Figures 5A-5D, the adaptive nanotopography etch technique can be used in nanoetching techniques and adaptively minimizes nanomorphology variations such as local and/or spheroidal planarity variations. The nanoetching technique begins with the first surface 74 and provides a second surface 76 of the desired surface topography (e.g., planar) by deposition and etching back to a suitable depth.

利用第1圖所示及此處所描述的微影系統10,適應性奈米形貌刻蝕技術製程可適用於變化表面74上的圖案密度。參考第5B圖,可聚合材料34可沉積於膜層60a(例如SiO2 )的第一表面74上。利用此處所述之液滴分散器可將可聚合材料34定位於第一表面74上,如此各種數量的可聚合材料34可被定位於第一表面74上的特定位置。With the lithography system 10 illustrated in FIG. 1 and described herein, the adaptive nanotopography etch process can be adapted to the pattern density on the varying surface 74. Referring to FIG. 5B, polymerizable material 34 may be deposited on the film layer 60a (e.g. SiO 2) 74 on the first surface. The polymerizable material 34 can be positioned on the first surface 74 using the droplet disperser described herein such that various numbers of polymerizable materials 34 can be positioned at specific locations on the first surface 74.

通常,變化樣板18及第一表面74之間的距離以界定其間可聚合材料34填充的所欲體積。樣板18可包括具有實質平坦之圖案化表面22的模件20。施力於樣板18使得樣板18接觸可聚合材料34,引發可聚合材料34形成實質相連的膜且實質填充所欲的體積。再者,可利用毛細力以分散可聚合材料34來形成薄膜。在所欲體積以可聚合材料34填滿之後,可聚合材料34可被固化以界定含有表面78的圖案層46a,圖案層46a並由厚度t3界定。然後使用移除製程(例如蝕刻、拋光、CMP等等)來轉送圖案層46表面以提供具有所欲表面形貌的第二表面76。Typically, the distance between the template 18 and the first surface 74 is varied to define the desired volume filled by the polymerizable material 34 therebetween. The template 18 can include a module 20 having a substantially flat patterned surface 22. Applying to the template 18 causes the template 18 to contact the polymerizable material 34, causing the polymerizable material 34 to form a substantially connected film and substantially fill the desired volume. Further, a capillary force can be utilized to disperse the polymerizable material 34 to form a film. After the desired volume is filled with the polymerizable material 34, the polymerizable material 34 can be cured to define a patterned layer 46a comprising a surface 78, defined by a thickness t3. A removal process (e.g., etching, polishing, CMP, etc.) is then used to transfer the surface of the pattern layer 46 to provide a second surface 76 having the desired surface topography.

將材料(例如可聚合材料34)沉積於第一表面74上可達成第二表面76所欲的表面形貌。此外,材料的沉積可彌補各種過程中的寄生效應(例如減少所欲表面形貌等級的影響,包括但不限於,圖案密度變化、長範圍的晶圓形貌、蝕刻不一致、拋光不一致、CMP不一致、不一致的材料移除速率、體積減縮、蒸發等等)。Deposition of a material (e.g., polymerizable material 34) onto the first surface 74 can achieve a desired surface topography of the second surface 76. In addition, the deposition of materials can compensate for parasitic effects in various processes (such as reducing the effects of desired surface topography, including but not limited to, pattern density changes, long-range crystal domes, inconsistent etching, inconsistent polishing, CMP inconsistency Inconsistent material removal rate, volume reduction, evaporation, etc.).

通常,沉積使可聚合材料34分散以在第一表面74上之選擇區域上提供充分的體積,如此於移除(例如蝕刻)期間,可提供第二表面76所欲的表面形貌。據此,沉積可適於變化第一表面74、下方層及/或相似物上的圖案密度以提供具有所欲形狀特性(例如,基材62a表面72的實質類似形貌、平面性、奇特形狀及/或其他所欲的形狀特性)的第二表面76。基於第一表面74的形貌,沉積通常使可聚合材料34分散,如此處進一步所提供者。例如,增加液滴體積或增加液滴數量的可聚合材料34可被分散於第一表面74的低密度地帶來彌補圖案密度變化。此圖案密度變化來自下方層62a及/或表面特徵64a之圖案密度的變化。Typically, the deposition disperses the polymerizable material 34 to provide a sufficient volume over selected areas on the first surface 74 such that during removal (e.g., etching), the desired surface topography of the second surface 76 can be provided. Accordingly, the deposition can be adapted to vary the pattern density on the first surface 74, the underlying layer, and/or the like to provide the desired shape characteristics (e.g., substantially similar topography, planarity, odd shape of the surface 72 of the substrate 62a). And/or other desired shape characteristics of the second surface 76. Based on the topography of the first surface 74, deposition typically disperses the polymerizable material 34, as further provided herein. For example, the polymerizable material 34 that increases the droplet volume or increases the number of droplets can be dispersed at a low density of the first surface 74 to compensate for pattern density variations. This pattern density variation results from a change in the pattern density of the underlying layer 62a and/or surface features 64a.

參考第6圖,適應性奈米形貌刻蝕技術可利用(a)第一表面74形貌,(b)提供第二表面76所需的參數,及(c)空間分布參數以提供用於沉積可聚合材料34於第一表面74上的分散圖案。於步驟100中,提供第一表面74的開始形貌地圖80。於步驟102中,決定提供具有所欲表面形貌的第二表面76的參數(例如平面化長度、厚度、所欲最終形貌)。於步驟104中,基於開始形貌地圖80與第二表面76參數提供可聚合材料34的液滴圖案86。於步驟106中,基於液滴圖案86分散可聚合材料34的小液滴。於步驟108中,樣板18接觸可聚合材料34。於步驟110中,可聚合材料34固化以形成圖案層46a。於步驟112中,移除部分的圖案層46a以提供具有所欲表面形貌的第二表面76。Referring to Figure 6, an adaptive nanotopography etch technique can utilize (a) a top surface 74 topography, (b) provide parameters required for the second surface 76, and (c) spatial distribution parameters to provide for A dispersion pattern of the polymerizable material 34 on the first surface 74 is deposited. In step 100, a starting topography map 80 of the first surface 74 is provided. In step 102, it is decided to provide parameters (e.g., planarized length, thickness, desired final topography) of the second surface 76 having the desired surface topography. In step 104, a droplet pattern 86 of polymerizable material 34 is provided based on the starting topography map 80 and the second surface 76 parameters. In step 106, small droplets of polymerizable material 34 are dispersed based on droplet pattern 86. In step 108, the template 18 contacts the polymerizable material 34. In step 110, the polymerizable material 34 is cured to form the patterned layer 46a. In step 112, a portion of the pattern layer 46a is removed to provide a second surface 76 having a desired surface topography.

參考第7圖,表面掃描系統可提供形貌地圖80。例如,Zygoviii 表面掃描系統可與250 x250 μm的取樣柵欄一起使用。提供予第一表面74之形貌地圖80與第二表面76之所欲形貌之間的差異可對於各個校正地圖82所提供的位置提供高度校正。這個資訊進一步被轉換以提供表面特徵密度地圖84。表面特徵密度地圖84可以提供造成液滴圖案86之各個位置所必須的可聚合材料34密度。Referring to Figure 7, a surface scanning system can provide a topographic map 80. For example, the Zygo viii surface scanning system can be used with a 250 x 250 μm sampling barrier. The difference between the topographical map 80 provided to the first surface 74 and the desired topography of the second surface 76 can provide a height correction for the position provided by each of the correction maps 82. This information is further converted to provide a surface feature density map 84. The surface feature density map 84 can provide the density of the polymerizable material 34 necessary to cause the various locations of the drop pattern 86.

參考第5A-5D圖,數個參數可被決定及/或平衡以提供對於可聚合材料34空間分布的控制,其包括但不限於圖案層46a的厚度t3、可聚合材料34的黏性、可聚合材料34分散與使可聚合材料34暴露至能量之間的時間間隔、樣板18的堅硬性及/或相似參數。Referring to Figures 5A-5D, several parameters may be determined and/or balanced to provide control over the spatial distribution of the polymerizable material 34, including but not limited to the thickness t3 of the pattern layer 46a, the viscosity of the polymerizable material 34, The time interval between the polymeric material 34 being dispersed and exposing the polymerizable material 34 to energy, the stiffness of the template 18, and/or similar parameters.

可聚合材料34的空間分布可與所分散之可聚合材料34之體積的空間分布相關聯。例如,可聚合材料34可以小液滴型式分散來提供相連膜,而實質留存在可聚合材料34小液滴被分散的所在(例如使在表面74上的橫向移動降到最低)。可以達成這種校正以提供約20 nm至250 nm的厚度t3。此外,可聚合材料34的黏度(例如3厘泊至100厘泊)對於可聚合材料34的自由橫向流動會提供阻力。The spatial distribution of the polymerizable material 34 can be correlated to the spatial distribution of the volume of the dispersed polymerizable material 34. For example, the polymerizable material 34 can be dispersed in a droplet form to provide a joined film, while substantially remaining where the droplets of the polymerizable material 34 are dispersed (e.g., to minimize lateral movement on the surface 74). This correction can be achieved to provide a thickness t3 of about 20 nm to 250 nm. Moreover, the viscosity of the polymerizable material 34 (e.g., 3 centipoise to 100 centipoise) provides resistance to the free lateral flow of the polymerizable material 34.

空間分布也與分散可聚合材料34及可聚合材料34暴露至能量(例如UV暴露)之間的時間間隔相關聯。例如,可聚合材料34分散及可聚合材料34暴露至能量之間的充分時間可以是足夠的長以讓可聚合材料34小液滴形成相連膜,但卻是足夠的短使得橫向流體流動顯著地降低。充分的時間間隔可介於幾秒至幾分鐘之間。The spatial distribution is also associated with the time interval between exposure of the polymerizable material 34 and the polymerizable material 34 to exposure to energy (eg, UV exposure). For example, a sufficient time for the polymerizable material 34 to be dispersed and the polymerizable material 34 to be exposed to energy may be sufficiently long to allow droplets of the polymerizable material 34 to form a connected film, but is sufficiently short that the lateral fluid flow is significant reduce. A sufficient time interval can range from a few seconds to a few minutes.

樣板18的硬度(例如厚度及/或材料性質)也與可聚合材料34的空間分布相關聯。例如,硬度應該足夠地高以使可聚合材料34個別小液滴的變形降到最低以提供相連膜的形成,然而應該足夠地低以快速吻合可聚合材料34的分布及膜層60a表面74的低空間頻率形狀。適合的硬度介於0.25mm至2mm之間。The hardness (e.g., thickness and/or material properties) of the template 18 is also associated with the spatial distribution of the polymerizable material 34. For example, the hardness should be sufficiently high to minimize deformation of the individual droplets of polymerizable material 34 to provide for the formation of a joined film, but should be sufficiently low to quickly conform to the distribution of polymerizable material 34 and surface 74 of film layer 60a. Low spatial frequency shape. A suitable hardness is between 0.25 mm and 2 mm.

適應性奈米形貌刻蝕技術也可彌補各種寄生效應112。寄生效應會影響所得之第二表面76的形狀,且可包括但不限於圖案密度變化、長範圍晶圓形貌、蝕刻不一致、拋光不一致、材料移除速率、體積減縮、蒸發等等。例如,藉由變化可聚合材料34橫過第一表面74的體積可決定液滴圖案86(如第7圖所示)以彌補圖案密度變化。此可聚合材料34體積的變化可基於預先存在的圖案密度變化及/或預估的圖案密度變化。Adaptive nanotopography etching techniques can also compensate for various parasitic effects 112. Parasitic effects can affect the shape of the resulting second surface 76 and can include, but are not limited to, pattern density variations, long range crystal domes, etch inconsistencies, polishing inconsistencies, material removal rates, volume reduction, evaporation, and the like. For example, the droplet pattern 86 (as shown in FIG. 7) can be determined by varying the volume of the polymerizable material 34 across the first surface 74 to compensate for pattern density variations. The change in volume of the polymerizable material 34 can be based on pre-existing pattern density variations and/or predicted pattern density changes.

此外,可以決定散佈於第一表面74上的可聚合材料34體積以提供所欲形狀的圖案層46a。調整體積以提供圖案層46a所欲之形狀可以進一步提供對於第二表面76之表面形貌的奈米刻蝕技術。Additionally, the volume of polymerizable material 34 dispersed on the first surface 74 can be determined to provide the patterned layer 46a of the desired shape. Adjusting the volume to provide the desired shape of the pattern layer 46a may further provide a nanoetching technique for the surface topography of the second surface 76.

適應性奈米形貌刻蝕技術也可彌補蝕刻之寄生效應的非一致性。通常,可聚合材料34可以與材料形成第二表面76之所欲形狀相同的速率而移除。然而,這些過程基於特別移除過程及/或設備(亦即蝕刻表徵)的特性會有不一致的移除速率。不一致的移除會造成第二表面76所欲形狀特性(例如表面平面性)的破壞。特別過程及/或設備的蝕刻表徵可藉由數個試驗決定。一旦決定了蝕刻表徵,可聚合材料34的體積可基於蝕刻表徵而調整。例如,液滴圖案86(如第7圖所示)基於蝕刻表徵而調整以彌補具有相當高蝕刻速率的地帶。The adaptive nanotopography etch technique also compensates for the inconsistency of the parasitic effects of the etch. Generally, the polymerizable material 34 can be removed at the same rate as the desired shape of the material forming the second surface 76. However, these processes have inconsistent removal rates based on the characteristics of the particular removal process and/or equipment (ie, etch characterization). Inconsistent removal can cause damage to the desired shape characteristics (e.g., surface planarity) of the second surface 76. Etching characterization of particular processes and/or equipment can be determined by several experiments. Once the etch characterization is determined, the volume of polymerizable material 34 can be adjusted based on the etch characterization. For example, the drop pattern 86 (as shown in FIG. 7) is adjusted based on the etch characterization to compensate for the zone having a relatively high etch rate.

使用適應性奈米形貌刻蝕技術也可彌補可聚合材料34的體積減縮以提供具有所欲特性(例如平面性)的第二表面76。如上詳述者,可聚合材料34當暴露於能量下時固化。此固化過程會伴隨著可聚合材料34體積的減縮。例如,依據可聚合材料34的組成的不同,減縮可從約5-25%。減縮會依據可於第一表面74上方變化的局部體積而不同,而且會產生固化可聚合材料34膜內的應力。藉由變化液滴圖案86內可聚合材料34的分布可彌補此減縮效應。此外,或取代的是,藉著樣板18的移除及/或變形應力可以被釋除。The volume reduction of the polymerizable material 34 can also be compensated for using an adaptive nanotopography etch technique to provide a second surface 76 having desirable characteristics (e.g., planarity). As detailed above, the polymerizable material 34 cures when exposed to energy. This curing process is accompanied by a reduction in the volume of the polymerizable material 34. For example, depending on the composition of the polymerizable material 34, the reduction can be from about 5-25%. The reduction will vary depending on the local volume that can vary above the first surface 74, and will create stress within the film of the cured polymerizable material 34. This reduction effect can be compensated for by varying the distribution of the polymerizable material 34 within the droplet pattern 86. Additionally or alternatively, the removal and/or deformation stress by the template 18 can be removed.

蒸發係另一個可藉由使用適應性奈米形貌刻蝕技術而彌補的寄生效應。根據組成的不同,可聚合材料34的蒸發速率可以很高。例如,由於接著可聚合材料34沉積之後但壓印之前的蒸發,可能產生可聚合材料34的漏失。靠近第一表面74的邊緣,蒸發通常較高。Evaporation is another parasitic effect that can be compensated for by the use of adaptive nanotopography etching techniques. The evaporation rate of the polymerizable material 34 can be high depending on the composition. For example, leakage of the polymerizable material 34 may result due to subsequent evaporation of the polymerizable material 34 after deposition but prior to imprinting. Near the edge of the first surface 74, evaporation is generally higher.

液滴圖案86中因蒸發之故所預期的體積漏失也可被決定並被彌補以提供具有所欲特性(例如平面性)的第二表面76。例如,為控制溼度、溫度、微粒聚集及類似情狀所維持的氣流會造成不一致的蒸發。此氣流會導致系統性的不一致蒸發。藉由調整液滴圖案86可決定及彌補蒸發表徵以提供具有所欲形狀特性(例如平面性)的第二表面76。The volumetric leakage expected in the droplet pattern 86 due to evaporation can also be determined and compensated to provide a second surface 76 having desired characteristics (e.g., planarity). For example, airflow maintained to control humidity, temperature, particle agglomeration, and the like can cause inconsistent evaporation. This airflow can cause systematic inconsistent evaporation. The evaporation profile can be determined and compensated for by adjusting the droplet pattern 86 to provide a second surface 76 having desired shape characteristics (e.g., planarity).

適應性奈米形貌刻蝕技術也可彌補可聚合材料34的變化。例如,第一可聚合材料及第二可聚合材料可被分散於第一表面74上,且第一可聚合材料與第二可聚合材料不同。第一可聚合材料的移除速率(例如蝕刻速率)可與第二可聚合材料不同。據此,液滴圖案86可被調整以提供第一可聚合材料要被分散的第一體積及第二可聚合材料要被分散的第二體積來將不同移除速率的效應降到最低。The adaptive nanotopography etch technique also compensates for variations in the polymerizable material 34. For example, the first polymerizable material and the second polymerizable material can be dispersed on the first surface 74, and the first polymerizable material is different from the second polymerizable material. The removal rate (e.g., etch rate) of the first polymerizable material can be different than the second polymerizable material. Accordingly, the droplet pattern 86 can be adjusted to provide a first volume of the first polymerizable material to be dispersed and a second volume to which the second polymerizable material is to be dispersed to minimize the effects of different removal rates.

適應性奈米形貌刻蝕技術可被採用以取代物理性拋光的應用,諸如基材拋光、預圖案化基材的拋光、非平坦表面的拋光及非平坦奈米形貌應用與其他下面進一步描述的過程。例如,可使用適應性奈米形貌刻蝕技術以取代基材拋光,諸如,例如在裸矽基材標稱表面的平面化。於移除步驟中,使用適應性奈米形貌刻蝕技術之要被蝕刻的材料可為大型基材材料,其包括但不限於矽、SiO2 、GaAs、InP、藍寶石及/或類似物。Adaptive nanotopography etching techniques can be employed to replace physical polishing applications such as substrate polishing, polishing of pre-patterned substrates, polishing of non-planar surfaces, and application of non-planar nanotopography with other The process of description. For example, an adaptive nanotopography etch technique can be used to replace substrate polishing, such as, for example, planarization of a nominal surface of a bare ruthenium substrate. In the removal step, the material to be etched using the adaptive nanotopography etching technique may be a large substrate material including, but not limited to, germanium, SiO 2 , GaAs, InP, sapphire, and/or the like.

第8圖顯示一種使用適應性奈米形貌刻蝕技術以取代預圖案化基材之拋光的方法120,諸如,例如於圖案層應用中以提供平面化的表面。通常,基於圖案草圖,調整液滴圖案86以產生圖案表面特徵的額外彌補。例如,分散可聚合材料34於第一表面74上可包括預先存在圖案的體積變化。Figure 8 shows a method 120 of using an adaptive nanotopography etch technique to replace the polishing of a pre-patterned substrate, such as, for example, in a patterned layer application to provide a planarized surface. Typically, based on the pattern sketch, the drop pattern 86 is adjusted to create an additional offset of the pattern surface features. For example, dispersing the polymerizable material 34 on the first surface 74 can include a volume change of a pre-existing pattern.

於步驟122中,表面的奈米形貌可被地圖化。例如,第一表面74的奈米形貌可利用Zygo儀器、輪廓儀或類似物而地圖化。於步驟124中,可以決定第一表面74與所欲最終奈米形貌(例如第二表面76)之間的不同以提供液滴圖案86。於步驟126中,可決定寄生效應以調整液滴圖案86。於步驟128中,可使用液滴圖案86來將可聚合材料34置於第一表面74上以提供具有所欲形狀特性的第二表面76。於步驟130中,可放置樣板17以接觸可聚合材料34。於步驟132中,可使用壓印微影術樣板18固化可聚合材料34。於步驟134中,可蝕刻固化的可聚合材料以提供具有所欲形狀特性的第二表面76。In step 122, the nanotopography of the surface can be mapped. For example, the nanotopography of the first surface 74 can be mapped using a Zygo instrument, a profilometer, or the like. In step 124, a difference between the first surface 74 and the desired final nanotopography (e.g., second surface 76) may be determined to provide a droplet pattern 86. In step 126, a parasitic effect can be determined to adjust the drop pattern 86. In step 128, a droplet pattern 86 can be used to place the polymerizable material 34 on the first surface 74 to provide a second surface 76 having the desired shape characteristics. In step 130, a template 17 can be placed to contact the polymerizable material 34. In step 132, the polymerizable material 34 can be cured using an imprint lithography template 18. In step 134, the cured polymerizable material can be etched to provide a second surface 76 having the desired shape characteristics.

於圖案化基材的應用中,於可蝕刻材料(例如SiO2 )中出現圖案可提供1:1回蝕刻(etch back)步驟以將所欲的形狀特性轉送至形成的第二表面76。若圖案出現於無法立即蝕刻的材料(例如銅)中,適應性奈米形貌刻蝕技術,除了蝕刻外或是取代蝕刻,可與另一材料移除方法(例如化學機械拋光)一起使用以提供第二表面76所欲的形狀特性。The second surface 761 is etched back (etch back) to the shape of the step is transferred to the desired properties is formed: the application of the patterned substrate in a pattern in the etchable material 1 may be provided (e.g. 2 SiO) appears in. If the pattern appears in a material that cannot be etched immediately (such as copper), the adaptive nanotopography etch technique can be used in conjunction with another material removal method (such as chemical mechanical polishing) in addition to or instead of etching. The desired shape characteristics of the second surface 76 are provided.

參考第9圖,適應性奈米形貌刻蝕技術可用以就第二表面76產生非平坦的所欲形狀特性。例如,第二表面76可以具有凹面形狀、凸面形狀、球面形狀、非球面形狀、連續週期形狀或任何其他稀奇的形狀。通常,在決定液滴圖案86(如第7圖所示者)上的額外改變(例如演算的調整)可提供第二表面76的變化。例如,第9圖所示的第二表面76可具有大曲率半徑的球形凸面形狀,其中h的範圍可為10 nm至10微米且w的範圍可為1 mm至1000 mm。Referring to Figure 9, an adaptive nanotopography etch technique can be used to produce non-flat, desired shape characteristics with respect to the second surface 76. For example, the second surface 76 can have a concave shape, a convex shape, a spherical shape, an aspherical shape, a continuous periodic shape, or any other unusual shape. In general, additional changes (e.g., adjustments to the calculations) on the decision droplet pattern 86 (as shown in Figure 7) may provide a change in the second surface 76. For example, the second surface 76 shown in FIG. 9 may have a spherical convex shape with a large radius of curvature, where h may range from 10 nm to 10 microns and w may range from 1 mm to 1000 mm.

適應性奈米形貌刻蝕技術也可處理任何自由成形表面(即,非平面表面)之奈米形貌的問題。例如,標稱形狀(亦即,空間波長>20mm的高度變化)會受大量製造過程(例如鑄造、機械加工、研磨及類似過程)的影響,但是於拋光期間通常不受影響。拋光過程具有吻合標稱形狀的能力。傳統的拋光過程通常不影響標稱形狀,但由於圖案密度變化會影響奈米形貌。而且,傳統拋光工具在機械設計上需要重大的改變以適應基材標稱形狀上的改變(例如用於平坦表面CMP的機械設計與用於球形表面CMP的機械設計可能極為不同)。據此,傳統拋光工具只有處理球面/非球面/對稱形狀的問題。然而,適應性奈米形貌刻蝕技術可以處理自由成形表面(諸如,例如第10A-10C圖所示之自由成形表面(例如第一表面74))之奈米形貌變化的問題。如這些圖式顯示者,具有與自由成形之第一表面74互補形狀的壓印微影術樣板18a,與第一表面74相較,也可以被用以提供第二表面76之奈米形貌的變化。The adaptive nanotopography etch technique can also handle the problem of the nanotopography of any freeform surface (i.e., non-planar surface). For example, a nominal shape (i.e., a change in height with a spatial wavelength > 20 mm) can be affected by a number of manufacturing processes (e.g., casting, machining, grinding, and the like), but is generally unaffected during polishing. The polishing process has the ability to match the nominal shape. Conventional polishing processes generally do not affect the nominal shape, but changes in pattern density can affect the nanotopography. Moreover, conventional polishing tools require significant changes in mechanical design to accommodate changes in the nominal shape of the substrate (eg, mechanical designs for flat surface CMP may be very different from mechanical designs for spherical surface CMP). Accordingly, conventional polishing tools only deal with the problem of spherical/aspheric/symmetric shapes. However, the adaptive nanotopography etch technique can address the problem of nanotopography variations of freeform surfaces such as, for example, the freeform surface (e.g., first surface 74) shown in Figures 10A-10C. As shown in these figures, an embossed lithography template 18a having a shape complementary to the freely formed first surface 74 can also be used to provide a nanotopography of the second surface 76 as compared to the first surface 74. The change.

於球面/非球面透鏡的適應性奈米形貌刻蝕技術中,這些成對的透鏡可以被機械削薄。例如,這些成對透鏡可被機械削薄至約500微米的厚度。此球面及/或撓性的材料件可以被用作壓印微影術的樣板18a。就其他自由成形形狀而言,利用所欲互補形狀的鑄造可以製作PDMS樣板。In the adaptive nanotopography etching technique of a spherical/aspheric lens, these pairs of lenses can be mechanically thinned. For example, these pairs of lenses can be mechanically thinned to a thickness of about 500 microns. This spherical and/or flexible piece of material can be used as a template 18a for embossing lithography. For other freeform shapes, PDMS templates can be made using castings of the desired complementary shape.

除此之外,或是用以取代互補形狀的樣板18a(如樣板18),一種加壓的凹洞夾頭可被用於控制樣板18a標稱形狀的半徑。例如,於拋光具有夾頭設計及/或樣板18a幾何形狀所界定之特定標稱形狀的球面/非球面表面時可以使用此製程。In addition to this, or instead of a complementary shaped template 18a (e.g., template 18), a pressurized recessed collet can be used to control the radius of the nominal shape of the template 18a. For example, this process can be used when polishing a spherical/aspherical surface having a specific nominal shape defined by the collet design and/or the geometry of the template 18a.

或者,樣板18a可以被設計為具有由非易碎材料製造的最小厚度。樣板18可隨意地結合至較厚的熔矽石框架上以提供額外的強度。通常,該熔矽石框架可在夾頭與樣板18之間提供一適配器的角色。Alternatively, the template 18a can be designed to have a minimum thickness made from a non-fragile material. The template 18 can be arbitrarily bonded to a thicker fused stone frame to provide additional strength. Typically, the fused stone frame provides an adapter role between the collet and the template 18.

10...系統10. . . system

12...基材12. . . Substrate

14...基材夾頭14. . . Substrate chuck

16...載物台16. . . Stage

18...樣板18. . . Template

18a...樣板18a. . . Template

32...流體分配系統32. . . Fluid distribution system

34...可聚合材料34. . . Polymerizable material

38...能量源38. . . Energy source

40...能量40. . . energy

42...路徑42. . . path

44...基材表面44. . . Substrate surface

20...台面/模件20. . . Countertop/module

22...圖案化表面twenty two. . . Patterned surface

24...凹處twenty four. . . Recess

26...突起26. . . Protrusion

28...樣板夾頭28. . . Sample chuck

30...壓印頭30. . . Imprint head

46...圖案層46. . . Pattern layer

46a...圖案層46a. . . Pattern layer

48...殘留層48. . . Residual layer

50...突起50. . . Protrusion

52...凹處52. . . Recess

54...處理器54. . . processor

56...記憶體56. . . Memory

60a...膜層60a. . . Film layer

62...下方基材62. . . Substrate

62a...基材62a. . . Substrate

64...表面特徵64. . . Surface feature

64a...表面特徵64a. . . Surface feature

66...局部形貌平面性變異66. . . Local topography

68...球狀形貌平面性變異68. . . Spherical morphology

72...表面72. . . surface

74...第一表面74. . . First surface

76...第二表面76. . . Second surface

80...開始形貌地圖80. . . Start shape map

82...校正地圖82. . . Correction map

84...表面特徵密度地圖84. . . Surface feature density map

86...液滴圖案86. . . Droplet pattern

100,102,104,106...步驟100,102,104,106. . . step

108,110,112...步驟108,110,112. . . step

120...方法120. . . method

122,124,126,128...步驟122,124,126,128. . . step

130,132,134...步驟130,132,134. . . step

第1圖顯示依據本發明一實施例之壓印微影系統的簡化側視圖。1 shows a simplified side view of an imprint lithography system in accordance with an embodiment of the present invention.

第2圖顯示第1圖所示之具有圖案層置於其間之基材的簡化側視圖。Figure 2 shows a simplified side view of the substrate with the patterned layer placed therebetween as shown in Figure 1.

第3圖顯示由於下方基材而造成之多數膜層之形貌變化的簡化側視圖。Figure 3 shows a simplified side view of the topographical changes of most of the layers due to the underlying substrate.

第4A圖及第4B圖各自顯示局部形貌平面性變異及球狀形貌平面性變異的簡化側視圖。Figures 4A and 4B each show a simplified side view of the planarity variation of the local topography and the planarity variation of the spherical morphology.

第5A-5D圖顯示使用適應性奈米形貌刻蝕技術形成具有所欲形狀特性之表面的簡化側視圖。5A-5D show a simplified side view of a surface having the desired shape characteristics using an adaptive nanotopography etch technique.

第6圖顯示使用適應性奈米形貌刻蝕技術形成具有所欲形狀特性表面之方法之一實施例的流程圖。Figure 6 shows a flow diagram of one embodiment of a method of forming a surface having a desired shape characteristic using an adaptive nanotopography etching technique.

第7圖顯示提供用於適應性奈米形貌刻蝕技術之一液滴圖案之地圖化過程之一實施例的流程圖。Figure 7 shows a flow diagram of one embodiment of a mapping process that provides a droplet pattern for one of the adaptive nanotopography etching techniques.

第8圖顯示用於預拋光基材表面之方法之一實施例的流程圖。Figure 8 shows a flow diagram of one embodiment of a method for pre-polishing a substrate surface.

第9圖顯示具有非平坦所欲形狀特性之表面的簡化側視圖。Figure 9 shows a simplified side view of a surface having non-flat, desired shape characteristics.

第10A-10C圖顯示形成具有非平坦所欲形狀特性之表面的簡化側視圖。Figures 10A-10C show simplified side views of the surface forming features having non-flat, desired shapes.

10...系統10. . . system

12...基材12. . . Substrate

14...基材夾頭14. . . Substrate chuck

16...載物台16. . . Stage

18...樣板18. . . Template

20...台面/模件20. . . Countertop/module

22...表面twenty two. . . surface

24...凹處twenty four. . . Recess

26...突起26. . . Protrusion

28...夾頭28. . . Chuck

30...壓印頭30. . . Imprint head

32...流體分配系統32. . . Fluid distribution system

34...可聚合材料34. . . Polymerizable material

38...能量源38. . . Energy source

40...能量40. . . energy

42...路徑42. . . path

44...表面44. . . surface

54...處理器54. . . processor

56...記憶體56. . . Memory

Claims (20)

一種使用一壓印微影術系統形成具有所欲形狀特性之一表面的方法,包括:決定一第一表面的奈米形貌(nanotopography);決定一第二表面的所欲形狀特性;評估該第一表面的該奈米形貌及該第二表面的該所欲形狀特性以提供一液滴圖案;依據該液滴圖案將可聚合材料置於一樣板及該第一表面之間;使該樣板接觸該可聚合材料;固化該可聚合材料;蝕刻該可聚合材料以提供具有該所欲形狀特性的該第二表面。 A method of forming a surface having a desired shape characteristic using an embossing lithography system, comprising: determining a nanotopography of a first surface; determining a desired shape characteristic of a second surface; evaluating the The nanotopography of the first surface and the desired shape characteristic of the second surface to provide a droplet pattern; the polymerizable material is placed between the same panel and the first surface in accordance with the droplet pattern; A template contacts the polymerizable material; the polymerizable material is cured; the polymerizable material is etched to provide the second surface having the desired shape characteristics. 如申請專利範圍第1項的方法,更包括決定至少一寄生效應(parasitic effect)及調整該液滴圖案以彌補該寄生效應。 The method of claim 1, further comprising determining at least one parasitic effect and adjusting the droplet pattern to compensate for the parasitic effect. 如申請專利範圍第2項的方法,其中該寄生效應係該可聚合材料的蒸發。 The method of claim 2, wherein the parasitic effect is evaporation of the polymerizable material. 如申請專利範圍第2項的方法,其中該寄生效應係圖案密度的變化。 The method of claim 2, wherein the parasitic effect is a change in pattern density. 如申請專利範圍第2項的方法,其中該寄生效應係蝕刻的不一致性。 The method of claim 2, wherein the parasitic effect is an inconsistency in etching. 如申請專利範圍第2項的方法,其中該寄生效應係拋光的不一致性。 The method of claim 2, wherein the parasitic effect is an inconsistency in polishing. 如申請專利範圍第2項的方法,其中該寄生效應係體積減縮。 The method of claim 2, wherein the parasitic effect is reduced in volume. 如申請專利範圍第1項的方法,其中蝕刻該可聚合材料係改變該第一表面的該奈米形貌及粗糙度。 The method of claim 1, wherein etching the polymerizable material changes the nanotopography and roughness of the first surface. 如申請專利範圍第1項的方法,其中該第二表面的該所欲形狀特性係平面的。 The method of claim 1, wherein the desired shape characteristic of the second surface is planar. 如申請專利範圍第1項的方法,其中該第二表面的該所欲形狀特性係非平面的。 The method of claim 1, wherein the desired shape characteristic of the second surface is non-planar. 如申請專利範圍第1項的方法,其中依據該液滴圖案將可聚合材料置放於一樣板及該第一表面之間更包括:置放具有一第一蝕刻速率的一第一可聚合材料及置放具有一第二蝕刻速率的一第二可聚合材料;及調整該液滴圖案以彌補該第一蝕刻速率及該第二蝕刻速率。 The method of claim 1, wherein placing the polymerizable material between the same plate and the first surface according to the droplet pattern further comprises: placing a first polymerizable material having a first etching rate And placing a second polymerizable material having a second etch rate; and adjusting the droplet pattern to compensate for the first etch rate and the second etch rate. 如申請專利範圍第11項的方法,其中該第一蝕刻速率及該第二蝕刻速率係不同的。 The method of claim 11, wherein the first etch rate and the second etch rate are different. 如申請專利範圍第1項的方法,其中評估該第一表面的該奈米形貌及該第二表面的該所欲形狀特性以提供該液滴圖案更包括:評估該第一表面的該奈米形貌及該第二表面的該所欲形狀特性之間的不同以提供一高度校正地圖;基於該高度校正地圖提供一密度地圖;及利用該密度地圖以決定該液滴圖案。 The method of claim 1, wherein the evaluation of the nanotopography of the first surface and the desired shape characteristic of the second surface to provide the droplet pattern further comprises: evaluating the nano surface of the first surface A difference between the meter topography and the desired shape characteristic of the second surface to provide a height correction map; providing a density map based on the height correction map; and utilizing the density map to determine the drop pattern. 一種使用一壓印微影術系統形成具有所欲奈米形貌 (nanotopography)之一表面的方法,包括:決定一表面的奈米形貌;評估該表面的該奈米形貌以決定該表面的該奈米形貌與一所欲的奈米形貌相較之下的高度校正;基於該表面的該奈米形貌與該所欲的奈米形貌相較之下的該高度校正提供一密度地圖;基於該密度地圖決定一液滴圖案;依據該液滴圖案將可聚合材料置放於一壓印微影術樣板及該表面之間;使該樣板接觸該可聚合材料;固化該可聚合材料;蝕刻該可聚合材料以提供具有該所欲奈米形貌的該表面。 An embossing lithography system for forming a desired nanotopography (nanotopography) a surface method comprising: determining a nanotopography of a surface; evaluating the nanotopography of the surface to determine the nanotopography of the surface compared to a desired nanotopography Height correction; providing a density map based on the height correction of the nanotopography of the surface compared to the desired nanotopography; determining a droplet pattern based on the density map; a droplet pattern placing the polymerizable material between an imprint lithography template and the surface; contacting the template with the polymerizable material; curing the polymerizable material; etching the polymerizable material to provide the desired nanometer The surface of the topography. 如申請專利範圍第14項的方法,更包括決定至少一寄生效應及調整該液滴圖案以彌補該寄生效應。 The method of claim 14, further comprising determining at least one parasitic effect and adjusting the droplet pattern to compensate for the parasitic effect. 如申請專利範圍第14項的方法,其中該所欲奈米形貌係平面的。 The method of claim 14, wherein the desired nanotopography is planar. 如申請專利範圍第14項的方法,其中該表面係非平面的且蝕刻該可聚合材料提供該表面該平面形貌,同時維持該標稱的非平面表面。 The method of claim 14, wherein the surface is non-planar and etching the polymerizable material provides the planar topography of the surface while maintaining the nominal non-planar surface. 一種使用一壓印微影術系統形成一平面表面的方法,包括:決定一表面的奈米形貌;評估該表面的該奈米形貌以決定一液滴圖案來提 供用於具有一第一蝕刻速率之一第一可聚合材料及具有一第二蝕刻速率之一第二可聚合材料的該平面表面;依據該液滴圖案置放該第一可聚合材料及該第二可聚合材料於一壓印微影術樣板及該表面之間;使該樣板接觸該第一可聚合材料及該第二可聚合材料的至少一者;固化該第一可聚合材料及該第二可聚合材料的至少一者;蝕刻該第一可聚合材料及該第二可聚合材料的至少一者以提供該平面表面。 A method of forming a planar surface using an embossing lithography system, comprising: determining a nanotopography of a surface; evaluating the nanotopography of the surface to determine a droplet pattern to Providing the planar surface for a first polymerizable material having a first etch rate and a second polymerizable material having a second etch rate; placing the first polymerizable material and the first according to the droplet pattern a second polymerizable material between an imprint lithography template and the surface; contacting the template with at least one of the first polymerizable material and the second polymerizable material; curing the first polymerizable material and the first At least one of two polymerizable materials; etching at least one of the first polymerizable material and the second polymerizable material to provide the planar surface. 如申請專利範圍第18項的方法,更包括決定至少一寄生效應及調整該液滴圖案以彌補該寄生效應。 The method of claim 18, further comprising determining at least one parasitic effect and adjusting the droplet pattern to compensate for the parasitic effect. 如申請專利範圍第18項的方法,其中評估該表面的該奈米形貌以決定一液滴圖案更包括:評估該表面的該奈米形貌以決定該表面的該奈米形貌與要被形成的該平面表面相較之下的高度校正;基於該高度校正提供一密度地圖;及基於該密度地圖決定該液滴圖案。The method of claim 18, wherein the evaluating the nanotopography of the surface to determine a droplet pattern further comprises: evaluating the nanotopography of the surface to determine the nanotopography of the surface a height correction of the planar surface being formed; providing a density map based on the height correction; and determining the droplet pattern based on the density map.
TW98119027A 2008-06-09 2009-06-08 Adaptive nanotopography sculpting TWI423306B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US6000708P 2008-06-09 2008-06-09

Publications (2)

Publication Number Publication Date
TW201003738A TW201003738A (en) 2010-01-16
TWI423306B true TWI423306B (en) 2014-01-11

Family

ID=44825681

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98119027A TWI423306B (en) 2008-06-09 2009-06-08 Adaptive nanotopography sculpting

Country Status (1)

Country Link
TW (1) TWI423306B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202106326PA (en) * 2018-12-13 2021-07-29 Univ Texas System and method for modification of substrates

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736424A (en) * 1987-02-27 1998-04-07 Lucent Technologies Inc. Device fabrication involving planarization
US20030164949A1 (en) * 2002-03-01 2003-09-04 The Regents Of The University Of California Correction of localized shape errors on optical surfaces by altering the localized density of surface or near-surface layers
US20040090478A1 (en) * 2002-11-07 2004-05-13 Pitney Bowes Incorporated Contour correcting printer
US20050270312A1 (en) * 2004-06-03 2005-12-08 Molecular Imprints, Inc. Fluid dispensing and drop-on-demand dispensing for nano-scale manufacturing
US20060035464A1 (en) * 2004-08-13 2006-02-16 Molecular Imprints, Inc. Method of planarizing a semiconductor substrate
US20070015365A1 (en) * 2005-07-14 2007-01-18 Taiwan Semiconductor Manufacturing Co., Ltd. Method and apparatus for enhanced CMP planarization using surrounded dummy design
US20070228593A1 (en) * 2006-04-03 2007-10-04 Molecular Imprints, Inc. Residual Layer Thickness Measurement and Correction

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5736424A (en) * 1987-02-27 1998-04-07 Lucent Technologies Inc. Device fabrication involving planarization
US20030164949A1 (en) * 2002-03-01 2003-09-04 The Regents Of The University Of California Correction of localized shape errors on optical surfaces by altering the localized density of surface or near-surface layers
US20040090478A1 (en) * 2002-11-07 2004-05-13 Pitney Bowes Incorporated Contour correcting printer
US20050270312A1 (en) * 2004-06-03 2005-12-08 Molecular Imprints, Inc. Fluid dispensing and drop-on-demand dispensing for nano-scale manufacturing
US20060035464A1 (en) * 2004-08-13 2006-02-16 Molecular Imprints, Inc. Method of planarizing a semiconductor substrate
US20070015365A1 (en) * 2005-07-14 2007-01-18 Taiwan Semiconductor Manufacturing Co., Ltd. Method and apparatus for enhanced CMP planarization using surrounded dummy design
US20070228593A1 (en) * 2006-04-03 2007-10-04 Molecular Imprints, Inc. Residual Layer Thickness Measurement and Correction

Also Published As

Publication number Publication date
TW201003738A (en) 2010-01-16

Similar Documents

Publication Publication Date Title
US8394282B2 (en) Adaptive nanotopography sculpting
TWI295227B (en) Step and repeat imprint lithography process
US7077992B2 (en) Step and repeat imprint lithography processes
US6932934B2 (en) Formation of discontinuous films during an imprint lithography process
US6908861B2 (en) Method for imprint lithography using an electric field
US7279113B2 (en) Method of forming a compliant template for UV imprinting
US6900881B2 (en) Step and repeat imprint lithography systems
US10580659B2 (en) Planarization process and apparatus
TWI750446B (en) Superstrate and a method of using the same
JP5935453B2 (en) Substrate manufacturing method and nanoimprint lithography template manufacturing method
JP2012506635A (en) Calibration of fluid dispensing equipment
US11776840B2 (en) Superstrate chuck, method of use, and method of manufacturing an article
TWI538011B (en) High contrast alignment marks through multiple stage imprinting
TWI817064B (en) Planarization apparatus, planarization method, and method of manufacturing an article
TWI423306B (en) Adaptive nanotopography sculpting
TW201833026A (en) System and method for adjusting a position of a template
TWI724383B (en) Apparatus for use in forming an adaptive layer, method of forming an adaptive layer and method of forming layers on a first substrate
US20100009541A1 (en) Process for Adjusting the Size and Shape of Nanostructures
Sreenivasan et al. Adaptive nanotopography sculpting
US20230373065A1 (en) Planarization process, apparatus and method of manufacturing an article