201003738 六、發明說明: 【考务明戶斤屬才支斗标冷頁3 相關申請案的交互參考 本申請案主張申請於2008年6月9曰之美國臨時申請案 第61/060,007號在35 U.S.C.§119(e)(l)規定下的利益,該許 時申請案併入此處作為參考。 本發明係有關於適應性奈米形貌刻蝕技術。201003738 VI. Description of the invention: [Calculation of the stipulations of the stipulations of the stipulations of the stipulations of the stipulations of the stipulations of the application. The benefit under USC § 119(e)(l) is hereby incorporated by reference. The present invention relates to adaptive nanotopography etching techniques.
L· jgtr U 背景資訊 奈米製造包括非常微小構造(例如具有1 〇〇奈米咬更^ 等級的表面特微)也製诰。奋来f i告產生相當_ 一個應用領域為積體電路的加工。當半導體加工工業繼銬 致力於更大的產率,同時增加形成在基材上之每單位面積 的電路時’奈米製造因而變得更形重要。奈米製造提供更 好的製程控制,同時減少形成構造之最小特徵的尺寸。使 用奈米製造之其他正在發展的領域包括生物技術、光學技 術、機械系統等等。 今曰使用之例示奈米製造技術通常稱作壓印微影術。 例示之壓印微影術製程被詳細描述於數個公開刊物中,諸 如美國專利公開案第2004/0065976號,美國專利公開案第 2004/0065252號’與美國專利第6,936,194號’其等全部内 容併入此處作為參考。 各個上述美國專利公開案及專利揭露的壓印微影技術 包括於可成形層(可聚合的)中形成凸紋圖案及將對應凸紋 201003738 圖案的圖案轉換進入下方基材内。基材可被耦合於移動载 物台上以獲得所要的定位來便利圖案化製程。圖案化製程 使用與基材空間上分離的樣板’而且施加可成形液體於樣 板與基材之間。固化可成形液體以形成具有圖案的堅硬 層’該圖案與接觸可成形液體之樣板表面的形狀相符合。 固化後’樣板與堅硬層分離使得樣板與基材空間上分離。 然後基材及堅硬層進行額外的加工以將凸紋影像轉換進入 對應堅硬層中圖案的基材中。 使用壓印微影術的加工技術依賴實質平面下方基材戋 實質平面下方層的存在。例如,於層層堆疊半導體裝置穿 造期間,製造的可信度及容易度依賴實質平面基材的形貌。 於半導體製造的内容中,術語,,平面化,,廣泛地用以描 述兩種製程:材料沉積製程之後的晶圓表面形貌改良(例 ,’層間介電質(ILD)的平面化);或移除沉積膜以提供凹陷 區域内的材料(例如淺溝槽隔離(STI)、鑲嵌製裎等等) 已經發展出各種平面化方法包括熱及回流技術、玻璃 上旋轉(SOG)製程及類似方法。然而,由現行方法所得到的 平面私度可能係受限制的。例如,通常使用的平面化技货 之,化學機械製造技術(CMP),通常依賴基於材料囷案密 =料移除逮率。高圖案密度的地帶比低圖案密:的: ▼八有更多的接觸面積。這可導致在低圖案密度地嫌必項 施加更多的壓力,如此使得在低密度地帶内具有車α 一的材 料移除速率。低密度地帶首先被平面化,紗 宗,、、、傻*材料以固 疋迷率移除後,高密度地帶獲得局部平面化。^ %會在高密 201003738 度與低密度㈣之間形成類似_的結構,並於平面化膜 之内提供長範圍的厚度變化。防丨的技術,諸如仿填充與 圖案阻抗,细於減少圖案密度的變化。然而,此等技術 增加平面化製程的複雜度。 可以取代CMP的接觸平面化提供以可光固化材料旋轉 塗後的基材’且預烘烤以除去殘留溶劑。超平坦表面可被 按壓在旋轉塗覆晶圓上以強迫#_流,且可㈣壓力來 均勻地分布㈣來達成平面化。㈣,平面化的品質會被 圖案密度變化㈣。旋難覆—岐為可在紐上形成均 句的流體料。如此,具有錢變化的區域—般將具有相 同的流體分布。當材料以超平垣表面按壓時,材料容易從 特徵密度地帶流至低表面密度地帶。由㈣料的高 ;= 或來自超平坦表面及基材間形成之細溝的材料 =:::_回流。此外,超平坦表面與基材_ :二二膜内的抗拉應力。當超平坦表面移除 "應力會釋放因而導致表面平面性的破壞。 = ’cp通常不會造成表面特徵密度的大幅變化。例 能回密度的底模中具有廣大的地帶,則材料不 通常益法解’因而可能影響球狀平面性。此外,CP == 材及/或超平坦表面之表㈣_不同。例 千坦表面對著基材按壓時,在它們之間的材料厚 二二產生變化。使用非常厚的材料膜會改善流體的流 '、⑽將相同的平面性轉送至基材,這是因為 後續材料移除製程(例如_、拋光等等)的非—致性對於較 5 201003738 厚的膜會非常地顯著。 t發明内容3 依據本發明之一實施例,係特地提出一種使用壓印微 影術系統形成具有所欲形狀特性之表面的方法,包括:決 定一第一表面的奈米形貌;決定一第二表面的所欲形狀特 性;評估該第一表面的奈米形貌及該第二表面的所欲形狀 特性以提供一液滴圖案;依據該液滴圖案將可聚合材料置 於一樣板及該第一表面之間;使該樣板接觸該可聚合材料; 固化該可聚合材料;蝕刻該可聚合材料以提供具有該所欲 形狀特性的第二表面。 依據本發明之另一實施例,係特地提出一種使用壓印 微影術系統形成具有所欲奈米形貌之表面的方法,包括: 決定一表面的奈米形貌;評估該表面的奈米形貌以決定該 表面的奈米形貌與一所欲的奈米形貌相較之下的高度校 正;基於該表面的奈米形貌與該所欲的奈米形貌相較之下 的高度校正提供一密度地圖;基於該密度地圖決定一液滴 圖案;依據該液滴圖案將可聚合材料置於壓印微影術樣板 及該表面之間;使該樣板接觸該可聚合材料;固化該可聚 合材料;蝕刻該可聚合材料以提供具有該所欲奈米形貌的 表面。 依據本發明之又一實施例,係特地提出一種使用壓印 微影術系統形成平面表面的方法,包括:決定一表面的奈 米形貌;評估該表面的奈米形貌以決定一液滴圖案來提供 用於具有第一蝕刻速率之第一可聚合材料及具有第二蝕刻 201003738 速率之第二可聚合材料的該平面表面;依據該液滴圖案置 放該第一可聚合材料及該第二可聚合材料於一壓印微影術 樣板及該表面之間;使該樣板接觸該第一可聚合材料及該 第二可聚合材料的至少一者;固化該第一可聚合材料及該 第二可聚合材料的至少一者;蝕刻該第一可聚合材料及該 第二可聚合材料的至少一者以提供該平面表面。 圖式簡單說明 為了更詳細地了解本發明,參考附隨圖式所顯示的實 施例提供對於本發明實施例的描述。然而,應注意的是附 隨圖式僅顯示本發明的典型實施例,所以不應被認為係對 本發明範圍的限制。 第1圖顯示依據本發明一實施例之壓印微影系統的簡 化側視圖。 第2圖顯示第1圖所示之具有圖案層置於其間之基材的 簡化側視圖。 第3圖顯示由於下方基材而造成之多數膜層之形貌變 化的簡化側視圖。 第4A圖及第4B圖各自顯示局部形貌平面性變異及球 狀形貌平面性變異的簡化侧視圖。 第5A-5D圖顯示使用適應性奈米形貌刻蝕技術形成具 有所欲形狀特性之表面的簡化側視圖。 第6圖顯示使用適應性奈米形貌刻蝕技術形成具有所 欲形狀特性表面之方法之一實施例的流程圖。 第7圖顯示提供用於適應性奈米形貌刻蝕技術之一液 201003738 滴圖案之地圖化過程之一實施例的流程圖。 第8圖顯示用於預拋光基材表面之方法之—實施例的 流程圖。 第9圖顯示具有非平坦所欲形狀特性之表面的簡化側 視圖。 第10A-10C圖顯示形成具有非平垣所欲形狀特性之表 面的簡化側視圖。 I:實施方式3 詳細說明 參考圖式,特別是第1圖,其顯示用於在基材12上形成 凸紋圖案的微影系統10。基材12可_合至基材夾頭14。如 所示者,基材夾頭14為一真空夾頭,然而,基材夾頭14可 為任何夾頭’其包括但不限於真空、針型、溝型、靜電或 電磁夾頭及/或類似物,例示夾頭描述於美國專利第 6,873,〇87號,其併入此處作為參考。 基材12及基材夾頭14可被支撐於载物台16上。載物台 16可提供關於x、y軸及z軸的移動。载物台16、基材12及基 材夾頭14可被定位於基底(未圖示)上。 基材12與樣板18空間上分離。樣板18可包括從樣板18 朝向基材12延伸的台面20,台面20上具有圖案化的表面 22。更且,台面20可被稱作模件20。或者,樣板18可以不 需台面20。 樣板18及/或模件20可由下述材料形成,其等包括但不 限於熔矽石、石英、矽、有機聚合物、矽氧烷聚合物、硼 8 201003738 石夕酸玻璃、氣碳聚合物、金屬、硬化藍寶石及/或類似物。 如所示者,雖然圖案化表面22包括由數個空間上分離之凹 處24與^26界定之表面特徵,然而本發明實施例不限於 此種構形。圖案化表φ22可以界定構成要獅狀基材η 上之圖案基礎的任何原始圖案。 樣板18可1¾ s至夾頭28。夾頭28可構形為,但不限於, 真工針5L /冓!_、靜電或電磁及/或其他類似的夾頭型式。 例示之夾頭進一步描述於美國專利第6,873,087號,其併入 此處作為參考。更且,夾頭28可耗合至壓印頭3G,使得炎 頭28及/或壓印頭30可構形成便利樣板丨8的移動。 系統10可更包括—流體分配系統32。流體分配系統32 可被用以將可聚合材料34沉積於基材12上。可聚合材料34 可使用下述技術諸如液滴分配、旋轉塗覆、浸潰塗覆、化 學蒸氣沉積(CVD)、物理蒸氣沉積(PVD)、薄膜沉積、厚膜 沉積及/或相似方式而被置於基材12上。依據設計上的考 量,在所欲體積被界定於模件2〇及基材12之間之前或之 後’可聚合材料34可被沉積於基材12上。可聚合材料34可 包括單體混合物,如描述於美國專利第7,157,036號及美國 專利公開案第2005/0187339號者,其等全部併入此處作為 參考。 參考第1及2圖,系統1〇更包括沿著路徑42耦合至直接 能量40的一能量源38 ^壓印頭3〇與載物台16被構形為將樣 板18及基材12置於與路徑42重疊的位置。系統1〇可被處理 器54調控以與載物台16、壓印頭3〇、流體分配系統32及/或 201003738 源3 8溝通 作。 且依儲存於記憶體56中 之電腦可讀取程式而運 [印碩3G或載物台16任—者或兩者可變化模件盘基 材12之間的距離以界定其間可為可聚合材料34填滿的;: 體積。例如壓印聊可施力至樣板18使賴㈣接觸可聚 合在所欲體積以可聚合材料34填滿之後,源财 生月b里4G ’如寬帶紫外隸射,使得可聚合材料%固化及/ 歧聯以符合基材12表面44的形狀並圖案化表面22,且界 疋基材12上的圖案層46。圖案層46包括殘留層48與數個如 突起50與凹處52所示之表面特徵,而且突起%具有厚度^ 及殘留層具有厚度t2。 上述系統及製程可進一步使用於美國專利第6,932,934 號美國專利公開案第2004/0124566號、美國專利公開案 第2004/0188381號與美國專利公開案第2004/0211754號(其 等併入此處作為參考)中所描述的壓印微影製程與系統。 參考第3圖,材料沉積製程通常提供維持與下方基材62 相同形貌的材料膜層6〇。隨著膜層6〇數目的增加,表面特 徵64的階梯高度沾會增加至所得的階梯高度hR1,然後進一 步增加至所得的階梯高度hR2,如第3圖所示。此種增加會 導致形貌的變化。 大的形貌變化會阻礙製造過程及/或造成信賴性的問 題。例如,在半導體加工中,為了將大的形貌變化降到最 小’晶圓被抛光以改善表面平面性。粗糙度、位前(site front) 二次表面形貌與球狀背板指示範圍(GBIR)係用於定量低、 10 201003738 中及大型空間波長中之表面形貌的測量方式。用於9〇 nm交 點製造的典型300 mm頂級晶圓具有少於1 nm的粗糙度、約 90 nm的SFQR及2微米的GBIR。比較上,75 mm頂級晶圓具 有少於5 nm的粗糙度、1〇〇〇 nm的SFQR及10微米的GBIR。 然而’為了滿足嚴格的平面性需求,晶圓會進行數次拋光 步驟,這通常會增加成本。此外,小尺寸晶圓,以及其他 材料晶圓,通常無法滿足嚴格平面性需求,而且因此通常 無法用於製造具有次微米表面特徵的裝置。 第4A圖及第4B圖顯示局部形貌平面性變異66及球狀 形貌平面性變異68,諸如那些在半導體製造期間所見者。 當沉積材料符合反映下方表面變化的下方表面特徵時,會 產生局部形貌平面性變異66。這些變異66可具有相同的尺 度等級(例如表面特徵高度)及/或可具有低空間波長。 如第4B圖所示’球狀形貌平面性變異砧可為較大尺度 及具有底模大小等級的空間波長。在下方圖案密度具有重 大變化的地帶上方可觀察到球狀形貌平面性變異68。雖然 26x33mm大小的圖案化領域可讓整個領域同時暴露以進行 圖案化,但疋由於整個晶圓表面形貌(例如厚度變化)之故會 存在有大的形貌變化’如與目標圖案地帶相反者。此大的 形貌變化可在晶圓直徑的等級。 田於二間波長領域中分析時,表面的高度變化可被歸 類為二個組份:標稱形狀(空間波長的高度變化>2〇mm)、 奈米形貌(空間波長的高度變化在G 2_2G咖之間)及表面粗 糙度(空間波長的高度變化<(Umm)。適應性奈米形貌刻飯 201003738 技術,如此處所描述者,可被用於改變奈米形貌。此外, 適應性奈米形貌刻蚀技術,如此處所描述者,可被用於改 變粗糙度。例如,適應性奈米形貌刻蝕技術可改變基材(例 如裸矽晶圓)、具有次微米表面特徵基材及相似物的表面粗 糙度。應注意的是,適應性奈米形貌刻蝕技術可被用於改 變奈米形貌及/或粗糙度而不致改變表面的標稱形狀。 參考第5 A - 5 D圖,適應性奈米形貌刻蝕技術可用於奈米 刻蝕技術且適應地使奈米形貌變異(如局部及/或球狀形貌 平面性變異)降至最小。奈米刻蝕技術由第一表面%開始, 且藉由沉積與蝕刻回適當深度,提供所欲表面形貌(例如平 面)的第二表面76。 利用第1圖所示及此處所描述的微影系統1〇,適應性奈 米形貌刻蝕技術製程可適用於變化表面7 4上的圖案密度。 ί考弟5B圖,可t合材料34可沉積於膜層6〇a(例如3丨〇2)的 第一表面74上。利用此處所述之液滴分散器可將可聚合材 料34定位於第一表面74上,如此各種數量的可聚合材料% 可被定位於第一表面74上的特定位置。 通常,變化樣板18及第一表面74之間的距離以界定其 間可聚合材料34填充的所欲體積。樣板18可包括具有實質 平坦之圖案化表面22的模件20。施力於樣板18使得樣板18 接觸可聚合材料34,引發可聚合材料34形成實質相連的犋 且實質填充所欲的體積。再者,可利用毛細力以分散可聚 合材料34來形成薄膜。在所欲體積以可聚合材料34填滿之 後,可聚合材料34可被固化以界定含有表面78的圖案層 12 201003738 46a ’圖案層46碰由厚度t3界定。然後使用移除製程(例如 蝕刻、拋光、CMP等等)來轉送圖案層46表面以提供具有所 欲表面形貌的第二表面76。 將材料(例如可聚合材料3 4)沉積於第一表面7 4上可達 成第一表面76所欲的表面形貌。此外,材料的沉積可彌補 各種過程中的寄生效應(例如減少所欲表面形貌等級的影 響,包括但不限於,圖案密度變化、長範圍的晶圓形貌、 蝕刻不-致、拋光不—致、CMP不一致、$ —致的材料移 除速率、體積減縮、蒸發等等)。L· jgtr U Background Information Nano-manufacturing includes very small structures (for example, surface features with a level of 1 〇〇 nanobite). Fenyi f y sings quite a _ an application area for the processing of integrated circuits. As the semiconductor processing industry continues to focus on greater yields while increasing the number of circuits per unit area formed on the substrate, nano fabrication has become more important. Nanofabrication provides better process control while reducing the size of the smallest features that form the structure. Other emerging areas of manufacturing using nanotechnology include biotechnology, optical technology, mechanical systems, and the like. The instant nanofabrication technique used today is commonly referred to as imprint lithography. The exemplified embossing lithography process is described in detail in several publications, such as U.S. Patent Publication No. 2004/0065976, U.S. Patent Publication No. 2004/0065252, and U.S. Patent No. 6,936,194. This is incorporated herein by reference. The embossing lithography techniques disclosed in each of the above U.S. Patent Publications and Patents include forming a relief pattern in a formable layer (polymerizable) and converting a pattern of a corresponding relief 201003738 pattern into the underlying substrate. The substrate can be coupled to a moving stage to achieve the desired positioning to facilitate the patterning process. The patterning process uses a template that is spatially separated from the substrate and applies a formable liquid between the template and the substrate. The formable liquid is cured to form a patterned hard layer. The pattern conforms to the shape of the surface of the template that contacts the formable liquid. After curing, the sample is separated from the hard layer to spatially separate the template from the substrate. The substrate and hard layer are then subjected to additional processing to convert the relief image into the substrate corresponding to the pattern in the hard layer. Processing techniques using embossing lithography rely on the presence of a layer below the substrate in the substantial plane below the substantial plane. For example, during fabrication of a stacked semiconductor device, the reliability and ease of fabrication depend on the topography of the substantially planar substrate. In the content of semiconductor fabrication, the term, planarization, is widely used to describe two processes: wafer surface topography improvement after material deposition process (eg, 'interlayer dielectric (ILD) planarization); Or removing deposited films to provide material within the recessed regions (eg, shallow trench isolation (STI), damascene, etc.) various planarization methods have been developed including thermal and reflow techniques, glass on-wave (SOG) processes, and the like. method. However, the degree of privateness obtained by current methods may be limited. For example, the commonly used planarization technology, chemical mechanical manufacturing technology (CMP), usually relies on material-based material removal. The high pattern density zone is denser than the low pattern: ▼ eight has more contact area. This can result in more pressure being applied at low pattern densities, thus giving the material removal rate of the vehicle a in the low density zone. The low-density zone is first flattened, and the gauze, , and silly materials are removed at a high density, and the high-density zone is partially planarized. ^ % will form a similar structure between high density 201003738 degrees and low density (four) and provide a long range of thickness variations within the planarization film. Tamping-proof techniques, such as imitation fill and pattern impedance, are finer than reducing pattern density variations. However, these techniques increase the complexity of the planarization process. Contact planarization, which can replace CMP, provides a substrate that is spin coated with a photocurable material and is pre-baked to remove residual solvent. The ultra-flat surface can be pressed onto the spin-coated wafer to force a #_flow, and (iv) pressure can be evenly distributed (4) to achieve planarization. (4) The quality of the flattening will be changed by the pattern density (4). It is difficult to cover—the sputum is a fluid material that can form a uniform sentence on the ridge. Thus, areas with varying amounts of money will generally have the same fluid distribution. When the material is pressed against a super flat surface, the material readily flows from the feature density zone to the low surface density zone. From (4) the height of the material; = or the material from the ultra-flat surface and the rill formed between the substrates =::: _ reflow. In addition, the ultra-flat surface and the substrate _: the tensile stress in the film. When the ultra-flat surface is removed, the stress will be released and the surface will be destroyed. = 'cp usually does not cause a large change in surface feature density. For example, if there is a large area in the bottom mold capable of returning density, the material does not usually have a solution and thus may affect the spherical planarity. In addition, CP == material and / or ultra-flat surface table (four) _ different. For example, when the surface of the thousand tan is pressed against the substrate, the thickness of the material between them changes. The use of a very thick film of material will improve the flow of the fluid', and (10) will transfer the same planarity to the substrate because the subsequent material removal process (eg, _, polishing, etc.) is not thicker than 5 201003738 The film will be very noticeable. SUMMARY OF THE INVENTION In accordance with an embodiment of the present invention, a method of forming a surface having desired shape characteristics using an embossing lithography system is specifically provided, comprising: determining a nanotopography of a first surface; Desiring shape characteristics of the two surfaces; evaluating a nanotopography of the first surface and a desired shape characteristic of the second surface to provide a droplet pattern; placing the polymerizable material on the same plate according to the droplet pattern and Between the first surfaces; contacting the template with the polymerizable material; curing the polymerizable material; etching the polymerizable material to provide a second surface having the desired shape characteristics. In accordance with another embodiment of the present invention, a method of forming a surface having a desired nanotopography using an embossing lithography system is specifically provided, comprising: determining a nanotopography of a surface; evaluating the surface of the nanoparticle The topography determines the height of the nanotopography of the surface compared to a desired nanotopography; the nanotopography based on the surface is compared to the desired nanotopography Height correction provides a density map; determining a droplet pattern based on the density map; placing a polymerizable material between the imprint lithography template and the surface according to the droplet pattern; contacting the template with the polymerizable material; curing The polymerizable material; the polymerizable material is etched to provide a surface having the desired nanotopography. According to still another embodiment of the present invention, a method for forming a planar surface using an embossing lithography system is specifically provided, comprising: determining a nanotopography of a surface; and evaluating a nanotopography of the surface to determine a droplet Patterning to provide the planar surface for a first polymerizable material having a first etch rate and a second polymerizable material having a second etch 201003738 rate; placing the first polymerizable material and the first according to the droplet pattern a second polymerizable material between an imprint lithography template and the surface; contacting the template with at least one of the first polymerizable material and the second polymerizable material; curing the first polymerizable material and the first At least one of two polymerizable materials; etching at least one of the first polymerizable material and the second polymerizable material to provide the planar surface. BRIEF DESCRIPTION OF THE DRAWINGS For a more detailed understanding of the present invention, a description of embodiments of the invention is provided by reference to the accompanying drawings. It is to be understood, however, that the appended claims BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a simplified side elevational view of an imprint lithography system in accordance with an embodiment of the present invention. Fig. 2 is a simplified side view showing the substrate with the pattern layer interposed therebetween as shown in Fig. 1. Figure 3 shows a simplified side view of the morphology of most of the layers due to the underlying substrate. 4A and 4B each show a simplified side view of the planarity variation of the local topography and the planarity variation of the spherical morphology. Figures 5A-5D show a simplified side view of a surface having the desired shape characteristics using an adaptive nanotopography etch technique. Figure 6 shows a flow diagram of one embodiment of a method of forming a surface having a desired shape using an adaptive nanotopography etch technique. Figure 7 shows a flow chart showing one embodiment of a mapping process for a droplet pattern of one of the adaptive nanotopography etching techniques 201003738. Figure 8 shows a flow chart of an embodiment of a method for pre-polishing the surface of a substrate. Figure 9 shows a simplified side view of a surface having non-flat, desired shape characteristics. Figures 10A-10C show simplified side views of the surface forming features having a non-flat shape. I: Embodiment 3 Detailed Description Referring to the drawings, particularly Fig. 1, there is shown a lithography system 10 for forming a relief pattern on a substrate 12. Substrate 12 can be bonded to substrate chuck 14. As shown, the substrate chuck 14 is a vacuum chuck, however, the substrate chuck 14 can be any chuck that includes, but is not limited to, vacuum, needle, groove, electrostatic or electromagnetic chucks and/or Analogs, exemplified collets are described in U.S. Patent No. 6,873, the disclosure of which is incorporated herein by reference. The substrate 12 and the substrate holder 14 can be supported on the stage 16. Stage 16 provides movement about the x, y, and z axes. The stage 16, substrate 12 and substrate chuck 14 can be positioned on a substrate (not shown). The substrate 12 is spatially separated from the template 18. The template 18 can include a mesa 20 extending from the template 18 toward the substrate 12 having a patterned surface 22 thereon. Moreover, the table top 20 can be referred to as a module 20. Alternatively, the template 18 may not require the countertop 20. The template 18 and/or the module 20 may be formed from materials including, but not limited to, fused vermiculite, quartz, ruthenium, organic polymers, siloxane polymers, boron 8 201003738, sulphuric acid glass, gas carbon polymer , metal, hardened sapphire and/or the like. As shown, although the patterned surface 22 includes surface features defined by a plurality of spatially separated recesses 24 and 26, embodiments of the invention are not limited to such configurations. The patterning table φ22 can define any original pattern that forms the basis of the pattern on the lion-like substrate η. The template 18 can be 13⁄4 s to the collet 28. The collet 28 can be configured as, but not limited to, a real needle 5L / 冓! _, static or electromagnetic and / or other similar chuck type. The exemplified collet is further described in U.S. Patent No. 6,873,087, incorporated herein by reference. Moreover, the collet 28 can be consuming to the imprint head 3G such that the head 28 and/or the imprint head 30 can be configured to facilitate movement of the template cassette 8. System 10 can further include a fluid dispensing system 32. Fluid dispensing system 32 can be used to deposit polymerizable material 34 onto substrate 12. The polymerizable material 34 can be formed using techniques such as droplet dispensing, spin coating, dip coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), thin film deposition, thick film deposition, and/or the like. Placed on substrate 12. Depending on design considerations, the polymerizable material 34 can be deposited on the substrate 12 before or after the desired volume is defined between the module 2 and the substrate 12. The polymerizable material 34 can include a mixture of monomers, as described in U.S. Patent No. 7,157,036, and U.S. Patent Publication No. 2005/0187339, the entire disclosure of which is incorporated herein by reference. Referring to Figures 1 and 2, the system 1 further includes an energy source 38 coupled to the direct energy 40 along the path 42. The stamping head 3 and the stage 16 are configured to place the template 18 and the substrate 12 A position that overlaps the path 42. The system 1 can be regulated by the processor 54 to communicate with the stage 16, the imprint head 3, the fluid dispensing system 32, and/or the 201003738 source 38. And depending on the computer readable program stored in the memory 56, the distance between the two or the two can change the distance between the modular disk substrate 12 to define that it can be polymerizable. Material 34 is filled;: volume. For example, the embossing can be applied to the template 18 so that the contact (4) contact polymerizable after the desired volume is filled with the polymerizable material 34, 4G of the source fiscal month b, such as broadband ultraviolet radiation, so that the polymerizable material is cured and / Alignment to conform to the shape of surface 44 of substrate 12 and to pattern surface 22, and to define pattern layer 46 on substrate 12. The pattern layer 46 includes a residual layer 48 and a plurality of surface features as shown by the protrusions 50 and recesses 52, and the protrusion % has a thickness ^ and the residual layer has a thickness t2. The above system and process can be further used in U.S. Patent No. 6,932,934, U.S. Patent Publication No. 2004/0124566, U.S. Patent Publication No. 2004/0188381, and U.S. Patent Publication No. 2004/0211754 The imprint lithography process and system described in Reference). Referring to Figure 3, the material deposition process typically provides a film layer 6 of material that maintains the same topography as the underlying substrate 62. As the number of layers 6〇 increases, the step height of the surface feature 64 increases to the resulting step height hR1 and then further increases to the resulting step height hR2, as shown in FIG. This increase can lead to changes in topography. Large changes in topography can hinder the manufacturing process and/or cause reliability problems. For example, in semiconductor processing, in order to minimize large topographic variations, the wafer is polished to improve surface planarity. Roughness, site front Secondary surface topography and spherical backplane indication range (GBIR) are used to measure the surface topography in low, 10 201003738 and large spatial wavelengths. A typical 300 mm top-level wafer for 9 〇 nm intersection fabrication has a roughness of less than 1 nm, an SFQR of approximately 90 nm, and a GBIR of 2 microns. In comparison, the 75 mm top wafer has a roughness of less than 5 nm, an SFQR of 1 〇〇〇 nm, and a GBIR of 10 μm. However, in order to meet stringent planarity requirements, the wafer will be polished several times, which usually adds cost. In addition, small-sized wafers, as well as other material wafers, often do not meet stringent planarity requirements and are therefore often not available for fabrication of devices with submicron surface features. Figures 4A and 4B show local topographical planarity variations 66 and spherical topographical variations 68, such as those seen during semiconductor fabrication. When the deposited material conforms to the underlying surface features that reflect the change in the underlying surface, a localized planarity variation 66 occurs. These variations 66 may have the same scale level (e.g., surface feature height) and/or may have low spatial wavelengths. As shown in Fig. 4B, the spherical shape flatness anvil can be a large scale and a spatial wavelength having a bottom mold size level. A spheroidal planarity variation 68 can be observed above the zone where the pattern density has a large change. Although the 26x33mm sized patterning area allows the entire field to be simultaneously exposed for patterning, 疋 there will be large morphological changes due to the overall wafer surface topography (eg, thickness variation), as opposed to the target pattern strip. . This large topographical change can be at the wafer diameter level. When analyzing the two wavelengths in the field, the height change of the surface can be classified into two components: nominal shape (height change in spatial wavelength > 2 〇 mm), nanomorphology (height change in spatial wavelength) Between the G 2_2G coffee and the surface roughness (the height variation of the spatial wavelength < (Umm). The adaptive nanotop shape of the rice cook 201003338 technology, as described herein, can be used to change the nanotopography. An adaptive nanotopography etch technique, as described herein, can be used to alter the roughness. For example, an adaptive nanotopography etch technique can change a substrate (eg, a bare enamel wafer) with sub-micron Surface roughness of surface features and similar materials. It should be noted that the adaptive nanotopography etching technique can be used to alter the nanotopography and/or roughness without changing the nominal shape of the surface. In Figure 5 A - 5 D, the adaptive nanotopography etch technique can be used in nanoetching techniques and adaptively minimizes nanomorphology variations such as local and/or spheroidal planarity variations. The nano-etching technique starts from the first surface %, and By depositing and etching back to a suitable depth, providing a second surface 76 of the desired surface topography (e.g., planar). Utilizing the lithography system shown in Figure 1 and described herein, an adaptive nanotopography etch technique The process can be applied to the pattern density on the varying surface 74. ί考弟5B, the splicable material 34 can be deposited on the first surface 74 of the film layer 6a (e.g., 3丨〇2). The droplet disperser can position the polymerizable material 34 on the first surface 74 such that various amounts of polymerizable material % can be positioned at specific locations on the first surface 74. Typically, the variation template 18 and the first surface are varied. The distance between 74 is to define the desired volume filled with the polymerizable material 34. The template 18 can include a module 20 having a substantially flat patterned surface 22. Applying the template 18 to the template 18 contacts the polymerizable material 34, causing The polymerizable material 34 forms a substantially interconnected crucible and substantially fills the desired volume. Further, a capillary force can be utilized to disperse the polymerizable material 34 to form a film. After the desired volume is filled with the polymerizable material 34, the polymerizable material 34 can be cured to Pattern layer 12 containing surface 78 201003738 46a 'The pattern layer 46 is defined by thickness t3. The removal process (eg, etching, polishing, CMP, etc.) is then used to transfer the surface of pattern layer 46 to provide the desired surface topography. Second surface 76. Deposition of a material (e.g., polymerizable material 34) onto the first surface 74 can achieve a desired surface topography of the first surface 76. Additionally, deposition of the material can compensate for parasitic effects in various processes ( For example, reducing the effect of the desired surface topography level, including but not limited to, pattern density variation, long range crystal round appearance, etching non-induced, non-polishing, CMP inconsistency, material removal rate, Volume reduction, evaporation, etc.).
通常,沉積使可聚合材料34分散以在第一表面74上之 選=域上提供充分的體積,如此於移除(例如蝕刻)期間, 可提供第二表面76所欲的表面形貌。據此,沉積可適於變 匕第表面74、下方層及/或相似物上的圖案密度以提供具 =所奴Α狀特性(例如,基材62a表面72的實質類似形貌、 面:、奇特形狀及/或其他所欲的形狀特性)的第二表面 土於表面74的形貌,沉積通常使可聚合材料财 _^進—步所提供者。例如,增加_積或增加 地帶來:補==可被分_-表面74的低密度 及,或表面特徵64a:。::度變化來1下方層- 面表 參數以提供用於沉積可聚合材料二第數表及⑷空間分布 圖案。於步驟| 面74上的分散 “一表面74的開始形貌地圖80。 13 201003738 於步驟102中,決定提供具有所欲表面形貌的第二表面76的 參數(例如平面化長度、厚度、所欲最終形貌)。於步驟104 中,基於開始形貌地圖80與第二表面76參數提供可聚合材 料34的液滴圖案86。於步驟1〇6中,基於液滴圖案86分散可 聚合材料34的小液滴。於步驟108中,樣板18接觸可聚人材 料34°於步驟110中,可聚合材料34固化以形成圖案層4如。 於步驟112中,移除部分的圖案層46a以提供具有所欲表面 形貌的第二表面76。 衣囱押描糸統可提供形貌地同〇υ。例如, Zyg〇VI11表面掃描系統可與25〇 χ25〇 μηι的取樣栅櫚—起使 用。提供予第—表面74之形貌地_與第二表面76之所欲 純之間的差異可對於各個校正地圖82所提供的位置提供 高度校正。這個資訊進—步被轉換以提供表面特徵密度地 圖84。表面特徵密度地圖料可以提供造成液滴圖 個位置所必須的可聚合材料34密度。 參考第从-犯圖,數個參數可被決定及/ 對於可聚合材料34空間分布的控制 層-的厚度。、可聚合材制犧、可:二::案 與使可聚合材料34暴露至能量之間的時間間P J 34刀政 堅硬性及/或相似參數。 π、樣板18的 可聚合材料34的空間分布可與所分散 之體積的空間分布相材料料 滴型式分散來提供相連膜,而„留存可以小液 液滴被分散的所在⑽如使在表面 /材料则、 们如向移動降到最 201003738 低)。可以達成這種校正以提供約2〇腿至25〇 nm的厚度t3。 此外,可聚合材料34的黏度(例如3厘泊至100厘泊)對於可 聚合材料34的自由橫向流動會提供阻力。 空間分布也與分散可聚合材料3 4及可聚合材料3 4暴露 至能量(例如UV暴露)之間的時間間隔相關聯。例如,可聚 合材料34刀政及可聚合材料34暴露至能量之間的充分時間 可以是足夠的長以讓可聚合材料34小液滴形成相連膜,但 卻是足夠的短使得橫向流體流動顯著地降低。充分的時間 間隔可介於幾秒至幾分鐘之間。 樣板18的硬度(例如厚度及/或材料性質)也與可聚合材 料34的空間分布相關聯。例如,硬度應該足夠地高以使可 聚合材料34個別小液滴的變形降到最低以提供相連膜的形 成,然而應該足夠地低以快速吻合可聚合材料34的分布及 膜層60a表面74的低空間頻率形狀。適合的硬度介於〇.25 mm至2mm之間。 適應性奈米形貌刻蝕技術也可彌補各種寄生效應 U2。寄生效應會影響所得之第二表面76的形狀,且可包: 但不限於圖案密度變化、長範圍晶圓形貌、飿刻不一致、 拋光不一致、材料移除速率、體積減縮、蒸發等等。例如, 藉由變化可聚合材料34橫過第—表面74的體積可決定液滴 圖案86(如第7圖所示)以彌翻《度變化。此可聚合材料 34體積的變化可基於預先存在的㈣密度變化及/或預估 的圖案密度變化。 / ' 此外,可以決定散佈於第一表面74上的可聚合材料^ 15 201003738 體積以提供所欲形狀_案層46a。調整體積以提供 輪所欲之形狀可以進-步提供對於第二表面%之表^ 貌的奈米刻餘技術。 少 非=性奈米形編技術也可彌糊之寄生致應的 非一致性。通常,可聚合材料3何以與材料形成第二表^ 76之所欲形狀相同的速率而_ '然而’這些過程基^ _除過程及/或設備(亦即蝴表徵)的躲會有不—致的 移除速率H的移除會造成第二表面%所欲形狀特性 (例如表面平面性)的破壞。特別過程及/或設備的姓刻表徵 可藉由數個試驗決定。-旦決定了_表徵,可聚合材料 4的積可基於蝕刻表徵而調整。例如,液滴圖案(如第 7圖所示)基於蝕刻表徵而調整以彌補具有相當高蝕刻迷 的地帶。 使用適應性奈米形貌刻蝕技術也可彌補可聚合材料h 的體積減縮以提供具有所欲特性(例如平面性)的第二表面 76。如上詳述者,可聚合材料34當暴露於能量下時固化。 此固化過程會伴隨著可聚合材料34體積的減縮。例如,依 據可聚合材料34的組成的不同,減縮可從約5-25%。減縮會 依據可於第~表面74上方變化的局部體積而不同,而且會 產生固化可聚合材料34膜内的應力。藉由變化液滴圖案86 内可聚合材料34的分布可彌補此減縮效應。此外,或取代 的是’藉著樣板18的移除及/或變形應力可以被釋除。 蒸發係另一個可藉由使用適應性奈米形貌刻蝕技術而 彌補的寄生效應。根據組成的不同 ’可聚合材料34的蒸發 16 201003738 速率可以很⑧。例如,由於接著可聚合材料34沉積之後但 【P之月的洛發,可能產生可聚合材料34的漏失。靠近第 一表面74的邊緣’蒸發通常較高。 ,液滴圖案86中因蒸發之故所預期的體積漏失也可被決 疋JL被彌補以提供具有所欲特性(例如平面性)的第二表面 例如,為控制溼度、溫度、微粒聚集及類似情狀所維 持的IUH會造成不—致的蒸發。此氣流會導致系統性的不 致蒸發。藉由調整液滴圖案祕可決定及彌補蒸發表徵以 提供具有所欲形狀特性(例如平面性)的第三表面7 6。 適應性奈米形貌刻蝕技術也可彌補可聚合材料3 4的變 化。例如,第一可聚合材料及第二可聚合材料可被分散於 第表面74上,且第一可聚合材料與第二可聚合材料不 门苐可聚合材料的移除速率(例如钮刻速率)可與第二可 聚s材料不同。據此,液滴圖案86可被調整以提供第一可 聚合材料要被分散的第一體積及第二可聚合材料要被分散 的第一體積來將不同移除速率的效應降到最低。 適應性奈米形貌刻蝕技術可被採用以取代物理性拋光 的應用,諸如基材拋光、預圖案化基材的拋光、非平坦表 面的抛光及非平坦奈米形貌應用與其他下面進一步描述的 過程U例如,可使用適應性奈米形貌刻蝕技術以取代基材 拋光’諸如’例如在裸石夕基材標稱表面的平面化。於移除 步驟中’使用適應性奈米形貌刻钮技術之要被蝕刻的材料 可為大型基材材料,其包括但不限於矽、Si〇2、GaAs、InP、 藍寶石及/或類似物。 17 201003738 第8圖顯示一種使用適應性奈米形貌刻蝕技術以取代 預圖案化基材之拋光的方法120,諸如,例如於圖案層應用 中以提供平面化的表面。通常,基於圖案草圖,調整液滴 圖案86以產生圖案表面特徵的額外彌補。例如,分散可聚 合材料34於第一表面74上可包括預先存在圖案的體積變 化。 於步驟122中,表面的奈米形貌可被地圖化。例如,第 一表面74的奈米形貌可利用Zygo儀器、輪廓儀或類似物而 地圖化。於步驟124中,可以決定第一表面74與所欲最終奈 米形貌(例如第二表面76)之間的不同以提供液滴圖案86。於 步驟126中,可決定寄生效應以調整液滴圖案86。於步驟128 中,可使用液滴圖案86來將可聚合材料34置於第一表面74 上以提供具有所欲形狀特性的第二表面76。於步驟130中, 可放置樣板17以接觸可聚合材料34。於步驟132中,可使用 壓印微影術樣板18固化可聚合材料34。於步驟134中,可蝕 刻固化的可聚合材料以提供具有所欲形狀特性的第二表面 76 ° 於圖案化基材的應用中,於可蝕刻材料(例如Si02)中出 現圖案可提供1 : 1回蝕刻(etch back)步驟以將所欲的形狀特 性轉送至形成的第二表面76。若圖案出現於無法立即蝕刻 的材料(例如銅)中,適應性奈米形貌刻敍技術,除了银刻外 或是取代蝕刻,可與另一材料移除方法(例如化學機械拋光) 一起使用以提供第二表面76所欲的形狀特性。 參考第9圖,適應性奈米形貌刻蝕技術可用以就第二表 18 201003738 面76產生非平坦的所欲形狀特性。例如,第二表面%可以 具有凹面开> 狀、凸面形狀、球面形狀、非球面形狀、連續 週期形狀或任何其他稀奇的形狀。通常,在決定液滴圖案 86(如第7圖所示者)上的額外改變(例如演算的調整)可提供 第二表面76的變化。例如,第9圖所示的第二表面%可具有 大曲率半徑的球形凸面形狀,其中h的範圍可為1〇 1^1至1〇 微米且w的範圍可為1 mm至1〇〇〇 mm ° 適應性奈米形貌刻蝕技術也可處理任何自由成形表面 (即,非平面表面)之奈米形貌的問題。例如,標稱形狀(亦 即,空間波長>2〇mm的高度變化)會受大量製造過程(例如 鑄造、機械加工、研磨及類似過程)的影響,但是於拋光期 間通常不f影響。拋光過程具有吻合標稱形狀的能力。傳 統的拋光過料常不影響標稱形狀,但由於圖案密度變化 會影響奈米形貌。而且,傳統拋光卫具錢械設=二要 重大的改變以適應基材標稱形狀上的改變(例如用於;坦 表面CMP的機械設計與用於球形表面⑽的機械設計可能 極為不同)。據此,傳統拋光卫具只有處理球面/非球面/ 對稱形狀的問題。然而,適應性奈米形貌勒技術可以處 理自由成形表面(諸如,例如第1〇八_1〇(:圖所示之自 ' , 表面(例如第-表面之奈米形貌變化的問題之如I: 式顯示者,具有與自由祕之第-表面74互卿狀的壓印 微影術樣板18a,與第-表面74相較,也可以被用以提供第 二表面76之奈米形貌的變化。 ” 這 於球面/非球錢制適應性奈米形_钱技術中 201003738 些成對的透鏡可以被機械削薄。例如,這些成辦逯铲可、皮 機械削薄至約5GG微米的厚度。此球面及/或挽性的 可以被用作壓印微影術的樣板18a。就其他自由成形形狀而 σ ’利用所欲互補形狀的績造可以製作PDMS樣才反 除此之外,或是用以取代互補形狀的樣板18a (如樣板 18) ’一種加壓的凹洞夾頭可被用於控制樣板18a標稱形狀 的半徑。例如,於拋光具有夾頭設計及/或樣板18a幾何形狀 所界疋之特疋標稱形狀的球面/非球面表面時可以使用此 製程。 或者’樣板18a可以被設計為具有由非易碎材料製造的 最小厚度。樣板18可隨意地結合至較厚的熔矽石框架上以 提供額外的強度。通常,該熔矽石框架可在夾頭與樣板18 之間提供一適配器的角色。Typically, the deposition disperses the polymerizable material 34 to provide a sufficient volume on the selected domain on the first surface 74 such that during removal (e.g., etching), the desired surface topography of the second surface 76 can be provided. Accordingly, the deposition may be adapted to vary the pattern density on the surface 74, the underlying layer, and/or the like to provide a singularity (eg, a substantially similar topography of the surface 72 of the substrate 62a, face: The second surface of the odd shape and/or other desired shape characteristics is the topography of the surface 74, and deposition typically provides the polymerizable material with the proviso. For example, increasing the _ product or increasing the band: complement == can be divided into the low density of the surface 74 and/or the surface features 64a:. The ::degree change comes to 1 lower layer - surface parameters to provide a second table for depositing polymerizable materials and (4) a spatial distribution pattern. Dispersion on step 74] "Start profile map of a surface 74. 80 201003738 In step 102, it is decided to provide parameters of the second surface 76 having the desired surface topography (eg, planarized length, thickness, To form a final shape, in step 104, a droplet pattern 86 of the polymerizable material 34 is provided based on the starting topography map 80 and the second surface 76. In step 1〇6, the polymerizable material is dispersed based on the droplet pattern 86. The droplets of 34. In step 108, the template 18 contacts the polymerizable material 34° in step 110, and the polymerizable material 34 is cured to form the pattern layer 4. For example, in step 112, a portion of the pattern layer 46a is removed. Providing a second surface 76 having a desired surface topography. The enamel embossing system can provide topography. For example, the Zyg〇VI11 surface scanning system can be used with a sampling grid of 25 〇χ 25 〇 μηι. The difference between the topography provided to the first surface 74 and the desired purity of the second surface 76 provides a height correction for the position provided by each of the correction maps 82. This information is further converted to provide surface features. Density map 84. Surface The density map material can provide the density of the polymerizable material 34 necessary to cause the position of the droplet map. Referring to the first-pass graph, several parameters can be determined and/or the thickness of the control layer for the spatial distribution of the polymerizable material 34. The polymerizable material can be used to: 2:: the time between the exposure of the polymerizable material 34 to the energy, PJ 34 knife hardness and/or similar parameters. π, the space of the polymerizable material 34 of the template 18 The distribution can be dispersed with the spatial distribution of the volume of the dispersed material to provide a connected film, and „remaining where the small liquid droplets are dispersed (10), if the surface/material, such as moving to the most down to 201003738 low). This correction can be achieved to provide a thickness t3 of about 2 legs to 25 inches. Moreover, the viscosity of the polymerizable material 34 (e.g., 3 centipoise to 100 centipoise) provides resistance to the free lateral flow of the polymerizable material 34. The spatial distribution is also associated with the time interval between exposure of the polymerizable material 34 and the polymerizable material 34 to energy (e.g., UV exposure). For example, the sufficient time between exposure of the polymerizable material 34 and the polymerizable material 34 to energy may be sufficiently long to allow small droplets of polymerizable material 34 to form a connected film, but is sufficiently short that the lateral fluid flow is significant Reduced ground. A sufficient time interval can range from a few seconds to a few minutes. The hardness (e.g., thickness and/or material properties) of the template 18 is also associated with the spatial distribution of the polymerizable material 34. For example, the hardness should be sufficiently high to minimize deformation of the individual droplets of polymerizable material 34 to provide for the formation of a joined film, but should be sufficiently low to quickly conform to the distribution of polymerizable material 34 and surface 74 of film layer 60a. Low spatial frequency shape. Suitable hardness is between 〇.25 mm and 2 mm. The adaptive nanotopography etching technique can also compensate for various parasitic effects U2. Parasitic effects can affect the shape of the resulting second surface 76 and can include, but is not limited to, pattern density variations, long range crystal domes, inconsistent engraving, polishing inconsistencies, material removal rates, volume reduction, evaporation, and the like. For example, the droplet pattern 86 (as shown in Figure 7) can be determined by varying the volume of the polymerizable material 34 across the first surface 74 to overturn the "degree change. The change in volume of the polymerizable material 34 can be based on pre-existing (four) density changes and/or predicted pattern density changes. / ' Further, the volume of polymerizable material ^ 15 201003738 dispersed on the first surface 74 can be determined to provide the desired shape - the layer 46a. Adjusting the volume to provide the desired shape of the wheel provides a step-by-step nano-etching technique for the surface of the second surface. Less non-negative nano-shaped techniques can also be used for the inconsistency of the parasitic response. In general, the polymerizable material 3 is at the same rate as the desired shape of the material forming the second table. _ 'However, these process bases are excluded from the process and/or equipment (ie, butterfly representation). The removal of the removal rate H causes damage to the shape characteristics (e.g., surface planarity) of the second surface %. The characterization of the special process and/or device name can be determined by several trials. Once the _ characterization is determined, the product of the polymerizable material 4 can be adjusted based on the etch characterization. For example, the drop pattern (as shown in Figure 7) is adjusted based on the etch characterization to compensate for the zone with a relatively high etch. The volume reduction of the polymerizable material h can also be compensated for using an adaptive nanotopography etch technique to provide a second surface 76 having desirable characteristics (e.g., planarity). As detailed above, the polymerizable material 34 cures when exposed to energy. This curing process is accompanied by a reduction in the volume of the polymerizable material 34. For example, depending on the composition of the polymerizable material 34, the reduction can be from about 5 to about 25%. The reduction will vary depending on the local volume that can vary above the first surface 74, and will create stress within the film of the cured polymerizable material 34. This reduction effect can be compensated by varying the distribution of the polymerizable material 34 within the droplet pattern 86. Additionally or alternatively, the removal and/or deformation stress by the template 18 can be removed. Evaporation is another parasitic effect that can be compensated for by the use of adaptive nanotopography. Depending on the composition of the 'polymerizable material 34' evaporation 16 201003738 The rate can be very high. For example, the loss of the polymerizable material 34 may occur due to the subsequent development of the polymerizable material 34 but after the month of P. The evaporation near the edge of the first surface 74 is generally higher. The volume leakage expected in the droplet pattern 86 due to evaporation can also be compensated for by JL to provide a second surface having desired characteristics (e.g., planarity), for example, to control humidity, temperature, particle agglomeration, and the like. The IUH maintained by the situation can cause unsuccessful evaporation. This airflow can cause systemic non-evaporation. The third surface 7 6 having the desired shape characteristics (e.g., planarity) can be determined and compensated for by adjusting the droplet pattern. The adaptive nanotopography etch technique also compensates for the change in the polymerizable material 34. For example, the first polymerizable material and the second polymerizable material can be dispersed on the first surface 74, and the removal rate of the first polymerizable material and the second polymerizable material is not the threshold polymerizable material (eg, button rate) It can be different from the second polymerizable s material. Accordingly, the droplet pattern 86 can be adjusted to provide a first volume of the first polymerizable material to be dispersed and a first volume to which the second polymerizable material is to be dispersed to minimize the effects of different removal rates. Adaptive nanotopography etching techniques can be employed to replace physical polishing applications such as substrate polishing, polishing of pre-patterned substrates, polishing of non-planar surfaces, and application of non-planar nanotopography with other The described process U can, for example, use an adaptive nanotopography etch technique to replace the substrate polishing 'such as' planarization of the nominal surface of the substrate, for example. The material to be etched using the adaptive nanotopography technique in the removal step may be a large substrate material including, but not limited to, germanium, Si 〇 2, GaAs, InP, sapphire, and/or the like. . 17 201003738 Figure 8 shows a method 120 of using an adaptive nanotopography etch technique to replace the polishing of a pre-patterned substrate, such as, for example, in a patterned layer application to provide a planarized surface. Typically, based on the pattern sketch, the drop pattern 86 is adjusted to create an additional offset of the pattern surface features. For example, the dispersion of polymerizable material 34 on first surface 74 can include a volume change in a pre-existing pattern. In step 122, the nanotopography of the surface can be mapped. For example, the nanotopography of the first surface 74 can be mapped using a Zygo instrument, profiler or the like. In step 124, a difference between the first surface 74 and the desired final nanotopography (e.g., second surface 76) can be determined to provide a droplet pattern 86. In step 126, parasitic effects can be determined to adjust the droplet pattern 86. In step 128, a droplet pattern 86 can be used to place the polymerizable material 34 on the first surface 74 to provide a second surface 76 having the desired shape characteristics. In step 130, a template 17 can be placed to contact the polymerizable material 34. In step 132, the polymerizable material 34 can be cured using an embossed lithography template 18. In step 134, the cured polymerizable material can be etched to provide a second surface having a desired shape characteristic 76° in a patterned substrate, and a pattern appears in the etchable material (eg, SiO 2 ) to provide a 1: 1 An etch back step is performed to transfer the desired shape characteristics to the formed second surface 76. If the pattern appears in a material that cannot be etched immediately (such as copper), the adaptive nanotopography technique can be used in conjunction with another material removal method (such as chemical mechanical polishing) in addition to or instead of silver etching. To provide the desired shape characteristics of the second surface 76. Referring to Figure 9, an adaptive nanotopography etch technique can be used to produce non-flat, desired shape characteristics for the second surface 18 201003738. For example, the second surface % may have a concave open shape, a convex shape, a spherical shape, an aspherical shape, a continuous periodic shape, or any other unusual shape. In general, additional changes (e.g., adjustments to the calculations) in determining the drop pattern 86 (as shown in Figure 7) may provide a change in the second surface 76. For example, the second surface % shown in FIG. 9 may have a spherical convex shape having a large radius of curvature, where h may range from 1 〇 1 ^ 1 to 1 〇 micron and w may range from 1 mm to 1 〇〇〇. The mm ° adaptive nanotopography etch technique also handles the problem of nanotopography of any freeform surface (ie, non-planar surface). For example, the nominal shape (i.e., spatial wavelength > height variation of 2 mm) can be affected by a number of manufacturing processes (e.g., casting, machining, grinding, and the like), but is generally not affected during polishing. The polishing process has the ability to match the nominal shape. Conventional polishing often does not affect the nominal shape, but changes in pattern density can affect the nanotopography. Moreover, traditional polishing aids have to undergo major changes to accommodate changes in the nominal shape of the substrate (for example, the mechanical design of the CMP surface can be quite different from the mechanical design for the spherical surface (10)). Accordingly, conventional polishing fixtures only deal with the problem of spherical/aspheric/symmetric shapes. However, the adaptive nanotopography technique can handle freeformed surfaces (such as, for example, the first one, the surface shown (for example, the surface of the surface) An imprint lithography template 18a having a free-form surface-surface 74, as in the case of the I: display, can also be used to provide the nano-surface of the second surface 76 as compared to the first surface 74. Changes in appearance. ” This is a spherical/aspherical adaptive nano-shape _ money technology 201003738 Some pairs of lenses can be mechanically thinned. For example, these can be shovel, leather mechanical thinning to about 5GG The thickness of the micron. This spherical and/or tractable can be used as a template 18a for imprint lithography. For other freeform shapes, σ' can be made using PDMS samples with the desired shape of the complementary shape. Alternatively, or instead of a complementary shaped template 18a (e.g., template 18) 'a pressurized recessed collet can be used to control the radius of the nominal shape of the template 18a. For example, the polishing has a collet design and/or Spherical/aspherical surface of the nominal shape of the geometry of the template 18a This process can be used. Alternatively, the template 18a can be designed to have a minimum thickness made of a non-fragile material. The template 18 can be arbitrarily bonded to a thicker fused stone frame to provide additional strength. Typically, the fusion The vermiculite frame provides an adapter role between the collet and the template 18.
C圖式簡單說明]J 第1圖顯示依據本發明一實施例之壓印微影系,统的簡 化側視圖。 第2圖顯示第丨圖所示之具有圖案層置於其間之基讨的 簡化側視圖。 第3圖顯示由於下方基材而造成之多數膜層之形貌變 化的簡化側視圖。 第4A圖及第4B圖各自顯示局部形貌平面性變異及球 狀形貌平面性變異的簡化側視圖。 第5 A - 5 D圖顯示使用適應性奈米形貌刻蝕技術形成具 有所欲形狀特性之表面的簡化側視圖。 20 201003738 第6圖顯示使用適應性奈米形貌刻蝕技術形成具有所 欲形狀特性表面之方法之一實施例的流程圖。 第7圖顯示提供用於適應性奈米形貌刻蝕技術之一液 滴圖案之地圖化過程之一實施例的流程圖。 第8圖顯示用於預拋光基材表面之方法之一實施例的 流程圖。 第9圖顯示具有非平坦所欲形狀特性之表面的簡化側 視圖。 第10 A -10 C圖顯示形成具有非平坦所欲形狀特性之表 面的簡化側視圖。 【主要元件符號說明】 10...系統 20... 台面/模件 12…毅 22... 圖案化表面 14…毅夾頭 24... 凹處 16".載物台 26... 突起 18…樣板 28... 樣板夾頭 18a…樣板 30... 壓印頭 32...流體分配系統 46" .圖案層 34...可聚合材料 46a...圖案層 38...能量源 48" .殘留層 40…能量 50.. .突起 42...路徑 52.. .凹處 44...基材表面 54.. .處理器 21 201003738 56·.· 記憶體 60a... 膜層 62·.· 下方基材 62a·._ 基材 64." 表面特徵 64a". .表面特徵 66... 局部形貌平面性變異 68... 球狀形貌平面性變異 72·.· 表面 74,.· 第一表面 76…第二表面 80.. .開始形貌地圖 82.. .校正地圖 84.. .表面特徵密度地圖 86.. .液滴圖案 100, 102, 104, 106··.步驟 108, 110, 112···步驟 120.. .方法 122, 124, 126, 128··.步驟 130, 132, 134 …步驟 22BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a simplified side view showing an imprint lithography system according to an embodiment of the present invention. Figure 2 shows a simplified side view of the base with the patterned layer placed between them in the second figure. Figure 3 shows a simplified side view of the morphology of most of the layers due to the underlying substrate. 4A and 4B each show a simplified side view of the planarity variation of the local topography and the planarity variation of the spherical morphology. 5A-5D shows a simplified side view of a surface having the desired shape characteristics using an adaptive nanotopography etch technique. 20 201003738 Figure 6 shows a flow diagram of one embodiment of a method of forming a surface having a desired shape using an adaptive nanotopography etch technique. Figure 7 shows a flow diagram of one embodiment of a mapping process for providing a droplet pattern for an adaptive nanotopography etch technique. Figure 8 shows a flow diagram of one embodiment of a method for pre-polishing the surface of a substrate. Figure 9 shows a simplified side view of a surface having non-flat, desired shape characteristics. The 10A-10 C diagram shows a simplified side view of the surface having the properties of a non-flat, desired shape. [Main component symbol description] 10...System 20... Countertop/module 12...Im 22... Patterned surface 14...Imper chuck 24... Recessed 16". Stage 26... Protrusion 18...sample 28... template chuck 18a...template 30...imprint head 32...fluid distribution system 46".pattern layer 34...polymerizable material 46a...pattern layer 38... Energy Source 48". Residual Layer 40...Energy 50.. Protrusion 42...Path 52.. Recess 44...Substrate Surface 54.. Processor 21 201003738 56·.· Memory 60a.. Film layer 62·.· Lower substrate 62a·._ Substrate 64." Surface features 64a". Surface features 66... Local topography planarity variation 68... Spherical morphology Flatness variation 72 ··· Surface 74,... First surface 76...Second surface 80.. Start topography map 82.. Correct map 84.. Surface feature density map 86.. . Droplet pattern 100, 102, 104 , 106··. Steps 108, 110, 112···Step 120.. . Method 122, 124, 126, 128··. Steps 130, 132, 134 ... Step 22