TWI420844B - Method and apparatus for antenna mapping selection in mimo-ofdm wireless networks - Google Patents

Method and apparatus for antenna mapping selection in mimo-ofdm wireless networks Download PDF

Info

Publication number
TWI420844B
TWI420844B TW098113252A TW98113252A TWI420844B TW I420844 B TWI420844 B TW I420844B TW 098113252 A TW098113252 A TW 098113252A TW 98113252 A TW98113252 A TW 98113252A TW I420844 B TWI420844 B TW I420844B
Authority
TW
Taiwan
Prior art keywords
antenna
wtru
map
correction
channel
Prior art date
Application number
TW098113252A
Other languages
Chinese (zh)
Other versions
TW201015895A (en
Inventor
Inhyok Cha
Eldad Zeira
Keith Richard Baldwin
Original Assignee
Interdigital Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Tech Corp filed Critical Interdigital Tech Corp
Publication of TW201015895A publication Critical patent/TW201015895A/en
Application granted granted Critical
Publication of TWI420844B publication Critical patent/TWI420844B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G9/00Working screws, bolt heads, or nuts in conjunction with thread cutting, e.g. slotting screw heads or shanks, removing burrs from screw heads or shanks; Finishing, e.g. polishing, any screw-thread
    • B23G9/009Thread cleaning or repairing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G5/00Thread-cutting tools; Die-heads
    • B23G5/02Thread-cutting tools; Die-heads without means for adjustment
    • B23G5/04Dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G7/00Forming thread by means of tools similar both in form and in manner of use to thread-cutting tools, but without removing any material
    • B23G7/02Tools for this purpose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection

Description

MIMO-OFDM無線網路中天線映射選擇方法及裝置 Antenna mapping selection method and device in MIMO-OFDM wireless network

本發明係有關於利用多重輸入多重輸出(MIMO)技術之無線通訊系統。特別是,本發明係有關於選擇多重輸入多重輸出能力多重天線陣列之最佳設定。 The present invention relates to wireless communication systems that utilize multiple input multiple output (MIMO) techniques. In particular, the present invention is directed to an optimum setting for multiple antenna arrays that select multiple input multiple output capabilities.

相較於僅具有單一天線之裝置,具有多樣性架構排列之多重天線之無線通訊裝置係提供各種傳輸及接收好處。多樣性之基礎在於:無論任何給定時間,具有最佳接收之天線係選擇用於接收或傳輸。雖然利用天線多樣性之裝置係可能具有多重實體天線,訊號處理僅具有單一組電子電路,其亦稱為射頻(RF)鏈。 Wireless communication devices having multiple antennas of a diverse architecture arrangement provide various transmission and reception benefits over devices having only a single antenna. The basis of diversity is that the antenna with the best reception is chosen for reception or transmission at any given time. While devices utilizing antenna diversity may have multiple physical antennas, signal processing has only a single set of electronic circuits, also referred to as radio frequency (RF) chains.

多重輸入多重輸出無線技術係改良利用多重射頻鏈之天線多樣性。各個射頻鏈係能夠同時接收及傳輸。藉此,多重輸入多重輸出裝置係能夠達到較高處理能力、並消除多重路徑干擾之負面效應。在傳輸裝置中,各個射頻鏈係負責傳輸某個空間串流。單一訊框可以分解及多工於多重空間串流,其隨後係重組於接收器。 Multiple Input Multiple Output Wireless Technology improves antenna diversity with multiple RF chains. Each RF chain can be received and transmitted simultaneously. Thereby, the multiple input multiple output device can achieve higher processing power and eliminate the negative effects of multipath interference. In the transmission device, each radio frequency chain is responsible for transmitting a certain spatial stream. A single frame can be decomposed and multiplexed into multiple spatial streams, which are then reassembled into the receiver.

多重輸入多重輸出係無線通訊中最具前景之技術之一。不同於減輕不利多重路徑衰減及加強單一資料串流強度之傳統智慧型天線技術,多重輸入多重輸出係利用多重路徑衰減以同時傳輸及接收多重資料串流。理論上,多重輸入多重輸出系統之能力係隨著傳輸及接收天線之數目線性增加。多重輸入多重輸出係獲得各種無線資料通訊標準之考量,諸如:IEEE 802.11n及3GPP寬頻分碼多重存取(WCDMA)。 Multiple Input Multiple Output is one of the most promising technologies in wireless communications. Unlike traditional smart antenna technologies that mitigate unfavorable multipath attenuation and enhance single data stream strength, multiple input multiple output systems utilize multiple path attenuation to simultaneously transmit and receive multiple data streams. In theory, the ability of multiple input multiple output systems increases linearly with the number of transmit and receive antennas. Multiple input multiple output is considered by various wireless data communication standards, such as: IEEE 802.11n and 3GPP Broadband Code Division Multiple Access (WCDMA).

在實施多重輸入多重輸出時,無線傳輸/接收單元(WTRU)係可以操作於空間多工模式或空間多樣性模式。在空間多工模式中,無線傳輸/接收單元係傳輸多重獨立資料串流以最大化資料處理能力。相對於此,在空間多樣化模式中,無線傳輸/接收單元係可以經由多重天線傳輸單一資料串流。基於操作模式,無線傳輸/接收單元係可以選擇適當品質度量或品質度量之組合,進而用於想要波束組合之選擇。一般而言,m×N通道矩陣H係可以具有下列形式: When implementing multiple input multiple outputs, a WTRU may operate in a spatial multiplex mode or a spatial diversity mode. In spatial multiplex mode, the WTRU transmits multiple independent streams of data to maximize data processing capabilities. In contrast, in the spatial diversity mode, the WTRU can transmit a single data stream via multiple antennas. Based on the mode of operation, the WTRU may select a combination of appropriate quality metrics or quality metrics for use in the desired beam combination selection. In general, the m×N channel matrix H system can have the following form:

其中,元件h之下標係表示歸屬於傳輸無線傳輸/接收單元A之天線a,...,m及接收無線傳輸/接收單元N之天線a,...,m之各種天線映射之貢獻。 Wherein, the label below the component h indicates the contribution of various antenna mappings belonging to the antennas a, ..., m of the transmitting WTRU/m and the antennas a, ..., m receiving the WTRU N, ..., m .

無線傳輸/接收單元係可以利用類似方式取得校正矩陣K。無線區域網路(LAN)脈絡之校正係包括計算一組複數更正係數,其,當本於按照天線(per-antenna)及按照子載波(per-sub-carrier)之基礎多工於傳輸無線傳輸/接收單元之基頻串流時,將可以等化傳輸及接收處理路徑之響應差異(直至跨天線之未知常數)。 The wireless transmission/reception unit can obtain the correction matrix K in a similar manner. The correction of the wireless local area network (LAN) context includes calculating a set of complex correction coefficients that are multiplexed to transmit wireless transmissions on a per-antenna basis and per-sub-carrier basis. / The baseband stream of the receiving unit will equalize the difference in response between the transmission and reception processing paths (until the unknown constant across the antenna).

請參考第1圖,其係表示習知技術之通道校正之訊號圖100。傳輸無線傳輸/接收單元(Tx WTRU)110首先需要校正接收無線傳輸/接收單元(Rx WTRU)120間之既存通道。傳輸無線傳輸/接收單元110係傳輸校正訓練訊框(CTF)131至接收無線傳輸/接收單元120。接收無線傳輸/接收單元120係回應以傳輸探測實體封包資料單元(PPDU)132。傳輸無 線傳輸/接收單元110係計算通道之通道預測H 133,其係稱為H(2→1)。傳輸無線傳輸/接收單元110係傳輸包括通道預測H(2→1)之校正響應134。隨後,接收無線傳輸/接收單元120係傳輸校正訓練訊框135至傳輸無線傳輸/接收單元110以實施通道預測。因應地,傳輸無線傳輸/接收單元110係傳輸探測實體封包資料單元136。接收無線傳輸/接收單元120係計算通道預測H(1→2)、並計算通道之校正矩陣K(1→2)及K(2→1)137。隨後,接收無線傳輸/接收單元120係傳輸具有校正矩陣K(1→2)之校正響應138至傳輸無線傳輸/接收單元110。應該注意的是,隨後,校正矩陣K(1→2)係應用於傳輸無線傳輸/接收單元110以做為通往接收無線傳輸/接收單元120之傳輸之基頻增益或相位更正因子。校正矩陣K(2→1)係應用於接收無線傳輸/接收單元120,其亦做為接收無線傳輸/接收單元120通往傳輸無線傳輸/接收單元110之訊號傳輸之基頻增益/相位更正因子。至此,通道係完成校正、並準備用於封包交換。 Please refer to FIG. 1, which is a signal diagram 100 showing channel correction of the prior art. The transmitting WTRU 110 first needs to correct the existing channel between the receiving WTRUs 120. The transmission WTRU 110 transmits a Correction Training Frame (CTF) 131 to the receiving WTRU 120. The receiving WTRU 120 responds to transmit a Probing Entity Packet Data Unit (PPDU) 132. Transmission no The line transmission/reception unit 110 is a channel prediction H 133 for calculating a channel, which is called H (2→1). The transmission WTRU 110 transmits a correction response 134 including a channel prediction H (2→1). Subsequently, the receiving WTRU 120 transmits the corrected training frame 135 to the transmitting WTRU 110 to perform channel prediction. In response, the transmitting WTRU 110 transmits the probe entity packet data unit 136. The receiving wireless transmission/reception unit 120 calculates the channel prediction H (1→2) and calculates the correction matrix K(1→2) and K(2→1) 137 of the channel. Subsequently, the receiving WTRU 120 transmits a correction response 138 having a correction matrix K (1→2) to the transmission WTRU 110. It should be noted that, subsequently, the correction matrix K(1→2) is applied to the transmission WTRU 110 as a fundamental gain or phase correction factor for transmission to the receiving WTRU 120. The correction matrix K (2→1) is applied to the receiving WTRU 120, which also serves as a fundamental gain/phase correction factor for the signal transmission of the receiving WTRU 120 to the transmitting WTRU 110. . At this point, the channel is calibrated and ready for packet exchange.

欲啟始資料封包交換,傳輸無線傳輸/接收單元110係傳輸要求139至接收無線傳輸/接收單元120,其係回應以傳送調變及編碼手段(MCS)實體封包資料單元140。傳輸無線傳輸/接收單元110係利用校正矩陣K(1→2)以計算導引矩陣V,並且,封包資料轉移142係開始。 To initiate data packet exchange, the transmission WTRU 110 transmits a request 139 to the receiving WTRU 120 in response to transmitting a modulation and coding means (MCS) entity packet data unit 140. The transmission WTRU 110 utilizes a correction matrix K (1→2) to calculate the steering matrix V, and the packet data transfer 142 begins.

習知技術並未考量智慧型天線技術之利用。智慧型天線,特別是波束成型,係配合控制放射圖案之方向性,或靈敏度,之傳輸器或接收器陣列之訊號處理技術。當接收訊號時,波束成型係可以增加想要訊號方向之增益、並減少干擾及雜訊方向之增益。當傳輸訊號時,波束成型係可以增加欲傳送訊號方向之增益。當波束成型能力天線組合多重輸入多重輸出時,可用天線映射之數目係戲劇性地增加。 Conventional technology does not consider the use of smart antenna technology. Smart antennas, especially beamforming, are used in conjunction with signal processing techniques that control the directionality of the radiation pattern, or the sensitivity of the transmitter or receiver array. When receiving signals, beamforming increases the gain in the desired signal direction and reduces the gain in interference and noise directions. When transmitting a signal, the beamforming system can increase the gain of the direction in which the signal is to be transmitted. When the beamforming capability antenna combines multiple input multiple outputs, the number of available antenna maps increases dramatically.

當波束成型天線包含於無線傳輸/接收單元時,可用天線映射之數目 係可以變得極大。為最佳化兩個無線傳輸/接收單元間之通訊連結,同時選擇傳輸器及接收器之適當天線映射係有其需要。 Number of available antenna maps when the beamforming antenna is included in the WTRU The system can become enormous. In order to optimize the communication link between the two WTRUs, it is necessary to select the appropriate antenna mapping for the transmitter and receiver.

有鑑於此,本發明係提供一種方法及裝置,藉以有效地利用具有多重波束成型天線之多重輸入多重輸出能力無線裝置之各種可用天線映射。 In view of this, the present invention provides a method and apparatus for efficiently utilizing various available antenna mappings for multiple input multiple output capable wireless devices having multiple beamforming antennas.

本發明係一種方法及裝置,藉以選擇多重輸入多重輸出致能無線通訊網路之天線映射。目前可用天線映射之候選組合係根據量測之長期通道條件決定。天線映射係經由候選組合中選擇,並且,映射係利用接收無線傳輸/接收單元之選擇天線映射校正。當選擇映射校正時,封包資料傳輸係開始。在另一較佳實施例中,校正訓練訊框係用以同時或依序多重天線映射。除此以外,根據本發明實施天線映射選擇之實體層及媒體存取控制(MAC)層訊框格式亦予以揭露。 The present invention is a method and apparatus for selecting an antenna map for a multiple input multiple output enabled wireless communication network. The candidate combinations currently available for antenna mapping are determined based on the long-term channel conditions of the measurements. The antenna mapping is selected via a candidate combination, and the mapping is corrected using a selective antenna mapping of the receiving WTRU. When the mapping correction is selected, the packet data transmission system starts. In another preferred embodiment, the calibration training frame is used for simultaneous or sequential multiple antenna mapping. In addition, the physical layer and media access control (MAC) layer frame format for implementing antenna mapping selection according to the present invention are also disclosed.

110、310、410‧‧‧傳輸無線傳輸/接收單元 110, 310, 410‧‧‧ Transmission wireless transmission/reception unit

120、320、420‧‧‧接收無線傳輸/接收單元 120, 320, 420‧‧‧ receiving wireless transmission/reception unit

316A...316N、326A...326M‧‧‧複數天線 316A...316N, 326A...326M‧‧‧Multiple antenna

CTF‧‧‧校正訓練訊框 CTF‧‧‧ Correction Training Frame

L-ST‧‧‧繼承短訓練欄位 L-ST‧‧‧Inherited short training field

HT-LTF‧‧‧高處理能力長訓練欄位 HT-LTF‧‧‧High processing capacity long training field

HT-SIG‧‧‧高處理能力訊框欄位 HT-SIG‧‧‧High Processing Capability Field

MCS‧‧‧調變控制序列欄位 MCS‧‧‧Transformation Control Sequence Field

RA‧‧‧接收器位址欄位 RA‧‧‧Receiver Address Field

TA‧‧‧傳輸器位址欄位 TA‧‧‧Transmitter address field

MSDU‧‧‧媒體存取控制服務資料單元欄位 MSDU‧‧‧Media Access Control Service Data Unit Field

FCS‧‧‧訊框檢查序列欄位 FCS‧‧‧ frame check sequence field

本發明之更進一步理解係透過下列發明說明(舉例而言)、並配合所附圖式詳細解釋如下,其中:第1圖係表示習知技術之通道校正及封包資料轉移之訊號圖;第2圖係表示根據本發明之較佳實施例之選擇天線映射之方法流程圖;第3圖係表示根據本發明之具有無線網路基地台(AP)及無線傳輸/接收單元之系統方塊圖;第4圖係表示通道校正及封包資料轉移之訊號時序圖,其中,根據本發明之天線映射選擇係利用;第5圖係表示實施根據本發明之天線映射選擇之校正訓練訊框(CTF) 實體封包資料單元(PPDU)訊框格式之示意圖;第6圖係表示實施根據本發明之天線映射選擇之探測實體封包資料單元(PPDU)訊框格式之示意圖;以及第7圖係表示實施根據本發明之天線映射選擇之探測實體封包資料單元(PPDU)媒體存取控制(MAC)訊框格式之示意圖。 A further understanding of the present invention is explained in detail by the following description of the invention, by way of example, and in conjunction with the accompanying drawings, wherein: FIG. 1 is a schematic diagram showing a channel correction and packet data transfer of the prior art; 1 is a flow chart showing a method of selecting an antenna map according to a preferred embodiment of the present invention; and FIG. 3 is a block diagram showing a system having a wireless network base station (AP) and a wireless transmission/reception unit according to the present invention; 4 is a signal timing diagram showing channel correction and packet data transfer, wherein the antenna mapping selection according to the present invention is utilized; and FIG. 5 is a diagram showing a correction training frame (CTF) for implementing antenna mapping selection according to the present invention. Schematic diagram of a physical packet data unit (PPDU) frame format; FIG. 6 is a schematic diagram showing a probe entity packet data unit (PPDU) frame format for implementing antenna mapping selection according to the present invention; and FIG. 7 is a diagram showing implementation according to the present invention. A schematic diagram of a Probing Entity Packet Data Unit (PPDU) Media Access Control (MAC) frame format for an antenna mapping selection of the invention.

雖然本發明之特徵係利用較佳實施例之特定組合詳細說明如下,然而,各種特徵或元件亦可以單獨利用(而不需要或需要較佳實施例之其他特徵及元件),或者,各種特徵或元件亦可以形成各種組合(而不需要或需要較佳實施例之其他特徵或元件。 Although the features of the present invention are described in detail with the specific combinations of the preferred embodiments, the various features or elements may be utilized separately (without requiring or requiring other features and elements of the preferred embodiments), or various features or The elements can also be formed in various combinations (without requiring or requiring other features or elements of the preferred embodiments.

在下列說明中,無線傳輸/接收單元係包括、但不限於使用者設備(UE)、行動工作站、固定或行動用戶單元、傳呼器、或能夠操作於無線環境之任何其他類型裝置。除此以外,在下列說明中,無線網路基地台(AP)係包括、但不限於B節點、位置控制器、基地台(BS)、或無線通訊環境之任何其他類型界面裝置。除此以外,在下列說明中,用語”天線映射”係表示具有特定射頻處理鏈之天線,或天線波束(在波束成型天線之情況中),之特定組合。 In the following description, a WTRU includes, but is not limited to, a User Equipment (UE), a mobile workstation, a fixed or mobile subscriber unit, a pager, or any other type of device capable of operating in a wireless environment. In addition, in the following description, a wireless network base station (AP) includes, but is not limited to, a Node B, a location controller, a base station (BS), or any other type of interface device of a wireless communication environment. In addition, in the following description, the term "antenna mapping" refers to a particular combination of antennas having a particular radio frequency processing chain, or antenna beams (in the case of beamforming antennas).

請參考2圖,其係表示根據本發明之選擇天線映射之方法200。無線傳輸/接收單元係經由目前可用天線映射之候選組合中選擇天線映射(步驟210)。無線傳輸/接收單元係決定選擇天線映射是否校正(步驟220)。若決定選擇天線映射並未校正,無線傳輸/接收單元係校正選擇天線映射(步驟230)。應該注意的是,先前校正之天線映射校正係可能變得腐舊。選擇天線映射之校正將會更進一步詳細說明如下。接著,無線傳輸/接收單元 係決定接收無線傳輸/接收單元是否已經改變其天線映射(步驟240)。若接收無線傳輸/接收單元已經改變其天線映射,則這種方法係返回至步驟210以選擇新傳輸器天線映射,若情況需要。若決定接收無線傳輸/接收單元尚未改變其天線映射,則傳輸無線傳輸/接收單元係利用選擇及校正天線映射開始封包資料傳輸(步驟250)。這種方法係返回至步驟210,藉以使傳輸無線傳輸/接收單元能夠改變其天線映射。 Please refer to FIG. 2, which illustrates a method 200 of selecting an antenna map in accordance with the present invention. The WTRU selects an antenna map from among candidate combinations of currently available antenna maps (step 210). The WTRU determines whether the antenna mapping is selected for correction (step 220). If it is decided that the selected antenna map is not corrected, the WTRU adjusts the selected antenna map (step 230). It should be noted that the previously corrected antenna mapping correction system may become stale. The correction for selecting the antenna mapping will be described in further detail below. Then, the wireless transmission/reception unit It is determined whether the receiving WTRU has changed its antenna mapping (step 240). If the receiving WTRU has changed its antenna mapping, then the method returns to step 210 to select a new transmitter antenna map, if the situation requires. If it is determined that the receiving WTRU has not changed its antenna mapping, the transmitting WTRU initiates packet data transmission using the selection and correction antenna mapping (step 250). This method returns to step 210 whereby the transmitting WTRU can change its antenna mapping.

請參考第3圖,其係表示具有第一無線傳輸/接收單元310及第二無線傳輸/接收單元320之無線通訊系統300,藉以實施根據本發明之天線映射選擇。在下列說明中,本發明係參考由傳輸無線傳輸/接收單元310至接收無線傳輸/接收單元320之下行連結傳輸詳細解釋。然而,本發明亦同樣適用於上行連結及下行連結傳輸,其中,無線傳輸/接收單元310或無線傳輸/接收單元320係基地台(BS),以及,本發明亦同樣適用於架構,其中,在隨意(ad hoc)或網狀(mesh)網路中,無線傳輸/接收單元係與無線傳輸/接收單元直接通訊。 Referring to FIG. 3, there is shown a wireless communication system 300 having a first WTRU 310 and a second WTRU 320 for implementing antenna mapping selection in accordance with the present invention. In the following description, the present invention refers to a detailed explanation of the downlink connection transmission by the transmission WTRU/reception unit 310 to the reception WTRU. However, the present invention is equally applicable to uplink connection and downlink connection transmission, wherein the WTRU 310 or the WTRU 320 is a base station (BS), and the present invention is equally applicable to an architecture in which In an ad hoc or mesh network, the WTRU communicates directly with the WTRU.

無線傳輸/接收單元310係具有兩個射頻鏈312A、312B、波束選擇器314、複數天線316A~316N,其中,N係大於1之任何整數、及校正單元318。在範例實施例中,天線316A~316N係能夠產生多重波束。無線傳輸/接收單元320係具有兩個射頻鏈322A、322B、波束選擇器324、複數天線326A~326M,其中,M係大於1之任何整數。除此以外,在範例實施例中,至少一天線326A~326N係能夠產生多重波束。特別是,請參考無線傳輸/接收單元320,波束組合係利用波束選擇器324選擇,藉以用於參考第2圖說明如上之根據本發明方法200之多重輸入多重輸出傳輸及接收。選擇天線映射係根據波束選擇器324輸出之控制訊號以用於傳輸及接收。波束選擇器324係根據產生及儲存於校正單元328之品質度量以選擇特定波束 組合,其將會更進一步詳細說明如下。本發明之無線傳輸/接收單元元件係可以整合於積體電路(IC)或架構為具有複數互連元件之電路。應該瞭解的是,雖然範例實施例係具有兩個射頻鏈,然而,這單純是基於方便說明之目的,並且,任何數目之射頻鏈亦可以利用。 The WTRU 310 has two radio frequency chains 312A, 312B, a beam selector 314, and a plurality of antennas 316A-316N, wherein N is any integer greater than one, and a correction unit 318. In an exemplary embodiment, antennas 316A-316N are capable of generating multiple beams. The WTRU 320 has two radio frequency chains 322A, 322B, a beam selector 324, and a plurality of antennas 326A-326M, where M is any integer greater than one. In addition, in the exemplary embodiment, at least one of the antennas 326A-326N is capable of generating multiple beams. In particular, please refer to the WTRU 320, which is selected by the beam selector 324 for use in the multi-input multiple-output transmission and reception of the method 200 according to the present invention as described above with reference to FIG. The antenna map is selected based on the control signals output by the beam selector 324 for transmission and reception. Beam selector 324 selects a particular beam based on quality metrics generated and stored in correction unit 328. The combination will be described in further detail below. The WTRU element of the present invention can be integrated into an integrated circuit (IC) or a circuit having a plurality of interconnected elements. It should be understood that although the example embodiment has two RF chains, this is purely for convenience of explanation and any number of RF chains may be utilized.

為容易說明起見,第3圖係表示配備波束成型天線,其分別產生三個波束,之傳輸無線傳輸/接收單元310及接收無線傳輸/接收單元320。然而,第3圖所示之架構僅提供作為範例、而非限制。具有任何數目之波束之天線類型,或非為波束成型或波束切換類型之天線,之任何組合亦可以利用。 For ease of explanation, FIG. 3 shows a beamforming antenna that generates three beams, which are transmitted to the wireless transmission/reception unit 310 and the reception wireless transmission/reception unit 320. However, the architecture shown in Figure 3 is provided by way of example only and not limitation. Any combination of antenna types with any number of beams, or antennas that are not beamforming or beam switching types, may also be utilized.

天線可以是切換寄生天線(SPA)、相位陣列天線、或任何類型之方向性波束成型天線。切換寄生天線係大小精簡,故合適用於無線區域網路(WLAN)裝置。若切換寄生天線係利用,單一主動天線元件配合單一或複數被動天線元件係可以利用。經由調整被動天線元件之阻抗,天線波束圖案係可以調整,並且,阻抗調整係可以控制連接天線元件之一組開關而實施。或者,天線亦可能是具有多重天線之複合物,其可能全是全向性天線。舉例來說,具有選擇實體間隔之三個全向性天線係可以根據來自波束選擇器324之控制訊號開啟或關閉,藉以定義不同波束組合。 The antenna can be a switched parasitic antenna (SPA), a phased array antenna, or any type of directional beamforming antenna. Switching parasitic antennas are compact in size and are therefore suitable for use in wireless local area network (WLAN) devices. If the parasitic antenna system is utilized, a single active antenna element can be utilized in conjunction with a single or multiple passive antenna elements. The antenna beam pattern can be adjusted by adjusting the impedance of the passive antenna element, and the impedance adjustment can be implemented by controlling a group of switches that connect the antenna elements. Alternatively, the antenna may also be a composite with multiple antennas, which may all be omnidirectional antennas. For example, three omnidirectional antennas with selected physical intervals can be turned on or off based on control signals from beam selector 324 to define different beam combinations.

為方便說明起見,請參考第3圖。傳輸無線傳輸/接收單元310(在下列說明中,亦稱為Tx WTRU)係包括兩個射頻鏈312A及312B。波束選擇器314係耦接數個全向性天線316A~316N至射頻鏈312A及312B。有鑑於此,傳輸無線傳輸/接收單元310之可能天線映射之數目係N倍於射頻鏈之數目。接收無線傳輸/接收單元320(在下列說明中,亦稱為Rx WTRU)亦包括兩個射頻鏈322A及322B。波束選擇器324係耦接數個全向性天線326A~326M至射頻鏈322A及322B。如先前所述,在簡單範例實施例中,各個波束成型天線326A~326M係能夠形成三個方向性波束。有鑑於此, 接收無線傳輸/接收單元320係具有總共M乘以波束數目乘以射頻鏈數目之可能天線映射。能夠用於任何傳輸工作站之全部可能天線映射之組合係稱為”超組合(superset)”,並且,超組合(superset)之大小係表示為Nsuperset。Nsuperset可能非常大,並且,在任何給定時間利用全部可用天線映射亦可能不實際。 For the sake of explanation, please refer to Figure 3. Transmission WTRU 310 (also referred to as a Tx WTRU in the following description) includes two RF chains 312A and 312B. The beam selector 314 is coupled to a plurality of omnidirectional antennas 316A-316N to the RF chains 312A and 312B. In view of this, the number of possible antenna mappings of the transmission WTRU 108 is N times the number of radio chains. The receiving WTRU 320 (also referred to as the Rx WTRU in the following description) also includes two radio frequency chains 322A and 322B. The beam selector 324 is coupled to the plurality of omnidirectional antennas 326A-326M to the RF chains 322A and 322B. As previously described, in a simple example embodiment, each beamforming antenna 326A-326M is capable of forming three directional beams. In view of this, the receiving WTRU 320 has a possible antenna mapping of a total of M times the number of beams multiplied by the number of radio frequency chains. The combination of all possible antenna mappings that can be used for any transmission station is referred to as a "superset," and the size of the superset is expressed as Nsuperset . N superset can be very large and it may not be practical to utilize all available antenna mappings at any given time.

候選組合係超組合(superset)之子組合,並且,候選組合係可用於任何給定時間之選擇之天線映射集合。較佳者,候選組合之大小係限定於8組至22組天線映射之間。候選組合並非靜態的,相對於此,候選組合係動態的,並且,候選組合係可以隨著時間改變以反映改變之通道條件。舉例來說,傳輸工作站係可以連續地或周期地監控目前候選組合中全部天線映射之通道條件,並且,若量測之通道條件無法滿足預定臨界值達到預定時間,則傳輸工作站係可以調變候選組合。這可以經由拋棄目前候選組合中幾組天線映射、加入幾組新天線映射、及/或保留候選組合中幾組天線映射而完成。在高速應用中,候選組合係可以降低,或者,天線映射之選擇亦可以同時停止。 The candidate combinations are sub-combinations of supersets, and the candidate combinations are available for the selected set of antenna maps at any given time. Preferably, the size of the candidate combination is limited to between 8 and 22 antenna maps. The candidate combinations are not static, whereas the candidate combinations are dynamic, and the candidate combinations can change over time to reflect the changed channel conditions. For example, the transmission workstation can continuously or periodically monitor the channel conditions of all antenna mappings in the current candidate combination, and if the measured channel conditions fail to meet the predetermined threshold for a predetermined time, the transmission workstation can modulate the candidate. combination. This can be done by discarding several sets of antenna mappings in the current candidate combination, adding several sets of new antenna mappings, and/or retaining several sets of antenna mappings in the candidate combination. In high speed applications, the candidate combinations can be reduced, or the antenna mapping options can be stopped simultaneously.

在本發明之較佳實施例中,無線傳輸/接收單元310係可以經由候選組合中選擇任何天線映射。天線映射之選擇係根據長期尺度。逐一封包通道之追蹤並不需要實施,且因此,天線映射之選擇並不會追蹤通道之快速改變(或微結構(micro-structure))。應該注意的是,候選組合中天線映射之任何改變係發生於資料封包之任何主動傳輸或接收以外。 In a preferred embodiment of the invention, the WTRU 310 can select any antenna mapping via a candidate combination. The choice of antenna mapping is based on long-term scale. The tracking of the packet-by-packet channel does not need to be implemented, and therefore, the choice of antenna mapping does not track the rapid change (or micro-structure) of the channel. It should be noted that any change in the antenna mapping in the candidate combination occurs outside of any active transmission or reception of the data packet.

請繼續參考第3圖,在操作期間,接收無線傳輸/接收單元310之校正單元318係量測選擇品質度量於各個天線波束或目前候選組合之波束組合、並輸出品質度量量測資料至波束選擇器314。波束選擇器314係根據品質度量量測選擇想要之天線映射,藉以與接收無線傳輸/接收單元320資 料通訊。校正單元318更視情況需要產生周期(或非周期)校正之探測要求,以及,因應校正要求之校正訓練訊框及探測實體封包資料單元。校正單元318係包括根據接收探測封包計算通道預測矩陣及校正矩陣之處理器、及儲存通道預測矩陣及校正矩陣之記憶體。較佳者,校正單元係實施相容於IEEE標準之訊號發送及訊息傳遞,諸如:IEEE 802.11家族之標準,且特別是,IEEE 802.11N標準。 Referring to FIG. 3, during operation, the correcting unit 318 of the receiving WTRU 310 measures the beam combination of the selected quality metrics for each antenna beam or the current candidate combination, and outputs the quality metric measurement data to the beam selection. 314. The beam selector 314 selects the desired antenna mapping according to the quality metric measurement, and the receiving wireless transmission/reception unit 320 Material communication. The correcting unit 318 further needs to generate a periodic (or aperiodic) correction detection request as well as a correction training frame and a detection entity packet data unit in response to the correction request. The correcting unit 318 includes a processor that calculates a channel prediction matrix and a correction matrix according to the received detection packet, and a memory that stores the channel prediction matrix and the correction matrix. Preferably, the correction unit implements signal transmission and message delivery compatible with the IEEE standard, such as the IEEE 802.11 family of standards, and in particular, the IEEE 802.11N standard.

各種品質度量係可以用來決定想要之天線映射。實體(PHY)層、媒體存取控制(MAC)層、或更高層度量係合適的。較佳者,品質度量係包括、但不限於通道預測、訊號雜訊及干擾比(SNIR)、接收訊號強度指標(RSSI)、短期資料處理能力、封包錯誤率(PER)、資料速率、無線傳輸/接收單元操作模式、接收通道預測矩陣之最大特徵值(eigen-value)之大小、或諸如此類。 Various quality metrics can be used to determine the desired antenna mapping. A physical (PHY) layer, a medium access control (MAC) layer, or a higher level metric is suitable. Preferably, the quality metric includes, but is not limited to, channel prediction, signal noise and interference ratio (SNIR), received signal strength indicator (RSSI), short-term data processing capability, packet error rate (PER), data rate, wireless transmission. / Receive unit operation mode, the size of the maximum eigen-value of the receive channel prediction matrix, or the like.

為方便說明參考第2圖說明之天線映射選擇方法200,第4圖係表示天線映射選擇之訊號時序圖400。第一傳輸無線傳輸/接收單元410係利用天線映射p傳輸探測實體封包資料單元430至接收無線傳輸/接收單元420。隨後,傳輸無線傳輸/接收單元410係傳輸要求校正之校正訓練訊框432。接收無線傳輸/接收單元420目前係利用天線映射x,並且,接收無線傳輸/接收單元420係利用天線映射x傳送之探測實體封包資料單元434以回應校正訓練訊框432。傳輸無線傳輸/接收單元410係實施用於傳輸無線傳輸/接收單元410及接收無線傳輸/接收單元420之天線映射,也就是說,天線映射p及天線映射x,之通道預測436。通道預測矩陣H(x→p)係計算。傳輸無線傳輸/接收單元410係傳輸具有校正通道預測之校正響應438。接著,接收無線傳輸/接收單元420係傳輸自有校正訓練訊框440至傳輸無線傳輸/接收單元410。傳輸無線傳輸/接收單元410係回應以探測 實體封包資料單元442。接收無線傳輸/接收單元420係利用探測實體封包資料單元442計算通道預測矩陣H(x→p)及目前選擇天線映射之校正矩陣K(p→x)及K(x→p)444。隨後,接收無線傳輸/接收單元420係傳輸校正響應446至傳輸無線傳輸/接收單元410,其係具有傳輸無線傳輸/接收單元410感到興趣之通道校正矩陣,也就是說,K(p→x)。隨即,天線映射p→x係校正448。 For convenience of description, the antenna map selection method 200 described with reference to FIG. 2 is shown, and FIG. 4 is a signal timing diagram 400 for antenna mapping selection. The first transmission WTRU 106 transmits the probe entity packet data unit 430 to the reception WTRU 420 using the antenna map p. Subsequently, the transmission WTRU 106 transmits a correction training frame 432 that requires correction. The receiving WTRU 420 currently utilizes the antenna map x, and the receiving WTRU 420 utilizes the probe entity packet data unit 434 transmitted by the antenna map x in response to the corrected training frame 432. The transmission WTRU 410 implements channel prediction 436 for transmitting the antenna mapping of the WTRU 410 and the receiving WTRU 420, that is, the antenna mapping p and the antenna mapping x. The channel prediction matrix H(x→p) is calculated. Transmission WTRU 410 transmits a correction response 438 with corrected channel prediction. Next, the receiving wireless transmission/reception unit 420 transmits the own corrected training frame 440 to the transmission wireless transmission/reception unit 410. Transmission wireless transmission/reception unit 410 responds to detect Entity packet data unit 442. The receiving wireless transmission/reception unit 420 calculates the channel prediction matrix H(x→p) and the correction matrix K(p→x) and K(x→p) 444 of the currently selected antenna mapping by using the sounding entity packet data unit 442. Subsequently, the receiving WTRU 420 transmits a correction response 446 to the transmission WTRU 410, which has a channel correction matrix that the transmission WTRU 410 is interested in, that is, K(p→x) . Then, the antenna map p→x is corrected 448.

隨後,無線傳輸/接收單元係利用校正通道自由開始資料封包交換。傳輸無線傳輸/接收單元410係傳輸傳輸要求(TRQ)450至接收無線傳輸/接收單元420。接收無線傳輸/接收單元420係回應以利用天線映射x傳輸之探測實體封包資料單元452。隨後,傳輸無線傳輸/接收單元410係根據校正矩陣K(p→x)454計算導引矩陣V。封包資料轉移456係接著開始。 Subsequently, the WTRU uses the correction channel to freely start data packet exchange. The transmission WTRU 106 transmits a transmission request (TRQ) 450 to the receiving WTRU 420. The receiving WTRU 420 responds with the probe entity packet data unit 452 transmitted using the antenna map x. Subsequently, the transmission WTRU 110 calculates the steering matrix V based on the correction matrix K(p→x) 454. The transfer of the packet data 456 is then started.

基於各種理由,諸如:通道條件(利用通道品質度量量測)或任一無線傳輸/接收單元行動性之改變,舉例來說,接收無線傳輸/接收單元420係由x至y地改變天線映射458。隨後,決定天線映射p→y是否校正。在範例實施例中,天線映射p→y尚未校正,且因此,校正係需要。傳輸無線傳輸/接收單元410係利用天線映射p傳輸探測實體封包資料單元460、及隨後之校正訓練訊框462。接收無線傳輸/接收單元420係利用天線映射y回應以探測實體封包資料單元464。通道預測矩陣H(y→p)466係發生於傳輸無線傳輸/接收單元410,並且,具有通道預測矩陣之校正響應468係傳輸。隨後,接收無線傳輸/接收單元420係要求校正470,並且,傳輸無線傳輸/接收單元係相容於探測實體封包資料單元472。接收無線傳輸/接收單元420係計算通道預測矩陣H(p→y)及校正矩陣K(p→y)及K(y→p)474。隨後,校正響應476係傳輸至傳輸無線傳輸/接收單元410,其係具有傳輸無線傳輸/接收單元410感到興趣之校正矩陣。隨即,天線映射p→y 係校正、並準備開始資料封包交換478。 For various reasons, such as: channel conditions (using channel quality metric measurements) or changes in the mobility of any of the WTRUs, for example, the receiving WTRU 420 changes the antenna mapping 458 from x to y. . Subsequently, it is determined whether the antenna map p→y is corrected. In an exemplary embodiment, the antenna map p→y has not been corrected, and therefore, a correction is required. The transmission WTRU 106 transmits the probe entity packet data unit 460 and the subsequent correction training frame 462 using the antenna map p. The receiving WTRU 420 responds with an antenna map y to detect the entity packet data unit 464. The channel prediction matrix H(y→p) 466 occurs in the transmission WTRU 410 and the correction response 468 with the channel prediction matrix is transmitted. Subsequently, the receiving WTRU 420 requires correction 470, and the transmitting WTRU is compatible with the Probing Entity Packet Data Unit 472. The receiving wireless transmission/reception unit 420 calculates a channel prediction matrix H(p→y) and a correction matrix K(p→y) and K(y→p) 474. Subsequently, the correction response 476 is transmitted to the transmission WTRU 104, which has a correction matrix that the transmission WTRU 104 is interested in. Then, the antenna map p→y Corrected and prepared to begin data packet exchange 478.

隨後,資料封包交換係開始於傳輸無線傳輸/接收單元410要求探測480、及接收無線傳輸/接收單元420回應以利用天線映射y傳輸之探測實體封包資料單元482。隨後,導引矩陣V係根據校正矩陣K(p→y)計算,並且,封包資料轉移486係接著開始。 Subsequently, the data packet switching system begins with the transmitting WTRU/receiving unit 410 requesting the probe 480, and the receiving WTRU 420 responding to transmit the probe entity packet data unit 482 using the antenna map y. Subsequently, the steering matrix V is calculated from the correction matrix K(p→y), and the packet data transfer 486 is then started.

在另一較佳實施例中,在資料封包轉移以前,多重天線映射之校正係順序發生。類似於第4圖所示之校正訊號發送430至448,接收無線傳輸/接收單元係可以利用經由其目前候選組合中選擇之多重天線映射以回應校正訓練訊框。得到之校正矩陣係可以儲存以供未來參考。舉例來說,傳輸無線傳輸/接收單元係可以選擇天線映射f、並傳輸校正訓練訊框至要求校正之接收無線傳輸/接收單元。接收無線傳輸/接收單元係可以利用經由其目前可用候選組合中選擇之各組天線映射q、r、s順序回應以探測實體封包資料單元。在封包資料轉移以前,傳輸無線傳輸/接收單元係對應天線映射f→q、f→r、f→s以校正通道、並儲存校正矩陣於記憶體以供未來參考。若接收無線傳輸/接收單元改變其天線映射至,舉例來說,天線映射r,則傳輸無線傳輸/接收單元係可以經由記憶體擷取適當校正矩陣、並不需要再度實施校正地開始資料封包傳輸。 In another preferred embodiment, the correction of multiple antenna mapping occurs sequentially prior to the transfer of the data packets. Similar to the correction signal transmissions 430 through 448 shown in FIG. 4, the receiving WTRU may utilize the multiple antenna mapping selected via its current candidate combination in response to correcting the training frame. The resulting correction matrix can be stored for future reference. For example, the transmitting WTRU may select the antenna map f and transmit the corrected training frame to the receiving WTRU that requires correction. The receiving WTRU may sequentially respond with a set of antenna maps q, r, s selected through its currently available candidate combinations to detect the entity packet data unit. Before the transfer of the packet data, the transmission WTRU receives the antenna mapping f→q, f→r, f→s to correct the channel, and stores the correction matrix in the memory for future reference. If the receiving WTRU changes its antenna mapping to, for example, the antenna mapping r, the transmitting WTRU can retrieve the appropriate correction matrix via the memory and does not need to perform correction again to start the data packet transmission. .

或者,多重天線映射之校正係可能平行發生(也就是說,同時發生),藉以降低訊號發送。在本較佳實施例中,單一探測實體封包資料單元係利用選擇天線映射(舉例來說,映射b),進而利用傳輸無線傳輸/接收單元傳送。具有目前可用天線映射t、u、v之接收無線傳輸/接收單元係利用各組可用天線映射t、u、v回應單一校正訓練訊框,並且,各組天線映射b→t、b→u、b→v之校正矩陣係計算。利用這種方式,需要之校正訊號發送係降低,藉以減少校正延遲及增加處理能力。 Alternatively, the correction of multiple antenna mappings may occur in parallel (that is, simultaneously) to reduce signal transmission. In the preferred embodiment, the single sounding entity packet data unit utilizes a selective antenna mapping (e.g., mapping b) for transmission by the transmitting wireless transmission/reception unit. The receiving WTRU having the currently available antenna mappings t, u, v responds to the single correction training frame by using the available antenna mappings t, u, v, and each group of antennas maps b→t, b→u, The correction matrix of b→v is calculated. In this way, the correction signal transmission required is reduced, thereby reducing the correction delay and increasing the processing capability.

在另一較佳實施例中,其中,無線通訊系統係相容於IEEE 802.X標準,探測實體封包資料單元係包括調變控制序列(MCS)位元欄位。調變控制序列(MCS)位元欄位係媒體存取控制(MAC)資訊元件(IE),其係表示目前接收無線傳輸/接收單元天線映射候選組合大小及接收無線傳輸/接收單元之目前選擇天線映射。較佳者,調變控制序列(MCS)位元欄位具有5位元之長度。選擇性地,調變控制序列(MCS)位元欄位具有單位元”串長指標(run length indicator)”,其係容許傳輸無線傳輸/接收單元要求接收無線傳輸/接收單元改變其天線映射之目前候選組合。 In another preferred embodiment, wherein the wireless communication system is compatible with the IEEE 802.X standard, the Probing Entity Packet Data Unit includes a Modulation Control Sequence (MCS) bit field. The Modulation Control Sequence (MCS) bit field is a Media Access Control (MAC) Information Element (IE), which indicates the current selection of the receiving WTRU antenna mapping candidate combination size and the current selection of the receiving WTRU. Antenna mapping. Preferably, the modulation control sequence (MCS) bit field has a length of 5 bits. Optionally, the modulation control sequence (MCS) bit field has a unit cell "run length indicator" that allows the transmitting WTRU to request the receiving WTRU to change its antenna mapping. Currently a candidate combination.

傳輸無線傳輸/接收單元係可以要求接收無線傳輸/接收單元改變其天線映射候選組合,舉例來說,若傳輸無線傳輸/接收單元無法找到接收器之天線映射,進而滿足其品質要求。在這種情況中,若接收無線傳輸/接收單元能夠改變其候選組合,則接收無線傳輸/接收單元係可以表示將利用新媒體存取控制(MAC)管理訊框立即改變其天線映射候選組合。 The transmitting WTRU may require the receiving WTRU to change its antenna mapping candidate combination. For example, if the transmitting WTRU cannot find the antenna mapping of the receiver, the quality requirements are met. In this case, if the receiving WTRU is able to change its candidate combination, the receiving WTRU may indicate that its antenna mapping candidate combination will be changed immediately using the New Media Access Control (MAC) management frame.

當傳輸無線傳輸/接收單元基於各種可能理由(舉例來說,若傳輸無線傳輸/接收單元無法經由目前候選組合中找到自身天線映射,進而滿足其品質要求)而想要改變其候選組合時,則傳輸無線傳輸/接收單元係可以傳送媒體存取控制(MAC)管理訊框,藉以向接收無線傳輸/接收單元表示候選組合改變。隨後,傳輸無線傳輸/接收單元係可以立即改變天線映射候選組合、並經由新候選組合中映射選擇適合天線映射以傳輸。 When the transmitting WTRU is trying to change its candidate combination based on various possible reasons (for example, if the transmitting WTRU cannot find its own antenna mapping in the current candidate combination to meet its quality requirements), then The transmitting WTRU may transmit a Medium Access Control (MAC) management frame to indicate a candidate combination change to the receiving WTRU. Subsequently, the transmitting WTRU may immediately change the antenna mapping candidate combination and select a suitable antenna mapping for transmission via the mapping in the new candidate combination.

或者,傳輸無線傳輸/接收單元係可以要求接收無線傳輸/接收單元完全失能其天線映射。這種要求係可以利用實體封包資料單元傳輸至接收無線傳輸/接收單元。在收到具有這種要求之實體封包資料單元以後,接收無線傳輸/接收單元係可以或可以不相容於這種要求。相容係可以利用接收無線傳輸/接收單元表示於探測實體封包資料單元。當接收無線傳輸 /接收單元相容於這種要求時,接收無線傳輸/接收單元之目前選擇天線映射係變為靜態及不可改變。 Alternatively, the transmitting WTRU may require the receiving WTRU to completely disable its antenna mapping. This requirement can be transmitted to the receiving WTRU using the physical packet data unit. Upon receipt of a physical packet data unit having such a request, the receiving wireless transmission/reception unit may or may not be compatible with such requirements. The compatibility system can be represented by the receiving wireless transmission/reception unit in the sounding entity packet data unit. When receiving wireless transmission When the receiving unit is compatible with this requirement, the currently selected antenna mapping of the receiving WTRU becomes static and unchangeable.

請參考第5圖,其係表示根據本發明之校正訓練訊框實體封包資料單元500之實體封包資料單元訊框格式之示意圖。應該注意的是,雖然第5圖所示之訊框格式係相容於IEEE 802.11N標準,本發明亦可以應用於任何IEEE標準。校正訓練訊框係用以要求經由接收無線傳輸/接收單元之探測封包傳輸之通道校正。校正訓練訊框實體封包資料單元500係具有:繼承短訓練欄位(L-STE)510,其跟隨著高處理能力長訓練欄位(HT-LTF)520、高處理能力訊框欄位(HT-SIG)530、及資料欄位540。繼承短訓練欄位(L-STF)510與繼承(前802.11N)短訓練欄位具有相同格式。高處理能力長訓練欄位(HT-LTF)520係定義於802.11N實體(PHY)層之欄位、並用於多重輸入多重輸出傳輸訓練。高處理能力訊框欄位(HT-SIG)530係定義於802.11N之欄位、並表示選擇調變及編碼手段及媒體存取控制(MAC)服務資料單元(MSDU)之大小。 Please refer to FIG. 5, which is a schematic diagram showing the format of a physical packet data unit frame of the calibration training frame entity packet data unit 500 according to the present invention. It should be noted that although the frame format shown in FIG. 5 is compatible with the IEEE 802.11N standard, the present invention is also applicable to any IEEE standard. The calibration training frame is used to require channel correction via the detection packet transmission of the receiving WTRU. The calibration training frame entity packet data unit 500 has an inheritance short training field (L-STE) 510, which is followed by a high processing capability long training field (HT-LTF) 520 and a high processing capability frame field (HT). -SIG) 530, and data field 540. The Inherit Short Training Field (L-STF) 510 has the same format as the Inherited (pre-802.11N) short training field. The High Processing Capability Training Field (HT-LTF) 520 is defined in the 802.11N Entity (PHY) layer and is used for multiple input multiple output transmission training. The High Processing Capability Field (HT-SIG) 530 is defined in the field of 802.11N and indicates the size of the selection modulation and coding means and the Medium Access Control (MAC) Service Data Unit (MSDU).

調變控制序列(MCS)欄位535係包括校正及天線映射選擇之相關資訊,諸如:(1)用於實體封包資料單元傳輸之選擇天線映射之表示;(2)完整候選組合順序或平行探測之要求之表示;(3)改變候選組合大小之要求之表示;(4)要求接收無線傳輸/接收單元天線映射候選組合之更新之串長(run length)位元;以及(5)接收無線傳輸/接收單元暫時維持天線映射選擇之要求之表示。 The Modulation Control Sequence (MCS) field 535 includes information related to correction and antenna mapping selection, such as: (1) representation of a selected antenna map for transmission of a physical packet data unit; (2) complete candidate combination order or parallel detection Representation of the requirements; (3) representation of the requirement to change the size of the candidate combination; (4) request to receive the updated run length bit of the WTRU antenna mapping candidate combination; and (5) receive the wireless transmission / The receiving unit temporarily maintains the representation of the requirements for antenna mapping selection.

請參考第6圖,其係表示探測實體封包資料單元600訊框格式之示意圖。同樣地,應該注意的是,雖然第6圖所示之訊框格式係相容於IEEE 802.11N標準,本發明亦可以應用於任何IEEE標準。探測實體封包資料單元係具有:繼承短訓練欄位(L-STE)610、高處理能力長訓練欄位(HT -LTF)615、高處理能力訊框欄位(HT-SIG)620、調變控制序列(MCS)欄位625,其跟隨著複數額外高處理能力長訓練欄位(HT-LTF)6301至630N、及資料欄位635。高處理能力訊框欄位(HT-SIG)620係包括:表示候選組合大小之2個位元、及表示包括於實體封包資料單元之高處理能力長訓練欄位(HT-LTF)630總數N之5個位元。有鑑於此,候選組合之各組天線映射之高處理能力長訓練欄位(HT-LTF)係可以包括於實體封包資料單元。較佳者,如先前所述,候選組合可以小至1及大至32。實體封包資料單元之各組高處理能力長訓練欄位(HT-LTF)615及630係利用經由候選組合中選擇之不同天線映射傳輸。用以傳輸第一高處理能力長訓練欄位(HT-LTF)615及資料欄位635之選擇天線映射係表示於調變控制序列(MCS)欄位625。調變控制序列(MCS)欄位亦可以包括額外位元以表示:(1)接收工作站之繼續天線映射選擇之維持/釋放要求;(2)因應於先前接收維持/釋放要求之天線映射改變之確認;(3)完整候選組合搜尋之校正訓練訊框之先前接收要求之確認;以及(4)改變候選組合大小之校正訓練訊框之先前接收要求之確認。 Please refer to FIG. 6, which is a schematic diagram showing the format of the frame of the detecting entity packet data unit 600. Similarly, it should be noted that although the frame format shown in FIG. 6 is compatible with the IEEE 802.11N standard, the present invention is also applicable to any IEEE standard. The detection entity packet data unit has: inheritance short training field (L-STE) 610, high processing capability long training field (HT-LTF) 615, high processing capability frame field (HT-SIG) 620, modulation Control Sequence (MCS) field 625, which follows a plurality of additional high processing capability long training fields (HT-LTF) 630 1 to 630 N , and a data field 635. The High Processing Capability Field (HT-SIG) 620 includes: 2 bits representing the size of the candidate combination, and a total number of high processing capability long training fields (HT-LTF) 630 included in the entity packet data unit. 5 bits. In view of this, the high processing capability long training field (HT-LTF) of each group of antenna mappings of the candidate combination may be included in the entity packet data unit. Preferably, as previously described, the candidate combinations can be as small as 1 and as large as 32. Each group of high processing capability long training fields (HT-LTF) 615 and 630 of the entity packet data unit utilizes different antenna mapping transmissions selected through the candidate combinations. The selected antenna mapping used to transmit the first high processing capability long training field (HT-LTF) 615 and data field 635 is represented in the modulation control sequence (MCS) field 625. The Modulation Control Sequence (MCS) field may also include additional bits to indicate: (1) the sustain/release requirements of the continuation antenna mapping selection of the receiving station; (2) the antenna mapping changes in response to the previous reception of the sustain/release request Confirmation; (3) confirmation of the previous reception request of the calibration training frame for the complete candidate combination search; and (4) confirmation of the previous reception request of the correction training frame for changing the candidate combination size.

請參考第7圖,其係表示第6圖之探測實體封包資料單元資料訊框之媒體存取控制(MAC)訊框格式700。媒體存取控制(MAC)欄位係包括:訊框控制欄位705、周期/識別碼欄位710、接收器位址(RA)欄位715、傳輸器位址(TA)欄位720、媒體存取控制(MAC)服務資料單元(MSDU)欄位725、及訊框檢查序列(FCS)欄位730。在本發明之較佳實施例中,媒體存取控制(MAC)服務資料單元(MSDU)欄位725係可以包括位元,進而表示因應於接收維持/釋放要求之天線映射改變之維持/釋放確認,誠如先前參考第5圖及調變控制序列(MCS)欄位535所討論。經由降低候選組合更新,校正及關連訊號發送係可以降低,進而增加處理能力。 Please refer to FIG. 7, which is a media access control (MAC) frame format 700 for the data frame of the probing entity packet data unit of FIG. The Media Access Control (MAC) field includes: Frame Control Field 705, Period/Identification Code Field 710, Receiver Address (RA) Field 715, Transmitter Address (TA) Field 720, Media Access Control (MAC) Service Data Unit (MSDU) field 725, and Frame Check Sequence (FCS) field 730. In a preferred embodiment of the present invention, a Medium Access Control (MAC) Service Data Unit (MSDU) field 725 may include a bit, thereby indicating a hold/release confirmation of an antenna mapping change in response to receiving a hold/release request. As previously discussed with reference to Figure 5 and the Modulation Control Sequence (MCS) field 535. By reducing candidate combination updates, the correction and correlation signal transmission can be reduced, thereby increasing processing power.

雖然本發明之特徵係利用較佳實施例之特定組合詳細說明如下,然而,各種特徵或元件亦可以單獨利用(而不需要或需要較佳實施例之其他特徵及元件),或者,各種特徵或元件亦可以形成各種組合(而不需要或需要較佳實施例之其他特徵或元件。 Although the features of the present invention are described in detail with the specific combinations of the preferred embodiments, the various features or elements may be utilized separately (without requiring or requiring other features and elements of the preferred embodiments), or various features or The elements can also be formed in various combinations (without requiring or requiring other features or elements of the preferred embodiments.

Claims (15)

一種用於一無線傳輸/接收單元(WTRU)而進行天線選擇的方法,該方法包括:從天線映射之一候選組合選擇一天線映射,其中一天線映射包含一射頻(RF)鏈、選自包括至少一波束成型天線的多個天線的一天線與選自與該天線關連之多個天線波束的一天線元件的一結合;校正該所選擇天線映射,其中該校正包括:傳輸一指示來開始校正;回應開始校正之該指示的該傳輸而接收一探測實體層封包資料單元(PPDU);以及基於該所接收PPDU而預測關連於該所選擇天線映射的一通道;基於該所預測通道而產生關連於該所選擇天線映射的該天線波束的一導引矩陣;以及使用該所校正選擇天線映射與該導引矩陣而傳輸一資料封包到一另一WTRU。 A method for antenna selection for a wireless transmit/receive unit (WTRU), the method comprising: selecting an antenna map from a candidate combination of antenna maps, wherein an antenna map comprises a radio frequency (RF) chain, selected from the group consisting of Combining an antenna of the plurality of antennas of the at least one beamformed antenna with a combination of an antenna element selected from the plurality of antenna beams associated with the antenna; correcting the selected antenna map, wherein the correcting comprises: transmitting an indication to initiate the correction Receiving a sounding entity layer packet data unit (PPDU) in response to the transmission of the indication to start correction; and predicting a channel associated with the selected antenna map based on the received PPDU; generating a correlation based on the predicted channel a steering matrix of the antenna beam mapped to the selected antenna; and transmitting a data packet to the other WTRU using the corrected selected antenna mapping and the steering matrix. 如申請專利範圍第1項所述的方法,其中一天線包含多個全向性實體天線,且該選擇包含從該多個全向性實體天線選擇一全向性實體天線。 The method of claim 1, wherein an antenna comprises a plurality of omnidirectional physical antennas, and the selecting comprises selecting an omnidirectional physical antenna from the plurality of omnidirectional physical antennas. 如申請專利範圍第1項所述的方法,其中天線映射的該候選組合包含所有可能天線映射的一子組合。 The method of claim 1, wherein the candidate combination of antenna mappings comprises a sub-combination of all possible antenna mappings. 如申請專利範圍第3項所述的方法,其中該調整包含將一天線映射加入天線映射的該候選組合或將一天線映射從天線映射的該候選組合移除的至少其中之一。 The method of claim 3, wherein the adjusting comprises adding an antenna map to the candidate combination of the antenna map or removing at least one of the antenna map from the candidate combination of the antenna map. 如申請專利範圍第1項所述的方法,其中該調整是回應於一通道條件的一改變而被執行。 The method of claim 1, wherein the adjusting is performed in response to a change in a channel condition. 如申請專利範圍第5項所述的方法,其中一通道條件的一改變包含一長期改變。 The method of claim 5, wherein a change in one channel condition comprises a long term change. 如申請專利範圍第1項所述的方法,其中該選擇包含針對天線映射的該候選組合中的每一天線映射分析一品質度量。 The method of claim 1, wherein the selecting comprises analyzing a quality metric for each antenna mapping in the candidate combination of antenna mappings. 如申請專利範圍第1項所述的方法,其中該選擇包含:在該第一天線映射沒有被校正的條件下,校正該第一天線映射。 The method of claim 1, wherein the selecting comprises: correcting the first antenna map if the first antenna map is not corrected. 如申請專利範圍第8項所述的方法,其中該校正包含:使用該第一天線映射而傳輸第一探測實體封包資料單元;傳輸指示一第一校正要求的一第一校正訓練訊框;接收指示一第二天線映射的一第二探測實體封包資料單元;產生該第一天線映射的一第一通道預測,以及該第二通道映射的一第二通道預測;使用該第一通道預測與該第二通道預測而計算一第一通道預測矩陣;傳送包含該第一通道預測矩陣的一第一校正回應;接收指示一第二校正要求的一第二校正訓練訊框;傳輸一第三探測實體封包資料單元;以及接收包含一第二通道預測矩陣的一第二校正回應。 The method of claim 8, wherein the correcting comprises: transmitting the first probe entity packet data unit by using the first antenna mapping; and transmitting a first correction training frame indicating a first correction request; Receiving a second sounding entity packet data unit indicating a second antenna map; generating a first channel prediction of the first antenna map, and a second channel prediction of the second channel map; using the first channel Predicting a first channel prediction matrix with the second channel prediction; transmitting a first correction response including the first channel prediction matrix; receiving a second correction training frame indicating a second correction request; transmitting a first The third detecting entity packet data unit; and receiving a second corrected response including a second channel prediction matrix. 如申請專利範圍第1項所述的方法,其中選擇包括:在一另一無線傳輸/接收單元的一第二天線映射沒有被校正的條件下,從天線映射的該候選組合重選擇該第一天線映射。 The method of claim 1, wherein the selecting comprises: reselecting the candidate from the candidate combination of the antenna mapping under a condition that a second antenna mapping of another wireless transmitting/receiving unit is not corrected An antenna mapping. 如申請專利範圍第1項所述的方法,其中:該選擇包括選擇多個天線映射;以及該校正包括校正該等所選擇天線映射之每一個。 The method of claim 1, wherein: the selecting comprises selecting a plurality of antenna maps; and the correcting comprises correcting each of the selected antenna maps. 如申請專利範圍第1項所述的方法,其中:該WTRU是一IEEE 802.11 WTRU。 The method of claim 1, wherein the WTRU is an IEEE 802.11 WTRU. 一種無線傳輸/接收單元(WTRU),包括:一射頻鏈,配置以處理訊號;一波束選擇器,配置以從多個目前可用天線映射選擇一天線映射,其中該所選擇天線映射包括一射頻鏈、選自包括至少一波束成型天線的多個天線的一天線、與選自與該天線關連之多個天線波束的一天線波束的一結合;一校正單元,配置以校正該所選擇天線映射、傳輸一指示來開始校正、回應開始校正之該指示的該傳輸而接收一探測實體層封包資料單元(PPDU)、以及基於該所接收PPDU而預測關連於該所選擇天線映射的一通道;一導引單元,配置以基於該所預測通道而產生關連於該所選擇天線映射的該天線波束的一導引矩陣;以及一傳輸器,配置以使用該所校正選擇天線映射與該導引矩陣而傳輸一資料封包到一另一WTRU。 A wireless transmit/receive unit (WTRU) comprising: a radio frequency chain configured to process a signal; a beam selector configured to select an antenna map from a plurality of currently available antenna maps, wherein the selected antenna map includes a radio frequency chain And a combination of an antenna selected from a plurality of antennas including at least one beamforming antenna, and an antenna beam selected from a plurality of antenna beams associated with the antenna; a correction unit configured to correct the selected antenna mapping, Transmitting an indication to initiate correction, responding to the transmission of the indication to initiate correction, receiving a sounding entity layer packet data unit (PPDU), and predicting a channel associated with the selected antenna map based on the received PPDU; a pilot unit configured to generate a steering matrix associated with the antenna beam of the selected antenna map based on the predicted channel; and a transmitter configured to transmit using the corrected selected antenna map and the steering matrix A data packet is addressed to another WTRU. 如申請專利範圍第13項所述的WTRU,其中:該波束選擇器配置以選擇多個天線映射;以及該校正單元配置以校正該等所選擇天線映射之每一個。 A WTRU as claimed in claim 13 wherein: the beam selector is configured to select a plurality of antenna maps; and the correction unit is configured to correct each of the selected antenna maps. 如申請專利範圍第13項所述的WTRU,其中該WTRU是一IEEE 802.11 WTRU。 A WTRU as claimed in claim 13 wherein the WTRU is an IEEE 802.11 WTRU.
TW098113252A 2005-04-07 2006-04-07 Method and apparatus for antenna mapping selection in mimo-ofdm wireless networks TWI420844B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US66904805P 2005-04-07 2005-04-07

Publications (2)

Publication Number Publication Date
TW201015895A TW201015895A (en) 2010-04-16
TWI420844B true TWI420844B (en) 2013-12-21

Family

ID=37055813

Family Applications (5)

Application Number Title Priority Date Filing Date
TW098113252A TWI420844B (en) 2005-04-07 2006-04-07 Method and apparatus for antenna mapping selection in mimo-ofdm wireless networks
TW102116435A TWI506977B (en) 2005-04-07 2006-04-07 Method and apparatus for antenna mapping selection in mimo-ofdm wireless networks
TW095112531A TWI443988B (en) 2005-04-07 2006-04-07 Method and apparatus for antenna mapping selection in mimo-ofdm wireless networks
TW101141222A TWI496428B (en) 2005-04-07 2006-04-07 Method and apparatus for antenna mapping selection in mimo-ofdm wireless networks
TW095205922U TWM297539U (en) 2005-04-07 2006-04-07 Multiple-in/multiple-out (MIMO) wireless transmit/receive unit (WTRU) for optimizing antenna mappings

Family Applications After (4)

Application Number Title Priority Date Filing Date
TW102116435A TWI506977B (en) 2005-04-07 2006-04-07 Method and apparatus for antenna mapping selection in mimo-ofdm wireless networks
TW095112531A TWI443988B (en) 2005-04-07 2006-04-07 Method and apparatus for antenna mapping selection in mimo-ofdm wireless networks
TW101141222A TWI496428B (en) 2005-04-07 2006-04-07 Method and apparatus for antenna mapping selection in mimo-ofdm wireless networks
TW095205922U TWM297539U (en) 2005-04-07 2006-04-07 Multiple-in/multiple-out (MIMO) wireless transmit/receive unit (WTRU) for optimizing antenna mappings

Country Status (6)

Country Link
KR (6) KR101357948B1 (en)
CN (2) CN200973090Y (en)
AR (1) AR053842A1 (en)
DE (1) DE202006005733U1 (en)
MY (1) MY139671A (en)
TW (5) TWI420844B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI572242B (en) * 2015-03-20 2017-02-21 啟碁科技股份有限公司 Access point and associated anteena selecting method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944941B (en) * 2009-07-03 2014-07-02 联想(上海)有限公司 Method for controlling reconfigurable multiaerial system and mobile terminal
CN101626355B (en) * 2009-08-11 2012-11-14 北京天碁科技有限公司 Calibration device and calibration method of multi-input multi-output (MIMO) terminal
TWI520629B (en) * 2011-02-18 2016-02-01 Univ Kyushu Nat Univ Corp A transmission cycle determining method, a transmission cycle determining means, and a computer-readable recording medium
ES2657428T3 (en) * 2011-06-24 2018-03-05 Sun Patent Trust Transmission device, transmission procedure, reception device and reception procedure
CN104283590B (en) * 2012-01-09 2017-11-17 光宝电子(广州)有限公司 Antenna array control method and the communicator using this method
CN103874112B (en) * 2014-02-20 2017-08-11 清华大学 A kind of communication control method and mobile terminal
JP6732228B2 (en) 2016-03-31 2020-07-29 華為技術有限公司Huawei Technologies Co.,Ltd. Signal transmission method for terminal device and terminal device
TWI658707B (en) 2017-12-14 2019-05-01 財團法人工業技術研究院 Communication system and operating method thereof
CN111130610A (en) * 2018-11-01 2020-05-08 北京三星通信技术研究有限公司 Signal transmission method and device, electronic equipment and computer readable storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020102950A1 (en) * 2001-01-26 2002-08-01 Gore Dhananjay A. Method and apparatus for selection and use of optimal antennas in wireless systems
EP1392029A1 (en) * 2002-08-15 2004-02-25 Kabushiki Kaisha Toshiba Channel tracking and signal detection in MIMO systems

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0125178D0 (en) * 2001-10-19 2001-12-12 Koninkl Philips Electronics Nv Method of operating a wireless communication system
US7020110B2 (en) * 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
US8134976B2 (en) * 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US7151809B2 (en) * 2002-10-25 2006-12-19 Qualcomm, Incorporated Channel estimation and spatial processing for TDD MIMO systems
US7392015B1 (en) 2003-02-14 2008-06-24 Calamp Corp. Calibration methods and structures in wireless communications systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020102950A1 (en) * 2001-01-26 2002-08-01 Gore Dhananjay A. Method and apparatus for selection and use of optimal antennas in wireless systems
EP1392029A1 (en) * 2002-08-15 2004-02-25 Kabushiki Kaisha Toshiba Channel tracking and signal detection in MIMO systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI572242B (en) * 2015-03-20 2017-02-21 啟碁科技股份有限公司 Access point and associated anteena selecting method

Also Published As

Publication number Publication date
KR101423382B1 (en) 2014-07-24
TW200644473A (en) 2006-12-16
TWI443988B (en) 2014-07-01
KR20120100849A (en) 2012-09-12
CN101156460A (en) 2008-04-02
CN101156460B (en) 2011-05-04
TW201338450A (en) 2013-09-16
TWI496428B (en) 2015-08-11
KR20140063557A (en) 2014-05-27
KR101357948B1 (en) 2014-02-03
TWI506977B (en) 2015-11-01
MY139671A (en) 2009-10-30
AR053842A1 (en) 2007-05-23
KR20130133706A (en) 2013-12-09
KR101381458B1 (en) 2014-04-04
TWM297539U (en) 2006-09-11
CN200973090Y (en) 2007-11-07
KR20120088619A (en) 2012-08-08
KR20060107416A (en) 2006-10-13
KR20130038310A (en) 2013-04-17
DE202006005733U1 (en) 2006-09-14
TW201407988A (en) 2014-02-16
TW201015895A (en) 2010-04-16

Similar Documents

Publication Publication Date Title
US9178580B2 (en) Method and apparatus for antenna mapping selection in MIMO-OFDM wireless networks
TWI420844B (en) Method and apparatus for antenna mapping selection in mimo-ofdm wireless networks
CN109275356B (en) Beam management method and user equipment thereof
CA2580016C (en) Measurement support for a smart antenna in a wireless communication system
KR20070094670A (en) Method and apparatus for selecting a beam combination of multiple-input multiple-output antennas
JP2008523666A (en) System and method capable of implicit feedback for a device comprising unequal number of transmitter and receiver chains in a wireless local area network
CN101124734A (en) Method and apparatus for selecting a beam combination of multiple-input multiple-output antennas
KR200430280Y1 (en) Multiple-in/multiple-out(mimo) wireless transmit/receive unit(wtru) for optimizing antenna mappings
AU2013270503A1 (en) Method and Apparatus for Antenna Mapping Selection in MIMO-OFDM Wireless Networks

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees