TW201015895A - Method and apparatus for antenna mapping selection in MIMO-OFDM wireless networks - Google Patents

Method and apparatus for antenna mapping selection in MIMO-OFDM wireless networks Download PDF

Info

Publication number
TW201015895A
TW201015895A TW098113252A TW98113252A TW201015895A TW 201015895 A TW201015895 A TW 201015895A TW 098113252 A TW098113252 A TW 098113252A TW 98113252 A TW98113252 A TW 98113252A TW 201015895 A TW201015895 A TW 201015895A
Authority
TW
Taiwan
Prior art keywords
antenna
mapping
transmission
receiving
antenna mapping
Prior art date
Application number
TW098113252A
Other languages
Chinese (zh)
Other versions
TWI420844B (en
Inventor
Inhyok Cha
Eldad Zeira
Keith Richard Baldwin
Original Assignee
Interdigital Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Tech Corp filed Critical Interdigital Tech Corp
Publication of TW201015895A publication Critical patent/TW201015895A/en
Application granted granted Critical
Publication of TWI420844B publication Critical patent/TWI420844B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G9/00Working screws, bolt heads, or nuts in conjunction with thread cutting, e.g. slotting screw heads or shanks, removing burrs from screw heads or shanks; Finishing, e.g. polishing, any screw-thread
    • B23G9/009Thread cleaning or repairing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G5/00Thread-cutting tools; Die-heads
    • B23G5/02Thread-cutting tools; Die-heads without means for adjustment
    • B23G5/04Dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G7/00Forming thread by means of tools similar both in form and in manner of use to thread-cutting tools, but without removing any material
    • B23G7/02Tools for this purpose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

A method and apparatus for selecting an antenna mapping in multiple-in/multiple-out (MIMO) enabled wireless communication networks. A candidate set of currently available antenna mappings is determined based upon measured long term channel conditions. An antenna mapping is selected from the candidate set, and the mapping is calibrated with a selected antenna mapping of a receiving wireless transmit/receive unit (WTRU). When the selected mappings are calibrated, packet data transmission begins. In an alternative embodiment, a calibration training frame (CTF) is used to calibrate multiple antenna mappings simultaneously or sequentially. Also disclosed are physical layer and medium access control layer frame formats for implementing antenna mapping selection according to the invention.

Description

201015895 六、發明說明: 【發明所屬之技術領域】 本七明財關於湘多錄人多重輪出⑽M⑴技術 之…、線通。特別是,本發明係有關於選擇多重輸入 多重輸出能力多重天線陣列之最佳設定。 【先前技術】 ^較於僅具有單一天線之裝置’具有多樣性架構排列 ’多里天線之無線軌裝置係提供各轉輸及接收好處。 多樣性之基礎在於:無論任何給定時間,具有最佳接收之 天線係選擇用於接收或傳輸。雖然利用天線多樣性之裝置 係可能具有多重實體天線,訊號處理僅具有單一組電子電 路’其亦稱為射頻(RF)鏈。 多重輸入多重輸出無線技術係改良利用多重射頻鏈之 天線多樣性。各個射頻鏈係能夠同時接收及傳輸。藉此, 多重輸入多重輸出裝置係能夠達到較高處理能力、並消除 多重路徑干擾之負面效應。在傳輸裝置中,各個射頻鏈係 負責傳輸某個空間串流。單一訊框可以分解及多工於多重 空間串流’其隨後係重組於接收器。 多重輸入多重輸出係無線通訊中最具前景之技術之 一。不同於減輕不利多重路徑衰減及加強單一資料串流強 度之傳統智慧型天線技術,多重輸入多重輸出係利用多重 路徑衰減以同時傳輸及接收多重資料串流。理論上,多重 輸入多重輸出系統之能力係隨著傳輸及接收天線之數目線 性增加。多重輸入多重輸出係獲得各種無線資料通訊標準 201015895 之考量,諸如:IEEE祖lln及3Gpp寬頻分瑪多 (WCDMA)〇 在實施多重輸入多重輸出時,無線傳輸/接收單元 (WTRU)係可以操作於㈣多工模式或空間多樣性模 式。在空間多工模式中,無線傳輸/接收單元係傳輸多重 獨立資料串流以最大化資料處理能力。相對於此,在空間 多樣化模式中,無線傳輸/接收單元係可以經由多重=、二 ❹ 傳輸單—資料核。基_作模式,無線傳輸/接收單元 係可以選擇適當品質度量或品質度量之組合,進而用於想 要波束組合之選擇。一般而言,mXN通道矩陣η係可以具 有下列形式: 〃 、 其中,元件h之下標係表示歸屬於傳輸無線傳輸/接 收單元A之天線a,…,瓜及接收無線傳輸/接收單元^ 之天線a’…’ Hi之各種天線映射之貢獻。 無線傳輸/接收單元係可以利用類似方式取得校正矩 陣K。無線區域網路(LAN)脈絡之校正係包括計算一組 複數更正係數,其,當本於按照天線(per—妨把扭^)及按 照子載波(per—sub — carrier)之基礎多工於傳輸無線傳輸 /接收單元之基頻串流時,將可以等化傳輸及接收處理路 徑之響應差異(直至跨天線之未知常數)。 請參考第1圖,其係表示習知技術之通道校正之訊號 201015895 圖⑽。傳輸無線傳輸/接收單元(TxWTRU)⑽首 要技正接收無線傳輪/接收單元(知⑽間之既 2通道。傳輸無線傳輸/接收單幻1〇係傳輸校正訓練訊 王CTF) 131至接收無線傳輸/接收單元120。接收無線 傳輸/接收單το no係回應以傳輪探測實體封包資料單元 (、du) I%。傳輸無線傳輸/接收單元n〇係計算通 預:,133,其係稱為H (2州。傳輸無線傳輸/ 接收早70 110轉輸包括通道預測Η (2州之校正響應 隨後,接收無線傳輸,接收單元12〇係傳輸校正;練 二。王135缚輪無線傳輸/接收單元ιι〇以實施通道預 體封傳輸無線傳輸/接收單元110係傳輸探測實 :道:㈣)、並計算通道之校正矩陣κ(:): 徐且扑隨後’接收無線傳輪/接收單幻20係傳 輸具有校正矩陣K (1+2)之校正 輸广收單元則。應該注意的是,隨:校二^ 無線收單元11G峨為職接收無 接收早元12G之傳輸之基頻增益或相位更正因 = : = 接收無•接收單 辕傳翰線傳輸接收單元12G通往傳輸無 ^輸^收单元110之訊號傳輸之基頻增益/相位更正 至此’通道係完成校正、鱗_於封包交換。 欲啟始資料封包交換,傳、 議議 201015895 以傳送調變及編碼手段(MCS)實體封包資料單元140。傳 輸無線傳輪/接收單元110係利用校正矩陣K (1->2)以 計算導引矩陣V ’並且,封包資料轉移142係開始。201015895 VI. Description of the invention: [Technical field to which the invention belongs] This Qi Mingcai is about the multi-round (10) M(1) technology of Xiang Duo. In particular, the present invention is directed to an optimum setting for multiple antenna arrays that select multiple input multiple output capabilities. [Prior Art] ^ The wireless track device with a multi-antenna antenna provides a variety of transponder and reception benefits over a device having only a single antenna. The basis of diversity is that the antenna with the best reception is chosen for reception or transmission at any given time. While devices utilizing antenna diversity may have multiple physical antennas, signal processing has only a single set of electronic circuits' which are also referred to as radio frequency (RF) chains. Multiple Input Multiple Output Wireless Technology improves the diversity of antennas that utilize multiple RF chains. Each RF chain can be received and transmitted simultaneously. In this way, multiple input multiple output devices can achieve higher processing power and eliminate the negative effects of multipath interference. In the transmission device, each radio frequency chain is responsible for transmitting a spatial stream. A single frame can be decomposed and multiplexed into multiple spatial streams, which are subsequently reassembled into the receiver. Multiple Input Multiple Output is one of the most promising technologies in wireless communications. Unlike traditional smart antenna technologies that mitigate unfavorable multipath fading and enhance single data stream strength, multiple input multiple output systems utilize multiple path fading to simultaneously transmit and receive multiple data streams. In theory, the ability to multiple input multiple output systems increases linearly with the number of transmit and receive antennas. Multiple Input Multiple Output is considered by various wireless data communication standards 201015895, such as IEEE lln and 3Gpp Broadband Split (WCDMA). When multiple input multiple output is implemented, the WTRU can operate. (4) Multi-work mode or spatial diversity mode. In spatial multiplex mode, the WTRU transmits multiple independent streams of data to maximize data processing capabilities. In contrast, in the spatial diversity mode, the WTRU can transmit a single-data core via multiple =, two 。. Based on the mode, the WTRU can select the appropriate combination of quality metrics or quality metrics for the choice of beam combination. In general, the mXN channel matrix η system may have the following form: 、 , where the label under the component h indicates the antenna a, ..., the melon and the receiving WTRU that are assigned to the transmitting WTRU. The contribution of the various antenna mappings of the antenna a'...' Hi. The WTRU can obtain the correction matrix K in a similar manner. The correction of the wireless local area network (LAN) context includes calculating a set of complex correction coefficients that are multiplexed on the basis of the antenna (per-turn) and per-sub-carrier basis. When transmitting the baseband stream of the WTRU, the difference in response of the transmission and reception processing paths (until the unknown constant across the antenna) can be equalized. Please refer to FIG. 1 , which shows a channel correction signal of the prior art 201015895 (10). The transmitting wireless transmission/reception unit (TxWTRU) (10) is mainly receiving the wireless transmitting/receiving unit (the two channels between the knowing (10). transmitting the wireless transmission/receiving single illusion 1 传输 transmission correction training king CTF) 131 to receiving wireless Transmission/reception unit 120. The receiving wireless transmission/reception single το no is a response to transmit the physical packet data unit (, du) I%. Transmission WTRU: 133, which is called H (2 states. Transmission wireless transmission / reception early 70 110 transmission including channel prediction Η (2 state correction response, then receive wireless transmission Receiving unit 12 传输 transmission correction; practice two. Wang 135 binding wheel wireless transmission / receiving unit ιι〇 to implement channel pre-body sealing transmission wireless transmission / receiving unit 110 transmission detection: Road: (4)), and calculate the channel Correction matrix κ(:): Xu and then 'receive wireless transmission/receive single magic 20 series transmission with correction matrix K (1+2) correction transmission and reception unit. It should be noted that with: school two ^ The wireless receiving unit 11G峨 receives the fundamental frequency gain or phase correction of the transmission without receiving the early element 12G. = : = receiving no • receiving the single transmission line receiving receiving unit 12G to the transmission no-receiving unit 110 The baseband gain/phase correction of the signal transmission is completed until the 'channel system completes the correction, the scale_in the packet exchange. To start the data packet exchange, pass, and discuss 201015895 to transmit the modulation and coding means (MCS) entity packet data unit 140. Transmission wireless transmission/reception Element 110 based the correction matrix K (1- > 2) to calculate a steering matrix V 'and, based packet data transfer 142 begins.

習知技術並未考量智慧型天線技術之利用。智慧型天 線,特別是波束成型,係配合控制放射圖案之方向性,或 靈敏度,之傳輸器或接收器陣列之訊號處理技術。當接收 訊號時,波束成型係可以增加想要訊號方向之增益、並減 少干擾及雜訊方向之增益。當傳輸訊號時,波束成型係可 以增加欲傳送輯方向之增益。纽束細勤天線組合 多重輸入多4輸㈣,可用天線映射之數目係戲劇性地增 加。 當波束成型天線包含於無線傳輸/接收單元時,可用 天線映f之數目係可以極大。為最佳化兩個無線傳輸 /接收早70間之通訊連結,_選擇傳輸器及接收器之適 當天線映射係有其需要。 有鑑於此,本發明係提供一種方法及裝置,藉以 波束麵场〇錄人多錄出能力無 線裝置之各種可用天線映射。 【發明内容】 本發明係—種方法及I置,藉以選擇多重輸入多 路之天線映射。目前可用天線映射之候 單元之it擇’映射係姻接收躲傳輸/接收 早凡之選敎細射校正。鍵擇映崎科,封包資^ 201015895 傳輸係開始。在另—較佳實施例巾,校正訓練訊框係用以 同時或依序多重天線映射。除此以外,根據本發明實施天 線映射選擇之實體層及媒體存取控制(mac)層訊框格式 亦予以揭露。 【實施方式】 、雖然本㈣之·係_雛實施例之特定組合詳細 說月如下然而’各種特徵或元件亦可以單獨利用(而不 需要或需細i實施例之其他特徵及元件),或者,各種特 徵或7L件亦可以形成各種組合(而不需要或需要較佳實施 例之其他特徵或元件。 在下列說种’無線傳輸/接收單it係包括、但不限 於使用者設備(UE)、行動工作站、固定或行_戶單元、 傳呼器、錢_胁錄魏之任他麵裝置。除 此以外’在下顺財,無線網路基地台(則係包括、 但不限於3 _、位置控制H、基地台(BS)、或盈線通 訊環境往何其他類型界面裝置。除此以外,在下列說明 :用吾天線映射”麵示具有特定射缝理鏈之天線, 或天=波束(在波束成型天線之航巾.),之特定組合。 π參考2 ® ’其係絲根縣發明之麵天線映射之 候掌線傳輪/接收單元係、經由目前可用天線映射之 ϋ σ選擇天線映射(步驟21G)。無線傳輸/接收單 Γ映射是否校正(步驟22G)。糾定選擇 映射(步驟23二庫無線傳輸/接收單元係校正選擇天線 應該注意岐,先前校正之天線映射校 201015895 正係可能變得腐舊。天線映射之校轉會更進 ^說明如下。接著,無線傳輸/接收單元係蚊接收益線 傳輸/接收單元是否已經改雜錢_ 若 eConventional technology does not consider the use of smart antenna technology. Smart antennas, especially beamforming, are used in conjunction with signal processing techniques that control the directionality of the radiation pattern, or the sensitivity of the transmitter or receiver array. When receiving a signal, beamforming increases the gain of the desired signal direction and reduces the gain in interference and noise directions. When transmitting a signal, the beamforming system can increase the gain of the direction in which the burst is to be transmitted. The combination of multiple antennas and multiple antennas (4), the number of available antenna maps is dramatically increased. When the beamforming antenna is included in the WTRU, the number of available antenna maps can be extremely large. In order to optimize the communication connection between the two wireless transmission/receptions, the appropriate antenna mapping for the _select transmitter and receiver has its needs. In view of the above, the present invention provides a method and apparatus for beam-to-field recording of multiple available antenna mappings for capable wireless devices. SUMMARY OF THE INVENTION The present invention is a method and an I-station for selecting an antenna mapping of multiple input multiplexes. At present, it is possible to use the antenna mapping unit to select the 'target mapping' to receive the transmission/receive. The key selection Yingsaki, the package fund ^ 201015895 transmission system begins. In another preferred embodiment, the calibration training frame is used for simultaneous or sequential multiple antenna mapping. In addition, the physical layer and media access control (mac) layer frame format for implementing the antenna mapping selection according to the present invention are also disclosed. [Embodiment] Although the specific combination of the embodiments of the present invention is as follows, the various features or components may be utilized separately (without requiring or requiring other features and components of the embodiment), or Various features or 7L pieces may also be formed in various combinations (without requiring or requiring other features or elements of the preferred embodiment. In the following description, 'wireless transmission/reception single' includes, but is not limited to, user equipment (UE) , mobile workstations, fixed or line _ units, pagers, money _ 录 魏 魏 之 任 任 任 任 任 任 任 任 任 任 任 任 任 任 任 任 任 任 任 任 任 任 任 任 任 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线 无线Control H, base station (BS), or other types of interface devices for the surplus line communication environment. In addition, in the following description: Use my antenna mapping to show the antenna with a specific shot chain, or day = beam ( The specific combination of the beam-forming antennas of the airfoil.) π Reference 2 ® 'The line of the antenna line mapping of the invented surface of the Siegen County antenna, the ϋ 选择 天 经由 经由 经由 经由 经由 选择Mapping (step 21G). Whether the radio transmission/reception unit mapping is corrected (step 22G). Correction selection mapping (step 23, second bank radio transmission/reception unit correction selection antenna should be noted, previously corrected antenna mapping school 201015895 positive The system may become corrupted. The antenna mapping will be further modified as follows. Next, the wireless transmission/reception unit is connected to the mosquito receiving line transmission/reception unit.

接收無線傳輸/接收單元已經改變其天線映射,則這種方 法係返回至频21G以選騎傳輸器天線映射,若情 要。若決定接收無線傳輪/接收單元尚未改變其天線映 射’貝Ή輪無線傳輸/接收單元係選擇及校正天線映 射開始封包資料傳輸(步驟25〇)。這種方法係返回至步驟 21〇 ’藉贿傳輸無線傳輸單元賴㈣其天線映 "月參考第3 H ’其係表不具有第—無線傳輸/接收單 元310及第二無線傳輪/接收單元32〇之無線通訊系統 300 ’藉以實雜據本㈣之天線映綱擇。在下列說明 中,本發_參考轉輸無線傳輸/概單元烟至接收 無線傳輸/接收單元32〇之下行連結傳輸詳細解釋。然而, 本發明亦_適聽上行連結及下行賴傳輸,其中,無 2傳輸/接收單元31〇絲線傳輪/接收單幻係基地 台(BS) ’以及,本發明亦同樣適用於架構,其中,在隨意 (adhoc)或網狀(mesh)網路中,無線傳輸/接收單元係 與無線傳輸/接收單元直接通訊。 無線傳輸/接收單元310係具有兩個棚鏈312a、 312B、波束選擇器314、複數天線3】6a〜,其中,n 係大於1之任何整數、及校正單元318。在範例實施例中, 天線316A〜3贿係能夠產生多重波束。無線傳輸/接收 9 201015895 單元320係具有兩個射頻鏈322A、322B、波束選擇器324、 複數天線326A〜326M,其中’ Μ係大於1之任何整數。 “除此以外,在範例實施例中,至少一天線326Α〜326Ν係 能夠產生多重波束。特別是,請參考無線傳輸/接收單元 320 ’波束組合係利用波束選擇器324選擇,藉以用於參考 第2圖說明如上之根據本發明方法2〇〇之多重輸入多重輪 出傳輸及接收。選擇天線映射係根據波束選擇器324輸出 之控制訊號以用於傳輸及接收。波束選擇器324係根據產 生及儲存於校正單元328之品質度量以選擇特定波束組 合,其將會更進一步詳細說明如下。本發明之無線傳輸/ 接收單元元件係可以整合於積體電路(IC)或架構為具有 複數互連元件之電路。應該瞭解的是,雖然範例實施例係 具有兩個射頻鏈,然而,這單純是基於方便說明之目的, 並且’任何數目之射頻鏈亦可以利用。 為容易說明起見,第3圖係表示配備波束成型天線, 其刀別產生二個波束,之傳輸無線傳輸/接收單元31〇及 _ ,收無線傳輸/接收單元32〇。然而,第3圖所示之架構僅 1供作為範例、而非限制。具有任何數目之波束之天線類 型,或非為波束成型或波束切換類型之天線,之任何組合 亦可以利用。 、口 天線可以是切換寄生天線(SPA)、相位陣列天線、或 ^何類型之方向性波束成型天線。切換寄生天線係大小精 =,故合適用於無線區域網路(WLAN)裝置。若切換寄 天線係利用’單—主動天線元件配合單一錢數被動天 10 201015895 線元件係可以利用。經由調整被動天線元件之阻抗,天線 波束圖案係可以調整,並且,阻抗調整係可以控制連接天 線元件之一組開關而實施。或者,天線亦可能是具有多重 天線之複合物,其可能全是全向性天線。舉例來說,具有 選擇實體間隔之三個全向性天線係可以根據來自波朿選擇 态324之控制訊號開啟或關閉,藉以定義不同波束組合。 為方便綱起見’請參考第3圖。傳輸無線傳輸/接 ❹ 收單元310 (在下列說明中’亦稱為Tx WTRU)係包括兩 個射頻鏈312Α及312Β。波束選擇器314係耦接數個全向 性天線316Α〜316Ν至射頻鏈312Α及312Β。有鑑於此, 傳輸無線傳輸/接收單元310之可能天線映射之數目係Ν 倍於射頻鏈之數目。接收無線傳輸/接收單元32〇(在下列 說明中,亦稱為Rx WTRU)亦包括兩個射頻鏈322Α及 322Β。波束選擇器324係耦接數個备向性天線326α〜326μ 至射頻鏈322Α及322Β。如先前所述,在簡單範例實施例 ❿ 中,各個波束成型天線326八〜326Μ係能祕成三個方向 性波束。有鐘於此,接收無線傳輸/接收單元32〇係具有 總共Μ乘以波束數目乘以射頻鍵數目之可能天線映射。能 夠用於任何傳輸X作狀全部可能天線映射之組合係稱 為”雜合(superset),,,並且,超組合(supers)之大小 係表示為Nsuperset。Nsuperset可能非常大,並且,在任何給定 時間利用全部可用天線映射亦可能不實際。 … 候選組合係超組合(superset)之子組合,並且’候選 組合係可用於任何給定時間之選擇之天線映射集合。較佳 201015895 者’候選組合之大小係限定於8組至22組天線映射之間。 候選組合並非靜態的,相對於此,候選組合係動態的,並 且,候選組合係可以隨著時間改變以反映改變之通道條 件。舉例來說,傳輸工作站係可以連續地或周期地監控目 前候選組合中全部天線映射之通道條件,並且,若量測之 通道條件無法滿足預定臨界值達到預定時間,則傳輸工作 ,係可以調變候選組合。這可以經由拋棄目前候選組合中 幾組天線映射、加入幾組新天線映射、及/或保留候選組 ^中幾組天線映射而完成。在高速應用中,候選組合係可 以降低,或者,天線映射之選擇亦可以同時停止。 ❹ 在本發明之較佳實施例中,無線傳輸/接收單元 係可以經由候選組合中選擇任何天線映射。天線映射之選 擇係根據長期尺度。逐—封包通道之追蹤並不需要實施, ^因此,天線映射之選擇並不會追輯道之快速改變(或 =構(micro-structure))。應該注意的是,候選組合中天 收以t往何改㈣發生於㈣封包之任何絲傳輸或接 收單第!w ’在操作期間,接收無線傳輸,接 線以$校正單元318係量測選擇品f度量於各個天 ====讀麵ΐ、錄晴度量量測 測選擇想要之天綠咏4波束選擇裔314係根據品質度量量 320資料通訊:’ f L射’藉以與接收無線傳輸/接收單元 周期)校需紐周期(或非 、要求’以及,因應校正要求之校正訓練 12 201015895 δίΐ框及探測實體封包資料單元。校正單元318係包括根據 接收探测封包計算通道預測矩陣及校正矩陣之處理器、及 儲存通道預測矩陣及校正矩陣之記憶體。較佳者,校正單 兀係實施相容於IEEE標準之訊號發送及訊息傳遞,諸如: IEEE802.il家族之標準,且特別是,IEEE8〇2 lm標準。 ❹ ❹ 各種品質度量係可以用來決定想要之天線映射。實體 (PHY)層、媒體存取控制(MAC)層、或更高層度量係 合適的。較佳者,品質度量係包括、但不限於通道預測、 訊號雜訊及干_ (SNIR)、魏訊麵度簡(RSSI)、 短期資料處雜力、封包錯辦(pER)、龍速率、無線 傳輸/接收單it操作模4、接收通道賴矩冑之最大特徵 值(eigen—vaiue)之大小、或諸如此類。 為方便說明參考第2圖說明之天線映射選擇方法2〇〇, 第4圖係表示天線映射選擇之訊號時序圖4〇〇。第一傳輸無 ^傳輸/魏單元樣係细天職射P雜探測實_ L資料單元430至接收無線傳輸/接收單元42〇。隨後, 触科雜求校蚊校正訓練訊 、2。接收無線傳輸/接收單元物目前係天線映射 =、f且’接收無線傳輸,接收單元侧用天線映射x 犯2實體封包資料單元434卩回應校正訓練訊框 映射,1:: 線傳輸,接收單元420之天線 你也歧說’天線映射p及天線映射x,之通道預測 、道預測鱗Η (,)係計算。雜鱗傳輸/接 13 201015895 收單元410係傳輸具有校正通道預測之校正響應438。接 著,接收無線傳輸/接收單元42〇係傳輸自有校正訓練訊 框料〇至傳輸無線傳輸/接收單元wo。傳輸無線傳輸/接 收單元410係回應以探測實體封包資料單元4幻。接收無線 傳輸/接收單元420係利用探測實體封包資料單元442計 算通道預測矩陣Η (χ+ρ)及目前選擇天線映射之校正矩 陣^ (ρ+χ)及Κ (X今ρ) 444。隨後,接收無線傳輸/接 收單元420雜輸校正㈣446至傳輸無線傳輸,接收單❹ 疋410’其係具有傳輸無線傳輸/接收單元感到興趣之 通道校正矩陣,姐是說’ κ (ρ句。断,天線映射咖 係校正448。 、隨後,無線傳輸/接收單元係利用校正通道自由開始 資料封包父換。傳輪無線傳輸/接收單元係傳輸傳輸 要求(TRQ) 45〇至接收無線傳輸/接收單元。接收無 線傳輸/接收單元42〇彳細應以天線映射χ傳輸之探 測實體封包資料單元452。隨後’傳輸無線傳輸/接收單元⑬ 41〇係根據校正矩陣Κ (咏)454計算導引矩陣ν。封包 資料轉移456係接著開始。 旦基於各種理由’諸如:通道條件(利用通道品質度量 量測)或任一無線傳輸/接收單元行動性之改變,舉例來 說,接收無線傳輸/接收單元福係由χ至y地改變天線 映射4S8。隨後’決定天線映射咖是否校正。在範例實 ,例中’天線映射p勿尚未校正,且因此,校正係需要。 傳輸無線傳輸/接收單元·係利用天線映射p傳輸探測 14 201015895 資料單元‘_、及隨後之校正訓練訊框姬。接收 體收係利用天線映射挪^^^^ :::技468係傳輸。隨後’接收無線傳輪趣單元 係要求权正柳,並且,傳輸無線傳輸 ❹ _ 容於探測實體封包資料單元472。接枚無線傳輸二3 係計算通道預測矩陣Η (心)及校正矩陣κ () w °隨後’校樓476雜輸轉輸無線 專〆接收早兀·,其係具有傳輸無線 =興趣之校正矩陣。隨即,天線映射二: 並準備開始資料封包交換478。 隨後,資料封包交換係開始於傳輪無線傳輸/接收單 儿^要^則修及接收無線傳輸/接收單元420回應 以利用天線映射y傳輸之探測實體封包資料單元482。隨 後’,引轉V係根據校正辑K (p)y)計算,並且, 封包資料轉移486係接著開始。 在另-較佳實施例中,在資料封包轉移以前,多重天 線映射之校正係順序發生。類似於第4圖所 == 接收無線傳輪/接收單元係可以利用經: 選:合中選擇之多重天線映射以回應校正訓練訊 框。付到之板正矩陣係可以儲存以供未來參考。舉例來說, 傳輸無線傳輸/缝單元係心獅天線映射f、並傳輸校 正訓練訊框至m之魏無轉輸/触單元。接收 15 201015895 2線傳輸/接收單元係可以利用經由其目前可用候選組合 料?擇之各組天線映射q、r's順序萌以探測實體封包資If the receiving WTRU has changed its antenna mapping, then this method returns to frequency 21G to select the transmitter antenna mapping, if desired. If it is decided that the receiving wireless transmitting/receiving unit has not changed its antenna mapping 'beautiful round radio transmission/reception unit selection and correcting the antenna mapping start packet data transmission (step 25A). This method returns to step 21 〇 'Bribble transmission wireless transmission unit 赖 (4) its antenna mapping " month reference 3 H 'the system does not have the first - WTRU / second wireless transmission / reception The unit 32's wireless communication system 300' is based on the antenna diagram of the present (4). In the following description, the present invention is described in detail with reference to the transfer of the wireless transmission/small unit smoke to the reception of the wireless transmission/reception unit 32. However, the present invention also accommodates uplink and downlink transmissions, wherein there are no 2 transmission/reception units 31, and the transmission line/receive single phantom base station (BS) 'and the present invention is equally applicable to the architecture, wherein In an ad hoc or mesh network, the WTRU communicates directly with the WTRU. The WTRU 310 has two shed chains 312a, 312B, a beam selector 314, a complex antenna 3, 6a~, where n is any integer greater than 1, and a correction unit 318. In an exemplary embodiment, antennas 316A-3 can generate multiple beams. Wireless transmission/reception 9 201015895 The unit 320 has two radio frequency chains 322A, 322B, a beam selector 324, and a plurality of antennas 326A-326M, where 'the Μ is any integer greater than one. In addition, in the exemplary embodiment, at least one antenna 326 Α 326 326 can generate multiple beams. In particular, please refer to the WTRU 320 beam combination system with beam selector 324 for reference. 2 illustrates multiple input multiple round-trip transmission and reception as described above in accordance with the method of the present invention. The selected antenna mapping is based on control signals output by beam selector 324 for transmission and reception. Beam selector 324 is based on generation and The quality metrics stored in the correction unit 328 are selected to select a particular beam combination, which will be described in further detail below. The WTRU element of the present invention can be integrated into an integrated circuit (IC) or architecture with multiple interconnect elements. It should be understood that although the example embodiment has two RF chains, this is purely for convenience of explanation, and 'any number of RF chains can be utilized. For ease of explanation, Figure 3 It is equipped with a beamforming antenna, which generates two beams, and transmits the wireless transmission/reception unit 31. And _, receive WTRU 32 〇. However, the architecture shown in Figure 3 is only 1 as an example, not a limitation. Antenna type with any number of beams, or non-beamforming or beam switching type Any combination of antennas can also be utilized. The port antenna can be a switched parasitic antenna (SPA), a phased array antenna, or a directional beamforming antenna of the type. The switching parasitic antenna system is fine, so it is suitable for the wireless area. Network (WLAN) device. If the switching antenna is used, the 'single-active antenna component can be used with a single amount of passive passive antenna 10 201015895. The antenna beam pattern can be adjusted by adjusting the impedance of the passive antenna component. The impedance adjustment can be implemented by controlling a group of switches connected to the antenna elements. Alternatively, the antenna may be a composite with multiple antennas, which may all be omnidirectional antennas. For example, three omnidirectionals with selected physical spacing The antenna system can be turned on or off according to the control signal from the selected state 324 to define different beam combinations. For convenience, please refer to Figure 3. Transmission wireless transmission/receiving unit 310 (also referred to as Tx WTRU in the following description) includes two radio frequency chains 312 and 312. The beam selector 314 is coupled. A plurality of omnidirectional antennas 316 Α 316 316 到 to RF chains 312 Α and 312 。. In view of this, the number of possible antenna mappings of the transmission WTRU 108 is twice the number of radio frequency chains. The receiving WTRU 32 〇 (In the following description, also referred to as Rx WTRU) also includes two RF chains 322 and 322. Beam selector 324 is coupled to a plurality of anisotropic antennas 326α-326μ to RF chains 322 and 322. As previously described, In a simple example embodiment, each beamforming antenna 326 eight to 326 can be secreted into three directional beams. In this case, the receiving WTRU 32 has a total antenna map multiplied by the number of beams multiplied by the number of radio frequency bonds. The combination of all possible antenna mappings that can be used for any transmission X is called "superset," and the size of the supers is expressed as Nsuperset. Nsuperset can be very large and, at any given It may also be impractical to utilize all available antenna mappings for a given time. ... Candidate combinations are sub-combinations of supersets, and 'candidate combinations can be used for selected antenna mapping sets at any given time. Better 201015895' candidate combination The size is limited between 8 and 22 sets of antenna maps. The candidate combinations are not static, whereas the candidate combinations are dynamic, and the candidate combinations can change over time to reflect the changed channel conditions. The transmission workstation can continuously or periodically monitor the channel conditions of all antenna mappings in the current candidate combination, and if the measured channel conditions fail to meet the predetermined threshold for a predetermined time, the transmission operation can modulate the candidate combination. This can be done by discarding several sets of antenna mappings in the current candidate combination and adding several new days. Mapping, and/or retaining sets of antenna mappings in the candidate set ^ can be reduced. In high speed applications, the candidate combinations can be reduced, or the antenna mapping can be stopped simultaneously. ❹ In a preferred embodiment of the invention, The WTRU can select any antenna mapping via the candidate combination. The choice of antenna mapping is based on the long-term scale. The tracking of the packet-by-packet channel does not need to be implemented. Therefore, the choice of antenna mapping does not follow the path. Rapid change (or micro-structure). It should be noted that the candidate combination is changed by t (4) occurs in any of the (four) packets of the transmission or reception of the single! w ' during the operation, receiving wireless Transmission, wiring is measured by the correction unit 318. The measurement f is measured on each day. ====reading ΐ, recording metric measurement, selecting the desired day green 咏 4 beam selection 314 is based on the quality metric 320 Data communication: 'f L shot' to receive and receive wireless transmission/reception unit cycles) Schooling New Zealand cycle (or non-required 'and corrective training for correction requirements 12 201015895 δίΐ Detecting a physical packet data unit. The correcting unit 318 includes a processor for calculating a channel prediction matrix and a correction matrix according to the received detection packet, and a memory for storing the channel prediction matrix and the correction matrix. Preferably, the calibration unit is compatible with the implementation. IEEE standard signal transmission and message delivery, such as: IEEE 802.il family standard, and in particular, IEEE 8 〇 2 lm standard. ❹ ❹ Various quality metrics can be used to determine the desired antenna mapping. Entity (PHY) layer, The Media Access Control (MAC) layer, or higher-level metrics are appropriate. Preferably, the quality metrics include, but are not limited to, channel prediction, signal noise and dry _ (SNIR), and Wei news surface roughness (RSSI). Short-term data miscellaneous, packet error (pER), dragon rate, wireless transmission/reception single-it operation mode 4, the size of the maximum eigen-vaiue of the receiving channel, or the like. For convenience of description, referring to the antenna mapping selection method 2 illustrated in FIG. 2, FIG. 4 shows a signal timing diagram of the antenna mapping selection. The first transmission has no transmission/wei unit-like system fine-day service P-detection real_L data unit 430 to the receiving wireless transmission/reception unit 42〇. Subsequently, the company was asked to correct the training of mosquitoes, 2. The receiving wireless transmission/reception unit is currently antenna mapping =, f and 'receives wireless transmission, the receiving unit side uses antenna mapping x commits 2 entity packet data unit 434, responds to correct training frame mapping, 1:: line transmission, receiving unit The 420 antenna you also disagreed 'antenna mapping p and antenna mapping x, the channel prediction, the road prediction scale (,) system calculation. Weft scale transmission/connection 13 201015895 The receiving unit 410 transmits a correction response 438 with a corrected channel prediction. Next, the receiving wireless transmission/reception unit 42 transmits the own corrected training frame material to the transmission wireless transmission/reception unit wo. The transmission WTRU/receiving unit 410 responds to detect the entity packet data unit 4 illusion. The receiving wireless transmission/reception unit 420 uses the sounding entity packet data unit 442 to calculate the channel prediction matrix Η(χ+ρ) and the correction matrix 2 (ρ+χ) and Κ(X today ρ) 444 of the currently selected antenna map. Subsequently, the receiving wireless transmission/reception unit 420 performs the error correction (four) 446 to the transmission wireless transmission, and the receiving unit 疋 410' has a channel correction matrix for transmitting the wireless transmission/receiving unit to be interested, and the sister is said to be ' κ (ρ sentence. The antenna mapping is corrected 448. Subsequently, the WTRU uses the correction channel to freely start the data packet parent switching. The transmitting wireless transmission/reception unit transmits the transmission request (TRQ) 45〇 to the receiving WTRU. The receiving WTRU 42 finely detects the entity packet data unit 452 transmitted by the antenna mapping 随后. Then the 'transmission WTRU 141 calculates the steering matrix ν according to the correction matrix Κ (咏) 454. The packet data transfer 456 is then started. For various reasons, such as: channel conditions (using channel quality metric measurements) or changes in the mobility of any WTRU, for example, receiving wireless transmission/reception unit The antenna mapping 4S8 is changed from χ to y. Then 'determine whether the antenna mapping coffee is corrected. In the example, in the example' The line map p is not yet uncorrected, and therefore, the correction is required. The transmission WTRU is transmitting the probe using the antenna map p. 201015895 The data unit '_, and the subsequent calibration training frame. The receiving body uses the antenna. The mapping is not ^^^^::Technology 468 is transmitted. Then the 'receive wireless wireless transmission unit is required to be right, and the transmission wireless transmission _ _ is contained in the detection entity packet data unit 472. Calculate the channel prediction matrix 心 (heart) and the correction matrix κ () w ° then 'School Building 476 Miscellaneous Transmission Transmit Wireless Special Receiver 兀 ,, which has a transmission wireless = interest correction matrix. Then, antenna mapping II : and is ready to start the data packet exchange 478. Subsequently, the data packet exchange system begins with the transmission wireless transmission/reception unit, and then the receiving wireless transmission/reception unit 420 responds to use the antenna mapping y to transmit the detection entity packet data. Unit 482. Then ', the V-based system is calculated based on the correction set K (p) y), and the packet data transfer 486 is then started. In another preferred embodiment, the correction of the multiple antenna mapping occurs sequentially prior to the transfer of the data packets. Similar to Figure 4 == The receiving wireless transmission/receiving unit can use the multiple antenna mapping selected by the selection: in response to the correction training frame. The positive matrix that is paid for can be stored for future reference. For example, the transmission wireless transmission/seam unit is connected to the heart lion antenna map f, and the transmission training frame is transmitted to the Wei no transponder/touch unit. Receiving 15 201015895 Can the 2-wire transmission/receiving unit utilize the candidate components currently available through it? Select each group of antenna mapping q, r's order to detect entity encapsulation

Hr在封包㈣轉移赠,傳輸無線傳輸/接收單元 係T天線映射、f士、吩以校正通道、並儲存校正 矩陣於記紐雜未來參考。若接收無線傳輪/接收單元 改變其天線映射至,舉例來說,天線映射Γ,則傳輸Hr transfers the gift in the packet (4), transmits the wireless transmission/reception unit, and then adjusts the channel, and stores the correction matrix in the future. If the receiving wireless transmitting/receiving unit changes its antenna mapping to, for example, antenna mapping, then transmission

接收單元係可以經由記憶體娜適當校正矩陣了並不 需要再度實施校正地開始資料封包傳輸。 、或者,乡$天線映射之校域可能平行發生(知就是 說,同時發生),藉以降低訊號發送。在本較佳實施例中, 單一探測實體封包資料單元係利用選擇天線映射(舉例來 說,=射b),進而利用傳輸無線傳輸/接收單元傳送。具 有目前可用鱗映射t、U、V之純無線傳輸/接收單元係 利用各組可肤線映射t、u、v回應單—校正訓練訊框,並 且,各組天線映射b今t、b今u、b+v之校正矩陣係計算。 ❹ 利用這種方式’ s要讀正訊號發祕降低,藉以減少校 正延遲及增加處理能力。 在另一較佳實施例中,其中’無線通訊系統係相容於 EEE 802.X標準’探測實體封包資料單元係包括調變控制 序列(MCS)位元欄位。調變控制序列(MCS)位元攔位 係媒體存取控制(MAC)資訊元件(正),其係表示目前接 收無線傳輸/接收單元天線映射候選組合大小及接收無線 傳輸/接收單元之目前選擇天線映射。較佳者’調變i制 序列(MCS)位元攔位具有5位元之長度。選擇性地,調 16 201015895 變控制序列(MCS)位元攔位具有單位元,,串長指椁 length indicator) ”,其係容許傳輸無線傳^ 接收無線傳輸/接收單元改變其天線映射之目前候' 合。 、組 傳輪無線傳接收單元係可以要求接收無 接收單7G改變其天線映射候選組合,舉例來說,若替The receiving unit can start the data packet transmission by appropriately correcting the matrix via the memory without re-implementing the correction. Or, the campus map of the township antenna mapping may occur in parallel (in other words, at the same time), in order to reduce the signal transmission. In the preferred embodiment, the single sounding entity packet data unit utilizes a selective antenna mapping (e.g., = shot b) for transmission by the transmitting wireless transmission/reception unit. The pure wireless transmission/reception unit with the currently available scale mappings t, U, and V utilizes each set of skin line maps t, u, and v response sheets—correction training frames, and each group of antenna maps b today t, b today The correction matrix of u and b+v is calculated. ❹ Use this method to reduce the delay of the positive signal and reduce the processing delay. In another preferred embodiment, wherein the 'wireless communication system is compatible with the EEE 802.X standard' detection entity packet data unit comprises a modulation control sequence (MCS) bit field. The modulation control sequence (MCS) bit block is a media access control (MAC) information element (positive), which indicates the current selection of the WTRU type mapping candidate combination size and the current selection of the receiving WTRU. Antenna mapping. The preferred 'modulation i-order sequence (MCS) bit block has a length of 5 bits. Optionally, the 16 201015895 variable control sequence (MCS) bit block has a unit cell, and the string length indicator) indicates that the transmission wireless transmission/reception unit changes its antenna mapping. The group transmission wireless receiving unit may request to receive the non-receiving single 7G to change its antenna mapping candidate combination, for example, if

線傳輸/接收單元無法找到接收H之天線映射,進而^ 其品質要求。在這種情況巾,若魏無線傳輸/接粟_ 能夠改變其候選組合,職收無線傳輸/接收單s係可2 表示將利用新舰絲_ (MAC)管觀框立即改 天線映射候選組合。 /、 當傳輪無線接收單元基於各種可紐由(舉 來說,若傳輸絲雜/接收單元無法經由目_選組合 :找到Μ天線映射,進而滿足其品質要求)而想要改二 、侯選組σ ’貞彳傳輸無線傳輸/接收係可以傳送媒 =取控制(嫩C)管理訊框,藉以向接收無線傳輸/接 收早儿表示候選組合改變。隨後,傳輪無線傳輸/接收單 =係可以辑改變天線映射㈣、组合、並經由新候選組合 t映射選擇適合天線映射以傳輸。 或者,倾滅傳輸/触單元係可以要求接收無線 二接收單.7C完全失能其天線映射。這種要求係可以利 貫體封包資料單元傳輸至接收無線傳輸/紐單元。在 有Ϊ種要求之實體封包資料單元以後,接收無線傳 月3收單7L係可以或可以不相容於這種要求。相容係可 201015895 以利用接收無線傳輸/接收單元表示於探測實體封包資料 單元。虽接收無線傳輸/接收單元相容於這種要求時,接 收無線傳輸/接收單元之目前選擇天線映射係變為靜態及 不可改變。 請參考第5圖’其係表示根據本發明之校正訓練訊框 實體封包資料單元500之實體封包資料單元訊框格式之示 意圖。應該注意的是’雖然第5圖所示之訊框格式係相容 於IEEE 802.11N標準,本發明亦可以應用於任何正£Ε標馨 準。校正訓練訊框係用以要求經由接收無線傳輸/接收單 元之探測封包傳輸之通道校正。校正訓練訊框實體封包資 料早元500係具有.繼承短訓練攔位(l一510 ,其跟 隨著高處理能力長訓練攔位(HT—LTF) 520、高處理能力 訊框攔位(HT —SIG) 530、及資料攔位54〇。繼承短訓練 欄位(L-STF) 510與繼承(前802.11Ν)短訓練攔位具有 相同格式。高處理能力長訓練棚位(HT—LTF) 520係定義 於802.11Ν實體(ΡΗΥ)層之欄位、並用於多重輸入多重 ❿ 輸出傳輸訓練。高處理能力訊框欄位(HT—SIG) 530係定 義於802.11Ν之欄位、並表示選擇調變及編碼手段及媒體 存取控制(MAC)服務資料單元(MSDU)之大小。 調變控制序列(MCS)攔位535係包括校正及天線映 射選擇之相關資訊,諸如:(1)用於實體封包資料單元傳 輸之選擇天線映射之表不,(2)完整候選組合順序或平行 探測之要求之表示;(3)改變候選組合大小之要求之表示; (4)要求接收無線傳輸/接收單元天線映射候選組合之更 18 201015895 新之串長(runlength)位元;以及(5)接收無線傳輸/接 收單元暫時維持天線映射選擇之要求之表示。 請參考第6圖,其係表示探測實體封包資料單元6〇〇 訊才匸格式之不忍圖。同樣地,應該注意的是,雖然第6圖 所示之訊框格式係相容於EEEE802J1N標準,本發明亦可 以應用於任何IEEE標準。探測實體封包資料單元係具有: 繼承短訓練攔位(L-STF)610、高處理能力長訓練攔位(HT -LTF) 615、高處理能力訊框攔位(HT—SIG) 62〇、調變 控制序列(MCS)欄位625,其跟隨著複數額外高處理能力 長訓練欄位(HT—LTF) 630!至630N、及資料欄位635。 高處理能力訊框攔位(HT-SIG) 620係包括:表示候選組 合大小之2個位元、及表示包括於實體封包資料單元之高 處理能力長訓練欄位(HT—LTF) 63〇總數N之5個位元^ 有鑑於此,候選組合之各組天線映射之高處理能力長訓練 襴位(HT—LTF)係可以包括於實體封包資料單元。較佳 者’如先前所述’候選組合可以小至1及大至32。實體封 包資料單元之各組高處理能力長訓練攔位(HT—LTF) 615 及630係利用經由候選組合中選擇之不同天線映射傳輸。 用以傳輸第一高處理能力長钏練欄位(HT—LTF) 615及資 料攔位635之選擇天線映射係表示於調變控制序列(Mcs') 襴位625。調變控制序列(MCS)欄位亦可以包括 以表示:(1)接收工作站之繼續天線映射選擇之維持 放要求;(2)因應於先前接收維持/釋放要求之天線映射 改變之確認;⑶完整㈣組合搜尋之校正輯訊框之先 19 201015895 前接收要求之確認;以及(4)改變候選組合大小之校正訓 練訊框之先前接收要求之確認。 請參考第7圖,其係表示第6圖之探測實體封包資料 單元資料訊框之媒體存取控制(MAC)訊框格式700。媒 體存取控制(MAC)欄位係包括:訊框控制欄位705、周 期/識別碼欄位7]〇 '接收器位址(RA)攔位715、傳輸 器位址(TA)欄位720、媒體存取控制(MAC)服務資料 © 單tg(MSDU)攔位725、及訊框檢查序列(FCS)攔位730。 在本發明之較佳實施例中,媒體存取控制(MAC)服務資 料單元(MSDU)攔位725係可以包括位元,進而表示因 應於接收維持/釋放要求之天線映射改變之維持/釋放確 認」誠如先前參考帛5圖及調變控制序列(MCS)攔位幻5 所抽。Μ由降健選組合更新,校正及關連訊號發送係 可以降低,進而增加處理能力。 特定組合詳細 獨利用(而不 或者,各種特 需要較佳實施 雖然本㈣之特徵侧職佳實施例之The line transmission/reception unit cannot find the antenna mapping of the receiving H, and thus its quality requirements. In this case, if Wei wireless transmission/connection can change its candidate combination, the wireless transmission/reception s system can indicate that the antenna mapping candidate combination will be changed immediately by using the new _ (MAC) tube view frame. . /, When the transmission wireless receiving unit is based on various available factors (for example, if the transmission line/receiving unit cannot pass through the target combination: find the antenna mapping, and then meet its quality requirements), and want to change the second, Hou The selected group σ '贞彳 transmission wireless transmission/reception system can transmit a media = take control (nen C) management frame, thereby indicating a candidate combination change to the receiving wireless transmission/reception early. Subsequently, the transmitting wireless transmission/reception list = can change the antenna mapping (4), combine, and select the appropriate antenna mapping for transmission via the new candidate combination t mapping. Alternatively, the dump transmission/touch unit may require reception of the wireless two-receipt. The 7C completely disables its antenna mapping. This requirement can be facilitated by the transmission of the body packet data unit to the receiving wireless transmission/new unit. After receiving the required data packet data unit, receiving the wireless transmission 3 3L may or may not be compatible with this requirement. The compatibility system can be represented by the receiving wireless transmission/reception unit in the detecting entity packet data unit. While the receiving WTRU is compatible with this requirement, the currently selected antenna mapping of the receiving WTRU becomes static and unchangeable. Please refer to FIG. 5, which shows the schematic diagram of the physical packet data unit frame format of the corrected training frame physical packet data unit 500 according to the present invention. It should be noted that although the frame format shown in Fig. 5 is compatible with the IEEE 802.11N standard, the present invention can also be applied to any standard. The correction training frame is used to require channel correction via the detection packet transmission of the receiving WTRU. Correction training frame entity packet data early 500 has. Inherited short training block (l-510, which follows high processing capability long training block (HT-LTF) 520, high processing capability frame block (HT — SIG) 530, and data block 54〇. Inheritance short training field (L-STF) 510 has the same format as inheritance (former 802.11Ν) short training block. High processing capacity long training booth (HT-LTF) 520 It is defined in the field of 802.11Ν entity (ΡΗΥ) layer and used for multiple input multiple output transmission training. High processing capability frame field (HT-SIG) 530 is defined in the field of 802.11Ν, and indicates the selection tone. Variable and encoding means and the size of the Medium Access Control (MAC) Service Data Unit (MSDU). The Modulation Control Sequence (MCS) Block 535 includes information related to correction and antenna mapping selection, such as: (1) for entities The selection of the antenna mapping for the transmission of the packet data unit, (2) the representation of the requirements of the complete candidate combination sequence or parallel detection; (3) the representation of the requirement to change the size of the candidate combination; (4) the requirement to receive the WTRU antenna Mapping candidate group In addition, the new serial length (runlength) bit; and (5) the representation of the receiving wireless transmission/reception unit temporarily maintaining the antenna mapping selection. Please refer to FIG. 6, which is a detection entity packet data unit 6. In the same way, it should be noted that although the frame format shown in Figure 6 is compatible with the EEEE 802J1N standard, the present invention can also be applied to any IEEE standard. Probing the physical packet data unit The system has: Inherited short training block (L-STF) 610, high processing capability long training block (HT-LTF) 615, high processing capability frame block (HT-SIG) 62〇, modulation control sequence (MCS) Field 625, which follows a plurality of additional high processing capability long training fields (HT-LTF) 630! to 630N, and a data field 635. High Processing Capability Block Intercept (HT-SIG) 620 includes: 2 bits of the candidate combination size, and 5 bits representing the total processing length of the high processing capability long training field (HT-LTF) included in the entity packet data unit ^ In view of this, each group of antennas of the candidate combination High processing capability for mapping Bits (HT-LTF) may be included in the entity packet data unit. Preferably, the candidate combinations may be as small as 1 and as large as 32 as described above. Each group of high-capacity processing training blocks of the entity packet data unit ( HT-LTF) 615 and 630 are transmitted using different antenna mappings selected through candidate combinations. The selected antenna mapping representation for transmitting the first high processing capability long training field (HT-LTF) 615 and data intercept 635 In the modulation control sequence (Mcs'), position 625. The Modulation Control Sequence (MCS) field may also be included to indicate: (1) the sustaining request of the continuation antenna mapping selection of the receiving station; (2) the confirmation of the antenna mapping change in response to the previous reception of the maintenance/release request; (3) complete (4) Confirmation of the combined search frame 19 201015895 Confirmation of the previous reception request; and (4) Confirmation of the previous reception request of the correction training frame for changing the candidate combination size. Please refer to FIG. 7, which is a medium access control (MAC) frame format 700 of the data frame of the probing entity packet data unit of FIG. The Media Access Control (MAC) field includes: Frame Control Field 705, Period/Identification Code Field 7] 〇 'Receiver Address (RA) Block 715, Transmitter Address (TA) Field 720 Media Access Control (MAC) Service Profile © Single Tg (MSDU) Block 725, and Frame Check Sequence (FCS) Block 730. In a preferred embodiment of the present invention, a Medium Access Control (MAC) Service Data Unit (MSDU) intercept 725 may include a bit, thereby indicating a hold/release confirmation of an antenna mapping change in response to receiving a hold/release request. As previously referred to 帛5 diagram and modulation control sequence (MCS) block illusion 5 pumping.更新 Updated by the descending health selection, the correction and related signal transmission system can be reduced, thereby increasing the processing capacity. Specific combinations are used in detail (not or, various special needs are better implemented, although the features of this (4) are better

說明如下,'然而,各種特徵或元件亦可以單 需要或需要較佳實_之其他舰及元件), 徵或元件亦可_成各種組合(而不需要或 例之其他特徵或元件。 20 201015895 【圖式簡單說明】 一本發明之更進-步理解係透過下列發明說明(舉例而 § )、並配合所附圖式詳細解釋如下,其中: 第!圖係表示習知技狀通道校正及私資料轉移之訊 號圖; 第2圖絲示根據本發歡錄實施例之選擇天線映射 之方法流程圖; ❹ 第3圖係表示根據本發明之具有無線網路基地台(Ap) 及無線傳輸/接收單元之系統方塊圖; 第4圖係表示通道校正及封包資料轉移之訊號時序圖, 其中,根據本發明之天線映射選擇係利用; 第5圖係表示實施根據本發明之天線映射騎之校正調 練訊框(CTF)實體封包資料單元(ppDU)訊框格式之示 意圖; 第6圖係表示實施根據本發明之天線映射選擇之探測實 ❷體封包為料單元(ppDU)訊框格式之示意圖,·以及 第7圖係表示實施根據本發明之天線映射選擇之探測實 體封包資解元(ppDU)舰存取㈣(ΜΑ〇訊框格式 之示意圖。 21 201015895 【主要元件符號說明】 110、310、410傳輸無線傳輸/接收單元 120、320、420接收無線傳輸/接收單元 316A…316N、326Α·.·326Μ 複數天線 CTF 校正訓練訊框 L-ST 繼承短訓練欄位 HT-LTF 高處理能力長訓練欄位 HT-SIG 高處理能力訊框攔位 MCS 調變控制序列欄位 RA 接收器位址欄位 ΤΑ 傳輸器位址欄位 MSDU 媒體存取控制服務資料單元欄位 FCS 訊框檢查序列攔位 22The description is as follows, 'However, various features or components may also be required or required to be better than other ships and components. The components or components may also be in various combinations (without requiring or otherwise other features or components.) 20 201015895 BRIEF DESCRIPTION OF THE DRAWINGS A further advancement of the invention is explained in detail by the following description of the invention (examples and §), and in conjunction with the accompanying drawings, wherein: A signal map for private data transfer; FIG. 2 is a flow chart showing a method for selecting an antenna map according to the embodiment of the present invention; ❹ Figure 3 shows a wireless network base station (Ap) and wireless transmission according to the present invention. System block diagram of the receiving unit; FIG. 4 is a signal timing diagram showing channel correction and packet data transfer, wherein the antenna mapping selection system according to the present invention is utilized; and FIG. 5 is a diagram showing the implementation of the antenna mapping riding according to the present invention. Schematic diagram of the Correction Training Frame (CTF) Entity Packet Data Unit (ppDU) frame format; Figure 6 is a diagram showing the implementation of the antenna mapping selection according to the present invention. Schematic diagram of a packet-based unit (ppDU) frame format, and FIG. 7 shows a probe entity (ppDU) ship access (four) implementing the antenna mapping selection according to the present invention (a schematic diagram of a frame format) 21 201015895 [Description of main component symbols] 110, 310, 410 transmission WTRU 120, 320, 420 receiving WTRUs 316A...316N, 326Α·.·326Μ Complex antenna CTF correction training frame L-ST Inherit short training field HT-LTF High processing capacity Long training field HT-SIG High processing capability Frame block MCS Modulation control sequence field RA Receiver address field 传输 Transmitter address field MSDU Media access Control Service Data Unit Field FCS Frame Check Sequence Block 22

Claims (1)

201015895 七、申請專利範圍: 1. 用於一無線傳輸/接收單元而進行天線選擇的裝置,該裝置 包括: 調整天線映射之一候選組合,其中天線映射包含選自多 射頻鏈的一射頻鏈與選自多個天線元件的一天線元件的結合; 從天線映射的該候選組合選擇一第一天線映射;以, 使用該第一天線映射而傳輸資料。 Ο 2. 如申請專利範圍帛]項所述的方法,其中天線元件包含 束成型天線,且該選擇包含選擇一天線波束。 3. 如申請專利範圍第1項所述的方法,其中天線元件包含多個 實體天線,且該選擇包含從該多個全向性實體天線 一全向性實體天線。 千 4组合嫩線崎的該候選 H請專利範圍第4項所述的方法,其中該調整包含將-天 或將-天線映射從天線映射 以二 = 執項行所述的方法’其中該調整是回應於- 7·如申印專利範圍第6項所述的方法,1中一 變包含-長期改變。 Ί通道條件的-改 ^如申印專利範圍第丨項所述的方料 9如射 =組合中的每-天線映射 在該第」上項所述的方法,其巾賴擇包含: 10.如申請專利範圍第9項所述的^法,f l第;天么映射。 傳輸指示—第實體封包資料單元; 接收指示要求的—第—校正訓練訊框; /、第一天線映射的一第二探測實體封包資料單元; 23 201015895 產生該第-天線映射的_第—通道預測,以及該第二通道映 的一第二通道預測; 、 =該第—通道預顺該第二通道酬而計算—第—通道預測 傳送包含該第一通道預測矩陣的一第 一校正回應; 接收指示一第二校正要求的一第二校正訓練訊框; 傳輸一第三探測實體封包資料單元;以及 接收包含一第二通道預測矩陣的一第二校正回應。 lh·如申請專利範圍第1項所述的方法,其中選擇包括: f線?輪/接收單元的―第二天線映射沒有被校正的 ^件下i仗天線映射的該候選組合重選擇該第一天線映射。 瓣1佩恤,讀輸包括: 收器天線映射的一探測實體封包資料單元;以及 陣、。&擇的天線映射與該接收器天線映射而計算一導引矩 24201015895 VII. Patent application scope: 1. A device for antenna selection for a wireless transmission/reception unit, the device comprising: a candidate combination for adjusting antenna mapping, wherein the antenna mapping comprises a radio frequency chain selected from a multi-radio frequency chain and a combination of an antenna element selected from a plurality of antenna elements; selecting a first antenna map from the candidate combination of antenna maps; and transmitting data using the first antenna map. 2. The method of claim 2, wherein the antenna element comprises a beam shaping antenna and the selecting comprises selecting an antenna beam. 3. The method of claim 1, wherein the antenna element comprises a plurality of physical antennas and the selection comprises an omnidirectional physical antenna from the plurality of omnidirectional physical antennas. The method of claim 4, wherein the adjustment comprises mapping the -day or the antenna mapping from the antenna to the method described in the second row of the 'the line' It is in response to - 7 · The method described in item 6 of the scope of the patent application, 1 change includes - long-term change. The method of the Ί channel condition is changed as described in the above-mentioned item of the above-mentioned item, as described in the above-mentioned item. For example, the method described in item 9 of the patent application, fl; Transmission indication - the first entity packet data unit; receiving the indication request - the first correction training frame; /, the second antenna mapping data unit of the first antenna mapping; 23 201015895 generating the first antenna mapping _ - Channel prediction, and a second channel prediction of the second channel; = = the first channel is pre-processed with the second channel - the first channel prediction transmission includes a first corrected response of the first channel prediction matrix Receiving a second correction training frame indicating a second correction request; transmitting a third sounding entity packet data unit; and receiving a second correction response including a second channel prediction matrix. Lh. The method of claim 1, wherein the selecting comprises: the second antenna mapping of the f-line wheel/receiving unit is not corrected, and the candidate combination of the next antenna mapping is reselected. The first antenna map. The flap 1 is worn, and the read and output includes: a probe entity packet data unit mapped by the receiver antenna; and a matrix. & the selected antenna map is mapped to the receiver antenna to calculate a steering moment 24
TW098113252A 2005-04-07 2006-04-07 Method and apparatus for antenna mapping selection in mimo-ofdm wireless networks TWI420844B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US66904805P 2005-04-07 2005-04-07

Publications (2)

Publication Number Publication Date
TW201015895A true TW201015895A (en) 2010-04-16
TWI420844B TWI420844B (en) 2013-12-21

Family

ID=37055813

Family Applications (5)

Application Number Title Priority Date Filing Date
TW095112531A TWI443988B (en) 2005-04-07 2006-04-07 Method and apparatus for antenna mapping selection in mimo-ofdm wireless networks
TW101141222A TWI496428B (en) 2005-04-07 2006-04-07 Method and apparatus for antenna mapping selection in mimo-ofdm wireless networks
TW098113252A TWI420844B (en) 2005-04-07 2006-04-07 Method and apparatus for antenna mapping selection in mimo-ofdm wireless networks
TW095205922U TWM297539U (en) 2005-04-07 2006-04-07 Multiple-in/multiple-out (MIMO) wireless transmit/receive unit (WTRU) for optimizing antenna mappings
TW102116435A TWI506977B (en) 2005-04-07 2006-04-07 Method and apparatus for antenna mapping selection in mimo-ofdm wireless networks

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW095112531A TWI443988B (en) 2005-04-07 2006-04-07 Method and apparatus for antenna mapping selection in mimo-ofdm wireless networks
TW101141222A TWI496428B (en) 2005-04-07 2006-04-07 Method and apparatus for antenna mapping selection in mimo-ofdm wireless networks

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW095205922U TWM297539U (en) 2005-04-07 2006-04-07 Multiple-in/multiple-out (MIMO) wireless transmit/receive unit (WTRU) for optimizing antenna mappings
TW102116435A TWI506977B (en) 2005-04-07 2006-04-07 Method and apparatus for antenna mapping selection in mimo-ofdm wireless networks

Country Status (6)

Country Link
KR (6) KR101357948B1 (en)
CN (2) CN200973090Y (en)
AR (1) AR053842A1 (en)
DE (1) DE202006005733U1 (en)
MY (1) MY139671A (en)
TW (5) TWI443988B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456927B (en) * 2012-01-09 2014-10-11 Lite On Electronics Guangzhou Antenna array control method and access point using the same
TWI583156B (en) * 2011-06-24 2017-05-11 Sun Patent Trust A transmitting apparatus, a transmitting method, a receiving apparatus, and a receiving method (2)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944941B (en) * 2009-07-03 2014-07-02 联想(上海)有限公司 Method for controlling reconfigurable multiaerial system and mobile terminal
CN101626355B (en) * 2009-08-11 2012-11-14 北京天碁科技有限公司 Calibration device and calibration method of multi-input multi-output (MIMO) terminal
TWI520629B (en) * 2011-02-18 2016-02-01 Univ Kyushu Nat Univ Corp A transmission cycle determining method, a transmission cycle determining means, and a computer-readable recording medium
CN103874112B (en) * 2014-02-20 2017-08-11 清华大学 A kind of communication control method and mobile terminal
TWI572242B (en) * 2015-03-20 2017-02-21 啟碁科技股份有限公司 Access point and associated anteena selecting method
EP3410768B1 (en) * 2016-03-31 2022-07-27 Huawei Technologies Co., Ltd. Signal transmitting method for terminal apparatus, and terminal apparatus
TWI658707B (en) 2017-12-14 2019-05-01 財團法人工業技術研究院 Communication system and operating method thereof
CN111130610A (en) * 2018-11-01 2020-05-08 北京三星通信技术研究有限公司 Signal transmission method and device, electronic equipment and computer readable storage medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6917820B2 (en) * 2001-01-26 2005-07-12 Stanford University Method and apparatus for selection and use of optimal antennas in wireless systems
GB0125178D0 (en) * 2001-10-19 2001-12-12 Koninkl Philips Electronics Nv Method of operating a wireless communication system
US7020110B2 (en) * 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
GB2392065B (en) * 2002-08-15 2004-12-29 Toshiba Res Europ Ltd Signal decoding methods and apparatus
US8134976B2 (en) * 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US7151809B2 (en) * 2002-10-25 2006-12-19 Qualcomm, Incorporated Channel estimation and spatial processing for TDD MIMO systems
US7392015B1 (en) 2003-02-14 2008-06-24 Calamp Corp. Calibration methods and structures in wireless communications systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI583156B (en) * 2011-06-24 2017-05-11 Sun Patent Trust A transmitting apparatus, a transmitting method, a receiving apparatus, and a receiving method (2)
TWI456927B (en) * 2012-01-09 2014-10-11 Lite On Electronics Guangzhou Antenna array control method and access point using the same

Also Published As

Publication number Publication date
KR20120088619A (en) 2012-08-08
KR20120100849A (en) 2012-09-12
DE202006005733U1 (en) 2006-09-14
TW201338450A (en) 2013-09-16
KR20060107416A (en) 2006-10-13
TW201407988A (en) 2014-02-16
TWI443988B (en) 2014-07-01
TW200644473A (en) 2006-12-16
MY139671A (en) 2009-10-30
AR053842A1 (en) 2007-05-23
CN200973090Y (en) 2007-11-07
KR20130133706A (en) 2013-12-09
CN101156460A (en) 2008-04-02
CN101156460B (en) 2011-05-04
KR101357948B1 (en) 2014-02-03
KR20130038310A (en) 2013-04-17
TWI506977B (en) 2015-11-01
TWI420844B (en) 2013-12-21
TWI496428B (en) 2015-08-11
KR20140063557A (en) 2014-05-27
TWM297539U (en) 2006-09-11
KR101423382B1 (en) 2014-07-24
KR101381458B1 (en) 2014-04-04

Similar Documents

Publication Publication Date Title
US9178580B2 (en) Method and apparatus for antenna mapping selection in MIMO-OFDM wireless networks
TW201015895A (en) Method and apparatus for antenna mapping selection in MIMO-OFDM wireless networks
CN101371483B (en) MIMO communication system and method for beamforming using polar-cap codebooks
TWI305457B (en) Calibration in mimo systems
JP4663734B2 (en) System and method capable of implicit feedback for a device comprising unequal number of transmitter and receiver chains in a wireless local area network
TW201108646A (en) Wireless communication method, wireless communication system and wireless communication apparatus using multi-antenna
US20110105172A1 (en) Adaptive Power Balancing and Phase Adjustment for MIMO-Beamformed Communication Systems
WO2015188365A1 (en) Antenna calibration method and device used in large-scale mimo wireless communication system
AU2013270503A1 (en) Method and Apparatus for Antenna Mapping Selection in MIMO-OFDM Wireless Networks

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees