TWI420792B - Resonant converters and burst mode control methods thereof - Google Patents

Resonant converters and burst mode control methods thereof Download PDF

Info

Publication number
TWI420792B
TWI420792B TW99104304A TW99104304A TWI420792B TW I420792 B TWI420792 B TW I420792B TW 99104304 A TW99104304 A TW 99104304A TW 99104304 A TW99104304 A TW 99104304A TW I420792 B TWI420792 B TW I420792B
Authority
TW
Taiwan
Prior art keywords
pulse
resonant
adjustment
resonant converter
voltage
Prior art date
Application number
TW99104304A
Other languages
Chinese (zh)
Other versions
TW201128912A (en
Inventor
Zeng Li
Jie Fu
Original Assignee
Delta Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics Inc filed Critical Delta Electronics Inc
Priority to TW99104304A priority Critical patent/TWI420792B/en
Publication of TW201128912A publication Critical patent/TW201128912A/en
Application granted granted Critical
Publication of TWI420792B publication Critical patent/TWI420792B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Description

諧振轉換器以及其間歇模式控制方法Resonant converter and its intermittent mode control method

本發明係關於電源供應器,特別係關於一種應用間歇式控制之諧振轉換器。This invention relates to power supplies, and more particularly to a resonant converter employing intermittent control.

近年來,由於節能環保的目的,電源供應器係朝著高效率(high efficiency)、高功率密度、高可靠性與低成本的方向發展。諧振型轉換器由於具有軟切換特性,且操作在最大占空比(duty cycle)的狀態,因而在滿載時效率很高,並受到很多人的青睞。然而,諧振型轉換器在輕載時效率並不理想。In recent years, due to the purpose of energy saving and environmental protection, the power supply has been developed in the direction of high efficiency, high power density, high reliability and low cost. The resonant type converter has high soft switching characteristics and operates in a duty cycle state, so it is highly efficient at full load and is favored by many people. However, resonant converters are not as efficient at light loads.

為了克服此問題,習知技術係將諧振型轉換器操作在一間歇式工作模式(Burst Mode),藉以降低單位時間內的切換次數與總體損耗,使得效率能夠提升。舉例而言,如第1圖中所示,於間歇式工作模式中,當誤差放大信號Vea等於或高於滯回比較電路之上限值Vref2時,壓頻轉換器會被致能而用以產生振盪信號,使得半橋開關電路根據控制信號(LVG與HVG)進行切換。相反地,當誤差放大信號Vea低於滯回比較電路之下限值Vref1時,壓頻轉換器會被禁能而停止產生的振盪信號,使得半橋開關電路無驅動信號。In order to overcome this problem, the conventional technique operates the resonant type converter in a batch mode to reduce the number of switching times and total loss per unit time, so that the efficiency can be improved. For example, as shown in FIG. 1, in the intermittent operation mode, when the error amplification signal Vea is equal to or higher than the upper limit value Vref2 of the hysteresis comparison circuit, the voltage frequency converter is enabled to be used. An oscillating signal is generated such that the half bridge switching circuit switches according to the control signals (LVG and HVG). Conversely, when the error amplification signal Vea is lower than the lower limit value Vref1 of the hysteresis comparison circuit, the voltage converter is disabled to stop the generated oscillation signal, so that the half bridge switching circuit has no driving signal.

然而,間歇式工作模式控制仍具有些許不足之處。舉例而言,由於誤差放大信號Vea會在滯回比較電路之上、 下限值Vref2與Vref1之間波動,且誤差放大信號Vea與振盪信號的頻率fosc成反比,所以在單次間歇模式工作週期(Burst Mode Working Period;BMWP)中,振盪信號的頻率fosc會隨著誤差放大信號Vea由高變低而由低變高。此外,在單次間歇模式工作週期BMWP內的前幾個驅動脈衝週期中,由於諧振網路阻抗降低所以會產生一個很大的諧振電流(意即諧振電流不平衡),因而引發大的輸出電壓波紋、音頻噪音以及最佳工作點變動(激磁電感電流磁偏以及無法零電壓切換)…等問題。However, intermittent mode of operation control still has some deficiencies. For example, since the error amplification signal Vea will be on the hysteresis comparison circuit, The lower limit value Vref2 and Vref1 fluctuate, and the error amplification signal Vea is inversely proportional to the frequency fosc of the oscillating signal, so in a single Burst Mode Working Period (BMWP), the frequency fosc of the oscillating signal will follow The error amplification signal Vea changes from high to low and from low to high. In addition, in the first few driving pulse periods in the single intermittent mode duty cycle BMWP, a large resonant current (meaning that the resonant current is unbalanced) is generated due to the reduced impedance of the resonant network, thereby causing a large output voltage. Corrugation, audio noise, and optimum operating point variation (magnetoresistance current magnetic bias and zero voltage switching).

基於以上的考量,需要一種可降低輸出電壓波紋與音頻噪音並提升效率的間歇式控制方式以及應用此控制方式之諧振轉換器。Based on the above considerations, there is a need for an intermittent control method that reduces output voltage ripple and audio noise and improves efficiency, and a resonant converter to which the control method is applied.

有鑑於此,本發明係提供一種諧振轉換器,包括一方波產生器、一諧振電路、一輸出整流電路以及一控制器。方波產生器用以提供一方波電壓,諧振電路用以根據方波電壓進行諧振,而輸出整流電路用以根據諧振電路之諧振,輸出一輸出電壓。控制器用以在一間歇模式工作週期中提供一控制信號驅動方波產生器,其中控制信號包括至少一第一脈衝組以及至少一第二脈衝組,並且第一脈衝組包括至少一第一調節脈衝,而第二脈衝組包括複數驅動脈衝。方波產生器係用以根據第一調節脈衝對諧振電路之一激磁電感電流以及一諧振電容電壓進行預先調整,使得諧 振轉換器在第二脈衝組中之每個驅動脈衝的上升緣時,激磁電感電流大抵上相等,並且諧振電容電壓也大抵上相等。In view of the above, the present invention provides a resonant converter including a square wave generator, a resonant circuit, an output rectifier circuit, and a controller. The square wave generator is for providing a square wave voltage, the resonant circuit is for resonating according to the square wave voltage, and the output rectifier circuit is for outputting an output voltage according to the resonance of the resonant circuit. The controller is configured to provide a control signal to drive the square wave generator in an intermittent mode duty cycle, wherein the control signal comprises at least a first pulse group and at least a second pulse group, and the first pulse group includes at least one first adjustment pulse And the second pulse group includes a complex drive pulse. The square wave generator is configured to pre-adjust a magnetizing inductor current and a resonant capacitor voltage of the resonant circuit according to the first adjusting pulse to make the harmonic When the oscillating converter is at the rising edge of each of the driving pulses in the second pulse group, the magnetizing inductor currents are substantially equal, and the resonant capacitor voltages are also substantially equal.

本發明亦提供另一種諧振轉換器,包括一方波產生器、一諧振電路、一輸出整流電路以及一控制器。方波產生器用以提供一方波電壓,諧振電路,用以根據方波電壓進行諧振,而輸出整流電路,用以根據諧振電路之諧振,輸出一輸出電壓。控制器用以在一間歇模式中提供一控制信號驅動方波產生器,其中控制信號包括至少一第一脈衝組以及至少兩個第二脈衝組,並且第一脈衝組係位於兩個第二脈衝組之間,且包括至少一第一調節脈衝,而第二脈衝組係位於第一調節脈衝之後,且包括複數驅動脈衝。方波產生器係用以根據第一調節脈衝,調整諧振電路之一激磁電感電流以及一諧振電容電壓,使得諧振轉換器在第二脈衝組中之每個驅動脈衝的上升緣時,激磁電感電流大抵上相等,並且諧振電容電壓也大抵上相等。The present invention also provides another resonant converter including a square wave generator, a resonant circuit, an output rectifier circuit, and a controller. The square wave generator is configured to provide a square wave voltage, a resonant circuit for resonating according to a square wave voltage, and an output rectifier circuit for outputting an output voltage according to the resonance of the resonant circuit. The controller is configured to provide a control signal to drive the square wave generator in an intermittent mode, wherein the control signal comprises at least a first pulse group and at least two second pulse groups, and the first pulse group is located in the two second pulse groups Between and including at least one first adjustment pulse, and the second pulse group is located after the first adjustment pulse and includes a plurality of drive pulses. The square wave generator is configured to adjust a magnetizing inductor current and a resonant capacitor voltage according to the first adjusting pulse so that the resonant converter has a magnetizing inductor current at a rising edge of each of the driving pulses in the second pulse group They are roughly equal, and the resonant capacitor voltages are also roughly equal.

本發明亦提供一諧振轉換器的間歇模式控制方法,包括在一間歇模式工作週期中,提供至少一第一調節脈衝,用以對一諧振電路之一激磁電感電流以及一諧振電容電壓進行預先調整,並且於上述第一調節脈衝之後,提供至少一脈衝序列,用以間歇式地導通一方波產生器中之複數開關元件。脈衝序列包括複數驅動脈衝,且第一調節脈衝係用以調整諧振電路之激磁電感電流以及諧振電容電壓,使得諧振轉換器在脈衝序列中之每個驅動脈衝的上升緣時,激磁電感電流大抵上相等,並且諧振電容電壓也大抵上相等。The present invention also provides an intermittent mode control method for a resonant converter, comprising: providing at least one first adjustment pulse for pre-adjusting a magnetizing inductor current and a resonant capacitor voltage of a resonant circuit in an intermittent mode duty cycle And after the first adjustment pulse, providing at least one pulse sequence for intermittently turning on the plurality of switching elements in the square wave generator. The pulse sequence includes a complex drive pulse, and the first adjustment pulse is used to adjust the magnetizing inductor current of the resonant circuit and the resonant capacitor voltage such that the resonant inductor current is substantially greater when the resonant converter rises at the rising edge of each of the pulse trains Equal, and the resonant capacitor voltages are also roughly equal.

為使本發明之上述目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。The above described objects, features and advantages of the present invention will become more apparent from the description of the appended claims.

本發明係提供一種諧振轉換器藉由對諧振電路之激磁電感電流以及諧振電容電壓進行預先調整,以便降低輸出電壓波紋與音頻噪音並提升效率。The present invention provides a resonant converter that pre-adjusts the magnetizing inductor current and the resonant capacitor voltage of the resonant circuit to reduce output voltage ripple and audible noise and improve efficiency.

第2圖係為本發明之諧振轉換器之一電路示意圖。如圖所示,諧振轉換器100包括一主電路110以及一控制器120,其中主電路110包括一方波產生器111、一諧振電路113以及一輸出整流電路115。方波產生器111用以提供一方波電壓至諧振電路113。在此實施例中,方波產生器111係可為半橋式轉換器、全橋式轉換器、推挽式轉換器,但不限定於此,方波產生器111亦可為其它型式之轉換器。舉例而言,方波產生器111係用以接收一輸入電壓Vin,並根據控制器120所產生之控制信號117,將輸入電壓Vin轉換成一方波電壓,並將方波電壓提供至諧振電路113。一般而言,控制器120所產生之控制信號117係由複數脈衝所構成。Figure 2 is a circuit diagram of one of the resonant converters of the present invention. As shown, the resonant converter 100 includes a main circuit 110 and a controller 120. The main circuit 110 includes a square wave generator 111, a resonant circuit 113, and an output rectifying circuit 115. The square wave generator 111 is for supplying a square wave voltage to the resonance circuit 113. In this embodiment, the square wave generator 111 can be a half bridge converter, a full bridge converter, a push-pull converter, but is not limited thereto, and the square wave generator 111 can also be another type of conversion. Device. For example, the square wave generator 111 is configured to receive an input voltage Vin, convert the input voltage Vin into a square wave voltage according to the control signal 117 generated by the controller 120, and provide the square wave voltage to the resonant circuit 113. . In general, the control signal 117 generated by the controller 120 is comprised of a plurality of pulses.

諧振電路113係可由諧振元件(例如電感與電容)所構成,用以接受來自方波產生器111之方波電壓進行諧振,而輸出整流電路115耦接至諧振電路113,用以根據諧振電路113之諧振產生一輸出電壓Vo。舉例而言,輸出整流電路115係可為二極體整流電路或同步整流電路,但不限 定於此。控制器120係包括一正常模式控制器121、一間歇模式控制器123以及一驅動器125。控制器120用以根據諧振轉換器100中用以反映輸出電流的信號(例如輸出電壓誤差放大信号),判斷諧振轉換器100之工作模式,並提供對應之控制信號117至方波產生器111。在某些實施例中,諧振轉換器100中用以反映輸出電流的信號亦可為諧振電容上的電壓(亦稱為諧振電容電壓)、高頻變壓器中之電流(例如激磁電感電流或諧振電流)中之一者或多者,但不限定於此。舉例而言,驅動器125係選擇性地根據正常模式控制器121與間歇模式控制器123所提供之振盪信號,產生控制信號117輸出至方波產生器111。The resonant circuit 113 can be formed by a resonant component (such as an inductor and a capacitor) for receiving a square wave voltage from the square wave generator 111 for resonance, and the output rectifier circuit 115 is coupled to the resonant circuit 113 for the resonant circuit 113 according to the resonant circuit 113. The resonance produces an output voltage Vo. For example, the output rectifier circuit 115 can be a diode rectifier circuit or a synchronous rectifier circuit, but is not limited. It is here. The controller 120 includes a normal mode controller 121, an intermittent mode controller 123, and a driver 125. The controller 120 is configured to determine an operation mode of the resonant converter 100 according to a signal (for example, an output voltage error amplification signal) of the resonant converter 100 for reflecting an output current, and provide a corresponding control signal 117 to the square wave generator 111. In some embodiments, the signal used to reflect the output current in the resonant converter 100 may also be a voltage on the resonant capacitor (also referred to as a resonant capacitor voltage), a current in the high frequency transformer (eg, a magnetizing inductor current or a resonant current). One or more of them, but is not limited thereto. For example, the driver 125 selectively generates a control signal 117 output to the square wave generator 111 according to the oscillation signal provided by the normal mode controller 121 and the intermittent mode controller 123.

當諧振轉換器100在滿載或重載情況下,間歇模式控制器123會被禁能,而正常模式控制器121會被致能。此時正常模式控制器121則會根據輸出電壓Vo的變動,產生振盪信號,而驅動器125則根據正常模式控制器121所產生之振盪信號,發出具有連續的驅動脈衝之控制信號117至方波產生器111。換言之,諧振轉換器100此時操作在一正常(工作)模式下。When the resonant converter 100 is under full load or heavy load, the intermittent mode controller 123 will be disabled and the normal mode controller 121 will be enabled. At this time, the normal mode controller 121 generates an oscillating signal according to the fluctuation of the output voltage Vo, and the driver 125 issues a control signal 117 having a continuous driving pulse to the square wave generation according to the oscillating signal generated by the normal mode controller 121. 111. In other words, the resonant converter 100 is now operating in a normal (operating) mode.

當諧振轉換器100進入輕載或空載情況時,正常模式控制器121會被禁能,而間歇模式控制器123會被致能,意即進入一間歇(工作)模式。此時驅動器125則根據間歇模式控制器123所提供之振盪信號,發出具有至少一第一脈衝組以及至少一第二脈衝組之控制信號117至方波產生器111。舉例而言,第二脈衝組包括一個含有複數驅動脈衝的脈衝序列,用以間歇式地導通方波產生器111中的開 關元件,但不限定於此。要注意的是,第一脈衝組係位於第二脈衝組之前,或者是兩個相鄰的第二脈衝組之間,但不限定於此。舉例而言,驅動器125可依序提供第一脈衝組與第二脈衝組至方波產生器111。方波產生器111用以根據第一脈衝組將諧振電路113之激磁電感電流與諧振電容電壓預先調整至對應的預設值,使得在第二脈衝組中每個脈衝的上升緣時,諧振電路113中激磁電感電流會大抵上相等,並且諧振電容電壓也會大抵上相等。換言之,驅動器125根據第二脈衝組使得諧振轉換器100如同操作於正常(工作)模式之某種平衡狀態。須注意的是,諧振轉換器100於正常模式下具有多種平衡工作狀態,而平衡工作狀態與負載有關。此外,與第1圖所示之習知技術不同的是第二脈衝組是驅動器125藉由間歇模式控制器123根據固定頻率之振盪信號所產生的。換言之,即使根據輸出電壓Vo產生的誤差放大信號於滯回比較電路之上、下限值之間波動,對第二脈衝組也不會有影響。When the resonant converter 100 enters a light or no load condition, the normal mode controller 121 is disabled and the intermittent mode controller 123 is enabled, meaning to enter an intermittent (operating) mode. At this time, the driver 125 sends a control signal 117 having at least a first pulse group and at least a second pulse group to the square wave generator 111 according to the oscillation signal provided by the intermittent mode controller 123. For example, the second pulse group includes a pulse sequence including a plurality of drive pulses for intermittently turning on the opening in the square wave generator 111. The component is turned off, but is not limited to this. It is to be noted that the first pulse group is located before the second pulse group or between two adjacent second pulse groups, but is not limited thereto. For example, the driver 125 can sequentially provide the first pulse group and the second pulse group to the square wave generator 111. The square wave generator 111 is configured to pre-adjust the magnetizing inductor current and the resonant capacitor voltage of the resonant circuit 113 to corresponding preset values according to the first pulse group, so that the resonant circuit of the rising edge of each pulse in the second pulse group In 113, the magnetizing inductor currents will be roughly equal, and the resonant capacitor voltages will be roughly equal. In other words, the driver 125 causes the resonant converter 100 to operate in a certain equilibrium state of the normal (operating) mode in accordance with the second set of pulses. It should be noted that the resonant converter 100 has a plurality of balanced operating states in the normal mode, and the balanced operating state is related to the load. Further, unlike the conventional technique shown in Fig. 1, the second pulse group is generated by the driver 125 by the intermittent mode controller 123 based on the oscillation signal of the fixed frequency. In other words, even if the error amplification signal generated based on the output voltage Vo fluctuates between the lower limit value and the lower limit value, there is no influence on the second pulse group.

在某一實施例中,第一脈衝組係包括一個或多個第一調節脈衝,而第一調節脈衝的寬度與個數係根據諧振電路113中之諧振元件的個數來決定,但不限定於此。在某些實施例中,第一脈衝組係包括一個或多個第一調節脈衝以及一個或多個第二調節脈衝,並且第一、第二調節脈衝的寬度與個數亦根據諧振電路113中之諧振元件的個數來決定,但不限定於此。在某些實施例中,第一、第二調節脈衝的寬度係可根據方程式計算得知。在某些實施例中,第一、第二調節脈衝的寬度係可藉由偵測諧振電路之激磁電 感電流、諧振電流以及諧振電容電壓中之一者或多者而進行即時地調整,但不限定於此。In an embodiment, the first pulse group includes one or more first adjustment pulses, and the width and number of the first adjustment pulses are determined according to the number of resonant elements in the resonant circuit 113, but are not limited. herein. In some embodiments, the first pulse group includes one or more first adjustment pulses and one or more second adjustment pulses, and the width and number of the first and second adjustment pulses are also in accordance with the resonance circuit 113. The number of resonant elements is determined, but is not limited thereto. In some embodiments, the widths of the first and second adjustment pulses are calculated from equations. In some embodiments, the widths of the first and second adjustment pulses are detectable by detecting the excitation current of the resonant circuit The one of the sense current, the resonant current, and the resonant capacitor voltage is adjusted instantaneously, but is not limited thereto.

由於第一脈衝組已將諧振電路之激磁電感電流與諧振電容電壓預先調整至預設值,故可避免在第二脈衝組內的前幾個驅動脈衝週期中產生很大的諧振電流。因此諧振電流不平衡所引發大的輸出電壓波紋、音頻噪音以及最佳工作點變動(激磁電感電流磁偏以及無法零電壓切換)…等問題亦可一併克服。Since the first pulse group has previously adjusted the magnetizing inductor current and the resonant capacitor voltage of the resonant circuit to a preset value, it is possible to avoid generating a large resonant current in the first few driving pulse periods in the second pulse group. Therefore, the large output voltage ripple, audio noise, and optimum operating point variation (magnetoresistance current magnetic bias and zero voltage switching) can be overcome by the resonance current imbalance.

第3圖係為本發明之諧振轉換器之一實施例。如圖所示,諧振轉換器200包括一主電路210以及一控制器220,主電路210包括一輸入電容211、一半橋式轉換器212、一諧振電路213、一高頻變壓器214、一輸出整流電路215以及一輸出電容216。在此實施例中,輸入電容211用以接收並儲存輸入電壓Vin,半橋式轉換器212係作為一方波產生器,用以根據控制器220所提供之控制信號217,將輸入電壓Vin轉換成一方波電壓,並將方波電壓提供至諧振電路213。在此實施例中,半橋式轉換器212係由開關元件SW1與SW2所構成,但不限定於此。舉例而言,半橋式轉換器212亦可由與二極體並聯連接之絕緣柵雙極性電晶體(IGBT)、機電開關、微機械開關或是其他的主動半導體開關所構成。高頻變壓器214、輸出整流電路215以及輸出電容216係用以作為一輸出整流電路,以便提供輸出電壓Vo。在此實施例中,輸出整流電路215係由二極體DSR1與DSR2所構成,但不限定於此,亦可由其它整流元件所組成,例如同步整流管。Figure 3 is an embodiment of a resonant converter of the present invention. As shown, the resonant converter 200 includes a main circuit 210 and a controller 220. The main circuit 210 includes an input capacitor 211, a half bridge converter 212, a resonant circuit 213, a high frequency transformer 214, and an output rectification. Circuit 215 and an output capacitor 216. In this embodiment, the input capacitor 211 is configured to receive and store the input voltage Vin, and the half bridge converter 212 is used as a square wave generator for converting the input voltage Vin into a control signal 217 provided by the controller 220. The square wave voltage is supplied to the resonance circuit 213. In this embodiment, the half bridge converter 212 is constituted by the switching elements SW1 and SW2, but is not limited thereto. For example, the half bridge converter 212 can also be constructed of an insulated gate bipolar transistor (IGBT), an electromechanical switch, a micromechanical switch, or other active semiconductor switch connected in parallel with the diode. The high frequency transformer 214, the output rectifying circuit 215, and the output capacitor 216 are used as an output rectifying circuit to provide an output voltage Vo. In this embodiment, the output rectifying circuit 215 is composed of the diodes DSR1 and DSR2, but is not limited thereto, and may be composed of other rectifying elements, such as a synchronous rectifying tube.

控制器220則包括一半橋驅動器221、一選擇開關222、一正常模式控制器223、一間歇模式控制器224、一時脈振盪器225、一滯回比較電路226以及一電流檢測電阻227。控制器220用以根據輸出電壓Vo,判斷諧振轉換器200之工作模式,並提供對應之控制信號217至半橋式轉換器212。正常模式控制器223係由一壓頻轉換電路2231以及一回授誤差放大電路2232所構成。舉例而言,回授誤差放大電路2232係用以根據輸出電壓Vo與一既定電壓之電壓差,產生一誤差放大信號Vea,而壓頻轉換電路2231係則根據誤差放大信號Vea輸出對應之振盪信號。The controller 220 includes a half bridge driver 221, a selection switch 222, a normal mode controller 223, an intermittent mode controller 224, a clock oscillator 225, a hysteresis comparison circuit 226, and a current detecting resistor 227. The controller 220 is configured to determine the operating mode of the resonant converter 200 according to the output voltage Vo, and provide a corresponding control signal 217 to the half bridge converter 212. The normal mode controller 223 is composed of a voltage frequency conversion circuit 2231 and a feedback error amplifying circuit 2232. For example, the feedback error amplifying circuit 2232 is configured to generate an error amplification signal Vea according to a voltage difference between the output voltage Vo and a predetermined voltage, and the voltage frequency conversion circuit 2231 outputs a corresponding oscillation signal according to the error amplification signal Vea. .

在滿載或重載情況下,根據輸出電容216上的輸出電壓Vo,間歇模式控制器224會被禁能,而正常模式控制器223會被致能而發出連續的振盪信號。在此同時,由於電流檢測電阻227上的電壓會等於或高於滯回比較電路226的上限值,滯回比較電路226之輸出信號228會控制選擇開關222將正常模式控制器223所產生的振盪信號輸出至半橋驅動器221。因此,半橋驅動器則根據正常模式控制器223產生之振盪信號而輸出控制信號217來驅動半橋式轉換器212,使得諧振轉換器200之主電路210操作在正常模式之下。諧振轉換器200之主電路210在正常模式下的動作係與習知技術相同,故於此不再累述。In the case of full load or heavy load, the intermittent mode controller 224 is disabled based on the output voltage Vo on the output capacitor 216, and the normal mode controller 223 is enabled to emit a continuous oscillating signal. At the same time, since the voltage on the current detecting resistor 227 is equal to or higher than the upper limit value of the hysteresis comparison circuit 226, the output signal 228 of the hysteresis comparison circuit 226 controls the selection switch 222 to generate the normal mode controller 223. The oscillation signal is output to the half bridge driver 221. Therefore, the half bridge driver outputs a control signal 217 to drive the half bridge converter 212 in accordance with the oscillation signal generated by the normal mode controller 223, so that the main circuit 210 of the resonant converter 200 operates in the normal mode. The operation of the main circuit 210 of the resonant converter 200 in the normal mode is the same as that of the prior art, and therefore will not be described herein.

在某些實施例中,滯回比較電路226亦可根據諧振電容Cr上的電壓Vcr(亦稱為諧振電容電壓)、高頻變壓器214中之電流(例如激磁電感電流或諧振電流)以及回授誤差放大電路2232所產生的誤差放大信號Vea中之一者或多者來 控制選擇開關222,但不限定於此。諧振轉換器100於正常模式下具有多種平衡工作狀態,而平衡工作狀態與負載有關。如第4圖所示,在正常模式下的某平衡狀態時,諧振電路213之激磁電感電流ILM 會具有一正峰值Immax以及一負峰值Immin,而諧振電路213之諧振電容電壓Vcr在激磁電感電流ILM 分別為正峰值Immax與負峰值Immin時具有對應之一第一電壓值Vcrmax以及一第二電壓值Vcrmin。In some embodiments, the hysteresis comparison circuit 226 can also be based on a voltage Vcr (also referred to as a resonant capacitor voltage) on the resonant capacitor Cr, a current in the high frequency transformer 214 (eg, a magnetizing inductor current or a resonant current), and feedback. One or more of the error amplification signals Vea generated by the error amplifying circuit 2232 controls the selection switch 222, but is not limited thereto. The resonant converter 100 has a plurality of balanced operating states in the normal mode, and the balanced operating state is related to the load. As shown in FIG. 4, in a certain equilibrium state in the normal mode, the magnetizing inductor current I LM of the resonant circuit 213 has a positive peak Immax and a negative peak Immin, and the resonant capacitor voltage Vcr of the resonant circuit 213 is in the exciting inductance. When the current I LM is a positive peak Immax and a negative peak Immin, respectively, there is a corresponding first voltage value Vcrmax and a second voltage value Vcrmin.

在輕載或空載情況下,根據輸出電容上的輸出電壓Vo,正常模式控制器223會被禁能,而間歇模式控制器224會被致能,用以根據時脈振盪器225所發出之具有預設頻率的時脈產生對應的振盪信號。在此同時,由於電流檢測電阻227上的電壓會等於或低於滯回比較電路226的下限值,滯回比較電路226之輸出信號228會控制選擇開關222將間歇模式控制器224所產生之振盪信號輸出至半橋驅動器221。因此,半橋驅動器221則根據間歇模式控制器224所產生之振盪信號輸出控制信號217來驅動半橋轉換器212,使得諧振轉換器200之主電路210操作在間歇模式下。In the case of light load or no load, the normal mode controller 223 is disabled according to the output voltage Vo on the output capacitor, and the intermittent mode controller 224 is enabled for output according to the clock oscillator 225. A clock having a preset frequency produces a corresponding oscillating signal. At the same time, since the voltage on the current detecting resistor 227 is equal to or lower than the lower limit value of the hysteresis comparison circuit 226, the output signal 228 of the hysteresis comparison circuit 226 controls the selection switch 222 to generate the intermittent mode controller 224. The oscillation signal is output to the half bridge driver 221. Therefore, the half bridge driver 221 drives the half bridge converter 212 according to the oscillation signal output control signal 217 generated by the intermittent mode controller 224, so that the main circuit 210 of the resonant converter 200 operates in the intermittent mode.

在此實施例中,半橋驅動器221根據間歇模式控制器224所產生之振盪信號而輸出的控制信號217包括至少一第一脈衝組以及至少一第二脈衝組,用以控制半橋式轉換器212中之開關元件SW1與SW2。第4圖係為諧振轉換器之主電路於間歇模式時的工作波形示意圖。如圖所示,Vgss2係為半橋式轉換器212之開關元件SW2之驅動信號,Vgss1係為半橋式轉換器212之開關元件SW1之驅動 信號,ILM 係為諧振電路213中激磁電感Lm上的激磁電感電流,Ir係為諧振電路213的諧振電流(諧振電感上的電流),Vcr為諧振電路213中之諧振電容電壓,ISR 為輸出整流電路215中二極體DSR1與DSR2的導通電流。In this embodiment, the control signal 217 output by the half bridge driver 221 according to the oscillation signal generated by the intermittent mode controller 224 includes at least a first pulse group and at least a second pulse group for controlling the half bridge converter. Switching elements SW1 and SW2 in 212. Fig. 4 is a schematic diagram showing the operation waveform of the main circuit of the resonant converter in the intermittent mode. As shown, Vgss2 is the drive signal of the switching element SW2 of the half bridge converter 212, Vgss1 is the drive signal of the switching element SW1 of the half bridge converter 212, and I LM is the exciting inductance Lm of the resonant circuit 213. magnetizing inductor current on, Ir-based resonant circuit 213, resonant current (the current in resonant inductor), Vcr for the resonant capacitor voltage of the resonant circuit 213 of, I SR is output rectifying circuits 215 diode DSR1 and DSR2 conduction Current.

要注意的是,在此實施例中,控制信號217係由驅動信號Vgss2與Vgss1所構成,控制信號217於時間t0至t1具有一第一調節脈衝△t1,並於時間t2至t3具有一第二調節脈衝△t2,第一、第二調節脈衝△t1與△t2係可視為前述的第一脈衝組,而控制信號217中位於時間t1至t2間的多個驅動脈衝所構成的脈衝序列係可視為前述的第二脈衝組,但不限定於此。方波產生器212係在時間t0至t1,根據第一調節脈衝△t1導通半橋式轉換器212之開關元件SW1,將諧振電容電壓Vcr和激磁電感電流ILM 分別由中間值Vcrmid與0預先調整到第一電壓值Vcrmax與正峰值Immax。接著,在時間t1至t2內,方波產生器212則會根據控制信號217的第二脈衝組中之驅動脈衝,依序導通開關元件SW2與SW1(意即間歇式地導通開關元件SW1與SW2)。再者,在時間t2至t3,方波產生器212則根據第二調節脈衝△t2,導通開關元件SW1,再將諧振電容電壓Vcr和激磁電感電流ILM 分別預先調整到中間值Vcrmid與0。It should be noted that, in this embodiment, the control signal 217 is composed of the drive signals Vgss2 and Vgss1, and the control signal 217 has a first adjustment pulse Δt1 at times t0 to t1, and has a first time at time t2 to t3. The second adjustment pulse Δt2, the first and second adjustment pulses Δt1 and Δt2 can be regarded as the aforementioned first pulse group, and the pulse sequence formed by the plurality of drive pulses between the times t1 and t2 in the control signal 217 It can be regarded as the aforementioned second pulse group, but is not limited thereto. The square wave generator 212 is connected to the switching element SW1 of the half bridge converter 212 according to the first adjustment pulse Δt1 at time t0 to t1, and the resonant capacitor voltage Vcr and the magnetizing inductor current I LM are respectively advanced from the intermediate values Vcrmid and 0. The first voltage value Vcrmax and the positive peak Immax are adjusted. Then, during the time t1 to t2, the square wave generator 212 sequentially turns on the switching elements SW2 and SW1 according to the driving pulse in the second pulse group of the control signal 217 (that is, the switching elements SW1 and SW2 are turned on intermittently). ). Furthermore, at time t2 to t3, the square wave generator 212 turns on the switching element SW1 according to the second adjustment pulse Δt2, and adjusts the resonant capacitor voltage Vcr and the exciting inductor current I LM to the intermediate values Vcrmid and 0, respectively.

第一調節脈衝係用以在時間t0至t1對諧振電容電壓Vcr和激磁電感電流ILM 進行預先調整,使得諧振電路在時間t1達到平衡的諧振工作狀態(亦稱為一種平衡狀態)。在此實施例中,所謂平衡的諧振工作狀態即表示諧振電容電壓Vcr和激磁電感電流ILM 平衡,且諧振電容電壓Vcr和 激磁電感電流ILM 與在正常工作模式時相同,並同時保持了諧振轉換器零電壓切換的特性。換言之,時間t1至t2,在開關元件SW1與SW2之控制信號217中每個驅動脈衝的上升緣時,諧振電路213中電感電流ILM 大抵上會相等,諧振電容電壓Vcr也大抵上會相等。The first adjustment pulse is used to pre-adjust the resonant capacitor voltage Vcr and the magnetizing inductor current I LM at time t0 to t1 such that the resonant circuit reaches a balanced resonant operating state (also referred to as an equilibrium state) at time t1. In this embodiment, the so-called balanced resonant operating state means that the resonant capacitor voltage Vcr and the exciting inductor current I LM are balanced, and the resonant capacitor voltage Vcr and the exciting inductor current I LM are the same as in the normal operating mode while maintaining resonance. The zero-voltage switching characteristics of the converter. In other words, at time t1 to t2, when the rising edge of each of the driving pulses in the control signals 217 of the switching elements SW1 and SW2, the inductor current I LM in the resonant circuit 213 is substantially equal, and the resonant capacitor voltage Vcr is also substantially equal.

在本實施例中,第一、第二調節脈衝△t1與△t2的脈衝寬度係由下列方程式所計算出的。In the present embodiment, the pulse widths of the first and second adjustment pulses Δt1 and Δt2 are calculated by the following equations.

Vcr (t 0)=(nVo +Vcr max-Vin )×cos(ω 0×△t 2)-Lr ×ω 0×Im max×sin(ω 0×△t 2)+Vin -nVo Vcr ( t 0)=( nVo + Vcr max- Vin )×cos( ω 0×Δ t 2)− Lr × ω 0×Im max×sin( ω 0×Δ t 2)+ Vin - nVo

其中,Cr代表諧振電容 值,Lr代表諧振電感值,Lm代表激磁電感值,Vin代表輸入電壓,n代表高頻變壓器214之一、二次側的匝數比,Immax代表激磁電感電流ILM 的正峰值,Vcrmax代表正常工作模式中對應於激磁電感電流ILM 為正峰值時諧振電容Cr上的電壓值,Vcrmin代表正常工作模式中對應於激磁電感電流ILM 為負峰值時諧振電容Cr上的電壓值,ω1為第一個驅動脈衝(第一調節脈衝)作用時諧振電路213的振盪角頻率,ω0為最後一個驅動脈衝(第二調節脈衝)作用時諧振電路213的振盪角頻率,而Vcr(t0)為時間t0時諧振電容Cr上的電壓。among them Cr represents the value of the resonant capacitor, Lr represents the value of the resonant inductor, Lm represents the value of the magnetizing inductance, Vin represents the input voltage, n represents the turns ratio of one of the high-frequency transformers 214, and the secondary side, and Immax represents the positive of the magnetizing inductor current I LM The peak value, Vcrmax represents the voltage value on the resonant capacitor Cr corresponding to the positive inductor current I LM is the positive peak in the normal operating mode, and Vcrmin represents the voltage on the resonant capacitor Cr corresponding to the magnetizing inductor current I LM in the normal operating mode. The value ω1 is the oscillation angular frequency of the resonance circuit 213 when the first driving pulse (first adjustment pulse) acts, and ω0 is the oscillation angular frequency of the resonance circuit 213 when the last driving pulse (second adjustment pulse) acts, and Vcr( T0) is the voltage across the resonant capacitor Cr at time t0.

在此實施例中,由於時間t1至t2時間歇模式控器224 所提供之振盪信號的頻率不會隨著誤差放大信號Vea的波動而變化,並且第一脈衝組已將諧振電路213之激磁電感電流ILM 與諧振電容電壓Vcr預先調整至預設值,故可有效地避免在第二脈衝組內的前幾個驅動脈衝週期中產生很大的諧振電流。此外,由於整個工作週期諧振轉換器200皆操作在平衡的工作狀態,因此可以滿足輸出電壓波紋、音頻噪音以及輕載高效率的要求。In this embodiment, since the frequency of the oscillation signal supplied from the intermittent mode controller 224 does not change with the fluctuation of the error amplification signal Vea at times t1 to t2, and the first pulse group has the magnetizing inductance of the resonance circuit 213 The current I LM and the resonant capacitor voltage Vcr are previously adjusted to preset values, so that it is possible to effectively avoid generating a large resonant current in the first few driving pulse periods in the second pulse group. In addition, since the resonant converter 200 operates in a balanced operating state throughout the duty cycle, it can meet the requirements of output voltage ripple, audio noise, and light load high efficiency.

在一實施例中,由於配置了第一、第二調節脈衝△t1與△t2,在第二脈衝組的前幾個驅動脈衝週期中的諧振電流尖峰會小於1.8倍平衡的諧振工作狀態時的諧振電流Ir,藉以滿足低輸出電壓紋波和音頻噪音的一般要求。在另一實施例中,第一、第二調節脈衝△t1與△t2係根據前述方程式所配置,在第二脈衝組的前幾個驅動脈衝週期中的諧振電流尖峰會小於1.4倍平衡的諧振工作狀態時的諧振電流Ir,藉以滿足低輸出電壓紋波和音頻噪音的較高要求。在一較佳實施例中,第一、第二調節脈衝△t1與△t2進一步微調,使得在第二脈衝組的前幾個驅動脈衝週期中的諧振電流尖峰會小於1.2倍平衡的諧振工作狀態時的諧振電流Ir,藉以滿足低輸出電壓紋波和音頻噪音的更高要求。在第4圖之實施例中,諧振電容電壓Vcr之中間值Vcrmid係位於第一電壓值Vcrmax與第二電壓值Vcrmin之間,但在某些實施例中諧振電容電壓Vcr之中間值Vcrmid亦可高於第一電壓值Vcrmax或低於第二電壓值Vcrmin。In an embodiment, since the first and second adjustment pulses Δt1 and Δt2 are configured, the resonant current spike in the first few driving pulse periods of the second pulse group is less than 1.8 times the balanced resonant operating state. The resonant current Ir is used to meet the general requirements of low output voltage ripple and audible noise. In another embodiment, the first and second adjustment pulses Δt1 and Δt2 are configured according to the foregoing equation, and the resonance current spikes in the first few driving pulse periods of the second pulse group are less than 1.4 times the equilibrium resonance. The resonant current Ir in the working state is used to meet the high requirements of low output voltage ripple and audible noise. In a preferred embodiment, the first and second adjustment pulses Δt1 and Δt2 are further fine-tuned such that the resonant current spikes in the first few drive pulse periods of the second pulse group are less than 1.2 times the balanced resonant operation state. The resonant current Ir is used to meet the higher requirements of low output voltage ripple and audible noise. In the embodiment of FIG. 4, the intermediate value Vcrmid of the resonant capacitor voltage Vcr is between the first voltage value Vcrmax and the second voltage value Vcrmin, but in some embodiments, the intermediate value Vcrmid of the resonant capacitor voltage Vcr may also be It is higher than the first voltage value Vcrmax or lower than the second voltage value Vcrmin.

第5圖係為間歇工作模式之實施方式。如圖所示,間歇模式控制器224包括一驅動脈衝同步電路311、一預設 脈衝寬度電路312、一及閘313、死區電路314與315以及反相器316。時脈振盪器225用以產生具有預設固定頻率之振盪信號,而滯回比較電路226用以設定誤差放大信號之一門限值。驅動脈衝同步電路311用以使得滯回比較電路226之輸出信號與驅動脈衝達到同步,而預設脈衝寬度電路312用以藉由RC延遲來設定單次諧振週期的第一個脈衝(第一調節脈衝)和最後一個脈衝(第二調節脈衝)的寬度。及閘313係用以控制驅動脈衝的狀態,而死區電路314與315則用以產生開關元件SW1與SW2導通切換的死區時間。Figure 5 is an implementation of the intermittent mode of operation. As shown, the intermittent mode controller 224 includes a drive pulse synchronization circuit 311, a preset Pulse width circuit 312, a sum gate 313, dead band circuits 314 and 315, and inverter 316. The clock oscillator 225 is used to generate an oscillating signal having a preset fixed frequency, and the hysteresis comparison circuit 226 is used to set a threshold value of the error amplifying signal. The driving pulse synchronization circuit 311 is configured to synchronize the output signal of the hysteresis comparison circuit 226 with the driving pulse, and the preset pulse width circuit 312 is configured to set the first pulse of the single resonance period by the RC delay (first adjustment) Pulse) and the width of the last pulse (second adjustment pulse). The gate 313 is used to control the state of the driving pulse, and the dead zone circuits 314 and 315 are used to generate the dead time of the switching of the switching elements SW1 and SW2.

第6圖係為諧振轉換器之另一實施例。如圖所示,諧振轉換器300與第4圖中之諧振轉換器200相似,其差異在於控制信號217中第一、第二調節脈衝△t1與△t2之脈衝寬度並非由前述方程式先計算出來的,而是藉由偵測諧振電路213中之激磁電感電流與諧振電容電壓轉換器進行及時調整的。為簡化說明,諧振轉換器300與第4圖中之諧振轉換器200相同的元件與其動作於此不累述。如圖所示,控制器220”包括電感Ld作為一激磁電感電流監測元件來監測諧振電路213之激磁電感電流ILM ,並將所測得的激磁電感電流ILM 送入間歇模式控制器224”。此外,控制器220”亦會監測諧振電路213之諧振電容電壓Vcr,並將所測得的諧振電容電壓Vcr送入間歇模式控制器224”。間歇模式控制器224”係根據所測得之諧振電容電壓Vcr和激磁電感電流ILM ,即時地控制第一、第二調節脈衝的脈衝寬度,使得在控制信號217之第二脈衝組中每個驅動脈衝的 上升緣來到時,諧振電路213中激磁電感電流ILM 大抵上會相等,諧振電容電壓Vcr也大抵上會相等。Figure 6 is another embodiment of a resonant converter. As shown, the resonant converter 300 is similar to the resonant converter 200 of FIG. 4, with the difference that the pulse widths of the first and second adjustment pulses Δt1 and Δt2 in the control signal 217 are not calculated by the aforementioned equation. However, it is adjusted in time by detecting the magnetizing inductor current and the resonant capacitor voltage converter in the resonant circuit 213. To simplify the description, the same components of the resonant converter 300 as the resonant converter 200 of FIG. 4 and their actions are not described herein. As shown, the controller 220" includes an inductor Ld as a magnetizing inductor current monitoring component to monitor the magnetizing inductor current I LM of the resonant circuit 213 and to feed the measured magnetizing inductor current I LM to the intermittent mode controller 224" . In addition, the controller 220" also monitors the resonant capacitor voltage Vcr of the resonant circuit 213 and sends the measured resonant capacitor voltage Vcr to the intermittent mode controller 224". The intermittent mode controller 224" instantaneously controls the pulse widths of the first and second adjustment pulses based on the measured resonant capacitor voltage Vcr and the magnetizing inductor current I LM such that each of the second pulse groups of the control signal 217 When the rising edge of the driving pulse comes, the exciting inductor current I LM in the resonant circuit 213 is substantially equal, and the resonant capacitor voltage Vcr is also substantially equal.

舉例而言,在輕載或空載情況下,正常模式控制器223會根據輸出電容上的輸出電壓Vo被禁能,而間歇模式控制器224”則會被致能,用以產生對應的脈衝。在此同時,由於電流檢測電阻227上的電壓會低於滯回比較電路226的下限值,滯回比較電路226之輸出信號228會控制選擇開關222將間歇模式控制器224”所產生之振盪信號輸出至半橋驅動器221。因此,半橋驅動器221則根據間歇模式控制器224”所產生之振盪信號而輸出控制信號217來驅動半橋轉換器212,使得諧振轉換器200之主電路210操作在間歇模式下。For example, in the case of light or no load, the normal mode controller 223 is disabled based on the output voltage Vo on the output capacitor, and the intermittent mode controller 224" is enabled to generate the corresponding pulse. At the same time, since the voltage on the current detecting resistor 227 is lower than the lower limit value of the hysteresis comparison circuit 226, the output signal 228 of the hysteresis comparison circuit 226 controls the selection switch 222 to generate the intermittent mode controller 224". The oscillation signal is output to the half bridge driver 221. Therefore, the half bridge driver 221 outputs the control signal 217 to drive the half bridge converter 212 according to the oscillation signal generated by the intermittent mode controller 224", so that the main circuit 210 of the resonant converter 200 operates in the intermittent mode.

在間歇模式中,半橋驅動器221根據間歇模式控制器224所產生之振盪信號而輸出的控制信號217包括至少一第一脈衝組(例如第4圖中之第一、第二調節脈衝△t1與△t2)以及至少一第二脈衝組(例如第4圖中時間t1至t2的複數驅動脈衝),用以控制半橋式轉換器212中之開關元件SW1與SW2。在第二脈衝組之前,半橋驅動器221係根據間歇模式控制器220”所產生之振盪信號輸出一第一調節脈衝△t1,使得方波產生器212根據第一調節脈衝△t1導通開關元件SW1,用以將諧振電容電壓Vcr和激磁電感電流ILM 分別由中間值Vcrmid與0預先調整到第一電壓值Vcrmax與正峰值Immax,以便使得諧振電路213達到平衡的諧振工作狀態。在此實施例中,第一調節脈衝△t1的脈衝寬度係由諧振電容電壓Vcr和激磁電感電流ILM 調整至第一電 壓值Vcrmax與正峰值Immax所需的時間所決定的。在間歇模式控制器220”判斷出諧振電容電壓Vcr和激磁電感電流ILM 已調整至第一電壓值Vcrmax與正峰值Immax之後,則會結束第一調節脈衝△t1。In the intermittent mode, the control signal 217 output by the half bridge driver 221 according to the oscillation signal generated by the intermittent mode controller 224 includes at least one first pulse group (for example, the first and second adjustment pulses Δt1 in FIG. 4 and Δt2) and at least one second pulse group (for example, the complex drive pulses of times t1 to t2 in FIG. 4) for controlling the switching elements SW1 and SW2 in the half bridge converter 212. Before the second pulse group, the half bridge driver 221 outputs a first adjustment pulse Δt1 according to the oscillation signal generated by the intermittent mode controller 220", so that the square wave generator 212 turns on the switching element SW1 according to the first adjustment pulse Δt1. For pre-adjusting the resonant capacitor voltage Vcr and the magnetizing inductor current I LM from the intermediate value Vcrmid and 0 to the first voltage value Vcrmax and the positive peak Immax, respectively, in order to bring the resonant circuit 213 to a balanced resonant operating state. The pulse width of the first adjustment pulse Δt1 is determined by the time required for the resonance capacitor voltage Vcr and the magnetizing inductor current I LM to be adjusted to the first voltage value Vcrmax and the positive peak Immax. After the resonant capacitor voltage Vcr and the magnetizing inductor current I LM have been adjusted to the first voltage value Vcrmax and the positive peak Immax, the first adjusting pulse Δt1 is ended.

接著,半橋驅動器221係根據間歇模式控制器220”所產生之振盪信號輸出第二脈衝組,方波產生器212則會根據控制信號217中之第二脈衝組,依序導通開關元件SW2與SW1。再者,在第二脈衝組結束之後,半橋驅動器221係根據間歇模式控制器220”所產生之振盪信號而輸出一第二調節脈衝△t2,使得方波產生器212根據第二調節脈衝△t2導通開關元件SW1,用以將諧振電容電壓Vcr和激磁電感電流ILM 分別預先調整到中間值Vcrmid與0。在此實施例中,第二調節脈衝△t2的脈衝寬度係由諧振電容電壓Vcr調整至中間Vcrmid所需的時間所決定的。在間歇模式控制器判斷出諧振電容電壓Vcr已調整至中間值Vcrmid之後,則會結束第二調節脈衝△t2。在某些實施例中,第二調節脈衝△t2係可以省略的,並且第一調節脈衝△t2亦可藉由諧振電容電壓Vcr調整至第一電壓值Vcrmax或激磁電感電流ILM 調整至正峰值Immax所需的時間所決定的。Next, the half bridge driver 221 outputs a second pulse group according to the oscillation signal generated by the intermittent mode controller 220", and the square wave generator 212 sequentially turns on the switching element SW2 according to the second pulse group in the control signal 217. SW1. Further, after the end of the second pulse group, the half bridge driver 221 outputs a second adjustment pulse Δt2 according to the oscillation signal generated by the intermittent mode controller 220", so that the square wave generator 212 is adjusted according to the second The pulse Δt2 turns on the switching element SW1 for pre-adjusting the resonant capacitor voltage Vcr and the exciting inductor current I LM to the intermediate values Vcrmid and 0, respectively. In this embodiment, the pulse width of the second adjustment pulse Δt2 is determined by the time required for the resonance capacitor voltage Vcr to be adjusted to the intermediate Vcrmid. After the intermittent mode controller determines that the resonant capacitor voltage Vcr has been adjusted to the intermediate value Vcrmid, the second adjustment pulse Δt2 is ended. In some embodiments, the second adjustment pulse Δt2 can be omitted, and the first adjustment pulse Δt2 can also be adjusted to the first voltage value Vcrmax or the excitation inductor current I LM to the positive peak value by the resonance capacitor voltage Vcr. The time required for Immax is determined.

同樣地,由於第一脈衝組已將諧振電路213之激磁電感電流ILM 與諧振電容電壓Vcr預先調整至預設值,故可有效地避免在第二脈衝組內的前幾個驅動脈衝週期中產生很大的諧振電流。此外,由於整個工作週期諧振轉換器300皆操作在平衡的工作狀態,因此可以滿足輸出電壓波紋、音頻噪音以及輕載高效率的要求。Similarly, since the first pulse group has previously adjusted the magnetizing inductor current I LM and the resonant capacitor voltage Vcr of the resonant circuit 213 to a preset value, the first few driving pulse periods in the second pulse group can be effectively avoided. Produces a large resonant current. In addition, since the resonant converter 300 operates in a balanced operating state throughout the duty cycle, it can meet the requirements of output voltage ripple, audible noise, and light load high efficiency.

第7圖係為諧振轉換器操作於間歇模式時的工作波形示意圖。如圖所示,控制信號在每個間歇模式工作週期BMWP中皆包括一第一脈衝組(△t1與△t2)以及一第二脈衝組(PS2)。在此實施例中,第二脈衝組PS2係為具有複數驅動脈衝之一脈衝序列,而第一脈衝組係由位於第二脈衝組PS2之前的第一調節脈衝△t1以及接在第二脈衝組PS2之後的第二調節脈衝△t2所構成,但不限定於此。第二調節脈衝△t2用以在前一個第二脈衝組PS2結束之後,將諧振電容電壓Vcr調整到中間值Vcrmid,而第一調節脈衝△t1用以在後一個第二脈衝組PS2開始之前,將諧振電容電壓Vcr和激磁電感電流ILM 分別由中間值Vcrmid與0調整到第一電壓值Vcrmax與正峰值Immax。由於諧振電路之激磁電感電流ILM 與諧振電容電壓Vcr已經被調整至第一電壓值Vcrmax與正峰值Immax,故可有效地避免在第二脈衝組PS2內的前幾個驅動脈衝週期中產生很大的諧振電流,使得諧振轉換器操作在平衡的工作狀態。因此,在第二脈衝組PS2中每個驅動脈衝的上升緣時,電感電流ILM 大抵上會相等,諧振電容電壓Vcr也大抵上會相等。要注意的是,第一、第二調節脈衝的脈衝寬度係可根據方程式預先計算出,或者是藉由偵測激磁電感電流ILM 與諧振電容電壓Vcr即時地調整,但不限定於此。在某些實施例中,控制信號在每個間歇模式工作週期BMWP中亦可以略去第二調節脈衝△t2,而只包括一第一脈衝組(△t1)以及一第二脈衝組(PS2)。Figure 7 is a schematic diagram of the operational waveform of the resonant converter operating in the intermittent mode. As shown, the control signal includes a first pulse group (Δt1 and Δt2) and a second pulse group (PS2) in each intermittent mode duty cycle BMWP. In this embodiment, the second pulse group PS2 is a pulse sequence having a plurality of drive pulses, and the first pulse group is connected to the second pulse group by the first adjustment pulse Δt1 located before the second pulse group PS2. The second adjustment pulse Δt2 after PS2 is formed, but is not limited thereto. The second adjustment pulse Δt2 is used to adjust the resonant capacitor voltage Vcr to the intermediate value Vcrmid after the end of the previous second pulse group PS2, and the first adjustment pulse Δt1 is used before the start of the next second pulse group PS2. The resonant capacitor voltage Vcr and the magnetizing inductor current I LM are respectively adjusted from the intermediate value Vcrmid and 0 to the first voltage value Vcrmax and the positive peak Immax. Since the magnetizing inductor current I LM and the resonant capacitor voltage Vcr of the resonant circuit have been adjusted to the first voltage value Vcrmax and the positive peak Immax, it is effectively avoided that the first few driving pulse periods in the second pulse group PS2 are generated very much. The large resonant current allows the resonant converter to operate in a balanced operating state. Therefore, when the rising edge of each driving pulse in the second pulse group PS2, the inductor current I LM is substantially equal, and the resonant capacitor voltage Vcr is also substantially equal. It is to be noted that the pulse widths of the first and second adjustment pulses may be pre-calculated according to the equation, or may be adjusted instantaneously by detecting the magnetizing inductor current I LM and the resonant capacitor voltage Vcr, but are not limited thereto. In some embodiments, the control signal may also omit the second adjustment pulse Δt2 in each intermittent mode duty cycle BMWP, and includes only a first pulse group (Δt1) and a second pulse group (PS2). .

第8圖係為諧振轉換器操作於間歇模式時的另一工作 波形示意圖。如圖所示,控制信號在每個間歇模式工作週期BMWP中皆包括一第一脈衝組PS1(△t1與△t2)以及一第二脈衝組(PS2)。在此實施例中,第二脈衝組PS2係為具有複數驅動脈衝之一脈衝序列,而第一脈衝組PS1係由位於第二脈衝組PS2之前的第一調節脈衝△t1與第二調節脈衝△t2所構成,但不限定於此。在後一個第二脈衝組PS2開始之前,第二調節脈衝△t2用以將諧振電容電壓Vcr調整到中間值Vcrmid,而第一調節脈衝△t1接著將諧振電容電壓Vcr和激磁電感電流ILM 分別由中間值Vcrmid與0調整到第一電壓值Vcrmax與正峰值Immax,使得在第二脈衝組PS2中每個驅動脈衝的上升緣時,電感電流ILM 大抵上會相等,諧振電容電壓Vcr也大抵上會相等。同樣地,第一、第二調節脈衝的脈衝寬度係可根據方程式預先計算出,或者是藉由偵測激磁電感電流ILM 與諧振電容電壓Vcr即時地調整,但不限定於此。在某些實施例中,控制信號在每個間歇模式工作週期BMWP中之第一脈衝組PS1亦可以略去第二調節脈衝△t2,而只包括一第一調節脈衝△t2。Figure 8 is a schematic diagram of another operational waveform when the resonant converter is operating in the intermittent mode. As shown, the control signal includes a first pulse group PS1 (Δt1 and Δt2) and a second pulse group (PS2) in each intermittent mode duty cycle BMWP. In this embodiment, the second pulse group PS2 is a pulse sequence having a plurality of drive pulses, and the first pulse group PS1 is composed of a first adjustment pulse Δt1 and a second adjustment pulse Δ located before the second pulse group PS2. It is composed of t2, but is not limited thereto. Before the start of the second second pulse group PS2, the second adjustment pulse Δt2 is used to adjust the resonance capacitance voltage Vcr to the intermediate value Vcrmid, and the first adjustment pulse Δt1 then respectively resonates the capacitance voltage Vcr and the excitation inductance current I LM The intermediate value Vcrmid and 0 are adjusted to the first voltage value Vcrmax and the positive peak Immax, so that the inductor current I LM is substantially equal to the rising edge of each driving pulse in the second pulse group PS2, and the resonant capacitor voltage Vcr is also large. The above will be equal. Similarly, the pulse widths of the first and second adjustment pulses may be calculated in advance according to an equation, or may be instantaneously adjusted by detecting the magnetizing inductor current I LM and the resonant capacitor voltage Vcr, but are not limited thereto. In some embodiments, the first pulse group PS1 of the control signal in each intermittent mode duty cycle BMWP may also omit the second adjustment pulse Δt2 and include only a first adjustment pulse Δt2.

第9圖係為諧振轉換器操作於間歇模式時的另一工作波形示意圖。如圖所示,控制信號在每個間歇模式工作週期BMWP中皆包括一第一脈衝組(△t1_1、△t1_2、△t2_1與△t2_2)以及一第二脈衝組(PS2)。在此實施例中,第二脈衝組PS2係為具有複數驅動脈衝之一脈衝序列,而第一脈衝組係由位於第二脈衝組PS2之前的第一調節脈衝△t1_1與△t1_2以及接在第二脈衝組PS2之後的第二調節脈衝△t2_1與△t2_2所構成,但不限定於此。舉例而言,第一調節脈 衝△t1_1與△t1_2可視為一脈衝序列,而第二調節脈衝△t2_1與△t2_2可視為另一脈衝序列。Figure 9 is a schematic diagram of another operational waveform when the resonant converter is operating in the intermittent mode. As shown, the control signal includes a first pulse group (Δt1_1, Δt1_2, Δt2_1, and Δt2_2) and a second pulse group (PS2) in each intermittent mode duty cycle BMWP. In this embodiment, the second pulse group PS2 is a pulse sequence having a plurality of drive pulses, and the first pulse group is composed of the first adjustment pulses Δt1_1 and Δt1_2 located before the second pulse group PS2 and The second adjustment pulses Δt2_1 and Δt2_2 after the second pulse group PS2 are formed, but are not limited thereto. For example, the first adjustment pulse The rushes Δt1_1 and Δt1_2 can be regarded as one pulse sequence, and the second adjustment pulses Δt2_1 and Δt2_2 can be regarded as another pulse sequence.

第二調節脈衝△t2_1與△t2_2用以在前一個第二脈衝組PS2結束之後,將諧振電容電壓Vcr調整到中間值Vcrmid,而第一調節脈衝△t1_1與△t1_2用以在後一個第二脈衝組PS2開始之前,將諧振電容電壓Vcr和激磁電感電流ILM 分別由中間值Vcrmid與0調整到第一電壓值Vcrmax與正峰值Immax。由於諧振電路之激磁電感電流ILM 與諧振電容電壓Vcr已經被調整至第一電壓值Vcrmax與正峰值Immax,故可有效地避免在第二脈衝組PS2內的前幾個驅動脈衝週期中產生很大的諧振電流,使得諧振轉換器操作在平衡的工作狀態。因此,在第二脈衝組PS2中每個驅動脈衝的上升緣時,激磁電感電流ILM 大抵上會相等,諧振電容電壓Vcr也大抵上會相等。要注意的是,第一、第二調節脈衝的脈衝寬度係可根據方程式預先計算出,或者是藉由偵測激磁電感電流ILM 與諧振電容電壓Vcr即時地調整,但不限定於此。第一脈衝組中第一調節脈衝的個數與第二調節脈衝的個數係根據諧振電路中諧振元件的個數來決定,但不限定於此。在某一實施例中,第一脈衝組中亦可包括更多的第一調節脈衝與第二調節脈衝。在某些實施例中,控制信號在每個間歇模式工作週期BMWP中亦可以略去第二調節脈衝△t2_1與△t2_2,而只包括第一脈衝組(△t1_1與△t1_2)以及第二脈衝組(PS2)。The second adjustment pulses Δt2_1 and Δt2_2 are used to adjust the resonant capacitor voltage Vcr to the intermediate value Vcrmid after the end of the previous second pulse group PS2, and the first adjustment pulses Δt1_1 and Δt1_2 are used in the second Before the start of the pulse group PS2, the resonant capacitor voltage Vcr and the magnetizing inductor current I LM are respectively adjusted from the intermediate value Vcrmid and 0 to the first voltage value Vcrmax and the positive peak Immax. Since the magnetizing inductor current I LM and the resonant capacitor voltage Vcr of the resonant circuit have been adjusted to the first voltage value Vcrmax and the positive peak Immax, it is effectively avoided that the first few driving pulse periods in the second pulse group PS2 are generated very much. The large resonant current allows the resonant converter to operate in a balanced operating state. Therefore, in the rising edge of each driving pulse in the second pulse group PS2, the magnetizing inductor currents I LM are substantially equal, and the resonant capacitor voltage Vcr is also substantially equal. It is to be noted that the pulse widths of the first and second adjustment pulses may be pre-calculated according to the equation, or may be adjusted instantaneously by detecting the magnetizing inductor current I LM and the resonant capacitor voltage Vcr, but are not limited thereto. The number of the first adjustment pulses and the number of the second adjustment pulses in the first pulse group are determined according to the number of resonance elements in the resonance circuit, but are not limited thereto. In an embodiment, more first adjustment pulses and second adjustment pulses may be included in the first pulse group. In some embodiments, the control signal may also omit the second adjustment pulses Δt2_1 and Δt2_2 in each intermittent mode duty cycle BMWP, but only include the first pulse group (Δt1_1 and Δt1_2) and the second pulse. Group (PS2).

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟知技藝者,在不脫離本發明之精神和範圍內,當可作些許更動與潤飾,因此本發明之保護範圍 當視後附之申請專利範圍所界定者為準。While the present invention has been described above in terms of the preferred embodiments thereof, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. range This is subject to the definition of the scope of the patent application.

100、200、300‧‧‧諧振轉換器100, 200, 300‧‧‧ resonant converter

110、210‧‧‧主電路110, 210‧‧‧ main circuit

120、220、220”‧‧‧控制器120, 220, 220" ‧ ‧ controller

111‧‧‧方波產生器111‧‧‧ square wave generator

113、213‧‧‧諧振電路113, 213‧‧‧ resonant circuit

115、215‧‧‧輸出整流電路115, 215‧‧‧ output rectifier circuit

117、LVG、HVG、217‧‧‧控制信號117, LVG, HVG, 217‧‧‧ control signals

121、223‧‧‧正常模式控制器121, 223‧‧‧ normal mode controller

123、224、224”‧‧‧間歇模式控制器123, 224, 224” ‧‧‧ intermittent mode controller

125‧‧‧驅動器125‧‧‧ drive

211‧‧‧輸入電容211‧‧‧ input capacitor

212‧‧‧半橋式轉換器212‧‧‧Half-bridge converter

214‧‧‧高頻變壓器214‧‧‧High frequency transformer

216‧‧‧輸出電容216‧‧‧ output capacitor

221‧‧‧半橋驅動器221‧‧‧ Half-Bridge Driver

222‧‧‧選擇開關222‧‧‧Selection switch

225‧‧‧時脈振盪器225‧‧‧clock oscillator

226‧‧‧滯回比較電路226‧‧‧ hysteresis comparison circuit

227‧‧‧電流檢測電阻227‧‧‧current sense resistor

228‧‧‧輸出信號228‧‧‧Output signal

2231‧‧‧壓頻轉換電路2231‧‧‧Voltage-frequency conversion circuit

2232‧‧‧回授誤差放大電路2232‧‧‧Return error amplifier circuit

311‧‧‧驅動脈衝同步電路311‧‧‧Drive pulse synchronization circuit

312‧‧‧預設脈衝寬度電路312‧‧‧Preset pulse width circuit

313‧‧‧及閘313‧‧‧ and gate

314、315‧‧‧死區電路314, 315‧‧‧ dead zone circuit

316‧‧‧反相器316‧‧‧Inverter

SW1、SW2‧‧‧開關元件SW1, SW2‧‧‧ switching components

DSR1、DSR2‧‧‧二極體DSR1, DSR2‧‧‧ diode

Vin‧‧‧輸入電壓Vin‧‧‧Input voltage

Vo‧‧‧輸出電壓Vo‧‧‧ output voltage

Cr‧‧‧諧振電容Cr‧‧‧Resonance Capacitor

Vcr‧‧‧諧振電容電壓Vcr‧‧‧Resonant capacitor voltage

ILM ‧‧‧激磁電感電流I LM ‧‧‧Magnetic inductor current

Immax‧‧‧正峰值Immax‧‧‧ is peaking

Immin‧‧‧負峰值Immin‧‧‧negative peak

Vcrmax‧‧‧第一電壓值Vcrmax‧‧‧ first voltage value

Vcrmin‧‧‧第二電壓值Vcrmin‧‧‧second voltage value

Vcrmid‧‧‧中間值Vcrmid‧‧‧ intermediate value

Vgss1、Vgss2‧‧‧驅動信號Vgss1, Vgss2‧‧‧ drive signals

Lm‧‧‧激磁電感Lm‧‧‧Magnetic Inductance

Ir‧‧‧諧振電流Ir‧‧‧Resonance current

ISR ‧‧‧導通電流I SR ‧‧‧ on current

PS1‧‧‧第一脈衝組PS1‧‧‧First Pulse Group

PS2‧‧‧第二脈衝組PS2‧‧‧Second pulse group

Vea‧‧‧誤差放大信號Vea‧‧‧ error amplification signal

Vref1‧‧‧下限值Vref1‧‧‧ lower limit

Vref2‧‧‧上限值Vref2‧‧‧ upper limit

fosc‧‧‧頻率Fosc‧‧‧ frequency

Ld、Ls‧‧‧電感Ld, Ls‧‧‧Inductors

BMWP‧‧‧間歇模式工作週期BMWP‧‧‧ intermittent mode duty cycle

△t1、△t1_1、△t1_2‧‧‧第一調節脈衝△t1, △t1_1, △t1_2‧‧‧ first adjustment pulse

△t2、△t2_1、△t2_2‧‧‧第二調節脈衝△t2, △t2_1, △t2_2‧‧‧second adjustment pulse

第1圖係為習知諧振轉換器於間歇模式時的工作波形示意圖。Fig. 1 is a schematic diagram showing the operation waveform of a conventional resonant converter in an intermittent mode.

第2圖係為本發明之諧振轉換器之一電路示意圖。Figure 2 is a circuit diagram of one of the resonant converters of the present invention.

第3圖係為本發明之諧振轉換器之一實施例。Figure 3 is an embodiment of a resonant converter of the present invention.

第4圖係為諧振轉換器之主電路於間歇模式時的工作波形示意圖。Fig. 4 is a schematic diagram showing the operation waveform of the main circuit of the resonant converter in the intermittent mode.

第5圖係為間歇工作模式之實施方式。Figure 5 is an implementation of the intermittent mode of operation.

第6圖係為諧振轉換器之另一實施例。Figure 6 is another embodiment of a resonant converter.

第7圖係為諧振轉換器操作於間歇模式時的工作波形示意圖。Figure 7 is a schematic diagram of the operational waveform of the resonant converter operating in the intermittent mode.

第8圖係為諧振轉換器操作於間歇模式時的另一工作波形示意圖。Figure 8 is a schematic diagram of another operational waveform when the resonant converter is operating in the intermittent mode.

第9圖係為諧振轉換器操作於間歇模式時的另一工作波形示意圖。Figure 9 is a schematic diagram of another operational waveform when the resonant converter is operating in the intermittent mode.

100‧‧‧諧振轉換器100‧‧‧Resonance Converter

110‧‧‧主電路110‧‧‧ main circuit

120‧‧‧控制器120‧‧‧ Controller

111‧‧‧方波產生器111‧‧‧ square wave generator

113‧‧‧諧振電路113‧‧‧Resonance circuit

115‧‧‧輸出整流電路115‧‧‧Output rectifier circuit

Vin‧‧‧輸入電壓Vin‧‧‧Input voltage

Vo‧‧‧輸出電壓Vo‧‧‧ output voltage

121‧‧‧正常模式控制器121‧‧‧Normal mode controller

123‧‧‧間歇模式控制器123‧‧‧Intermittent mode controller

125‧‧‧驅動器125‧‧‧ drive

117‧‧‧控制信號117‧‧‧Control signal

Claims (41)

一種諧振轉換器,用以操作於一正常模式或一間歇模式,上述諧振轉換器包括:一方波產生器,用以提供一方波電壓;一諧振電路,用以根據上述方波電壓進行諧振;以及一控制器,用以在代表上述諧振轉換器操作於輕載或空載之一間歇模式工作週期中提供一控制信號驅動上述方波產生器,其中上述控制信號包括至少一第一脈衝組以及至少一第二脈衝組,上述第一脈衝組包括至少一第一調節脈衝,而上述第二脈衝組包括複數驅動脈衝,並且上述方波產生器係用以根據上述第一調節脈衝對上述諧振電路之一激磁電感電流以及一諧振電容電壓進行預先調整,使得上述諧振轉換器在上述第二脈衝組中之每個驅動脈衝的上升緣時,上述激磁電感電流大抵上相等,並且上述諧振電容電壓也大抵上相等。 A resonant converter for operating in a normal mode or a batch mode, the resonant converter comprising: a square wave generator for providing a square wave voltage; and a resonant circuit for resonating according to the square wave voltage; a controller for providing a control signal to drive the square wave generator in an intermittent mode operation period in which the resonant converter is operated in light or no load, wherein the control signal includes at least a first pulse group and at least a second pulse group, the first pulse group includes at least one first adjustment pulse, and the second pulse group includes a plurality of drive pulses, and the square wave generator is configured to apply to the resonant circuit according to the first adjustment pulse a magnetizing inductor current and a resonant capacitor voltage are pre-adjusted such that when the resonant converter is at a rising edge of each of the second pulse groups, the magnetizing inductor currents are substantially equal, and the resonant capacitor voltage is also substantially Equal on. 如申請專利範圍第1項所述之諧振轉換器,其中上述第一調節脈衝的脈衝寬度係由一方程式計算所得出。 The resonant converter of claim 1, wherein the pulse width of the first adjustment pulse is calculated by one of the programs. 如申請專利範圍第1項所述之諧振轉換器,其中上述第一調節脈衝的脈衝寬度係藉由偵測上述激磁電感電流與上述諧振電容電壓而即時地調整。 The resonant converter of claim 1, wherein the pulse width of the first adjustment pulse is instantaneously adjusted by detecting the magnetizing inductor current and the resonant capacitor voltage. 如申請專利範圍第1項所述之諧振轉換器,其中當上述諧振轉換器操作於上述正常模式下的一平衡狀態時,上述激磁電感電流會具有一正峰值以及一負峰值,而上述諧振電容電壓具有對應於上述正峰值之一第一電壓值、對應於上述負峰值之一第二電壓值,以及一中間值。 The resonant converter of claim 1, wherein when the resonant converter is operated in an equilibrium state in the normal mode, the magnetizing inductor current has a positive peak and a negative peak, and the resonant capacitor The voltage has a first voltage value corresponding to one of the positive peaks, a second voltage value corresponding to one of the negative peaks, and an intermediate value. 如申請專利範圍第4項所述之諧振轉換器,其中上述方波產生器係根據上述第一調節脈衝將上述激磁電感電流與上述諧振電容電壓分別預先調整至上述正峰值與上述第一電壓值。 The resonant converter according to claim 4, wherein the square wave generator pre-adjusts the magnetizing inductor current and the resonant capacitor voltage to the positive peak value and the first voltage value, respectively, according to the first adjusting pulse. . 如申請專利範圍第4項所述之諧振轉換器,其中上述第二脈衝組係接在上述第一調節脈衝之後,並且上述第一脈衝組更包括至少一第二調節脈衝接在上述第二脈衝組之後,而上述方波產生器係用以根據上述第二調節脈衝對上述諧振電路之上述諧振電容電壓進行調整。 The resonant converter of claim 4, wherein the second pulse group is coupled to the first adjustment pulse, and the first pulse group further comprises at least one second adjustment pulse connected to the second pulse After the group, the square wave generator is configured to adjust the resonant capacitor voltage of the resonant circuit according to the second adjusting pulse. 如申請專利範圍第4項所述之諧振轉換器,其中上述第一脈衝組更包括至少一第二調節脈衝,上述第一調節脈衝接在上述第二調節脈衝之後,而上述第二脈衝組係接在上述第一調節脈衝之後,上述方波產生器係根據上述第二調節脈衝對上述諧振電路之上述諧振電容電壓進行調整。 The resonant converter of claim 4, wherein the first pulse group further comprises at least one second adjustment pulse, the first adjustment pulse is connected after the second adjustment pulse, and the second pulse group is After the first adjustment pulse is connected, the square wave generator adjusts the resonant capacitor voltage of the resonant circuit according to the second adjustment pulse. 如申請專利範圍第7項所述之諧振轉換器,其中上述方波產生器係根據上述第二調節脈衝將上述諧振電容電壓預先調整至上述中間值。 The resonant converter according to claim 7, wherein the square wave generator pre-adjusts the resonant capacitor voltage to the intermediate value according to the second adjusting pulse. 如申請專利範圍第4項所述之諧振轉換器,其中上述第一調節脈衝的脈衝寬度係由上述諧振電容電壓和上述激磁電感電流調整至上述第一電壓值與上述正峰值所需的時間所決定的。 The resonant converter of claim 4, wherein a pulse width of the first adjustment pulse is adjusted by the resonant capacitor voltage and the magnetizing inductor current to a time required for the first voltage value and the positive peak value decided. 如申請專利範圍第4項所述之諧振轉換器,其中上述第一脈衝組包括複數個第一調節脈衝,並且上述第二脈衝組係接在上述第一調節脈衝之後,使得上述方波產生器 將上述激磁電感電流與上述諧振電容電壓分別預先調整至上述正峰值與上述第一電壓值。 The resonant converter of claim 4, wherein the first pulse group includes a plurality of first adjustment pulses, and the second pulse group is coupled to the first adjustment pulse to cause the square wave generator The magnetizing inductor current and the resonant capacitor voltage are respectively adjusted to the positive peak value and the first voltage value, respectively. 如申請專利範圍第10項所述之諧振轉換器,其中上述第一脈衝組更包括複數第二調節脈衝接在上述第二脈衝組之後,使得上述方波產生器將上述諧振電容電壓調整至上述中間值。 The resonant converter of claim 10, wherein the first pulse group further comprises a plurality of second adjustment pulses connected to the second pulse group, such that the square wave generator adjusts the resonant capacitor voltage to the above Median. 如申請專利範圍第10項所述之諧振轉換器,其中上述第一調節脈衝的個數係根據上述諧振電路中之諧振元件的數量所決定。 The resonant converter of claim 10, wherein the number of the first adjustment pulses is determined according to the number of resonant elements in the resonant circuit. 一種諧振轉換器,用以操作於一正常模式或一間歇模式,上述諧振轉換器,包括:一方波產生器,用以提供一方波電壓;一諧振電路,用以根據上述方波電壓進行諧振;以及一控制器,用以在代表上述諧振轉換器操作於輕載或空載之上述間歇模式中提供一控制信號驅動上述方波產生器,其中上述控制信號包括至少一第一脈衝組以及至少兩個第二脈衝組,上述第一脈衝組係位於上述兩個第二脈衝組之間,並且包括至少一第一調節脈衝,並且包括複數驅動脈衝,上述方波產生器係用以根據上述第一調節脈衝,調整上述諧振電路之一激磁電感電流以及一諧振電容電壓,使得上述諧振轉換器在上述第二脈衝組中之每個驅動脈衝的上升緣時,上述激磁電感電流大抵上相等,並且上述諧振電容電壓也大抵上相等。 A resonant converter for operating in a normal mode or an intermittent mode, the resonant converter comprising: a square wave generator for providing a square wave voltage; and a resonant circuit for resonating according to the square wave voltage; And a controller for providing the control signal to drive the square wave generator in the intermittent mode in which the resonant converter is operated in light or no load, wherein the control signal comprises at least a first pulse group and at least two a second pulse group, wherein the first pulse group is located between the two second pulse groups, and includes at least one first adjustment pulse, and includes a plurality of driving pulses, wherein the square wave generator is used according to the first Adjusting a pulse, adjusting a magnetizing inductor current and a resonant capacitor voltage of the resonant circuit such that when the resonant converter is at a rising edge of each of the second pulse groups, the magnetizing inductor currents are substantially equal, and The resonant capacitor voltages are also roughly equal. 如申請專利範圍第13項所述之諧振轉換器,其中 當上述諧振轉換器操作於上述正常模式下的一平衡狀態時,上述激磁電感電流會具有一正峰值以及一負峰值,而上述諧振電容電壓具有對應於上述正峰值之一第一電壓值、對應於上述負峰值之一第二電壓值,以及一中間值。 A resonant converter as claimed in claim 13 wherein When the resonant converter operates in an equilibrium state in the normal mode, the magnetizing inductor current has a positive peak and a negative peak, and the resonant capacitor voltage has a first voltage value corresponding to one of the positive peaks, corresponding to a second voltage value of one of the above negative peaks, and an intermediate value. 如申請專利範圍第14項所述之諧振轉換器,其中上述方波產生器係根據上述第一調節脈衝將上述激磁電感電流與上述諧振電容電壓分別調整至上述正峰值與上述第一電壓值。 The resonant converter according to claim 14, wherein the square wave generator adjusts the magnetizing inductor current and the resonant capacitor voltage to the positive peak value and the first voltage value, respectively, according to the first adjusting pulse. 如申請專利範圍第14項所述之諧振轉換器,其中上述第一脈衝組更包括至少一第二調節脈衝接在上述第二脈衝組之後,使得上述方波產生器將上述諧振電路之上述諧振電容電壓調整至上述中間值。 The resonant converter of claim 14, wherein the first pulse group further comprises at least one second adjustment pulse connected to the second pulse group, such that the square wave generator converts the resonance of the resonant circuit The capacitor voltage is adjusted to the above intermediate value. 如申請專利範圍第14項所述之諧振轉換器,其中上述第一脈衝組更包括至少一第二調節脈衝,上述第一調節脈衝接在上述第二調節脈衝之後,上述方波產生器係根據上述第二調節脈衝將上述諧振電路之上述諧振電容電壓調整至上述中間值。 The resonant converter of claim 14, wherein the first pulse group further comprises at least one second adjustment pulse, the first adjustment pulse is connected after the second adjustment pulse, and the square wave generator is The second adjustment pulse adjusts the resonant capacitor voltage of the resonant circuit to the intermediate value. 如申請專利範圍第14項所述之諧振轉換器,其中上述第一調節脈衝的個數係根據上述諧振電路中之諧振元件的數量所決定。 The resonant converter of claim 14, wherein the number of the first adjustment pulses is determined according to the number of resonant elements in the resonant circuit. 如申請專利範圍第14項所述之諧振轉換器,其中上述第一調節脈衝的脈衝寬度係由一方程式計算所得出。 The resonant converter of claim 14, wherein the pulse width of the first adjustment pulse is calculated by one of the programs. 如申請專利範圍第14項所述之諧振轉換器,其中上述第一調節脈衝的脈衝寬度係藉由偵測上述激磁電感電流與上述諧振電容電壓而即時地調整。 The resonant converter of claim 14, wherein the pulse width of the first adjustment pulse is instantaneously adjusted by detecting the magnetizing inductor current and the resonant capacitor voltage. 一種諧振轉換器的間歇模式控制方法,其中上述諧振轉換器用以操作於一正常模式或一間歇模式,並且於上述間歇模式中上述諧振轉換器操作於輕載或空載,上述諧振轉換器的間歇模式控制方法包括:在上述間歇模式中之一間歇模式工作週期中,提供至少一第一調節脈衝,用以對一諧振電路之一激磁電感電流以及一諧振電容電壓進行預先調整;以及於上述第一調節脈衝之後,提供至少一脈衝序列,用以間歇式地導通一方波產生器中之複數開關元件,其中上述脈衝序列包括複數驅動脈衝,並且上述第一調節脈衝係用以調整上述諧振電路之上述激磁電感電流以及上述諧振電容電壓,使得上述諧振轉換器在上述脈衝序列中之每個驅動脈衝的上升緣時,上述激磁電感電流大抵上相等,並且上述諧振電容電壓也大抵上相等。 An intermittent mode control method for a resonant converter, wherein the resonant converter is configured to operate in a normal mode or an intermittent mode, and in the intermittent mode, the resonant converter operates at light or no load, and the resonant converter is intermittent The mode control method includes: providing at least one first adjustment pulse for pre-adjusting a magnetizing inductor current and a resonant capacitor voltage of one of the resonant circuits in one of the intermittent mode working cycles; After adjusting the pulse, providing at least one pulse sequence for intermittently turning on the plurality of switching elements in the square wave generator, wherein the pulse sequence comprises a plurality of driving pulses, and the first adjusting pulse is used to adjust the resonant circuit The magnetizing inductor current and the resonant capacitor voltage are such that when the resonant converter rises at a rising edge of each of the pulse trains, the magnetizing inductor currents are substantially equal, and the resonant capacitor voltages are substantially equal. 如申請專利範圍第21項所述之諧振轉換器的間歇模式控制方法,其中當上述諧振轉換器操作於上述正常模式下的一平衡狀態時,上述激磁電感電流會具有一正峰值以及一負峰值,而上述諧振電容電壓具有對應於上述正峰值之一第一電壓值、對應於上述負峰值之一第二電壓值,以及一中間值。 The intermittent mode control method of the resonant converter according to claim 21, wherein when the resonant converter operates in an equilibrium state in the normal mode, the magnetizing inductor current has a positive peak and a negative peak. And the resonant capacitor voltage has a first voltage value corresponding to one of the positive peaks, a second voltage value corresponding to one of the negative peaks, and an intermediate value. 如申請專利範圍第22項所述之諧振轉換器的間歇模式控制方法,其中上述第一調節脈衝係用以將上述激磁電感電流與上述諧振電容電壓分別調整至上述正峰值與上述第一電壓值。 The intermittent mode control method of the resonant converter according to claim 22, wherein the first adjusting pulse is configured to adjust the magnetizing inductor current and the resonant capacitor voltage to the positive peak value and the first voltage value, respectively. . 如申請專利範圍第22項所述之諧振轉換器的間歇 模式控制方法,更包括提供至少一第二調節脈衝接在上述脈衝序列之後,用以將上述諧振電路之上述諧振電容電壓調整至上述中間值,上述中間值位於上述第一、第二電壓值之間。 Intermittent of the resonant converter as described in claim 22 The mode control method further includes: providing at least one second adjustment pulse connected to the pulse sequence to adjust the resonant capacitor voltage of the resonant circuit to the intermediate value, wherein the intermediate value is located at the first and second voltage values between. 如申請專利範圍第22項所述之諧振轉換器的間歇模式控制方法,更包括於上述第一調節脈衝之前,提供至少一第二調節脈衝,用以將上述諧振電路之上述諧振電容電壓調整至上述中間值。 The intermittent mode control method of the resonant converter of claim 22, further comprising: before the first adjusting pulse, providing at least one second adjusting pulse for adjusting the resonant capacitor voltage of the resonant circuit to The above intermediate value. 如申請專利範圍第21項所述之諧振轉換器的間歇模式控制方法,其中上述第一調節脈衝的個數係根據上述諧振電路中之諧振元件的數量所決定。 The intermittent mode control method of the resonant converter according to claim 21, wherein the number of the first adjustment pulses is determined according to the number of resonant elements in the resonant circuit. 如申請專利範圍第21項所述之諧振轉換器的間歇模式控制方法,其中上述第一調節脈衝的脈衝寬度係由一方程式計算所得出。 The intermittent mode control method of the resonant converter according to claim 21, wherein the pulse width of the first adjustment pulse is calculated by one of the programs. 如申請專利範圍第21項所述之諧振轉換器的間歇模式控制方法,其中上述第一調節脈衝的脈衝寬度係藉由偵測上述激磁電感電流與上述諧振電容電壓而即時地調整。 The intermittent mode control method of the resonant converter according to claim 21, wherein the pulse width of the first adjustment pulse is instantaneously adjusted by detecting the magnetizing inductor current and the resonant capacitor voltage. 一種用於諧振轉換器的控制器,上述諧振轉換器用以操作於一正常模式或一間歇模式,上述諧振轉換器的控制器用以在代表上述諧振轉換器操作於輕載或空載之一間歇模式工作週期中提供一控制信號,上述控制信號包括至少一第一脈衝組以及至少一第二脈衝組,上述第一脈衝組包括至少一第一調節脈衝,上述第二脈衝組包括多個驅動脈衝,上述第一調節脈衝用以預先調整一諧振電路的一激 磁電感電流以及一諧振電容電壓,使得上述諧振轉換器在上述第二脈衝組中的每個驅動脈衝的上升緣時,上述激磁電感電流大抵上相等,並且上述諧振電容電壓也大抵上相等。 A controller for a resonant converter for operating in a normal mode or an intermittent mode, wherein a controller of the resonant converter is configured to operate in a batch mode of light or no load on behalf of the resonant converter a control signal is provided in the working cycle, the control signal includes at least a first pulse group and at least a second pulse group, the first pulse group includes at least one first adjustment pulse, and the second pulse group includes a plurality of driving pulses. The first adjustment pulse is used to pre-adjust a resonance of a resonant circuit The magnetic inductor current and a resonant capacitor voltage are such that when the resonant converter is at the rising edge of each of the second pulse groups, the magnetizing inductor currents are substantially equal, and the resonant capacitor voltages are also substantially equal. 如申請專利範圍第29項所述之用於諧振轉換器的控制器,其中上述第一調節脈衝的脈衝寬度通過檢測上述激磁電感電流與上述諧振電容電壓而即時地調整。 A controller for a resonant converter according to claim 29, wherein a pulse width of said first adjustment pulse is instantaneously adjusted by detecting said magnetizing inductor current and said resonant capacitor voltage. 如申請專利範圍第29項所述之用於諧振轉換器的控制器,其中當上述諧振轉換器操作於上述正常模式下一平衡狀態時,上述激磁電感電流會具有一正峰值以及一負峰值,而上述諧振電容電壓具有對應於上述正峰值的一第一電壓值、對應於上述負峰值的一第二電壓值,以及一中間值。 The controller for a resonant converter according to claim 29, wherein when the resonant converter is operated in the normal state of the normal mode, the magnetizing inductor current has a positive peak and a negative peak. The resonant capacitor voltage has a first voltage value corresponding to the positive peak, a second voltage value corresponding to the negative peak, and an intermediate value. 如申請專利範圍第31項所述之用於諧振轉換器的控制器,其中上述第一調節脈衝用於將上述激磁電感電流與上述諧振電容電壓分別預先調整至上述正峰值與上述第一電壓值。 The controller for a resonant converter according to claim 31, wherein the first adjusting pulse is used to pre-adjust the magnetizing inductor current and the resonant capacitor voltage to the positive peak value and the first voltage value, respectively. . 如申請專利範圍第31項所述之用於諧振轉換器的控制器,其中上述第二脈衝組接在上述第一調節脈衝之後,並且上述第一脈衝組更包括至少一第二調節脈衝接在上述第二脈衝組之後,用以對上述諧振電路的上述諧振電容電壓進行調整。 The controller for a resonant converter according to claim 31, wherein the second pulse group is connected after the first adjustment pulse, and the first pulse group further comprises at least one second adjustment pulse connected After the second pulse group, the resonant capacitor voltage of the resonant circuit is adjusted. 如申請專利範圍第31項所述之用於諧振轉換器的控制器,其中上述第一脈衝組更包括至少一第二調節脈衝,上述第一調節脈衝接在上述第二調節脈衝之後,而上 述第二脈衝組接在上述第一調節脈衝之後,上述第二調節脈衝用於將上述諧振電路的上述諧振電容電壓預先調整至上述中間值。 The controller for a resonant converter according to claim 31, wherein the first pulse group further includes at least one second adjustment pulse, the first adjustment pulse being connected to the second adjustment pulse, and The second pulse group is connected to the first adjustment pulse, and the second adjustment pulse is used to adjust the resonance capacitor voltage of the resonance circuit to the intermediate value in advance. 如申請專利範圍第31項所述之用於諧振轉換器的控制器,其中上述第一調節脈衝的脈衝寬度由上述諧振電容電壓和上述激磁電感電流調整至上述第一電壓值與上述正峰值所需的時間所決定。 The controller for a resonant converter according to claim 31, wherein a pulse width of said first adjustment pulse is adjusted by said resonant capacitor voltage and said magnetizing inductor current to said first voltage value and said positive peak value The time required is determined. 一種用於諧振轉換器的控制器,上述諧振轉換器用以操作於一正常模式或一間歇模式,上述諧振轉換器的控制器用以在代表上述諧振轉換器操作於輕載或空載之一間歇模式工作週期中提供一控制信號,上述控制信號包括至少一第一脈衝組以及至少兩個第二脈衝組,上述第一脈衝組位於上述兩個第二脈衝組之間,並且包括至少一第一調節脈衝,上述第二脈衝組包括複數驅動脈衝,上述第一調節脈衝用以調整一諧振電路的一激磁電感電流以及一諧振電容電壓,使得上述諧振轉換器在上述第二脈衝組中的每個驅動脈衝的上升緣時,上述激磁電感電流大抵上相等,並且上述諧振電容電壓也大抵上相等。 A controller for a resonant converter for operating in a normal mode or an intermittent mode, wherein a controller of the resonant converter is configured to operate in a batch mode of light or no load on behalf of the resonant converter Providing a control signal in the working cycle, the control signal comprising at least one first pulse group and at least two second pulse groups, the first pulse group being located between the two second pulse groups, and including at least one first adjustment a pulse, the second pulse group includes a plurality of driving pulses, wherein the first adjusting pulse is used to adjust a magnetizing inductor current and a resonant capacitor voltage of a resonant circuit, so that each of the resonant converters in each of the second pulse groups is driven At the rising edge of the pulse, the magnetizing inductor currents are substantially equal, and the resonant capacitor voltages are also substantially equal. 如申請專利範圍第36項所述之用於諧振轉換器的控制器,其中當上述諧振轉換器操作於上述正常模式下一平衡狀態時,上述激磁電感電流會具有一正峰值以及一負峰值,而上述諧振電容電壓具有對應於上述正峰值的一第一電壓值、對應於上述負峰值的一第二電壓值,以及一中間值。 The controller for a resonant converter according to claim 36, wherein when the resonant converter is operated in the normal state of the normal mode, the magnetizing inductor current has a positive peak and a negative peak. The resonant capacitor voltage has a first voltage value corresponding to the positive peak, a second voltage value corresponding to the negative peak, and an intermediate value. 如申請專利範圍第37項所述之用於諧振轉換器的 控制器,其中上述第一調節脈衝用於將上述激磁電感電流與上述諧振電容電壓分別調整至上述正峰值與上述第一電壓值。 As described in claim 37, for a resonant converter The controller, wherein the first adjustment pulse is used to adjust the magnetizing inductor current and the resonant capacitor voltage to the positive peak value and the first voltage value, respectively. 如申請專利範圍第37項所述之用於諧振轉換器的控制器,其中上述第一脈衝組還包括至少一第二調節脈衝,接在上述第二脈衝組之後,用於將上述諧振電路的上述諧振電容電壓調整至上述中間值。 The controller for a resonant converter according to claim 37, wherein the first pulse group further includes at least one second adjustment pulse, which is connected to the second pulse group, and is used to The above resonance capacitor voltage is adjusted to the above intermediate value. 如申請專利範圍第37項所述之用於諧振轉換器的控制器,其中上述第一脈衝組還包括至少一第二調節脈衝,上述第一調節脈衝接在上述第二調節脈衝之後,用於將上述諧振電路的上述諧振電容電壓調整至上述中間值。 The controller for a resonant converter according to claim 37, wherein the first pulse group further includes at least one second adjustment pulse, the first adjustment pulse being connected after the second adjustment pulse, The resonant capacitor voltage of the above resonant circuit is adjusted to the above intermediate value. 如申請專利範圍第37項所述之用於諧振轉換器的控制器,其中上述第一調節脈衝的脈衝寬度由上述諧振電容電壓和上述激磁電感電流調整至第一電壓值與正峰值所需的時間所決定。 The controller for a resonant converter according to claim 37, wherein a pulse width of the first adjustment pulse is adjusted by the resonance capacitor voltage and the magnetization inductor current to a first voltage value and a positive peak value. Time is determined.
TW99104304A 2010-02-11 2010-02-11 Resonant converters and burst mode control methods thereof TWI420792B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99104304A TWI420792B (en) 2010-02-11 2010-02-11 Resonant converters and burst mode control methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99104304A TWI420792B (en) 2010-02-11 2010-02-11 Resonant converters and burst mode control methods thereof

Publications (2)

Publication Number Publication Date
TW201128912A TW201128912A (en) 2011-08-16
TWI420792B true TWI420792B (en) 2013-12-21

Family

ID=45025445

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99104304A TWI420792B (en) 2010-02-11 2010-02-11 Resonant converters and burst mode control methods thereof

Country Status (1)

Country Link
TW (1) TWI420792B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI450480B (en) * 2012-03-02 2014-08-21 Holtek Semiconductor Inc Half bridge driving apparatus
CN106063103B (en) * 2014-02-27 2019-07-26 丹麦技术大学 Burst mode control
TWI559668B (en) 2015-10-07 2016-11-21 財團法人工業技術研究院 Controlling method for dc/ac converter
TWI670919B (en) * 2018-05-30 2019-09-01 賴炎生 Power supply with resonant converter and control method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW517444B (en) * 2001-05-18 2003-01-11 Rung-Tzung Wei High-order resonant drive circuit for linear piezoelectric ceramic motor
TW533669B (en) * 2001-02-09 2003-05-21 Delta Electronics Inc LLC series resonant DC-to-DC converter
TW200504674A (en) * 2003-07-16 2005-02-01 Analog Microelectronics Inc CCFL circuit with independent adjustment of frequency and duty cycle
TW200826463A (en) * 2006-12-14 2008-06-16 Tungnan Inst Of Technology Resonant converter and synchronous rectification driving circuit thereof
TW200950294A (en) * 2008-05-22 2009-12-01 Acbel Polytech Inc Resonance circuit with narrow operating band and resonance power source converter
TWM370886U (en) * 2009-07-16 2009-12-11 Chicony Power Tech Co Ltd Current equalizing-type power supply device with a bridge-type rectification circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW533669B (en) * 2001-02-09 2003-05-21 Delta Electronics Inc LLC series resonant DC-to-DC converter
TW517444B (en) * 2001-05-18 2003-01-11 Rung-Tzung Wei High-order resonant drive circuit for linear piezoelectric ceramic motor
TW200504674A (en) * 2003-07-16 2005-02-01 Analog Microelectronics Inc CCFL circuit with independent adjustment of frequency and duty cycle
TW200826463A (en) * 2006-12-14 2008-06-16 Tungnan Inst Of Technology Resonant converter and synchronous rectification driving circuit thereof
TW200950294A (en) * 2008-05-22 2009-12-01 Acbel Polytech Inc Resonance circuit with narrow operating band and resonance power source converter
TWM370886U (en) * 2009-07-16 2009-12-11 Chicony Power Tech Co Ltd Current equalizing-type power supply device with a bridge-type rectification circuit

Also Published As

Publication number Publication date
TW201128912A (en) 2011-08-16

Similar Documents

Publication Publication Date Title
US8582321B2 (en) Resonant converters and burst mode control method thereof
US7375994B2 (en) Highly efficient isolated AC/DC power conversion technique
US7379309B2 (en) High-frequency DC-DC converter control
US6744649B1 (en) Zero switching power converter operable as asymmetrical full-bridge converter
US9287788B2 (en) Resonant converter using variably delayed output switching
US8625311B2 (en) Switching power supply apparatus including a plurality of switching elements
JP4671020B2 (en) Multi-output resonance type DC-DC converter
JP5991078B2 (en) Switching power supply
US8335092B2 (en) Isolated switching power supply apparatus
JP5699470B2 (en) Switching power supply
KR101304777B1 (en) DC/DC converter with wide input voltage range
JP3344356B2 (en) Switching power supply
CN111585444A (en) Switching converter and method for operating a switching converter
JP5849599B2 (en) Forward type DC-DC converter
JP6667750B1 (en) DC-DC converter
JP2012050264A (en) Load driving device
JP5194600B2 (en) Switching power supply
WO2005101635A1 (en) Soft-switching power converter having power saving means
TWI420792B (en) Resonant converters and burst mode control methods thereof
JP2012010528A (en) Load driving device
JP2002119053A (en) Switching regulator
JP2003299359A (en) Switching power supply
US8736245B1 (en) Method and means to combine pulse width modulation level control, full resonance and zero voltage switching for switched mode power supplies
JP4560882B2 (en) Switching power supply circuit
JP5126956B2 (en) DC-DC converter and reverse current suppression method thereof