TWI420484B - Thereof frequency divider and method and gate driver of the same - Google Patents

Thereof frequency divider and method and gate driver of the same Download PDF

Info

Publication number
TWI420484B
TWI420484B TW98119808A TW98119808A TWI420484B TW I420484 B TWI420484 B TW I420484B TW 98119808 A TW98119808 A TW 98119808A TW 98119808 A TW98119808 A TW 98119808A TW I420484 B TWI420484 B TW I420484B
Authority
TW
Taiwan
Prior art keywords
signal
response
frequency
circuit
level
Prior art date
Application number
TW98119808A
Other languages
Chinese (zh)
Other versions
TW201044367A (en
Inventor
Kuo Jung Wang
Chien Kuo Wang
Hsin Yeh Wu
Wei Ming Chen
Chin Chieh Chao
Original Assignee
Raydium Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raydium Semiconductor Corp filed Critical Raydium Semiconductor Corp
Priority to TW98119808A priority Critical patent/TWI420484B/en
Publication of TW201044367A publication Critical patent/TW201044367A/en
Application granted granted Critical
Publication of TWI420484B publication Critical patent/TWI420484B/en

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Electronic Switches (AREA)

Description

除頻器電路及其方法與應用其之閘極驅動器 Frequency divider circuit, method and application thereof

本發明是有關於一種除頻器電路(Frequency Divider)之裝置,且特別是有關於一種應用於液晶顯示器(Liquid Crystal Display,LCD)之閘極驅動器(Gate Driver)之除頻器電路。 The present invention relates to a frequency divider circuit (Frequency Divider) device, and more particularly to a frequency divider circuit for a gate driver of a liquid crystal display (LCD).

在科技發展日新月異的現今時代中,液晶顯示器(Liquid Crystal Display,LCD)相關產業係蓬勃發展。一般來說,LCD之閘極驅動器(Gate Driver)係設置移位暫存器(Shift Register),移位暫存器係回應於掃描時脈訊號來產生依序致能之閘極訊號。在現有之閘極驅動器技術中,透過對掃描時脈訊號進行除頻,以達到減少移位暫存器之電路面積的技術係已存在。 In the current era of rapid technological development, liquid crystal display (LCD) related industries are booming. In general, the Gate Driver of the LCD is provided with a Shift Register, and the Shift Register responds to the scanning of the clock signal to generate a sequentially enabled gate signal. In the existing gate driver technology, a technique for reducing the circuit area of the shift register by frequency division of the scan clock signal has existed.

然而在許多情形中,移位暫存器會因為掃描時脈訊號被除頻導致無法正常操作。舉例來說,請參照第1圖,其繪示傳統移位暫存器的相關訊號時序圖。移位暫存器例如用以在起始訊號IPEN處於高位準時,回應於掃描時脈訊號CLK之上升緣(Rising Edge)EDG_ri產生閘極訊號。然而,由於訊號進行除頻後相位可能發生變化,導致除頻掃描時脈訊號CLKD之上升緣係觸發在起始訊號IPEN處於低位準的時點。如此,將使得移位暫存器無法產生閘極訊號。這樣一來,如何確保移位暫存器可回應於除頻操作後之掃描時脈訊號進行正常之操作為業界不斷致力的方向 之一。 However, in many cases, the shift register will not operate properly because the scan clock signal is de-clocked. For example, please refer to FIG. 1 , which illustrates a related signal timing diagram of a conventional shift register. The shift register is used, for example, to generate a gate signal in response to the Rising Edge EDG_ri of the scan clock signal CLK when the start signal IPEN is at a high level. However, since the phase may change after the signal is removed, the rising edge of the pulse signal CLKD during the frequency sweep scanning triggers the time when the start signal IPEN is at the low level. As such, the shift register will not be able to generate a gate signal. In this way, how to ensure that the shift register can respond to the normal operation of the scan clock signal after the frequency division operation is the direction that the industry is constantly striving for. one.

本發明係有關於一種除頻器電路(Frequency Divider)及應用其之閘極驅動器(Gate Driver),此除頻器電路可控制除頻後之掃描訊號在特定期間中,觸發特定之驅動緣(Driving Edge)。如此,相較於傳統閘極驅動器,本實施例之除頻器電路及閘極驅動器具有可確保除頻後之掃描時脈訊號可在特定期間中觸發特定驅動緣之優點。 The invention relates to a frequency divider circuit (Frequency Divider) and a gate driver (Gate Driver) applied thereto. The frequency divider circuit can control the frequency-divided scan signal to trigger a specific driving edge during a specific period of time ( Driving Edge). Thus, compared to the conventional gate driver, the frequency divider circuit and the gate driver of the embodiment have the advantage that the scanning pulse signal after the frequency division can trigger a specific driving edge in a certain period.

根據本發明提出一種閘極驅動器,用以回應於原始時脈訊號及輸入觸發訊號來經過多個通道(Channel)產生多個閘極訊號。閘極驅動器包括除頻器電路及移位暫存器電路(Shift Register)。除頻器電路包括重置(Reset)單元及除頻單元。重置單元回應於系統重置訊號之致能位準為致能,以回應於輸入觸發訊號轉態為致能之第一驅動緣(Driving Edge)設定內部重置訊號為致能位準。除頻單元回應於內部重置訊號之致能位準為致能,以回應於原始時脈訊號轉態為致能之第二驅動緣對一迴授訊號進行取樣,以決定除頻時脈訊號。移位暫存器電路用以回應於除頻時脈訊號及輸入觸發訊號產生些閘極訊號。 According to the present invention, a gate driver is provided for generating a plurality of gate signals through a plurality of channels in response to an original clock signal and an input trigger signal. The gate driver includes a frequency divider circuit and a shift register circuit (Shift Register). The frequency divider circuit includes a reset unit and a frequency dividing unit. The reset unit is enabled in response to the enablement level of the system reset signal to set the internal reset signal to the enable level in response to the input trigger signal transition being the enabled first driving edge (Driving Edge). The frequency-dividing unit is enabled in response to the enable level of the internal reset signal to sample the feedback signal in response to the original clock signal transition being the enabled second drive edge to determine the frequency-divided clock signal . The shift register circuit is configured to generate some gate signals in response to the frequency-divided clock signal and the input trigger signal.

根據本發明提出一種除頻器電路,用以根據原始時脈訊號產生除頻時脈訊號。除頻器電路包括重置(Reset)單元及除頻單元。重置單元回應於系統重置訊號之致能位準為致能,以回應於輸入觸發訊號轉態為致能之第一驅動緣(Driving Edge)設定內部重置訊號為致能位準。除頻單元 回應於內部重置訊號之致能位準為致能,以回應於原始時脈訊號轉態為致能之第二驅動緣對一迴授訊號進行取樣,以決定除頻時脈訊號。 According to the invention, a frequency divider circuit is provided for generating a frequency-divided clock signal based on an original clock signal. The frequency divider circuit includes a reset unit and a frequency dividing unit. The reset unit is enabled in response to the enablement level of the system reset signal to set the internal reset signal to the enable level in response to the input trigger signal transition being the enabled first driving edge (Driving Edge). Frequency division unit In response to the enablement level of the internal reset signal, the enable signal is sampled in response to the original clock signal transition being the enabled second drive edge to determine the frequency division clock signal.

根據本發明提出一種訊號控制方法,用以產生除頻時脈訊號。訊號控制方法包括下列之步驟:首先回應於輸入觸發訊號轉態為致能之第一驅動緣對參考電壓進行取樣,以設定內部重置訊號為致能位準;接著對除頻時脈訊號進行反相操作以提供迴授訊號;之後回應於內部重置訊號之致能位準致能除頻器電路,使除頻器電路回應於原始時脈訊號轉態為致能之第二驅動緣對迴授訊號進行取樣,以決定除頻時脈訊號。 According to the present invention, a signal control method is provided for generating a frequency division clock signal. The signal control method includes the following steps: first, sampling the reference voltage in response to the input trigger signal transition to the first driving edge to enable the internal reset signal to be an enable level; and then performing the frequency division clock signal Inverting operation to provide a feedback signal; then, in response to the internal reset signal enabling level deactivating circuit, the frequency divider circuit is responsive to the original clock signal to be enabled as the second driving edge pair The feedback signal is sampled to determine the frequency division clock signal.

為讓本發明之上述內容能更明顯易懂,下文特舉一較佳實施例,並配合所附圖式,作詳細說明如下: In order to make the above-mentioned contents of the present invention more comprehensible, a preferred embodiment will be described below, and in conjunction with the drawings, a detailed description is as follows:

本實施例之除頻器電路(Frequency Divider)用以控制除頻掃描時脈訊號在特定期間中觸發特定驅動緣(Driving Edge)。 The frequency divider circuit (Frequency Divider) of this embodiment is used to control the frequency division scanning pulse signal to trigger a specific driving edge (Driving Edge) in a specific period.

請參照第2圖,其繪示依照本發明實施例之閘極驅動器的方塊圖。閘極驅動器(Gate Driver)100包括除頻器電路10、移位暫存器(Shift Register)20、運算電路25、輸出致能控制電路30、位準偏移器(Level Shifter)40及輸出緩衝器(Output Buffer)50。其中移位暫存器20、輸出致能控制電路30、位準偏移器40及輸出緩衝器50係形成n個通道,以對應地產生n個掃描訊號G(1)-G(n),n 為大於1之自然數。舉例來說,n為偶數。 Please refer to FIG. 2, which is a block diagram of a gate driver in accordance with an embodiment of the present invention. The gate driver 100 includes a frequency divider circuit 10, a shift register 20, an arithmetic circuit 25, an output enable control circuit 30, a level shifter 40, and an output buffer. Output Buffer 50. The shift register 20, the output enable control circuit 30, the level shifter 40, and the output buffer 50 form n channels to correspondingly generate n scan signals G(1)-G(n). n Is a natural number greater than 1. For example, n is an even number.

更進一步的說,移位暫存器電路20用以回應於輸入觸發訊號DIO及時脈訊號CPV2來產生控制訊號M(1)、M(2)、…、M(n/2)。運算電路25用以根據控制訊號M(1)-M(n/2)及時脈訊號CPV2來產生移位訊號Sh(1)-Sh(n)。舉例來說,運算電路25例如根據方程式:Sh(2n-1)=M(n).CPV2 Further, the shift register circuit 20 is configured to generate the control signals M(1), M(2), ..., M(n/2) in response to the input trigger signal DIO and the time pulse signal CPV2. The operation circuit 25 is configured to generate the shift signals Sh(1)-Sh(n) according to the control signals M(1)-M(n/2) and the pulse signal CPV2. For example, the arithmetic circuit 25 is, for example, according to the equation: Sh(2n-1)=M(n). CPV2

Sh(2n)=M(n).CPV2_Bar來根據時脈訊號CPV2及控制訊號M(1)-M(n/2)來產生移位訊號Sh(1)-Sh(n)。其中,時脈訊號CPV2_Bar為時脈訊號CPV2的反相訊號。 Sh(2n)=M(n). CPV2_Bar generates the shift signals Sh(1)-Sh(n) according to the clock signal CPV2 and the control signals M(1)-M(n/2). The clock signal CPV2_Bar is an inverted signal of the clock signal CPV2.

輸出致能控制電路30用以接收全導通訊號XON及輸出致能訊號OE來決定閘極驅動器100的輸出模式,以根據對應的輸出模式產生並提供移位訊號E(1)-E(n)至位準偏移器40。位.準偏移器40係對移位訊號E(1)-E(n)進行位準控制,並將其對應地輸出。輸出緩衝器50係將位準調整後之移位訊號L(1)-L(n)分別做為閘極訊號G(1)-G(n)輸出。 The output enable control circuit 30 is configured to receive the all-conductance communication number XON and the output enable signal OE to determine the output mode of the gate driver 100 to generate and provide the shift signal E(1)-E(n) according to the corresponding output mode. To the level shifter 40. The bit shift register 40 performs level control on the shift signals E(1)-E(n) and outputs them correspondingly. The output buffer 50 uses the level-adjusted shift signals L(1)-L(n) as the gate signals G(1)-G(n), respectively.

除頻器電路10用以根據時脈訊號CPV1產生時脈訊號CPV2,並提供時脈訊號CPV2至移位暫存器20,以控制其產生移位訊號Sh(1)-Sh(n)。時脈訊號CPV2為時脈訊號CPV1之一除頻訊號。舉例來說,時脈訊號CPV2例如為時脈訊號CPV1之除二頻訊號(即是時脈訊號CPV2之頻率為時脈訊號CPV1之頻率的二分之一)。 The frequency divider circuit 10 is configured to generate the clock signal CPV2 according to the clock signal CPV1, and provide the clock signal CPV2 to the shift register 20 to control the generation of the shift signals Sh(1)-Sh(n). The clock signal CPV2 is one of the clock signals CPV1. For example, the clock signal CPV2 is, for example, a divide-by-two signal of the clock signal CPV1 (that is, the frequency of the clock signal CPV2 is one-half of the frequency of the clock signal CPV1).

進一步的說,請參照第3圖及第4圖,第3圖繪示乃 第2圖中之除頻器電路10的詳細方塊圖,第4圖繪示乃第2圖之除頻器電路10的相關訊號時序圖。除頻器電路10包括重置(Reset)單元12及除頻單元14。在第3圖中,所有訊號之致能位準例如均等於訊號高位準。 Further, please refer to Figures 3 and 4, and Figure 3 shows FIG. 4 is a detailed block diagram of the frequency divider circuit 10 in FIG. 2, and FIG. 4 is a timing diagram of the related signals of the frequency divider circuit 10 of FIG. The frequency divider circuit 10 includes a reset unit 12 and a frequency dividing unit 14. In Figure 3, the enable levels of all signals are, for example, equal to the high level of the signal.

舉例來說,重置單元12包括D型正反器(Flip-flop)DF1,D型正反器DF1用以在時點TP1,回應於系統重置訊號Srstc之致能位準(即是高訊號位準)而為致能。 For example, the reset unit 12 includes a D-type flip-flop DF1, and the D-type flip-flop DF1 is used to respond to the enable level of the system reset signal Srstc at the time point TP1 (ie, a high signal) Level) is enabled.

重置單元12更用以在致能時,回應於輸入觸發訊號DIO轉態為致能之驅動緣(Driving Edge)設定內部重置訊號Srstf為致能位準。其中輸入觸發訊號DIO之轉態為致能位準之驅動緣例如為上升緣(Rising Edge),換言之,重置單元12用以在時點TP2時回應於輸入觸發訊號DIO之上升緣對輸入端D接收之訊號VDD進行取樣,以決定內部重置訊號Srstf。其中,訊號VDD例如具有高訊位準。如此,在時點TP2之後,重置單元12係將內部重置訊號Srstf設定為高電位。 The reset unit 12 is further configured to set the internal reset signal Srstf to an enable level in response to the input trigger signal DIO transition state being enabled to enable the driving edge (Driving Edge). The driving edge of the input trigger signal DIO is the rising edge (Rising Edge). In other words, the reset unit 12 is configured to respond to the rising edge of the input trigger signal DIO to the input terminal D at the time point TP2. The received signal VDD is sampled to determine the internal reset signal Srstf. The signal VDD has, for example, a high level. Thus, after time point TP2, reset unit 12 sets internal reset signal Srstf to a high potential.

舉例來說,除頻單元14包括D型正反器DF2及反相器(Inverter)14b。反相器14b用以接收D型正反器DF2產生之時脈訊號CPV2,並對其進行反相操作,以產生迴授訊號Sfbk。其中時脈訊號CPV2之起始位準等於低位準,迴授訊號Sfbk之起始位準等於高位準。 For example, the frequency dividing unit 14 includes a D-type flip-flop DF2 and an inverter 14b. The inverter 14b is configured to receive the clock signal CPV2 generated by the D-type flip-flop DF2 and perform an inversion operation to generate the feedback signal Sfbk. The starting level of the clock signal CPV2 is equal to the low level, and the starting level of the feedback signal Sfbk is equal to the high level.

D型正反器DF2用以回應內部重置訊號Srstf之高訊號位準而為致能。換言之,除頻單元14係自時點TP2起為致能。D型正反器DF2更用以在致能時,回應於時脈訊 號CPV1轉態為致能之驅動緣對迴授訊號Sfbk進行取樣,以決定時脈訊號CPV2。 The D-type flip-flop DF2 is responsive to the high signal level of the internal reset signal Srstf. In other words, the frequency dividing unit 14 is enabled from the time point TP2. The D-type flip-flop DF2 is used to respond to the time pulse when it is enabled. The CPV1 transition state is the driving edge of the enabler to sample the feedback signal Sfbk to determine the clock signal CPV2.

其中時脈訊號CPV1轉態為致能之驅動緣例如為上升緣,換言之,D型正反器DF2係在時點TP3對迴授訊號Sfbk(等於高位準)進行取樣,以產生高位準之時脈訊號CPV2。在時點TP4時,D型正反器DF2係回應於下一個時脈訊號CPV1之上升緣對迴授訊號Sfbk(等於低位準)進行取樣,已產生低位準之時脈訊號CPV2。重複上述之步驟,可產生頻率實質上等於時脈訊號CPV1之頻率的二分之一的時脈訊號CPV2。 The driving edge of the clock signal CPV1 is, for example, a rising edge. In other words, the D-type flip-flop DF2 samples the feedback signal Sfbk (equal to the high level) at the time point TP3 to generate a high-level clock. Signal CPV2. At time TP4, the D-type flip-flop DF2 samples the feedback signal Sfbk (equal to the low level) in response to the rising edge of the next clock signal CPV1, and has generated the low-level clock signal CPV2. By repeating the above steps, a clock signal CPV2 having a frequency substantially equal to one-half of the frequency of the clock signal CPV1 can be generated.

本實施例之除頻器電路10更例如包括邏輯運算電路,用以根據控制訊號及閘極驅動器100之電源起始重置訊號Srstp來產生系統重置訊號Srstc。舉例來說,請參照第5圖,其繪示乃第1圖之除頻器電路10中之邏輯運算電路的方塊圖。邏輯運算電路16包括及閘(And Gate)16a、延遲電路16b及反相器16c。反相器16c用以接收閘極訊號G(n),並提供移位訊號Sh(n)之反相訊號Sinv。 The frequency divider circuit 10 of the present embodiment further includes, for example, a logic operation circuit for generating a system reset signal Srstc according to the control signal and the power supply start reset signal Srstp of the gate driver 100. For example, please refer to FIG. 5, which is a block diagram of the logic operation circuit in the frequency divider circuit 10 of FIG. The logic operation circuit 16 includes an AND gate 16a, a delay circuit 16b, and an inverter 16c. The inverter 16c is configured to receive the gate signal G(n) and provide an inverted signal Sinv of the shift signal Sh(n).

延遲電路16b用以將反相訊號Sinv延遲一段延遲時間DT後做為反相訊號Sinv’輸出至及閘16a。及閘16a用以回應於反相訊號Sinv及電源起始重置訊號Srstp運算產生系統重置訊號Srstc。其中電源起始重置訊號Srstp、系統重置訊號Srstc、延遲時間DT之關係如第3圖所示。 The delay circuit 16b is configured to delay the inverted signal Sinv by a delay time DT and output it as an inverted signal Sinv' to the AND gate 16a. The gate 16a is configured to generate a system reset signal Srstc in response to the inverted signal Sinv and the power start reset signal Srstp operation. The relationship between the power start reset signal Srstp, the system reset signal Srstc, and the delay time DT is as shown in FIG.

在本實施例中雖僅以邏輯運算電路16係根據移位訊號Sh(n)及電源起始重置訊號Srstp來產生系統重置訊號 Srstc的情形為例作說明,然,本實施例之邏輯運算電路16並不侷限於使用移位訊號Sh(n)及電源起始重置訊號Srstp來產生系統重置訊號Srstc。在另一個例子中,請參照第6圖,邏輯運算電路16’中之反相器16c’係根據輸出觸發訊號DOI產生反相輸出觸發訊號DOIv;邏輯運算電路16’中之延遲電路16b’係延遲反相輸出訊號DOIv延遲延遲時間DT後做為反相訊號DOIv’輸出至及閘16a’;及閘16a用以回應於反相訊號DOIv’及電源起始重置訊號Srstp運算產生系統重置訊號Srstc。如此,邏輯運算電路16’亦可根據輸出觸發訊號DOI及電源起始重置訊號Srstp來產生系統重置訊號Srstc。 In this embodiment, only the logic operation circuit 16 generates a system reset signal according to the shift signal Sh(n) and the power start reset signal Srstp. The case of Srstc is taken as an example. However, the logic operation circuit 16 of the present embodiment is not limited to use the shift signal Sh(n) and the power start reset signal Srstp to generate the system reset signal Srstc. In another example, referring to FIG. 6, the inverter 16c' in the logic operation circuit 16' generates an inverted output trigger signal DOIv according to the output trigger signal DOI; the delay circuit 16b' in the logic operation circuit 16' The delayed inverting output signal DOIv delay delay time DT is output as the inverted signal DOIv' to the gate 16a'; and the gate 16a is used to generate a system reset in response to the inverted signal DOIv' and the power start reset signal Srstp operation. Signal Srstc. Thus, the logic operation circuit 16' can also generate the system reset signal Srstc according to the output trigger signal DOI and the power start reset signal Srstp.

本實施例之除頻器電路係回應於輸入觸發訊號轉換為致能位準之驅動緣來產生內部重置訊號致能除頻單元,使得除頻單元可對應產生除頻時脈訊號,其中除頻時脈訊號係在輸入觸發訊號處於致能位準之期間中觸發其轉換為致能位準之驅動緣。如此,相較於傳統閘極驅動器,本實施例之除頻器電路具有可確保除頻時脈訊號可在特定期間中觸發特定驅動緣之優點。 The frequency divider circuit of the embodiment generates an internal reset signal enabling frequency dividing unit in response to the input trigger signal being converted into a driving edge of the enabling level, so that the frequency dividing unit can generate the frequency dividing clock signal correspondingly, wherein The frequency clock signal triggers the conversion to the driving edge of the enabling level during the period in which the input trigger signal is in the enabled level. Thus, the frequency divider circuit of the present embodiment has the advantage of ensuring that the frequency-divided clock signal can trigger a particular driving edge in a certain period of time compared to a conventional gate driver.

綜上所述,雖然本發明已以一較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In view of the above, the present invention has been disclosed in a preferred embodiment, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

100‧‧‧閘極驅動器 100‧‧‧gate driver

10‧‧‧除頻器電路 10‧‧‧DISP circuit

20‧‧‧移位暫存器 20‧‧‧Shift register

25‧‧‧邏輯電路 25‧‧‧Logical Circuit

30‧‧‧輸出致能控制電路 30‧‧‧Output enable control circuit

40‧‧‧位準偏移器 40‧‧‧ position shifter

50‧‧‧輸出緩衝器 50‧‧‧Output buffer

12‧‧‧重置單元 12‧‧‧Reset unit

DF1、DF2‧‧‧D型正反器 DF1, DF2‧‧‧D type flip-flop

14‧‧‧除頻單元 14‧‧‧Dividing unit

14b、16c、16c’‧‧‧反相器 14b, 16c, 16c'‧‧‧ Inverters

16、16’‧‧‧邏輯運算電路 16, 16'‧‧‧Logical Operation Circuit

16a、16a’‧‧‧及閘 16a, 16a’‧‧‧ and gate

16b、16b’‧‧‧延遲電路 16b, 16b'‧‧‧ delay circuit

第1圖繪示依照傳統移位暫存器的相關訊號時序圖。 FIG. 1 is a timing diagram of related signals according to a conventional shift register.

第2圖繪示依照本發明實施例之閘極驅動器的方塊圖。 2 is a block diagram of a gate driver in accordance with an embodiment of the present invention.

第3圖繪示乃第2圖中之除頻器電路10的詳細方塊圖。 Fig. 3 is a detailed block diagram of the frequency divider circuit 10 in Fig. 2.

第4圖繪示乃第2圖之除頻器電路10的相關訊號時序圖。 FIG. 4 is a timing diagram of related signals of the frequency divider circuit 10 of FIG.

第5圖繪示乃第1圖之除頻器電路10中之邏輯運算電路的方塊圖。 Fig. 5 is a block diagram showing the logic operation circuit in the frequency divider circuit 10 of Fig. 1.

第6圖繪示乃第1圖之除頻器電路10中之邏輯運算電路的另一方塊圖。 Fig. 6 is a block diagram showing another logic operation circuit in the frequency divider circuit 10 of Fig. 1.

12‧‧‧重置單元 12‧‧‧Reset unit

DF1、DF2‧‧‧D型正反器 DF1, DF2‧‧‧D type flip-flop

14‧‧‧除頻單元 14‧‧‧Dividing unit

14b‧‧‧反相器 14b‧‧‧Inverter

Claims (15)

一種閘極驅動器(Gate driver),用以回應於一原始時脈訊號及一輸入觸發訊號來經過複數個通道(Channel)產生複數個閘極訊號,該閘極驅動器包括:一除頻器電路(Frequency Divider),包括:一重置(Reset)單元,回應於一系統重置訊號之致能位準而致能,以回應於該輸入觸發訊號轉態為致能之一第一驅動緣(Driving Edge)設定一內部重置訊號為致能位準:及一除頻單元,回應於該內部重置訊號之致能位準而致能,以回應於該原始時脈訊號轉態為致能之一第二驅動緣對一迴授訊號進行取樣,以決定一除頻時脈訊號,其中該迴授訊號為該除頻時脈訊號之反相;以及一移位暫存器電路(Shift Register),用以回應於該除頻時脈訊號及該輸入觸發訊號產生該些閘極訊號。 A gate driver is configured to generate a plurality of gate signals through a plurality of channels in response to an original clock signal and an input trigger signal, the gate driver comprising: a frequency divider circuit ( Frequency Divider), comprising: a reset unit, responsive to an enable level of a system reset signal, in response to the input trigger signal transition being one of the first driving edges (Driving) Edge) sets an internal reset signal to enable level: and a frequency division unit that is enabled in response to the enable level of the internal reset signal in response to the original clock signal transition being enabled A second driving edge samples a feedback signal to determine a frequency division clock signal, wherein the feedback signal is an inversion of the frequency division clock signal; and a shift register circuit (Shift Register) And generating the gate signals in response to the frequency division clock signal and the input trigger signal. 如申請專利範圍第1項所示之閘極驅動器,其中該重置單元包括:一正反器(Flip-flop)電路,回應於該系統重置訊號之致能位準而致能,以回應於該輸入觸發訊號之正緣(Rising Edge)對一參考電壓進行取樣,以產生該內部重置訊號,該正反器電路更用以回應於該系統重置訊號之非致能位準重置該內部重置訊號為非致能位準。 A gate driver as shown in claim 1 wherein the reset unit comprises: a flip-flop circuit responsive to an enable level of the system reset signal to respond A reference voltage is sampled at a Rising Edge of the input trigger signal to generate the internal reset signal, and the flip-flop circuit is further configured to respond to the non-enabled level reset of the system reset signal The internal reset signal is a non-enabled level. 如申請專利範圍第1項所述之閘極驅動器,其中該除頻單元包括:一正反器電路,回應於該內部重置訊號之致能位準而 致能,以回應於該原始時脈訊號之正緣對該迴授訊號進行取樣,以產生該除頻時脈訊號,該正反器電路更用以回應於該內部重置訊號之非致能位準重置該除頻時脈訊號為非致能位準;及一反相器(Inverter),用以對該除頻時脈訊號進行反相操作。 The gate driver of claim 1, wherein the frequency dividing unit comprises: a flip-flop circuit responsive to an enable level of the internal reset signal Enabled, in response to the positive edge of the original clock signal, sampling the feedback signal to generate the frequency-divided clock signal, and the flip-flop circuit is further configured to respond to the non-enabling of the internal reset signal The level resets the frequency-divided clock signal to a non-enabling level; and an inverter (Inverter) performs an inversion operation on the frequency-divided clock signal. 如申請專利範圍第1項所述之閘極驅動器,其中該除頻器電路更包括:一邏輯運算電路,用以根據一第一控制訊號及一電源起始重置訊號運算產生該系統重置訊號。 The gate driver of claim 1, wherein the frequency divider circuit further comprises: a logic operation circuit for generating the system reset according to a first control signal and a power start reset signal operation. Signal. 如申請專利範圍第4項所述之閘極驅動器,其中:該第一控制訊號為一輸出觸發訊號;該邏輯運算電路包括:一延遲電路,用以將一第二控制訊號延遲一延遲時間後輸出,該第二控制訊號係為該第一控制訊號之反相;及一及閘(And Gate),用以回應於該第二控制訊號及該電源起始重置訊號運算產生該系統重置訊號。 The gate driver of claim 4, wherein: the first control signal is an output trigger signal; the logic operation circuit comprises: a delay circuit for delaying a second control signal by a delay time Outputting, the second control signal is an inversion of the first control signal; and an AND gate is configured to generate the system reset in response to the second control signal and the power start reset signal operation Signal. 如申請專利範圍第4項所述之閘極驅動器,其中:該第一控制訊號為一閘極訊號;該邏輯運算電路包括:一延遲電路,用以將一第二控制訊號延遲一延遲時間後輸出,該第二控制訊號係為該第一控制訊號之反相;及一及閘,用以回應於該第二控制訊號及該電源起始重置訊號運算產生該系統重置訊號。 The gate driver of claim 4, wherein: the first control signal is a gate signal; the logic operation circuit comprises: a delay circuit for delaying a second control signal by a delay time And outputting, the second control signal is an inversion of the first control signal; and a gate is configured to generate the system reset signal in response to the second control signal and the power start reset signal operation. 一種除頻器電路(Frequencv Divider),用以根據 一原始時脈訊號產生一除頻時脈訊號,該除頻器電路包括:一重置(Reset)單元,回應於一系統重置訊號之致能位準而致能,以回應於該輸入觸發訊號轉態為致能之一第一驅動緣(Driving Edge)設定一內部重置訊號為致能位準:以及一除頻單元,回應於該內部重置訊號之致能位準而致能,以回應於該原始時脈訊號轉態為致能之一第二驅動緣對一迴授訊號進行取樣,以決定一除頻時脈訊號,其中該迴授訊號為該除頻時脈訊號之反相。 A frequency divider circuit (Frequencv Divider) for An original clock signal generates a frequency-divided clock signal, the frequency divider circuit comprising: a reset unit, responsive to an enable level of a system reset signal, in response to the input trigger The signal transition is enabled. The first driving edge (Driving Edge) sets an internal reset signal to enable level: and a frequency dividing unit is enabled in response to the enabling level of the internal reset signal. In response to the original clock signal being turned into one of the enabled second driving edges, a feedback signal is sampled to determine a frequency division clock signal, wherein the feedback signal is the inverse of the frequency division clock signal phase. 如申請專利範圍第7項所示之除頻器電路,其中該重置單元包括:一正反器(Flip-flop)電路,回應於該系統重置訊號之致能位準而致能,以回應於該輸入觸發訊號之正緣(Rising Edge)對一參考電壓進行取樣,以產生該內部重置訊號,該正反器電路更用以回應於該系統重置訊號之非致能位準重置該內部重置訊號為非致能位準。 The frequency divider circuit as shown in claim 7, wherein the reset unit comprises: a flip-flop circuit, which is enabled in response to an enable level of the system reset signal, In response to the Rising Edge of the input trigger signal, a reference voltage is sampled to generate the internal reset signal, and the flip-flop circuit is further configured to respond to the non-enable level of the system reset signal The internal reset signal is set to a non-enabled level. 如申請專利範圍第7項所述之除頻器電路,其中該除頻單元包括:一正反器電路,回應於該內部重置訊號之致能位準而致能,以回應於該原始時脈訊號之正緣對該迴授訊號進行取樣,以產生該除頻時脈訊號,該正反器電路更用以回應於該內部重置訊號之非致能位準重置該除頻時脈訊號為非致能位準;及一反相器(Inverter),用以對該除頻時脈訊號進行反 相操作。 The frequency divider circuit of claim 7, wherein the frequency dividing unit comprises: a flip-flop circuit responsive to an enable level of the internal reset signal to be responsive to the original time The positive edge of the pulse signal samples the feedback signal to generate the frequency-divided clock signal, and the flip-flop circuit is further configured to reset the frequency-divided clock in response to the non-enabling level of the internal reset signal. The signal is a non-enabled level; and an inverter (Inverter) is used to reverse the frequency division clock signal Phase operation. 如申請專利範圍第7項所述之除頻器電路,其中該除頻器電路更包括:一邏輯運算電路,用以根據一第一控制訊號及一電源起始重置訊號運算產生該系統重置訊號。 The frequency divider circuit of claim 7, wherein the frequency divider circuit further comprises: a logic operation circuit, configured to generate the system weight according to a first control signal and a power supply start reset signal operation. Signal number. 如申請專利範圍第10項所述之除頻器電路,其中:該第一控制訊號為一輸出觸發訊號;該邏輯運算電路包括:一延遲電路,用以將一第二控制訊號延遲一延遲時間後輸出,該第二控制訊號係相關於該第一控制訊號;及一及閘(And Gate),用以回應於該第二控制訊號及該電源起始重置訊號運算產生該系統重置訊號。 The frequency divider circuit of claim 10, wherein: the first control signal is an output trigger signal; the logic operation circuit comprises: a delay circuit for delaying a second control signal by a delay time And outputting the second control signal to the first control signal; and an AND gate for generating the system reset signal in response to the second control signal and the power start reset signal operation . 如申請專利範圍第10項所述之除頻器電路,其中:該第一控制訊號為一閘極訊號;該邏輯運算電路包括:一延遲電路,用以將一第二控制訊號延遲一延遲時間後輸出,該第二控制訊號係相關於該第一控制訊號;及一及閘,用以回應於該第二控制訊號及該電源起始重置訊號運算產生該系統重置訊號。 The frequency divider circuit of claim 10, wherein: the first control signal is a gate signal; the logic operation circuit comprises: a delay circuit for delaying a second control signal by a delay time The second control signal is related to the first control signal; and a gate is used to generate the system reset signal in response to the second control signal and the power start reset signal operation. 一種訊號控制方法,用以產生一除頻時脈訊號,該訊號控制方法包括:回應於一輸入觸發訊號轉態為致能之一第一驅動緣(Driving Edge)對一參考電壓進行取樣,以設定一內部重 置訊號為致能位準:對該除頻時脈訊號進行反相操作以提供一迴授訊號;以及回應於該內部重置訊號之致能位準致能一除頻器電路,使該除頻器電路回應於一原始時脈訊號轉態為致能之一第二驅動緣對該迴授訊號進行取樣,以決定該除頻時脈訊號。 A signal control method for generating a frequency-divided clock signal, the signal control method comprising: sampling a reference voltage in response to an input trigger signal transition state being a first driving edge (Driving Edge) Set an internal weight The signal is an enable level: an inversion operation is performed on the frequency-divided clock signal to provide a feedback signal; and an enable level is enabled in response to the internal reset signal to enable the divider circuit to cause the division The frequency converter circuit samples the feedback signal in response to a second clock edge of the original clock signal to determine the frequency division clock signal. 如申請專利範圍第13項所示之訊號控制方法,更包括:回應於該系統重置訊號之非致能位準重置該內部重置訊號為非致能位準;及回應於該內部重置訊號之非致能位準重置該除頻時脈訊號為非致能位準。 The method of controlling the signal as shown in item 13 of the patent application includes: resetting the internal reset signal to a non-enabling level in response to the non-enabled level of the system reset signal; and responding to the internal weight The non-enabled level of the set signal resets the divided clock signal to a non-enabled level. 如申請專利範圍第13項所述之訊號控制方法,更包括:回應於一電源起始重置訊號及一控制訊號運算產生該系統重置訊號。 The signal control method of claim 13 further includes: generating a system reset signal in response to a power start reset signal and a control signal operation.
TW98119808A 2009-06-12 2009-06-12 Thereof frequency divider and method and gate driver of the same TWI420484B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98119808A TWI420484B (en) 2009-06-12 2009-06-12 Thereof frequency divider and method and gate driver of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98119808A TWI420484B (en) 2009-06-12 2009-06-12 Thereof frequency divider and method and gate driver of the same

Publications (2)

Publication Number Publication Date
TW201044367A TW201044367A (en) 2010-12-16
TWI420484B true TWI420484B (en) 2013-12-21

Family

ID=45001329

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98119808A TWI420484B (en) 2009-06-12 2009-06-12 Thereof frequency divider and method and gate driver of the same

Country Status (1)

Country Link
TW (1) TWI420484B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201415799A (en) * 2012-10-15 2014-04-16 Keystone Semiconductor Corp Multi modulus frequency divider
TW201415805A (en) * 2012-10-15 2014-04-16 Keystone Semiconductor Corp Frequency divider and frequency synthesizer circuit with the same
CN113674716B (en) * 2021-10-25 2022-02-11 常州欣盛半导体技术股份有限公司 Display device and gate enabling method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW378313B (en) * 1995-10-04 2000-01-01 United Microelectronics Corp Scan driver
US20040150599A1 (en) * 2002-11-21 2004-08-05 Seiko Epson Corporation Driver circuit, electro-optical device, and drive method
US20040233226A1 (en) * 2003-01-31 2004-11-25 Seiko Epson Corporation Display driver, display device, and display drive method
CN1610257A (en) * 2003-10-24 2005-04-27 立积电子股份有限公司 High-frequency various selective pre-removing device
CN101329832A (en) * 2008-07-29 2008-12-24 友达光电股份有限公司 Method for generating signal as well as display apparatus and clock impulse controller using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW378313B (en) * 1995-10-04 2000-01-01 United Microelectronics Corp Scan driver
US20040150599A1 (en) * 2002-11-21 2004-08-05 Seiko Epson Corporation Driver circuit, electro-optical device, and drive method
US20040233226A1 (en) * 2003-01-31 2004-11-25 Seiko Epson Corporation Display driver, display device, and display drive method
CN1610257A (en) * 2003-10-24 2005-04-27 立积电子股份有限公司 High-frequency various selective pre-removing device
CN101329832A (en) * 2008-07-29 2008-12-24 友达光电股份有限公司 Method for generating signal as well as display apparatus and clock impulse controller using the same

Also Published As

Publication number Publication date
TW201044367A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP4542032B2 (en) Clock duty adjustment circuit, delay locked loop circuit using the same, and method thereof
US8040315B2 (en) Device for driving a display panel with sequentially delayed drive signal
US20170200408A1 (en) Gate driver on array (goa) circuit cell, driver circuit and display panel
US7253810B2 (en) Liquid crystal display having data driver and gate driver
US20080054952A1 (en) Circuit for switching between two clock signals independently of the frequency of the clock signals
JP3604323B2 (en) Clock switching circuit
KR20160042496A (en) Duty cycle error detection device and duty cycle correction device having the same
TWI420484B (en) Thereof frequency divider and method and gate driver of the same
KR20090013481A (en) Source driver circuit and liquid crystal display device having the same
US20100244901A1 (en) Clock switching circuit, integrated circuit device and electronic apparatus
JP4762251B2 (en) Liquid crystal display device and driving method thereof
US7768333B2 (en) Apparatus and method of generating reference clock for DLL circuit
US11106237B2 (en) Shift registers
US10707849B2 (en) Synchronous mirror delay circuit and synchronous mirror delay operation method
US8729943B2 (en) Phase interpolating apparatus and method
JP5015090B2 (en) Semiconductor device counter
US11238910B2 (en) Control signal generator and driving method thereof
JPH05216558A (en) Timer circuit
KR20170122357A (en) Display device
KR100592188B1 (en) Data interface device for accessing high speed SDRAM
KR100532389B1 (en) Voltage generating device and method for driving liquid crystal panel
JP2008181170A (en) Control circuit for asynchronous circuit
JP2007279933A (en) Clock signal generation circuit
JP2002311092A (en) Scan flip-flop, scan path circuit and design method for the same
JP2006253945A (en) Semiconductor integrated circuit device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees