TWI418172B - xDSL系統內傳送資料的方法、裝置和系統 - Google Patents

xDSL系統內傳送資料的方法、裝置和系統 Download PDF

Info

Publication number
TWI418172B
TWI418172B TW096134259A TW96134259A TWI418172B TW I418172 B TWI418172 B TW I418172B TW 096134259 A TW096134259 A TW 096134259A TW 96134259 A TW96134259 A TW 96134259A TW I418172 B TWI418172 B TW I418172B
Authority
TW
Taiwan
Prior art keywords
dtu
retransmission
container
sublayer
xdsl
Prior art date
Application number
TW096134259A
Other languages
English (en)
Other versions
TW200830778A (en
Inventor
Cassiers Raphael
Christiaens Benoit
Peeters Miguel
Original Assignee
Broadcom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Broadcom Corp filed Critical Broadcom Corp
Publication of TW200830778A publication Critical patent/TW200830778A/zh
Application granted granted Critical
Publication of TWI418172B publication Critical patent/TWI418172B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1809Selective-repeat protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1874Buffer management
    • H04L1/1877Buffer management for semi-reliable protocols, e.g. for less sensitive applications like streaming video

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Communication Control (AREA)

Description

xDSL系統內傳送資料的方法、裝置和系統
本發明涉及資料通信,更具體地說,涉及一種使用資料重傳技術在數位用戶線路(xDSL)內傳送資料的方法和系統。
早在ADSL1標準推出時,xDSL內傳輸錯誤的恢復依靠改錯碼如裏德-所羅門編碼(Reed-Solomon,縮寫為RS)以及交錯技術來實現。除了提供脈衝雜訊校正外,RS編碼的使用提供了額外的編碼增益,因而提高了DSL系統可獲得的資料率。
發展到ADSL2+和VDSL2標準時,並未探究對抗脈衝雜訊的問題。但是,擴展脈衝雜訊要求所獲得的高資料,使得必須使用具有大量RS奇偶校驗位元組的非常小的RS碼字(code word)。因此,RS淨編碼增益嚴重呈負值,使可獲得的比特率降低。
當前的DSL系統通過RS向前糾錯(FEC)及關聯的交錯技術來提供脈衝雜訊保護(Impulse Noise Protection,縮寫為INP)。當需要高INP以及小的延時約束(或可用交錯記憶體受限)時,這種技術具有一些缺點,例如RS碼字引入了大量的開銷,從而在降低比特率的情況下(RS編碼增益呈負值)才能提供高的INP保護,而且如果系統不能校正錯誤,大量的用戶資料都會受到影響。此外,在低雜訊容限下,RS解碼器的性能已著重用於校正殘留的固定誤差,從而使得RS解碼器不能完全用於校正脈衝雜訊。顯然,使用典型的xDSL和RS解碼器以及交錯器設置,脈衝雜訊校正能力實際上不會低於2dB雜訊容限。
因此,本發明一方面提供一種在xDSL系統內發送資料的裝置,所述裝置包括:以資料傳輸單元(data transmission unit,縮寫為DTU)的形式在xDSL系統上發送資料的發送器,所述發送器具有物理媒介專用傳輸彙聚(physical media specific-transmission convergence,縮寫為PMS-TC)子層;實現在所述PMS-TC子層內的重傳單元,所述重傳單元包括有重傳緩衝器,用於存儲和索引重傳容器(retransmit container)內被發送的DTU,所述重傳容器定義為對應於發送的DTU的時隙;其中,所述重傳單元對指出哪個存儲的DTU需要被重傳的重傳請求作出回應,其中所述存儲的待重傳的DTU由其對應的重傳容器來標識。
作為優選,所述待重傳的DTU進一步由在PMS-TC子層內加入所述DTU的唯一的標識序號(SID)來標識。
作為優選,所述裝置進一步包括向前糾錯單元,連接至所述重傳緩衝器,用於編碼所述DTU。
作為優選,所述向前糾錯單元使用RS編碼。
作為優選,所述DTU定義為一組n個連續的碼字。
作為優選,所述DTU定義為來自非同步傳送模式(asynchronous transfer mode,縮寫為ATM)單元的固定數量的位元組。
作為優選,所述DTU定義為來自分組傳送模式(packet transfer mode,縮寫為PTM)單元的固定數量的位元組。
作為優選,所述裝置進一步包括連接至所述PMS-TC子層的重傳控制通道,所述重傳控制通道接收來自接收器的所述重傳請求,並重傳所請求的存儲的DTU。
根據本發明另一方面,本發明還提供一種在xDSL系統內發送資料的裝置,所述裝置包括:以DTU的形式在xDSL系統上發送資料的發送器,所述發送器具有傳輸協定專用傳輸彙聚(transport protocol specific-transmission convergence,縮寫為TPS-TC)子層和PMS-TC子層;設置在所述TPS-TC子層和PMS-TC子層之間的重傳子層;實現在所述重傳子層內的重傳單元,所述重傳單元包括有重傳緩衝器,用於存儲和索引重傳容器內被發送的DTU,所述重傳容器定義為對應於發送的DTU的時隙;其中,所述重傳單元對指出哪個存儲的DTU需要被重傳的重傳請求作出回應,其中所述存儲的待重傳的DTU由其對應的重傳容器來標識。
作為優選,所述待重傳的DTU進一步由在所述重傳子層內加入所述DTU的唯一的標識序號來標識。
作為優選,所述DTU定義為來自ATM單元的固定數量的位元組。
作為優選,所述DTU定義為來自PTM單元的固定數量的位元組。
作為優選,所述DTU定義為映射到單個離散多音頻(discrete multi-tone,縮寫為DMT)符號內的一組L個比特。
作為優選,所述裝置進一步包括連接至所述PMS-TC子層的重傳控制通道,所述重傳控制通道接收來自接收器的所述重傳請求,並重傳所請求的存儲的DTU。
根據本發明的一個方面,本發明還提供一種在xDSL系統內發送資料的裝置,所述裝置包括:以DTU的形式在xDSL系統上發送資料的發送器,所述發送器具有PMS-TC子層和物理媒介相關(physical media dependent,縮寫為PMD)子層;設置在所述PMS-TC子層和PMD子層之間的重傳子層;實現在所述重傳子層內的重傳單元,所述重傳單元包括有重傳緩衝器,用於存儲和索引重傳容器內被發送的DTU,所述重傳容器定義為對應於發送的DTU的時隙;其中,所述重傳單元對指出哪個存儲的DTU需要被重傳的重傳請求作出回應,其中所述存儲的待重傳的DTU由其對應的重傳容器來標識。
作為優選,所述待重傳的DTU進一步由在所述重傳子層內加入所述DTU的唯一的標識序號來標識。
作為優選,所述DTU定義為來自ATM單元的固定數量的位元組。
作為優選,所述DTU定義為來自PTM單元的固定數量的位元組。
作為優選,所述DTU定義為映射到單個DMT符號內的一組L個比特。
根據本發明的另一方面,本發明還提供一種傳送資料的方法,所述方法包括如下步驟:定義將在xDSL資料流程內發送的DTU;定義重傳容器為對應於發送的DTU的時隙;保存所述發送的DTU的副本以及對應的重傳容器的索引;在xDSL資料流程內發送所述DTU;確定發送的DTU是否在傳輸過程中被破壞;通過其對應的重傳容器來標識每個被破壞的DTU;重傳由所述對應的重傳容器所標識的DTU的未被破壞的副本。
作為優選,所述方法進一步包括通過標識序號來標識所述定義的DTU,其中所述被破壞的DTU通過其標識序號在重傳信號內標識出來。
作為優選,所述方法進一步包括保存所述發送的DTU的副本一段時間,所述一段時間足以確定出是否有任何的DTU在傳輸過程中被破壞。
作為優選,所述方法進一步包括定義所述DTU為一組n個連續的碼字,其中n=1/S且S是整數。
作為優選,所述方法進一步包括定義所述DTU為一組D個RS碼字、一塊ATM單元或一塊PTM單元。
作為優選,所述方法進一步包括定義所述DTU為映射到DMT符號上的一組L個比特。
作為優選,所述方法進一步包括定義所述DTU為包括有支援所述標識序號的開銷位元組(overhead byte),所述開銷位元組為8比特的回卷計數器(wrap-around counter),每定義一個新的DTU便加1。
作為優選,所述確定步驟進一步包括:接收指出發送的DTU被破壞的重傳請求,並請求重傳所述被破壞的DTU的未被破壞的副本,其中所述DTU的未被破壞的副本在所述重傳請求內由其對應的重傳容器來標識出來。
作為優選,所述方法進一步包括:在重傳控制通道上的第一方向上接收所述重傳請求;重傳所述被破壞的DTU的未被破壞的副本來代替新的DTU。
作為優選,所述確定步驟進一步包括:確定是否收到針對發送的DTU的確認;針對每個未被確認的DTU,生成重傳請求,通過DTU對應的重傳容器來標識出所述未被確認的DTU。
根據本發明的一個方面,本發明提供一種傳送資料的方法,所述方法包括如下步驟:接收來自發送器的xDSL資料流程,所述xDSL資料流程具有重傳容器內的一個定義的DTU,其中所述重傳容器定義為對應於所述DTU的時隙;保存所述重傳容器的索引;確定接收到的DTU是否被破壞;針對每個被破壞的DTU,發送重傳請求,請求重傳所述被破壞的DTU的未被破壞的副本,其中所述DTU的未被破壞的副本在重傳信號內由其對應的重傳容器來標識出來;接收來自所述發送器重傳的所述DTU的未被破壞的副本;替換所述xDSL資料流程內的所述被破壞的DTU為所述未被破壞的DTU副本。
作為優選,所述方法進一步包括接收由標識序號來定義的DTU,其中所述DTU的未被破壞的副本在資料流程內通過其對應的標識序號標識出來。
作為優選,所述方法進一步包括接收定義為一組n個連續的碼字的DTU,其中n=1/S且S是整數。
作為優選,所述方法進一步包括接收定義為一組D個RS碼字、一塊ATM單元或一塊PTM單元的DTU。
作為優選,所述方法進一步包括接收定義為映射到DMT符號上的一組L個比特的DTU。
作為優選,所述方法進一步包括接收進一步由支援所述標識序號的開銷位元組定義的DTU,其中所述開銷位元組為8比特的回卷計數器,每定義一個新的DTU便加1。
作為優選,所述方法進一步包括:針對每個接收到的未被破壞的DTU,在重傳控制通道上發送確認,其中所述未被破壞的DTU由其對應的重傳容器來標識。
根據本發明的一個方面,本發明提供一種傳送資料的系統,所述系統包括;用於定義將在xDSL資料流程內發送的DTU的裝置;用於定義重傳容器為對應於發送的DTU的時隙的裝置;用於保存所述發送的DTU的副本以及對應的重傳容器的索引的裝置;用於在xDSL資料流程內發送所述DTU的裝置;用於確定發送的DTU是否在傳輸過程中被破壞的裝置;用於通過其對應的重傳容器來標識出每個被破壞的DTU的裝置;用於重傳由所述對應的重傳容器所標識的DTU的未被破壞的副本的裝置。
作為優選,所述系統進一步包括用於通過標識序號來標識所述定義的DTU的裝置,其中所述被破壞的DTU通過其標識序號在重傳信號內標識出來。
作為優選,所述系統進一步包括用於保存所述發送的DTU的副本一段時間的裝置,所述一段時間足以確定出是否有任何的DTU在傳輸過程中被破壞作為優選,所述確定裝置進一步包括:用於接收指出發送的DTU被破壞的重傳請求的裝置,以及用於請求重傳所述被破壞的DTU的未被破壞的副本的裝置,其中所述DTU的未被破壞的副本在所述重傳請求內由其對應的重傳容器來標識出來。
作為優選,所述系統進一步包括:用於在重傳控制通道上的第一方向上接收所述重傳請求的裝置;用於重傳所述被破壞的DTU的未被破壞的副本來代替新的DTU的裝置。
根據本發明的一個方面,本發明還提供一種傳送資料的系統,所述系統包括:用於接收來自發送器的xDSL資料流程的裝置,所述xDSL資料流程具有重傳容器內的一個定義的DTU,其中所述重傳容器定義為對應於所述DTU的時隙;用於保存所述重傳容器的索引的裝置;用於確定接收到的DTU是否被破壞的裝置;針對每個被破壞的DTU,用於發送重傳請求以請求重傳所述被破壞的DTU的未被破壞的副本的裝置,其中所述DTU的未被破壞的副本在重傳信號內由其對應的重傳容器來標識出來;用於接收來自所述發送器重傳的所述DTU的未被破壞的副本的裝置;用於替換所述xDSL資料流程內的所述被破壞的DTU為所述未被破壞的DTU副本的裝置。
作為優選,所述系統進一步包括用於接收由標識序號來定義的DTU的裝置,其中所述DTU的未被破壞的副本在資料流程內通過其對應的標識序號標識出來。
作為優選,所述系統進一步包括:針對每個接收到的未被破壞的DTU,用於在重傳控制通道上發送確認的裝置,其中所述未被破壞的DTU由其對應的重傳容器來標識。
標準xDSL系統在其配置管理資訊庫(management information base,縮寫為MIB)內提供有稱為minINP(最小脈衝雜訊保護)的參數。minINP定義了通信鏈路應該能夠維持而無錯誤的脈衝雜訊長度。配置MIB還定義了最大傳輸延時,即maxDelay。由於(N,R)RS碼能夠校正R/2的錯誤,並且由於交錯器在至多maxDelay毫秒上擴展碼字,標準的xDSL系統可使用的開銷率等於至少:(R/2)/N>=minINP/maxDelay,例如,對於典型的minINP值(500us)和maxDelay(4ms),R/N>25%。
能夠在達到所請求的minINP和maxDelay約束的同時實現接近其所能達到的速率而無需脈衝雜訊保護(即無需付出高的RS開銷率)的系統,可以使用除RS碼外的其他技術來實現其不受脈衝雜訊影響。根據以下公開的內容,出現的脈衝雜訊長度幾乎等於最大鏈路延時的無錯誤通信鏈路在使用以下公開的資料重傳方案的情況下是可以實現的。雖然使用重傳會引入抖動(jitter),本發明的一個實施例可以限制重傳過程中引入的抖動。
以下描述一種在xDSL系統內處理資料重傳的方法。該方法使用資料重傳,同時盡可能多的限制對現有系統需要進行的改動。該方法可實現在例如現有的xDSL CO(中心局)和CPE(用戶駐地設備)晶片組上。若中心局保存其下行發送的所有資料塊的副本,一般保存5-8ms的一段時間,則可以實現資料重傳的主要原理。當CPE檢測到被破壞的資料塊,便請求中心局重傳該被破壞的塊。
一個實施例中,重傳可提供的INP為至少8個符號,其可允許CPE在使用柵格結構結合RS向前糾錯(FEC)的情況下最大化能夠獲得的編碼增益。這是因為RS開銷不需要提供INP,但可單獨選擇來最大化編碼增益。因此,在進行RS校正之前,可使用最小的交錯來分散柵格錯誤。
圖1A是發送器100的局部示意圖。圖中示出了在xDSL數據機中會出現的三個單獨的子層。第一層150是TPS-TC(傳送協定相關彙聚子層),第二層152是PMS-TC(物理媒質相關彙聚子層),第三層154是PMD(物理媒質子層)。xDSL通信技術領域的普通技術人員熟知這三個子層的基本功能並能夠確定它們典型的基於OSI的通信堆疊中的對應位置。此外,具有這樣的子層用於中心局和CPE應用的xDSL發送器和接收器在現有技術中是已知的。這樣的示例有美國博通公司的BCM6410/6420 BladeRunnerTM ADSL2+中心局晶片組和BCM6348單晶片ADSL2+用戶駐地設備晶片。
在圖1所示的配置中,本發明所介紹的資料重傳系統和方法可實現在PMS-TC子層152內,作為新的功能單元,即重傳單元104。這種方法的一個優點是其實現非常簡單。將重傳單元104放在PMS-TC子層內,可使其靠近最多錯誤發生的PMD子層。此外,這種設置針對現有的性能監控功能提供了較大的透明度。這種設置的實施例將在後續給出介紹。
在圖1B-1C所示的其他可選配置中,本發明的系統和方法將重傳單元104放置在不同的位置。例如,如圖1B所示,重傳傳輸彙聚(retransmission transmission convergence,縮寫為RTX-TC)子層定義在TPS-TC子層和PMS-TC子層之間,亦不脫離本發明的保護範圍。這一技術的一個優點是其保持現有的框架結構未改變。另一種如圖1C所示的配置中,將RTX-TC子層放置在PMS-TC子層和PMD子層之間。本申請後續介紹的大部分的原理都有效且適應於這三種可選的方案,並因此本領域的技術人員能夠修改本申請中介紹的原理。
根據本申請介紹的重傳原理,定義了資料塊或資料傳輸單元(DTU)。之前發送的DTU可以暫時存儲在中央局處。若確定在傳輸過程中DTU被破壞,則可重傳該DTU。本領域技術人員熟知的是,當前的xDSL標準定義了至少三種類型的TPS-TC功能:同步傳送模式(STM)、非同步傳送模式(ATM,常用於ADSL系統)以及分組傳送模式(PTM,其為乙太網和通用分組介面,常用於VDSL系統)。由此資料塊或DTU可定義為一個或幾個RS碼字,或某些不同的東西如ATM單元塊、PTM單元塊或65位元組的資料包。
中央局將其下行發送的所有DTU的副本保存一段時間。一個典型實施例中,DTU被保存5ms的時間。這段時間應該足以用於確定是否有任何發送的DTU在傳輸過程中被破壞並據此請求重傳。若CPE檢測到被破壞的資料塊,則可發送信號給中央局,請求重傳該被破壞的資料塊。
資料塊或DTU的大小可定義為n=1/S個碼字,其中1/S的值為整數。這使得資料塊或DTU準確的匹配一個DMT(離散多音頻技術)符號的大小。在只有一個被破壞的DMT符號的情況下,這一方案的好處在於只破壞一個資料塊。但是,這種簡化是可以選擇的。如果採用了這種簡化,重復的資料塊將成為重復的DMT符號。例如,為了克服因重復的DMT符號而具有相同的波頂因素(crest factor)的可能性,可使用新的加擾器或某些其他類型的資料隨機化方案。
通過用D個符號上的塊交錯器202(如圖2所示,即不會花費任何交錯記憶體的碼字內交錯方案)來代替卷積交錯器102,可以實現進一步的簡化,並且不會引入任何額外的傳輸延時。
進一步定義出重傳容器,用以標識出哪個被破壞的DTU需要被重傳,而不用考慮DTU被破壞的方式或程度。在本申請公開的重傳方案中,重傳容器定義為對應於DTU的“資料間隙(data slot)”或“時隙”。重傳容器可在xDSL系統的發送器(Tx)和接收器(Rx)兩側均有保存。只要發送和接收側的xDSL資料率相等,則兩側的重傳容器索引便是正確且同步的,即便在出現大量傳輸錯誤的情況下也是如此。
重傳容器索引可以用來可靠地標識出需要重傳的資料塊或DTU。對應於該重傳容器的資料塊或DTU可包括n個RS碼字。參數n可選擇接近但低於或等於1/S,使得一個DMT符號的破壞僅會導致一個或兩個DTU的重傳。兩個連續的容器可以不包括有兩個連續的資料塊,例如在容器中包含有已經被發送的資料塊時進行重傳便是如此。
每個資料塊還可由標識序號(SID)131來唯一的標識。SID 131資訊可在n個位元組上重復,一個位元組插入每個碼字,作為每個碼字的第一位元組。SID 131可以一個明顯大於重傳佇列的深度的最大計數求模而順序遞增。複用器130結合設置在PMS-TC子層152內,用於將SID 131添加到資料塊內。SID 131可在加擾器模組120之後添加,但是在FEC模組122之前,如圖1所示。資料塊或DTU可包括一組資料位元組,組成一組來由SID來標識。一個典型的資料塊或DTU 206如圖2所示。SID 131隨著每個新資料塊的生成而增加,用於標識新的資料塊以區別於重傳的資料塊。
再如圖1所示,發送器100還包括有卷積交錯器102。交錯器102接收一個(或幾分之一個)RS碼字作為輸入,並每個符號生成L0比特。標準的發送器內,對每個符號,該交錯器期望從FEC模組122接收到L0個比特。FEC 122可以是例如RS編碼器。
重傳單元104處理重傳請求。重傳單元104可存儲和管理重傳容器和重傳容器索引,以用於表示發送和存儲的DTU。本領域技術人員清楚的是,重傳單元104也可放置在FEC 122之後,例如位於RS編碼器之後。這一等效實施例(圖中未示出)顯示,重傳佇列204(如圖2所示)還可以存儲RS奇偶校驗位元組。這樣的實施例會增加記憶體約束,但是減少了計算負荷。重傳單元104的操作將在後續給出詳細的介紹。
圖2是一個典型的重傳單元104的示意框圖。重傳單元104包括用於接收來自複用器130的輸入資料和重傳請求214的複用器230。此外,複用器203接收將從重傳緩衝器204發送235的資料塊或DTU。如前所述,待發送235的DTU由其重傳容器來標識。
圖2還示出了塊交錯器202的操作。當工作在典型的塊重復模式(block repetition mode)下時,某些設置可以應用於資料塊206的框架結構。一種設置是將D個RS碼字組成一組形成資料塊206。支援的D的值可以是1、2、4、8或者更多。N和D的值可由接收器(圖中未示出)進行選擇,使得資料塊的大小小於或等於DMT符號的大小(L/8個位元組)。這些數值範圍僅是示例,並非對本發明的限制。
另一種設置是在每個RS碼字的第一個資料位元組之前加入開銷位元組,即SID位元組131。SID位元組131提供有資料塊序號ID,可以是例如8比特的回卷計數器,從0開始計數並在每生成一個新的資料塊206時加1。相同的SID位元組131可加入在同一資料塊的每個RS碼字內。
另一種設置是將資料塊或DTU存儲在重傳單元內。該重傳單元的輸出是重傳容器(如上所述),包含有其接收到的最後資料塊或者其已經存儲的之前資料塊之一。輸出資料塊可在重傳容器內迴圈回轉,偏移的位元組等於重傳容器計數器的模數256。重傳容器計數器在每次發送了新的重傳容器後遞增。以上的迴圈回轉是可選的,可以在DTU大小準確匹配DMT符號的大小時發生。
再一種設置是用對一個DTU或資料塊作用的塊交錯器202來代替卷積交錯器102。交錯深度D可設置為等於DTU內RS碼字的數量。在索引k=mod(j,Nfec)*D+floor(j/Nfec),交錯器將輸出位元組Bj,j=0...Nfec*D-1。
又一種設置是使用“重傳控制通道”110來發送和接收重傳請求。重傳控制通道110可以是例如3比特/符號的固定速率通道,在gamma介面上複用為隱式額外潛伏路徑(extra latency path)LPi+1 =LPRCC ,且LRCC =24,預先設置在資料路徑的L1+L0位元組之前。若在反方向上啟用了塊重傳模式,重傳控制通道110可出現在一個方向上,如圖1所示。在使用ADSL的一個實施例中,可使用2位元組/符號的通道。另一個使用VDSL的實施例中,使用3位元組。
FEC奇偶校驗位元組的數量R和碼字長度N可進行選擇,以保證RS解碼器能夠可靠地檢測到無法校正的碼字。例如,在R=16且N<=232時,可計算到檢測不到無法校正的碼字的可能性低於10-5 ,即105 個中有一個錯誤將檢測不到,假設每秒有10個錯誤,則每兩個小時會有一個未檢測到的錯誤。通過增大R,減小N,或通過僅允許RS解碼器校正低於R/2的錯誤,則可以實現較低的殘留未檢測未校正碼字率。參數R和D可進行選擇,以使柵格解碼器錯誤猝發串能夠被校正。由於這樣的猝發串通常跨10個音調的範圍,可使用比10*12比特/音調=15位元組(通常地)大的校正能力。例如,D=4,R>=8。或者,可選擇RS編碼以僅提供錯誤檢測。這種情況下,可選擇R=2或4。
基於從CPE(用戶室內設備)接收到的資訊,重傳單元104判斷其是否應該從RS解碼器提取新的資料塊,或者是否應該從其自己的重傳緩衝器重傳資料塊。注意,若重傳應用於下行流方向,如此所述,接收器與CPE關聯,發送器與中央局關聯。若重傳應用于上行流方向,則使用相反的規定。
對於下行流方向上的重傳,重傳單元104使用重傳索引來保存哪個資料塊206已經在哪個重傳容器中被發送的跟蹤資訊。重傳給定容器的請求可由發送器100接受一次。但是,相同的資料塊或DTU可在不同的重傳容器內重傳幾次。發送器100保存其已第一次發送給定DTU或資料塊的時間,並且不會接受包含的資料塊比給定閾值舊的重傳容器的重傳。這一閾值可配置為等於MIB最大延時參數。
在接收端,接收器可解交錯發送來的資料,並驗證和校正重傳容器傳輸的資料塊內出現的RS碼字。該接收器還驗證重傳容器內出現的SID的正確性。就這點而言,接收器具有與其中一個碼字是否無法校正以及SID是否在傳輸中被破壞有關的資訊。基於這兩種指示資訊,接收器可決定對接收到的RS碼字做些什麽。接收器可能會採取的一些動作有:丟棄該資料塊;針對剛接收到的容器向中央局發送重傳請求;用新到達的資料塊替換已經存在在接收緩衝器FIFO 304(參見圖3A和3B)內的資料塊;將該資料塊加入到接收緩衝器FIFO 304內並同時從該接收緩衝器FIFO 304中取出一個資料塊,然後使用該資料塊中出現的RS碼字繼續正常的解幀處理(deframing processing)。
接收緩衝器FIFO 304可以是m個接收的資料塊的FIFO,其長度足以允許在資料塊離開該FIFO之前接收到重傳。對於接收緩衝器FIFO 304中出現的每個資料塊或DTU,該FIFO能夠確定其是否包含有錯誤。在初時化時間,接收緩衝器FIFO填滿了正確的虛設(dummy)資料塊。因此解幀器(圖中未示出)將不會使用接收緩衝器FIFO 304中取出的頭m個資料塊。
重傳請求
任何重傳方案都依賴於接收器的反饋。該反饋必須是高度可靠的。一個實施例中,發送器接收來自接收器的重傳請求214。重傳請求214可具有不同的特徵。例如,期望的是在請求中具有冗餘。這樣的話,必須重傳的DTU最好包含在多個請求中,如果某些請求丟失的話,還是存在接收到重傳通知的可能。此外,重傳請求214最好要求盡可能小的比特率,以最小化開銷(例如,在不同實施例中,每個符號2或3位元組)。因此,格式要緊湊,請求中應該包含盡可能多的資訊。換句話說,應該最好的使用可用開銷。此外,包含在重傳請求214中資訊應該是可以理解的,有意思的,且與歷史資訊無關。換句話說,重傳請求最好自己具有意思,而不取決於任何之前發送的請求。最後,重傳請求214應該通過某些類型的錯誤檢驗來進行保護,例如校驗和,以便接收器能夠準確的區分正確的請求和出錯的請求。
在發送重傳請求214時,重傳信號可指出重傳容器ID,被重傳的上一個容器的ID,以及該容器之後帶重傳的容器的數量。該信號還包括有上一個接收的容器的ID,以及指出哪個容器需要給重傳的比特圖(bitmap)。例如,如果上一個容器ID是Cid,若Cid-I需要被重傳,則比特圖的比特I設為1。
未壓縮的重傳請求格式的典型資料結構包括{FCS,statusBitmap,lastContainerIdx}。例如:lastContainerIdx:其提供接收器的“時間戳”。通過使用這一欄位,發送器能夠知道其重傳FIFO佇列內的哪些範圍已經被接收到並與statusBitmap有關。一個實施例中,lastContainerIdx只包含有索引的少數LSB(最低有效位)。實際上,知道來回程延時(roundtrip delay)接近恒定的情況下,發送器很容易重新構建MSB。
statusBitmap:一個比特,用於前n個接收的容器中每一個。LSB攜帶容器lastContainerIdx的狀態,比特i攜帶容器lastContainerIdx-i的狀態。或者,代替每個容器攜帶1個比特,可通過幾種不同方法對資訊進行壓縮。一種方法是計算未壓縮狀態的尾隨零(trailing zero),即,發送接收到的連續錯誤容器的數量,從lastContainerIdx開始向後計數。
FCS:用於驗證請求的正確性的校驗和。
接收到資料後,將檢驗DTU或資料塊的錯誤,並基於資料塊中是否存在錯誤而採取各種不同的動作。若在收到的一個RS碼字中或在接收到的SID中存在不可恢復的錯誤,該資料塊將被加入佇列,作為下一個預期資料塊(FIFO的尾部),並且該資料塊在佇列中將標識為出錯資料塊。如果接收緩衝器FIFO 304包含有至少一個正確資料塊,則發送重傳請求給中央局。但是,如果接收緩衝器FIFO 304中只包含有錯誤的資料塊,則極有可能不會按時發生重傳,結果,重傳被禁用直到接收緩衝器FIFO 304再次部分填充有正確的DTU。檢驗資料後,可判斷出DTU中沒有殘留的錯誤。這種情況下,SID等於下一個預期的SID。因此,資料塊被加入接收緩衝器FIFO 304內並標記為正確資料塊。
另一種情況下,檢驗資料後,可判斷出SID不是預期的一個,則需要重傳。如果SID與接收緩衝器FIFO 304內的索引不匹配,則若該FIFO內沒有正確的資料包,該DTU將比丟棄。長時間出錯的情況下,這可導致可能會喪失的同步的恢復。接收到的碼字會被丟棄直至再次實現同步。若在TPS-TC層處理了重復時,不需要再同步,接收到的資料塊立即加入到接收緩衝器FIFO 304內。但是,若FIFO內有一些正確的資料塊,則接收到的資料塊會被置入佇列的起始處,並標記為錯誤資料塊,而不請求重傳。
或者,若判斷出該SID不是預期的一個且需要重傳,如果FIFO內對應於接收到的資料塊的位置處已經存在一個正確的資料塊,則可推定接收到了未對其請求重傳的資料塊。這一資料塊可置於FIFO的起始處,標記為錯誤資料塊。此外,若判斷出該SID不是預期的一個且需要重傳,如果FIFO內出現在對應於接收到的資料塊的位置處的資料塊為錯誤資料塊,則將其替換並標記為正確資料塊。
各個實施例,對重傳方案以及標準交錯模式的支援可以在通信系統內握手的過程中進行協商。一旦建立,在CLR和CL消息內,CPE和CO可分別宣稱其在接收方向上支援此模式,在發送方向上支援此模式,它們自己最差情況下的中間(half-way)來回程延時,以及發送器側迴圈FIFO的最大大小。
圖1所示的重傳控制通道110可每個符號攜帶一個重傳請求。重傳請求的格式如下:已經接收到的最近重傳容器索引的一部分(例如4個LSB);自上一個無錯容器開始接收的無錯容器的數量;必須重復的重傳容器的數量;消息校驗和。
以上介紹的傳輸方案的其他實施例和原理將結合圖3A和圖3B給出進一步的描述。端到端重傳方案的一般原理如圖3A所示。所有發送的DTU都存儲在發送器側的重傳緩衝器204內。接收到DTU後,檢查其幀校驗序列(FCS),若發現其被破壞,則立即發送重傳請求。儘管被破壞,該DTU還是被加入到接收緩衝器304內。如果重傳的DTU到達時被破壞的一個還存在於接收緩衝器304中,則替換掉該被破壞的DTU。如果重傳的資料單元未準時到達,則由接收器資料路徑對該被破壞的DTU進行進一步處理。
具體的傳送機制如下所述(Wret 表示DTU內的重傳窗口大小)。如果沒有待處理的重傳,將新的資料位元組存儲在新的DTU內,然後通過線路發送該DTU並同時將其存儲在重傳緩衝器204內。然而,如果請求了重傳,可能會有兩種情況。一種情況下,所請求的DTU的第一次傳送發生在當前時間之前的Wret *TDTU 秒之內。這種情況下,該DTU被重傳。第二種情況是,所請求的DTU的第一次傳送發生在當前時間之前的Wret *TDTU 秒之前。這種情況下,請求被丟棄並發送新的DTU。
這種機制的兩個例子將結合圖4給出。兩種情況下,Wret 都等於8個DTU。圖中上部的例子中,來回程延時等於4TDTU 。DTU # 4第一次被破壞並請求重傳。由於在第一次傳送後的4 TDTU 請求的第一次重傳,該重傳發生。該同一DTU # 4再次被破壞,發回第二次請求。第二次請求在第一次請求前的8 TDTU 內收到,因此第二次重傳發生,DTU # 4在延時8 TDTU 後收到。
圖4中下部的例子中,也是DTU # 4的兩次傳送都給破壞,但這次來回程延時是5 TDTU 。由於第二次請求在第一次傳送後8 TDTU 後到達,該請求被丟棄,DTU # 4不會被發送,即該線路上發生錯誤。由於接收器知道在8 TDTU 之後,沒有機會再收到DTU # 4,DTU # 5將在重排佇列中停留不超過8 TDTU
另一種端對端重傳方案在圖3B中示出。在此加入了速率匹配FIFO 306來類比數位用戶線路物理層的輸入處的網路處理器。假設DTU的傳送率(等效於淨承載速率)為Rd ,保障服務(guaranteed service)的速率為Rin ,原則如下:對於新DTU的每次傳送,Rin * TDTU 比特進入速率匹配FIFO 306,而至多Rd * TDTU 比特離開速率匹配FIFO 306。如果速率匹配FIFO 306內包含的比特小於Rd * TDTU ,則由TPS-TC的速率匹配處理通過ATM下的空單元插入或PTM下的空位元組插入來將丟失的比特加入進去,因為DTU總是包含有Rd * TDTU 比特。注意,這一處理是統計學上的,並遵循ATM或PTM TPS-TC的速率匹配規則。所述的實施例中,DTU的每次重傳,Rin * TDTU 比特進入速率匹配FIFO而沒有比特離開速率匹配FIFO 306。
如前所述,某些實施例中,重傳可在TPS-TC和PMS-TC之間控制。作為新的“重傳層”,資料塊可被定義為一組ATM單元、PTM單元或65位元組的資料包。這一方法保持現有的幀結構不被改變。此外,使用這種方法可為資料塊提供新的保護方案,即新的CRC。
示例方法
圖5所示為傳送資料的方法500的流程圖。圖5所示的方法500從位於中央局設備中的發送器的角度來執行。步驟505中,定義資料傳輸單元(DTU)。一個實施例中,該DTU以xDSL資料流程的形式發送。如上所述,資料塊或DTU可以定義為一個或幾個RS碼字,或其他不同的東西如ATM單元塊、PTM單元塊或65位元組的資料包。
步驟510中,進一步定義重傳容器為對應於一個發送的DTU的時隙或資料間隙。重傳容器可使用總是增加的索引(初始時從0開始)來標識。如步驟515所述,重傳容器索引與發送的DTU的對應副本一起保存在發送器處,並可能附有標識出該DTU第一次傳輸的時間的時間戳。只要xDSL資料率在發送側和接收側完全相同,重傳容器索引便是正確的並在兩側同步,即便出現大量傳輸錯誤的情況下也是如此。因而可以使用重傳容器索引來可靠地識別出需要進行重傳的資料塊或DTU。
步驟520中,以xDSL資料流程發送DTU。然後在步驟525中,發送器判斷發送的DTU是否在傳輸過程中被破壞。發送器至少可以使用兩種方法來判斷發送的DTU是否被破壞。一個實施例中,會接收到請求重傳被破壞的DTU的未被破壞副本的重傳請求。這樣的實施例中,步驟530中,在重傳請求內通過對應的重傳容器將DTU的末破壞副本標識出來。該重傳請求可通過重傳控制通道在反方向上接收到,然後返回該DTU的未破壞副本來代替下行流(中央局發送器的情況下)方向上的新DTU。
另一個可選實施例中,針對每個有效傳送的DTU都預期收到確認。如果未收到確認,則可認為該DTU未有效地接收到並可能被破壞。這種情況下,發送器可由自己產生重傳請求。再根據步驟530,該重傳請求通過與DTU對應的重傳容器來標識出未得到確認的DTU。然後另一個實施例中,可將以上兩種方法一起使用,以增強被破壞的DTU都被標識出來以便重傳的可靠性,並優化重傳發生之前的延時。
一旦處理了重傳請求並且對應的DTU已經通過其重傳容器標識出來,則在步驟532中校驗從該DTU的第一次傳輸開始所消耗的時間。一個實施例中,如果消耗的時間落入允許的重傳窗(retransmit window)內,則在步驟535中重傳該DTU的未破壞副本。
圖6所示為傳送資料的方法600的流程圖。圖6所示的方法600是從位於CPE側的接收器的角度來執行的。步驟605中,在重傳容器內接收到來自發送器的定義了DTU的xDSL資料流程。該重傳容器定義為對應於一個接收到的DTU的時隙。步驟610中,保存該重傳容器的索引。
接著,步驟615中,接收器判斷接收到的DTU是否被破壞。接收器可以使用現有的各種錯誤校驗方案。步驟620中,針對每個被破壞的DTU,發送重傳請求,請求重傳該被破壞的DTU的未被破壞副本;或者,針對每個接收的DTU,發送肯定或否定的確認應答,讓發送器知道哪個DTU需要進行重傳。該DTU的未被破壞副本在重傳請求中通過其對應的重傳容器來標識出來。
該重傳請求將在對應的發送器側進行處理,然後步驟625中,接收器將從發送器接收到重傳的未被破壞DTU副本。最後步驟630中,用未被破壞DTU代替xDSL資料流程內被破壞的DTU。如上所述,為此目的使用了重傳緩衝器。
控制參數
基於使用速率匹配佇列的重傳模型,可以得出三個高級參數:-以毫秒(ms)為單位的延時,等於(Nret +Wret )*TDTU 。注意,該延時可拆分成因重傳的再排序而產生的延時Wret TDTU 和因DTU的重傳而產生的延時Nret TDTU
-脈衝雜訊保護(INP),在DMT符號內等於Nret TDTU /Ts ,Ts為符號持續時間(symbol duration,例如250us)。
-兩個最差脈衝之間可支援的最小達到間隔(IA),即(Nret +Nint )*TDTU
這些參數如DelayMax、INPmin和IAmin的上下限,為操作者提供了對重傳方案的完全控制。一個實施例中,DelayMax提供了對交錯器延時的限制。注意,配置的DelayMax應該大於來回程延時。INPmin提供了對脈衝雜訊保護的限制。IAmin提供了最小保證率,Rin =(IAmin-INPmin)/IAmin*Rd
出現重傳的某些特定端對端資料傳輸行為需要新的控制參數來依據可用用戶資料和抖動提供保證性能和預計性能。一個典型實施例中,可使用以下參數,並且這些參數都是可針對每條線路以及每個方向單獨配置的。
maxDelay (表示為ms)--該參數(正常交錯中已有使用)定義了最大允許的標稱延時,其由數據機用於設置允許的接收器重傳佇列大小的上限。由於該參數必須至少等於來回程延時,若配置的maxDelay小於4ms,則無法啟動重傳。
minimunRate (表示為kb/s)--該參數(正常交錯中已有使用)定義了最小保證用戶資料率。用於重傳的可用帶寬等於線路上的當前資料率和配置的最小輸率之間的差。
INPmin (表示為符號的第10)--該參數(正常交錯中已有使用)定義了最小保證脈衝雜訊保護,倘若允許用於重傳的可用資料帶寬未被超出。
INPmax (表示為符號的第10)--該參數(正常交錯中已有使用)定義了可能發生的連續重傳的數量,並因此限制了因重傳造成的最大抖動。默認的零值不限制連續重傳的數量(但是永遠不會超過maxDelay*4個符號)。
minRtxRatio (表示為第1/256,相對於最小資料率)--該參數允許在最小資料率之外規定最小保證重傳帶寬。在已知最大長度和周期的脈衝重復的情況下,這一參數可用於保證重復的脈衝雜訊能夠被校正。默認的零值不會限制任何額外的用於重傳的保證資料帶寬。
minRSoverhead (表示為第1/256)--這一新參數允許限制最小RS開銷量(R/N)。該參數可用來保證特定量的穩態校錯能力。默認的零值不限制RS開銷的使用。
在使用VDSL2的實施例中,當使用標準交錯方案時,公共交錯記憶體被動態地拆分為上行流(US)方向和下行流(DS)方向。通過類似的方式,當啟用重傳方案時,重傳記憶體被拆分為上行流方向和下行流方向。兩種情況下,這種拆分都是以上行和下行速率與針對每條線路單獨配置的給定比率相匹配的方式來執行的。
具體實施例的表現
基於前述的模型,對典型VDSL2配置內的交錯器和重復迴圈方案的性能進行了比較。使用的VDSL2系統中,符號持續時間Ts =250us,來回程延時為5ms,交錯器記憶體為65536位元組或重傳佇列為32768位元組(假設交錯器記憶體可重復用於重傳),DTU持續時間TDTU =260us。
實現INPmin的最小連續重傳數量等於
處理來回程延時和連續重傳數量的最小DTU數量等於
DTU的最大傳送率(等效於承載速率)等於
DTU的保證傳送率和最大傳送率之間的比值為:
基於這些等式,可針對不同的INPmin獲得DTU的最大傳送率、總的延時、速率匹配FIFO和重傳重排佇列導致的延時之間的拆分,如表1所示。保證速率和淨速率之間的比值如表2所示。與交錯方案相比,針對相同的INPmin和MaxDelay,可得到方案(profile)8a的標準參數下的最大速率。結果在表3中列出,並還列出了RS編碼的開銷。
通過比較這些表,可確定,對於相同的延時,在用於低INP需求(例如1或2個DMT符號)的最大可實現速率方面,交錯器的表現比重傳更好。如果降低來回程延時,重傳方案會具有更好的性能。不管怎麽樣,交錯器方案會產生高的RS編碼開銷。這一高開銷導致低的或負的編碼增益。此外,即使線路不受脈衝影響,重傳方案在好的線路條件下會自動增加淨資料速率。
為了檢驗低或負編碼增益造成的影響,將使用表3中列出的INPmin和MaxDelay的交錯器方案的性能與RS編碼開銷接近最優(例如RS(239,255))的重傳機制的性能進行了比較。在實際回路和脈衝雜訊情況下交錯器和重傳方案之間的比較結果如圖7所示。
帶圓點和矩形的兩條曲線分別示出了建議的最大延時為8ms和INPmin為8個DMT符號的重傳方案的性能。第一種情況下,由於其應該是120Hz REIN(重復脈衝雜訊)的情形,到達間隔時間設為8ms。重傳的性能(帶矩形的曲線)比使用等效的FEC方案獲得的性能(帶三角的曲線)要好。圖7中,對於REIN情形下的相同性能,重傳提供的INP比FEC方案多兩倍。
第二種情況下,性能是以達到間隔時間為128ms來計算的,因為其處於SHINE(單高脈衝雜訊事件)環境。該環境下,其性能幾乎等於最佳編碼增益RDTU 下可獲得的最大性能。這相比於FEC方案來說是一種改進,此時開銷量與最壞情況下的脈衝頻率無關。
比較理想交錯/理想重傳
前述部分使用標準的限制來比較交錯和重傳方案,但還可以以更一般的方法來比較這兩個方案。表4中的等式便可用於這種比較。這些等式是在假設沒有諸如記憶體大小、Dmax、DTU的大小和交錯與重傳設置內的理想保證性這一類的限制的情況下得到的。這些等式可視為實際實現等式的繼續擴展。
表4中:-Rline 是RS編碼器輸出處的資料率,以kbit/s表示;-DelayMax是最大延時,以ms表示;-INPmin是持續時間為Ts 的DMT符號內的最小INP;-R是RS編碼開銷,N是RS碼字長度;-Roundctrip是來回程時間,以ms表示;-IAmin是最小到達間隔時間,以ms表示(如前述部分所定義的)。
根據這些等式,可以從可用保證資料速率、延時、針對給定工作點(working point)的記憶體使用這些方面比較重傳和交錯方案的性能。工作點由以下來定義:一組包括INPmin、DelayMax和IAmin的MIB配置;Rline定義的某個回路和雜訊條件;來回程延時Roundtrip。針對所有的實施例,來回程延時都可以設為5ms。
圖8是重傳和交錯方案之間的保證速率的比較示意圖。圖8示出了針對不同INPmin和IAmin的DelayMax,用於重傳和交錯的保證速率之間的比值。如圖所示,針對DelayMax大於(roundtrip+INPmin*Ts)ms的情形,使用重傳的性能通常比交錯方案的要好。此外,INPmin值越高,重傳的優勢越大。這些結果都與Rline無關,因此對於給定的回路和雜訊條件,重傳通常都比交錯方案提供更好的速率。注意,IAmin=8ms對應於類似REIN的配置(當DelayMax大於IAmin時,IAmin設為等於DelayMax)。
圖9所示為針對重傳和交錯的延時之間的比,其不依賴於IAmin。使用重傳時的總延時低於交錯方案。此外,由於重傳的總延時與最大延時無關,因而重傳的優勢隨著DelayMax的增加而增大。這些結果都與Rline 無關,因此對於給定的回路和雜訊條件,重傳通常都比交錯方案提供更好的速率。
圖10是交錯和重傳方案所需的記憶體由Rline 進行標準化後的示意圖。該比率不依賴於INPmin和IAmin。如圖所示,重傳使用固定的記憶體大小,而交錯方案所需的記憶體大小隨著延時的增加而增大。實際上,DelayMax大於9ms時,對於相同的INPmin和Rline ,重傳使用的記憶體空間更小。
圖7-10是非常一般條件下的結果,表明對於大多數普通情況下,使用了重傳時,即DelayMax大於來回程延時時,重傳在效率和延時方面都能比交錯方案提供更好的性能。INPmin大於2時,這一優勢更加明顯。此外,檔延時超過9ms時,重傳通常比交錯方案需要的記憶體空間更小。
以上介紹的實施例可適用于現有的使用ADSL2和VDSL2標準的系統內,並可以透明的方式引入重傳。更具體來說,某些實施例可明顯地限制重傳事件所引入的抖動;可相容傳輸的各種類型的資料(ATM、PTM或任何類型的封包協定);可最小化對現有系統的改動;可與發生問題的物理鏈路連接;並且可以應對不能處理任何資料損失的固定資料幀格式約束範圍內的重傳。一種變形實施例中,可以選擇最佳的位置在現有xDSL資料流程內插入“重傳層”。
錯誤檢測
重傳方案使用了一些錯誤檢測器。該錯誤檢測器可以不同方式實現,考慮到重傳方案的可行性,錯誤檢測器的具體實現方式是不重要的。重傳技術使用被破壞的接收資料的重傳來實現目標BER要求。一個重要的操作是被破壞資料的識別。為了使該方案有效,錯誤檢測器必須可靠。xDSL系統內,可以在不同位置設置不同類型的錯誤檢測器,包括:●基於加入到發送的資料內的一些開銷的專用檢測器●使用已經存在的CRC校驗和●使用已經存在的RS開銷
RSFEC冗餘將短來回程延時和xDSL系統內的可用性兩者的優勢結合起來。
基於RS的錯誤檢測
一個實施例中,使用長度為N的碼字內的R個位元組作為RS開銷。RS解碼器可校正該碼字內的高達R/2個位元組。根據作出的校正的數量,可計算出錯誤校正(未恢復出原始的正確資料的校正)的可能性。該可能性隨著對碼字作出的校正的數量越小而越小。對於給定數量的校正,該可能性隨碼字長度的減小而變小。
對於上少描述的重傳方案的實施例,下面兩個特徵是期望得到的。第一,錯誤檢測器應該具有某些校正能力。例如,假設每個符號有5%的碼字資料被破壞(5%的傳送音調突然在一段長時間內變成雜訊),若錯誤檢測器沒有校正能力,該方案將針對所有符號請求重傳,很快變導致傳輸凍結。第二,錯誤檢測器應該具有很高的可靠性。由於重傳技術允許去除數據校正技術或至少允許降低其校正能力,因此,任何被破壞的資料都能檢測出來以被重傳是很重要的。否則,被破壞的資料傳送通過而沒有或僅有有限的可能性對其進行進一步的校正。
RS開銷通常適用於應對這兩個特徵。實際上,基於選擇的錯誤校正可能性Pmis-corr ,若錯誤校正可能性低於Pmis-corr ,該檢測器應該檢測接收到的碼字。這種情況下,不會有重傳請求。此外,若錯誤校正可能性高於Pmis-corr ,檢測器應該請求進行重傳。這時,接收到的碼字會被校正,以便在重傳未按時到達(在碼字必須傳送到上層之前)的情況下傳送最可能的碼字。
因此,以上介紹的本發明的實施例可以通過硬體、軟體,或者軟、硬體結合來實現。本發明可以在至少一個電腦系統中以集中方式實現,或者由分佈在幾個互連的電腦系統中的不同部分以分散方式實現。任何可以實現所述方法的電腦系統或其他設備都是可適用的。常用軟硬體的結合可以是安裝有電腦程式的通用電腦系統,通過安裝和執行所述程式控制電腦系統,使其按所述方法運行。在電腦系統中,利用處理器和存儲單元來實現所述方法。
本發明還可以通過電腦程式產品進行實施,所述套裝程式含能夠實現本發明方法的全部特徵,當其安裝到電腦系統中時,通過運行,可以實現本發明的方法。本文件中的電腦程式所指的是:可以採用任何程式語言、代碼或符號編寫的一組指令的任何運算式,該指令組使系統具有資訊處理能力,以直接實現特定功能,或在進行下述一個或兩個步驟之後實現特定功能:a)轉換成其他語言、編碼或符號;b)以不同的格式再現。
本發明是通過幾個具體實施例進行說明的,本領域技術人員應當明白,在不脫離本發明範圍的情況下,還可以對本發明進行各種變換及等同替代。另外,針對特定情形或具體情況,可以對本發明做各種修改,而不脫離本發明的範圍。因此,本發明不局限於所公開的具體實施例,而應當包括落入本發明權利要求範圍內的全部實施方式。
發送器...100
卷積交錯器...102
重傳單元...104
重傳控制通道...110
加擾器模組...120
向前糾錯(FEC)模組...122
複用器...130
標識序號(SID)...131
傳送協議相關彙聚(TPS-TC)子層...150
物理媒質相關彙聚(PMS-TC)子層...152
物理媒質(PMD)子層...154
塊交錯器...202
重傳緩衝器...204
資料塊...206
重傳請求...214
複用器...230
發送...235
重傳容器計數器的模數...256
接收緩衝器FIFO...304
速率匹配FIFO...306
圖1A-1C分別是發送器的示意框圖;圖2是重傳單元和塊交錯操作的示意框圖;圖3A和3B分別是重傳方案的示意框圖;圖4是基本傳輸機制的示意圖;圖5是發送器所執行方法的流程圖;圖6是接收器執行的方法的流程圖;圖7是交錯器方案的性能的示意圖;圖8是重傳和交錯方案之間的保證率的比較示意圖;圖9是重傳的延時和交錯的延時之間的比率的示意圖;圖10是交錯器和重傳所需的記憶體由Rline 進行標準化後的示意圖。
圖5為流程圖,無元件符號說明

Claims (10)

  1. 一種在xDSL系統內發送資料的裝置,其特徵在於,所述裝置包括:以DTU的形式在xDSL系統上發送資料的發送器,所述發送器具有PMS-TC子層;實現在所述PMS-TC子層內的重傳單元,所述重傳單元包括有重傳緩衝器,用於存儲和索引重傳容器內被發送的DTU,所述重傳容器定義為對應於發送的DTU的時隙;其中,所述重傳單元對指出哪個存儲的DTU需要被重傳的重傳請求作出回應,其中所述存儲的待重傳的DTU由其對應的重傳容器來標識。
  2. 如申請專利範圍第1項所述的裝置,其中,所述待重傳的DTU進一步由在PMS-TC子層內加入所述DTU的唯一的標識序號來標識。
  3. 如申請專利範圍第1項所述的裝置,其中,所述裝置進一步包括向前糾錯單元,連接至所述重傳緩衝器,用於編碼所述DTU。
  4. 一種在xDSL系統內發送資料的裝置,其特徵在於,所述裝置包括:以DTU的形式在xDSL系統上發送資料的發送器,所述發送器具有TPS-TC子層和PMS-TC子層;設置在所述TPS-TC子層和PMS-TC子層之間的重傳子層;實現在所述重傳子層內的重傳單元,所述重傳單元包括有重傳緩衝器,用於存儲和索引重傳容器內被發送的DTU,所述重傳容器定義為對應於發送的DTU的時隙;其中,所述重傳單元對指出哪個存儲的DTU需要被重傳的重傳請求作出回應,其中所述存儲的待重傳的DTU由其對應的重傳容器來標識。
  5. 如申請專利範圍第4項所述的裝置,其中,所述待重傳的DTU進一步由在所述重傳子層內加入所述DTU的唯一的標識序號來標識。
  6. 一種在xDSL系統內發送資料的裝置,其特徵在於,所述裝置包括:以DTU的形式在xDSL系統上發送資料的發送器,所述發送器具有PMS-TC子層和PMD子層;設置在所述PMS-TC子層和PMD子層之間的重傳子層;實現在所述重傳子層內的重傳單元,所述重傳單元包括有重傳緩衝器,用於存儲和索引重傳容器內被發送的DTU,所述重傳容器定義為對應於發送的DTU的時隙;其中,所述重傳單元對指出哪個存儲的DTU需要被重傳的重傳請求作出回應,其中所述存儲的待重傳的DTU由其對應的重傳容器來標識。
  7. 一種傳送資料的方法,其特徵在於,所述方法包括如下步驟:定義將在xDSL資料流程內發送的DTU;定義重傳容器為對應於發送的DTU的時隙;保存所述發送的DTU的副本以及對應的重傳容器的索引;在xDSL資料流程內發送所述DTU;確定發送的DTU是否在傳輸過程中被破壞;通過其對應的重傳容器來標識每個被破壞的DTU;重傳由所述對應的重傳容器所標識的DTU的未被破壞的副本。
  8. 一種傳送資料的方法,其特徵在於,所述方法包括如下步驟:接收來自發送器的xDSL資料流程,所述xDSL資料流程具有重傳容器內的一個定義的DTU,其中所述重傳容器定義為對應於所述DTU的時隙;保存所述重傳容器的索引;確定接收到的DTU是否被破壞;針對每個被破壞的DTU,發送重傳請求,請求重傳所述被破壞的DTU的未被破壞的副本,其中所述DTU的未被破壞的副本在重傳信號內由其對應的重傳容器來標識出來;接收來自所述發送器重傳的所述DTU的未被破壞的副本;替換所述xDSL資料流程內的所述被破壞的DTU為所述未被破壞的DTU副本。
  9. 一種傳送資料的系統,其特徵在於,所述系統包括:用於定義將在xDSL資料流程內發送的DTU的裝置;用於定義重傳容器為對應於發送的DTU的時隙的裝置;用於保存所述發送的DTU的副本以及對應的重傳容器的索引的裝置;用於在xDSL資料流程內發送所述DTU的裝置;用於確定發送的DTU是否在傳輸過程中被破壞的裝置;用於通過其對應的重傳容器來標識出每個被破壞的DTU的裝置;用於重傳由所述對應的重傳容器所標識的DTU的未被破壞的副本的裝置。
  10. 一種傳送資料的系統,其特徵在於,所述系統包括:用於接收來自發送器的xDSL資料流程的裝置,所述xDSL資料流程具有重傳容器內的一個定義的DTU,其中所述重傳容器定義為對應於所述DTU的時隙;用於保存所述重傳容器的索引的裝置;用於確定接收到的DTU是否被破壞的裝置;針對每個被破壞的DTU,用於發送重傳請求以請求重傳所述被破壞的DTU的未被破壞的副本的裝置,其中所述DTU的未被破壞的副本在重傳信號內由其對應的重傳容器來標識出來;用於接收來自所述發送器重傳的所述DTU的未被破壞的副本的裝置;用於替換所述xDSL資料流程內的所述被破壞的DTU為所述未被破壞的DTU副本的裝置。
TW096134259A 2006-09-13 2007-09-13 xDSL系統內傳送資料的方法、裝置和系統 TWI418172B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US82554206P 2006-09-13 2006-09-13
US90783307P 2007-04-18 2007-04-18
US11/853,532 US8320248B2 (en) 2006-09-13 2007-09-11 Method and system for communicating data in xDSL using data retransmission

Publications (2)

Publication Number Publication Date
TW200830778A TW200830778A (en) 2008-07-16
TWI418172B true TWI418172B (zh) 2013-12-01

Family

ID=38834461

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096134259A TWI418172B (zh) 2006-09-13 2007-09-13 xDSL系統內傳送資料的方法、裝置和系統

Country Status (6)

Country Link
US (1) US8320248B2 (zh)
EP (1) EP1901470B1 (zh)
KR (1) KR100935377B1 (zh)
CN (1) CN101321046B (zh)
HK (1) HK1125235A1 (zh)
TW (1) TWI418172B (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101314976B1 (ko) 2004-10-15 2013-10-14 티큐 델타, 엘엘씨 임펄스 잡음 존재 하에서의 디엠티 심볼 반복
US8381055B2 (en) 2006-09-13 2013-02-19 Broadcom Corporation System for communicating data in xDSL using data retransmission
US7970733B2 (en) * 2006-09-13 2011-06-28 Broadcom Corporation Method for communicating data in xDSL using data retransmission
US8223628B2 (en) * 2007-01-10 2012-07-17 Lantiq Deutschland Gmbh Data transmission method, transmitter, receiver, transceiver and transmission system
US9686045B2 (en) * 2007-04-04 2017-06-20 Lantiq Beteiligungs-GmbH & Co. KG Data transmission and retransmission
US8788901B2 (en) * 2007-10-02 2014-07-22 Lantiq Deutschland Gmbh Retransmission scheme for communication systems
US8351464B2 (en) * 2007-10-02 2013-01-08 Infineon Technologies Ag Retransmission in data communication systems
US8468427B2 (en) * 2007-10-02 2013-06-18 Lantiq Deutschland Gmbh Retransmission scheme for communication systems
US8250441B2 (en) * 2007-12-11 2012-08-21 Wi-Lan Inc. Outer coding framework for application packet error rate minimization
EP2241007A4 (en) * 2008-01-03 2013-12-18 Ikanos Technology Ltd COGNITIVE AND UNIVERSAL IMPULSE NOISE PROTECTION
US8381057B2 (en) * 2008-08-04 2013-02-19 Broadcom Corporation Seamless change of retransmission and rescheduling queues in a communication system
US9450713B2 (en) * 2008-08-12 2016-09-20 Lantiq Beteiligungs-GmbH & Co. KG Retransmitting data with time-marker information
CN101674156B (zh) * 2008-09-12 2013-09-11 领特德国有限公司 用于通信系统的重发方案
US8910006B2 (en) * 2008-09-12 2014-12-09 Infineon Technologies Ag Systems and methods for regulating delay between network interfaces
US8463955B2 (en) * 2009-01-19 2013-06-11 Ikanos Communications, Inc. Transport frame structure for retransmission in DSL
US9075696B2 (en) * 2009-03-09 2015-07-07 Tektronix, Inc. Apparatus and method for performing burst triggering in a test and measurement instrument
CN101860422B (zh) * 2009-04-09 2014-02-19 华为技术有限公司 一种数字用户线路的数据传输方法、装置及系统
US8677226B2 (en) * 2009-05-04 2014-03-18 Ikanos Communications, Inc. Systems and methods for retransmission return channel error detection
CN101895403B (zh) 2009-05-22 2013-08-28 华为技术有限公司 一种数据传送方法、装置和通信系统
US8782483B2 (en) * 2009-09-17 2014-07-15 Lantiq Deutschland Gmbh Method and device for retransmission
US8504888B2 (en) * 2010-05-04 2013-08-06 Lantiq Deutschland Gmbh Communication devices and methods with online parameter change
US9596177B2 (en) * 2012-04-12 2017-03-14 Lantiq Deutschland Gmbh Method for a retransmission roundtrip correction
US9288152B2 (en) * 2012-10-16 2016-03-15 Futurewei Technologies, Inc. Pre-fill retransmission queue
DE102013220606B4 (de) * 2012-10-28 2018-12-27 Lantiq Beteiligungs-GmbH & Co. KG Paketkapselungsverfahren für den Mehrfachdienstbetrieb von einem Verteilungspunkt
EP2797249B1 (en) * 2013-04-23 2016-04-20 Alcatel Lucent Method and system for configuring retransmission parameters
CN105357271B (zh) * 2015-09-30 2019-05-24 华为技术有限公司 一种信息处理方法及对应装置
CN111342555B (zh) * 2020-02-27 2021-10-08 致能装备科技(集团)有限公司 一种智能分布式dtu配电终端及控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434847A (en) * 1993-02-26 1995-07-18 Nec Corporation Random access satellite communication system using random numbers generated in a range variable with channel traffic
US6373842B1 (en) * 1998-11-19 2002-04-16 Nortel Networks Limited Unidirectional streaming services in wireless systems
US20020167949A1 (en) * 1998-02-26 2002-11-14 Gordon Bremer Apparatus and method for asynchronous transfer mode (ATM) adaptive time domain duplex (ATDD) communication
US20030076826A1 (en) * 2001-10-23 2003-04-24 International Business Machine Corporation Reliably transmitting a frame to multiple destinations by embedding sequence numbers in the frame
US20030208772A1 (en) * 2002-05-02 2003-11-06 Celite Systems Digital subscriber line head-end
US20050094667A1 (en) * 2000-07-24 2005-05-05 Telefonaktiebolaget Lm Ericsson (Publ) Flexible ARQ for packet data transmission
US20050135412A1 (en) * 2003-12-19 2005-06-23 Fan Kan F. Method and system for transmission control protocol (TCP) retransmit processing
US20050286566A1 (en) * 2004-06-23 2005-12-29 Po Tong Versatile erasure forecasting system for impulse noise mitigation
WO2006044533A1 (en) * 2004-10-15 2006-04-27 Aware, Inc. Dmt symbol repetition in the presence of impulse noise

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5959994A (en) * 1996-08-19 1999-09-28 Ncr Corporation ATM/SONET network enhanced as a universal computer system interconnect
US5970253A (en) * 1997-01-09 1999-10-19 Unisys Corporation Priority logic for selecting and stacking data
US7058027B1 (en) * 1998-09-16 2006-06-06 Scientific Research Corporation Systems and methods for asynchronous transfer mode and internet protocol
US6694470B1 (en) * 1999-05-21 2004-02-17 Panasonic Communications Co., Ltd. Retransmission procedure and apparatus for handshaking protocol
EP1119775B1 (en) 1999-05-21 2013-05-01 Panasonic System Networks Co., Ltd. Retransmission procedure and apparatus for handshaking protocol
KR100624618B1 (ko) 2000-06-26 2006-09-18 유티스타콤코리아 유한회사 제어 패이로드데이터유닛을 이용한 데이터와 제어정보의병렬 송수신 방법
KR100649300B1 (ko) * 2000-11-07 2006-11-24 주식회사 케이티 통신 시스템에서의 적응적인 데이터 전송 방법 및 그 장치
US7782933B2 (en) * 2001-05-08 2010-08-24 Alistair Malcolm Macdonald Digital subscriber line diagnostic system
US6718493B1 (en) * 2001-05-17 2004-04-06 3Com Corporation Method and apparatus for selection of ARQ parameters and estimation of improved communications
SE0101846D0 (sv) * 2001-05-22 2001-05-22 Ericsson Telefon Ab L M Method and system of retransmission
US7120429B2 (en) * 2001-08-13 2006-10-10 Qualcomm Inc. System and method for licensing applications on wireless devices over a wireless network
US20040202181A1 (en) * 2001-08-16 2004-10-14 Mitchell Paul D Burst reservation multiple access scheme with free abd demand bandwidth assignment (brma-fd)
SE0102775D0 (sv) * 2001-08-17 2001-08-17 Ericsson Telefon Ab L M Method and system of retransmission
US7330432B1 (en) * 2001-11-15 2008-02-12 Network Appliance, Inc. Method and apparatus for optimizing channel bandwidth utilization by simultaneous reliable transmission of sets of multiple data transfer units (DTUs)
US7561523B1 (en) * 2001-11-15 2009-07-14 Netapp, Inc. Method and apparatus for flow control in a reliable multicast communication system
KR100840733B1 (ko) * 2002-01-05 2008-06-24 엘지전자 주식회사 통신 시스템에서 패킷 데이터 처리하는 방법 그 시스템 및 그 수신 장치
JP2004072267A (ja) * 2002-08-02 2004-03-04 Panasonic Communications Co Ltd Adslモデム装置及びその通信方法
US7234086B1 (en) * 2003-01-16 2007-06-19 Pmc Sierra, Inc. Overlapping jumping window for SONET/SDH bit error rate monitoring
SE0300443D0 (sv) * 2003-02-17 2003-02-17 Ericsson Telefon Ab L M Method and system of channel adaption
JP2005045589A (ja) 2003-07-23 2005-02-17 Yokogawa Electric Corp xDSL通信方法及び通信システム
US7283814B2 (en) * 2003-07-31 2007-10-16 Lucent Technologies Inc. Method and apparatus for scheduling transmissions in wireless data networks
EP1507352B1 (en) * 2003-08-14 2007-01-31 Matsushita Electric Industrial Co., Ltd. Time monitoring of packet retransmissions during soft handover
US7630862B2 (en) * 2004-03-26 2009-12-08 Microsoft Corporation Load test simulator
US7742501B2 (en) * 2004-08-06 2010-06-22 Ipeak Networks Incorporated System and method for higher throughput through a transportation network
US20060133355A1 (en) 2004-12-22 2006-06-22 Thomas Anschutz Methods, systems and computer program products for error correction by retransmitting errored packets over a data link
US20060215689A1 (en) * 2005-03-24 2006-09-28 Alcatel System-level communication link bonding apparatus and methods
US7970733B2 (en) * 2006-09-13 2011-06-28 Broadcom Corporation Method for communicating data in xDSL using data retransmission
US8381055B2 (en) * 2006-09-13 2013-02-19 Broadcom Corporation System for communicating data in xDSL using data retransmission
US7865610B2 (en) * 2007-03-12 2011-01-04 Nautel Limited Point to multipoint reliable protocol for synchronous streaming data in a lossy IP network
US8381057B2 (en) * 2008-08-04 2013-02-19 Broadcom Corporation Seamless change of retransmission and rescheduling queues in a communication system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434847A (en) * 1993-02-26 1995-07-18 Nec Corporation Random access satellite communication system using random numbers generated in a range variable with channel traffic
US20020167949A1 (en) * 1998-02-26 2002-11-14 Gordon Bremer Apparatus and method for asynchronous transfer mode (ATM) adaptive time domain duplex (ATDD) communication
US6373842B1 (en) * 1998-11-19 2002-04-16 Nortel Networks Limited Unidirectional streaming services in wireless systems
US20050094667A1 (en) * 2000-07-24 2005-05-05 Telefonaktiebolaget Lm Ericsson (Publ) Flexible ARQ for packet data transmission
US20030076826A1 (en) * 2001-10-23 2003-04-24 International Business Machine Corporation Reliably transmitting a frame to multiple destinations by embedding sequence numbers in the frame
US20030208772A1 (en) * 2002-05-02 2003-11-06 Celite Systems Digital subscriber line head-end
US20050135412A1 (en) * 2003-12-19 2005-06-23 Fan Kan F. Method and system for transmission control protocol (TCP) retransmit processing
US20050286566A1 (en) * 2004-06-23 2005-12-29 Po Tong Versatile erasure forecasting system for impulse noise mitigation
WO2006044533A1 (en) * 2004-10-15 2006-04-27 Aware, Inc. Dmt symbol repetition in the presence of impulse noise

Also Published As

Publication number Publication date
HK1125235A1 (en) 2009-07-31
CN101321046A (zh) 2008-12-10
KR20080024456A (ko) 2008-03-18
EP1901470A3 (en) 2012-09-05
EP1901470B1 (en) 2019-01-16
EP1901470A2 (en) 2008-03-19
CN101321046B (zh) 2013-05-29
US8320248B2 (en) 2012-11-27
KR100935377B1 (ko) 2010-01-06
TW200830778A (en) 2008-07-16
US20080062872A1 (en) 2008-03-13

Similar Documents

Publication Publication Date Title
TWI418172B (zh) xDSL系統內傳送資料的方法、裝置和系統
US8898533B2 (en) System for communicating data in xDSL using data retransmission
US8838525B2 (en) Method for communicating data in xDSL using data retransmission
US12101188B2 (en) Multicarrier transceiver that includes a retransmission function and an interleaving function
US11283549B2 (en) Method and device for retransmission
JP3634800B2 (ja) パリティチェック結合を用いたハイブリッド自動再送要求を実施するシステム及び方法
US8689072B2 (en) Communication devices and methods with online parameter change
BRPI0707505A2 (pt) dispositivo e mÉtodo para mitigar os efeitos de ruÍdo de impulso em transferÊncia de pacote de dados
WO2008083627A1 (en) A method, system and device for retransmitting data
US8989239B2 (en) Systems and methods for retransmission with on-line reconfiguration
US20160277153A1 (en) Method and apparatus for packet retransmission in dsl systems
Schelstraete et al. An Introduction to G. 998.4: Improved Impulse Noise Protection