TWI417393B - Used for the manufacture of directional electromagnetic steel sheet hot rolling nitriding annealing process - Google Patents

Used for the manufacture of directional electromagnetic steel sheet hot rolling nitriding annealing process Download PDF

Info

Publication number
TWI417393B
TWI417393B TW99117195A TW99117195A TWI417393B TW I417393 B TWI417393 B TW I417393B TW 99117195 A TW99117195 A TW 99117195A TW 99117195 A TW99117195 A TW 99117195A TW I417393 B TWI417393 B TW I417393B
Authority
TW
Taiwan
Prior art keywords
nitriding
hot rolling
steel sheet
annealing
directional electromagnetic
Prior art date
Application number
TW99117195A
Other languages
English (en)
Other versions
TW201142043A (en
Original Assignee
China Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Steel Corp filed Critical China Steel Corp
Priority to TW99117195A priority Critical patent/TWI417393B/zh
Publication of TW201142043A publication Critical patent/TW201142043A/zh
Application granted granted Critical
Publication of TWI417393B publication Critical patent/TWI417393B/zh

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

用於製造方向性電磁鋼片之熱軋滲氮退火程序
本發明是有關於一種熱軋滲氮退火程序,特別是指一種用於製造方向性電磁鋼片之熱軋滲氮退火程序。
由於方向性電磁鋼片在軋延方向具有{110}<001>集合組織,因此在該方向具有優異之磁通(induction,B8 >1.78T)及極低之鐵損(iron loss,W17/50 <1.55W/kg),此取向性發生之冶金原理乃取決於最終之高溫退火時的二次再結晶之完整發生,二次再結晶組織是通過抑制一次再結晶之晶粒成長,並且有選擇性地使{110}<001>晶粒在二次再結晶時成長而獲得,其晶粒成長的原動力為該一次再結晶之晶界能,且成長過程亦受到AlN、MnS等晶粒抑制劑(inhibitor)的影響,而一般所長成之晶粒尺寸則為數公分不等。
用於製備方向性電磁鋼片常使用的製程有兩類:一為高溫鋼胚製程(鋼胚再熱溫度為>1300℃),另一為低溫鋼胚製程(鋼胚再熱溫度為1100~1300℃),但不論高溫或低溫鋼胚製程,均有達到良好磁性及高斯集合組織(Goss texture)的可能性,為兩者的差異則在於不同階段導入析出物。而高溫鋼胚製程之熱軋前,板胚需長時間高溫下加熱才能固溶晶粒抑制劑,且隨後在熱軋後的冷卻過程中,使得該晶粒抑制劑形成分佈適宜的析出相。在實際製程中,則往往需要加熱到1400℃,以確使鋼板可達到均溫之狀態,如此的高溫將增加高溫鋼胚製程之能量耗損,並使得板胚表面易熔化、修爐費用增加、爐子壽命減短、板胚內部形成柱狀晶而在後續熱軋時形成橫向裂紋等。為改進上述高溫鋼胚製程之缺點,低溫鋼胚製程採用後續加入晶粒抑制劑的方式,所以初期於鋼胚再加熱時,便不需要加熱至高溫以完全固溶所有的晶粒抑制劑。
低溫鋼胚製程主要是利用AlN作為晶粒抑制劑,傳統及商業的運轉程序依序為:煉鋼連鑄、熱軋、熱軋退火、冷軋、脫碳退火、滲氮退火、MgO塗覆、最終退火,以及絕緣塗覆。其中,進行滲氮退火的方式為將N原子在滲氮退火時加入鋼胚中,使得N原子於最終退火階段之低溫期,與Al原子結合並形成新的奈米級AlN析出物,並藉由析出物的釘固作用完成二次再結晶,以抑制Goss方位以外之晶粒成長的發生,而有助於獲得具有良好磁性之方向性電磁鋼片。
滲氮退火一般之商轉製程是在脫碳退火後及最終退火前,主要原因是由於碳元素於脫碳退火後之濃度低於50ppm以下(通常為低於200ppm以下即可),故由原先高溫中可能存在之沃斯田鐵(γ)與肥粒鐵(α)之兩相區轉變為只有單一的肥粒鐵組織,由於肥粒鐵組織之原子堆疊(體心立方結構)較沃斯田鐵組織之原子堆疊(面心立方結構)鬆散,可有利於N原子於組織中的擴散與滲氮。例如美國專利公告號6,325,866一案,揭示於850~950℃之脫碳退火後,進行一更高溫之滲氮退火(900~1050℃)以達到140ppm之滲氮目標並獲得良好之磁性,但此方式之退火溫度高,而使得退火設備的成本增加;美國專利公告號6,471,787一案則揭示於脫碳退火後進行連續滲氮退火,溫度為850~1050℃,停留15~120秒,並在氮氫氣氛下加入流量為1~35liters/kg且水氣含量為介於0.5~100g/m3 之間的氨氣(NH3 ),由於此方法須另外設置一獨立的滲氮退火產線,亦增加了製造的成本。
由上述可知,若能將方向性電磁鋼片製程作一簡化並有效的整合,以有效降低於滲氮退火程序中的操作成本並提高操作的彈性與便利性,將有助於本領域產業的永續發展並降低能源的耗損。
鑒於上述方向性電磁鋼片製程需於脫碳退火程序後再進行該滲氮退火程序,不僅造成處理程序的繁複亦增加了能源及設備上的成本。當該滲氮退火程序之氮源為NH3 時可表示為一如下列所示之分解式(I),本案發明人將相關之參數代入並計算而得一標準吉布斯自由能(standard Gibbs free energy,G0 )隨溫度(T)變化的關係式(II)[各參數值係參考下列文獻之揭示:(1)William F. Smith," Structure and Properties of Engineering Alloys" ,second edition,McGraw-Hill,Inc.,New York,1993,p.591-601;(2)David R. Gaskell," Introduction to the Thermodynamics of Materials" ,third edition,1995,Taylor & Francis,p.370.]:
ΔG0 =87,030-25.8T lnT-31.7T (II)
若進一步將溫度代入關係式(II)計算,可發現當操作溫度高於400℃時,NH3 的分解度已高達96.6%;當操作溫度達770℃時,若氣氛中配以25%N2 以及75%H2 ,則NH3 的分解度更可接近於100%。
基於上述之理論推導與計算結果,本案發明人思及在脫碳退火及冷軋之前的熱軋退火程序中,熱軋鋼片須依序經過預熱、加熱、一階段恆溫(恆溫於1050~1200℃)、二階段恆溫(恆溫於700~1000℃)、冷卻及水淬等操作流程,此程序已涵蓋了操作溫度由低溫至高溫再轉變回低溫的歷程,而鋼材雖然在高溫時還存在有沃斯田鐵(γ)與肥粒鐵(α)兩相區,但當溫度低於γ相轉變為α相之相變態溫度時,即在約為800℃以下乃全數為肥粒鐵(α)區,因此嘗試於熱軋退火中的加熱及二階段恆溫之流程中,同時進行滲氮處理的研究,經過了持續不斷地試驗與修正,於是提出一熱軋滲氮退火程序,並證實可得到極為優良之滲氮效果。
因此,本發明之目的,即在提供一種用於製造方向性電磁鋼片之熱軋滲氮退火程序,係包含對於一進行熱軋退火之鋼片於一加熱及一二階段恆溫步驟之至少一者中,更進一步進行一滲氮處理。
本發明用於製造方向性電磁鋼片之熱軋滲氮退火程序的功效在於:整合熱軋退火與滲氮退火於同一程序中,不僅成功地發展出一簡化並可降低能源損耗的方向性電磁鋼片製程,更可得到滲氮率高之產品,亦大幅降低了生產成本。
有關本發明之前述及其他技術內容、特點與功效,在以下將進一步於實施方式與其等之實施例的詳細說明中,將可清楚的呈現。
較佳地,本發明用於製造方向性電磁鋼片之熱軋滲氮退火程序更包含在熱軋退火中的其他步驟之至少一者中,進行滲氮處理。
而基於上述之原理推導與研究,本發明建議該滲氮處理應於熱軋退火之階段溫度處於800℃以下之單一肥粒鐵區進行,以利N原子於組織中的擴散與滲氮,且因為NH3 的分解度在操作溫度高於400℃時可達到96%以上,亦應利用熱軋退火溫度處於400℃以上之階段的同時,進行滲氮處理。故較佳地,本發明方向性電磁鋼片之熱軋滲氮退火程序中,進行滲氮處理的溫度區間是介於400~800℃。
較佳地,該滲氮處理是藉由通入一包含氨氣之滲氮氣氛而達成。更佳地,該滲氮氣氛更包含一包括氮氣與氫氣之混合氣體。
本發明將就以下實施例來作進一步說明,但應瞭解的是,該等實施例僅為例示說明之用,而不應被解釋為本發明實施之限制。
[鋼片滲氮量之測試方法]
下列實施例中用以測試方向性電磁鋼片之滲氮量之儀器,為使用HORIBA公司之EMGA-620W N/O分析儀。
<實施例1>
實施例1為取一高矽鋼胚(0.05C-3.5Si)進行低溫鋼胚製程,待煉鋼連鑄及熱軋之後,進行本發明之熱軋滲氮程序,其進行之流程與傳統之熱軋退火相近,並如一般之熱軋退火產線為以100%氮氣作為保護性氣體,不同的是:本實施例之熱軋滲氮程序係於加熱爐及第二均熱爐(即二階段恆溫加熱區)中,通入一流量為20L/min的氨氣(NH3 )之滲氮氣氛,而同時持續進行一段時間之滲氮處理,其餘如第一均熱溫度、第二均熱溫度等條件,則均與傳統之熱軋退火相同,以製得方向性電磁鋼片之半成品。
<實施例2~3>
實施例2及3是以與實施例1相同的程序步驟以製備方向性電磁鋼片之半成品,不同之處在於:實施例2及3之滲氮氣氛更含有一包括氮氣與氫氣之混合氣體,其中,實施例2所使用之混合氣體組成為50%氮氣(N2 )與50%氫氣(H2 );而實施例3所使用之混合氣體組成則為25%氮氣與50%氫氣。
[鋼片滲氮量測試結果]
將上述實施例1~3之熱軋滲氮程序中,取不同的滲氮時間所製得之方向性電磁鋼片半成品進行滲氮量測試,其數據結果整理於圖1中。而由圖1之測試結果可知本發明程序在不同的滲氮操作氣氛下所製得之半成品,在短時間內便皆能達到100~350ppm不等之滲氮量。且可看出當該滲氮處理所通入的氨氣佐以25%氮氣與50%氫氣之混合氣體時,所得到的滲氮效果皆較單使用氨氣或混合氣體為50%氮氣與50%氫氣之組成時佳,此結果亦驗證了本發明於上述內容中的理論推導得知當通入的氨氣佐以25%氮氣與50%氫氣之混合氣體時,使得NH3 的分解度接近於100%,則所獲得之滲氮效果應為最佳。
另須進一步說明的是,由於一般熱軋退火產線之氣氛為以100%氮氣作為保護性氣體,若利用此原有的氣氛條件再加入氨氣之滲氮氣氛,則是一可得到符合滲氮目標又最為節省成本之方式。
綜上所述,本發明用於製造方向性電磁鋼片之熱軋滲氮退火程序經一上述系列的實驗結果證實,將滲氮處理於熱軋退火中的加熱及二階段恆溫之流程同時進行,可得到滲氮量高達350ppm之滲氮效果,相較於習知技術如美國專利公告號6,325,866一案所揭示之高溫滲氮退火的方式,當滲氮目標為140ppm便可獲得具有良好磁性之方向性電磁鋼片,則本發明程序確實可經由製程的簡化來達到具有優良滲氮效果與磁性的產品,且經由利用熱軋退火的加熱程序所達到的適合溫度區間來進行滲氮處理,更加減少了能源的損耗與設備成本,是一極具發展潛力並順應世界環保節能趨勢之製程。
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。
圖1是一滲氮量表示圖,說明依本發明實施例1~3之熱軋滲氮退火程序所製得之方向性電磁鋼片半成品,進行滲氮量測試所得之滲氮量相對於滲氮處理時間的測試結果。

Claims (5)

  1. 一種用於製造方向性電磁鋼片之熱軋滲氮退火程序,係包含對於一進行熱軋退火之鋼片於一加熱及一二階段恆溫步驟之至少一者中,更進一步進行一滲氮處理。
  2. 依據申請專利範圍第1項所述之用於製造方向性電磁鋼片之熱軋滲氮退火程序,其中,該進行滲氮處理的溫度區間是介於400~800℃。
  3. 依據申請專利範圍第1項所述之用於製造方向性電磁鋼片之熱軋滲氮退火程序,更包含在該熱軋退火中的其他步驟之至少一者中,進行滲氮處理。
  4. 依據申請專利範圍第1項所述之用於製造方向性電磁鋼片之熱軋滲氮退火程序,其中,該滲氮處理是藉由通入一包含氨氣之滲氮氣氛而達成。
  5. 依據申請專利範圍第4項所述之用於製造方向性電磁鋼片之熱軋滲氮退火程序,其中,該滲氮氣氛更包含一包括氮氣與氫氣之混合氣體。
TW99117195A 2010-05-28 2010-05-28 Used for the manufacture of directional electromagnetic steel sheet hot rolling nitriding annealing process TWI417393B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99117195A TWI417393B (zh) 2010-05-28 2010-05-28 Used for the manufacture of directional electromagnetic steel sheet hot rolling nitriding annealing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99117195A TWI417393B (zh) 2010-05-28 2010-05-28 Used for the manufacture of directional electromagnetic steel sheet hot rolling nitriding annealing process

Publications (2)

Publication Number Publication Date
TW201142043A TW201142043A (en) 2011-12-01
TWI417393B true TWI417393B (zh) 2013-12-01

Family

ID=46764906

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99117195A TWI417393B (zh) 2010-05-28 2010-05-28 Used for the manufacture of directional electromagnetic steel sheet hot rolling nitriding annealing process

Country Status (1)

Country Link
TW (1) TWI417393B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI270578B (en) * 2004-11-10 2007-01-11 Jfe Steel Corp Grain oriented electromagnetic steel plate and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI270578B (en) * 2004-11-10 2007-01-11 Jfe Steel Corp Grain oriented electromagnetic steel plate and method for producing the same

Also Published As

Publication number Publication date
TW201142043A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP6496411B2 (ja) 方向性電磁鋼板およびその製造方法
CN107974543B (zh) 一种厚度≤0.20mm低温高磁感取向硅钢的生产方法
US20160108488A1 (en) Process for producing grain-oriented electrical steel strip and grain-oriented electrical steel strip obtained according to said process
JP6559784B2 (ja) 方向性電磁鋼板およびその製造方法
JP5782527B2 (ja) 低鉄損高磁束密度方向性電気鋼板及びその製造方法
JPH0774388B2 (ja) 磁束密度の高い一方向性珪素鋼板の製造方法
KR20130101099A (ko) 우수한 자성 특성을 구비한 방향성 실리콘 강의 제조 방법
KR101676630B1 (ko) 방향성 전기강판 및 그 제조방법
KR20170010445A (ko) 방향성 규소강 및 그의 제조방법
CN107858494A (zh) 低温高磁感取向硅钢的生产方法
US20160108493A1 (en) Process for producing grain-oriented electrical steel strip and grain-oriented electrical steel strip obtained according to said process
JP2005226111A (ja) 磁気特性に優れた一方向性電磁鋼板の製造方法
JP6808830B2 (ja) 方向性電磁鋼板およびその製造方法
KR101353550B1 (ko) 방향성 전기강판 및 그 제조방법
JPH08188824A (ja) 超高磁束密度一方向性電磁鋼板の製造方法
KR20120130172A (ko) 방향성 자기 강판의 제조 방법
CZ306147B6 (cs) Způsob výroby za studena válcované anizotropní elektrotechnické oceli s vysokými magnetickými charakteristikami
CN106755873A (zh) 一种高磁感取向硅钢的生产方法
TWI417393B (zh) Used for the manufacture of directional electromagnetic steel sheet hot rolling nitriding annealing process
JP2019116680A (ja) 方向性電磁鋼板用スラブ、方向性電磁鋼板およびその製造方法
TW201912810A (zh) 無方向性電磁鋼片及其製造方法
KR101263842B1 (ko) 저철손 고자속밀도 방향성 전기강판의 제조방법
CN110055489A (zh) 低温高磁感取向硅钢的快速渗氮方法
KR101516377B1 (ko) 방향성 전기강판 및 그 제조방법
KR101538777B1 (ko) 방향성 전기강판 및 그 제조방법

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees