TWI415087B - Liquid crystal display device with clock signal embedded signaling - Google Patents
Liquid crystal display device with clock signal embedded signaling Download PDFInfo
- Publication number
- TWI415087B TWI415087B TW98105850A TW98105850A TWI415087B TW I415087 B TWI415087 B TW I415087B TW 98105850 A TW98105850 A TW 98105850A TW 98105850 A TW98105850 A TW 98105850A TW I415087 B TWI415087 B TW I415087B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- timing control
- state
- clock
- data
- Prior art date
Links
Landscapes
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
Description
在此所描述之實施例係有關於一種顯示器裝置,尤其是有關於一種具有內嵌時脈訊號之顯示器裝置。 The embodiments described herein relate to a display device, and more particularly to a display device having an embedded clock signal.
近來,平面顯示器正逐漸實現於液晶顯示與電漿顯示技術之中,並建置成為諸如個人電腦與電視接收器的螢幕。普遍而言,安裝至平面顯示器的電路係由時序控制器、電源單元、閘極電壓產生器、資料驅動器積體電路,以及閘極驅動器積體電路來組成。在配有大尺寸與高解析度螢幕的顯示器裝置之內,對於傳輸線所導致的電磁干擾(Electromagnetic Interference;EMI)的防範對策,尤其是對於時序控制器與驅動器積體電路之間的介面的電磁干擾的防範對策,已變成相當必要。 Recently, flat panel displays are gradually being implemented in liquid crystal display and plasma display technologies, and have been built into screens such as personal computers and television receivers. In general, a circuit mounted to a flat panel display is composed of a timing controller, a power supply unit, a gate voltage generator, a data driver integrated circuit, and a gate driver integrated circuit. In the display device equipped with a large-size and high-resolution screen, countermeasures against electromagnetic interference (EMI) caused by the transmission line, especially for the interface between the timing controller and the driver integrated circuit The countermeasures against interference have become quite necessary.
為了克服電磁干擾,並同時以低功率來達成高速資料傳輸,已開發有種種不同的標準來針對採用差動傳訊方法之介面,譬如是低擺幅差動傳訊(Reduced Swing Differential Signaling;RSDS)、微低電壓差動傳訊(Mini-Low Voltage Differential Signaling;Mini-LVDS),以及點至點差動傳訊(Point-to-Point Differential Signaling;PPDS)。 In order to overcome electromagnetic interference and achieve high-speed data transmission with low power at the same time, various standards have been developed for the interface using the differential signaling method, such as Reduced Swing Differential Signaling (RSDS), Mini-Low Voltage Differential Signaling (Mini-LVDS) and Point-to-Point Differential Signaling (PPDS).
第1圖係一利用RSDS標準之傳統顯示器裝置的示意圖,以及第2圖係一利用mini-LVDS標準之傳統顯示器裝置的示意圖。於第1及2圖中,顯示器裝置100或200係包括一或多條資料訊號線12(差動訊號線)以傳送資料訊號DATA,以及一條與該等資料線12分開之單一時脈訊號線(差動訊號線)11以傳送單一的時脈訊號CLOCK,其中該時脈訊號CLOCK係與資料訊號DATA同步。顯示器裝置100或200係採用一種多點下傳方法(Multi-Drop Method),其中複數條源極驅動器110_1至110_m乃共享同一條時脈訊號線11。這種組態的缺點在於最大操作速率會因時脈訊號的大負載而受到限制。此外,由於在訊號線分開處阻抗不匹配,因此資訊傳輸容易遭受訊號失真及較嚴重的電磁干擾。 Figure 1 is a schematic diagram of a conventional display device utilizing the RSDS standard, and Figure 2 is a schematic diagram of a conventional display device utilizing the mini-LVDS standard. In Figures 1 and 2, display device 100 or 200 includes one or more data signal lines 12 (differential signal lines) for transmitting data signals DATA and a single clock signal line separate from the data lines 12. (Differential signal line) 11 transmits a single clock signal CLOCK, wherein the clock signal CLOCK is synchronized with the data signal DATA. The display device 100 or 200 employs a Multi-Drop Method in which a plurality of source drivers 110_1 to 110_m share the same clock signal line 11. The disadvantage of this configuration is that the maximum operating rate is limited by the large load of the clock signal. In addition, because the impedance is not matched at the signal line separation, the information transmission is susceptible to signal distortion and severe electromagnetic interference.
第3圖係一利用PPDS標準的傳統顯示器裝置的示意圖。於第3圖中,顯示器裝置300係包含複數個時脈訊號CLOCK_1至CLOCK_m,其分別傳送至各自的源極驅動器310_1至310_m,因而解決了第1及2圖使用RSDS或mini-LVDS1標準的顯示器裝置所遭遇的單一時脈訊號的大負載問題。此外,複數條資料訊號線32_1至32_m係分別連接至這些源極驅動器310_1至310_m,以分別傳送資料訊號DATA_1至DATA_m,因而解決了阻抗不匹配及電磁干擾。然而,於絕大多數的應用中,必須要求時脈訊號CLOCK_1至CLOCK_m以較高的速率來傳輸,結果需要建置不同的時脈訊號線31_1至31_m。這導致了較高的製造成本。此外, 資料訊號DATA_i與一取樣該資料訊號DATA_i之時脈訊號CLOCK(i介於1與0之間)係無法避免產生偏移(Skew),結果造成取樣過程不準確或需要額外的電路來彌補此偏移。 Figure 3 is a schematic diagram of a conventional display device utilizing the PPDS standard. In FIG. 3, the display device 300 includes a plurality of clock signals CLOCK_1 to CLOCK_m, which are respectively transmitted to the respective source drivers 310_1 to 310_m, thereby solving the first and second displays using the RSDS or mini-LVDS1 standard. A large load problem with a single clock signal encountered by the device. In addition, a plurality of data signal lines 32_1 to 32_m are respectively connected to the source drivers 310_1 to 310_m to respectively transmit the data signals DATA_1 to DATA_m, thereby solving impedance mismatch and electromagnetic interference. However, in most applications, the clock signals CLOCK_1 to CLOCK_m must be transmitted at a higher rate, and as a result, different clock signal lines 31_1 to 31_m need to be built. This leads to higher manufacturing costs. In addition, The data signal DATA_i and the clock signal CLOCK (i between 1 and 0) for sampling the data signal DATA_i cannot avoid the offset (Skew), resulting in inaccurate sampling process or additional circuitry to compensate for this bias. shift.
近來亦有另一種組態(未顯示)提出來解決阻抗不匹配及電磁干擾問題,方法是藉由將時脈訊號循序地傳送至連接成串的源極驅動器。然而,時脈訊號會在源極驅動器之間延遲,從而造成資料取樣失敗。 Another configuration (not shown) has recently been proposed to address impedance mismatch and electromagnetic interference problems by sequentially transmitting clock signals to source drivers connected in series. However, the clock signal will be delayed between the source drivers, causing data sampling to fail.
在此係描述一種顯示器裝置及多位準之傳訊方法,其能夠改善電磁干擾特性與時脈取樣。 In this context, a display device and a multi-level messaging method are described which are capable of improving electromagnetic interference characteristics and clock sampling.
根據一方面,一種液晶顯示器裝置包括一顯示器面板、一時序控制器,其產生一時序控制訊號,該時序控制訊號具有複數個狀態,每一狀態同時表示資料資訊與時脈資訊,以及一源極驅動器,用以接收並解碼該時序控制訊號以恢復該資料資訊與時脈資訊,用以產生一時脈訊號與一資料訊號以驅動該顯示器面板。 According to one aspect, a liquid crystal display device includes a display panel and a timing controller that generates a timing control signal having a plurality of states, each state simultaneously representing data information and clock information, and a source The driver is configured to receive and decode the timing control signal to recover the data information and the clock information for generating a clock signal and a data signal to drive the display panel.
根據另一方面,一種傳訊方法,其用於一顯示器裝置之一時序控制器與一源極驅動器之間,包括產生一時序控制訊號,該時序控制訊號具有複數個狀態,每一狀態同時表示資料資訊與時脈資訊,以及接收並解碼該時序控制訊號以恢復該資料資訊與時脈資訊,用以產生一時脈訊號與一資料訊號。 According to another aspect, a method for communication between a timing controller and a source driver of a display device includes generating a timing control signal having a plurality of states, each state simultaneously representing data Information and clock information, and receiving and decoding the timing control signal to recover the data information and clock information for generating a clock signal and a data signal.
根據另一方面,一種顯示器裝置包括一顯示器面板、一時序控制器,其產生一時序控制訊號,該時序控制訊號具有複數個狀態,每一狀態係表示一供應給該顯示器面板之資料訊號之一高邏輯值與一低邏輯值當中之一邏輯值,以及更表示一供應給該顯示器面板之時脈訊號之一高邏輯值與一低邏輯當中之一邏輯值,以及每一狀態係具有至少一個與其它狀態不同之電壓位準、複數個比較器,組態來比較該時序訊號之該至少一電壓位準與至少一既定電壓以產生一資料訊號、一或閘,其根據該複數個比較器之輸出來產生一時脈訊號,以及一延遲邏輯單元,其組態來延遲該等比較器所產生之該資料訊號或該或閘所產生之該時脈訊號當中之一。 According to another aspect, a display device includes a display panel and a timing controller that generates a timing control signal having a plurality of states, each state indicating one of the data signals supplied to the display panel a logic value of one of a high logic value and a low logic value, and a logic value corresponding to one of a high logic value and a low logic of a clock signal supplied to the display panel, and each state system has at least one a voltage level different from the other states, the plurality of comparators configured to compare the at least one voltage level of the timing signal with the at least one predetermined voltage to generate a data signal, a thyristor, according to the plurality of comparators The output generates a clock signal, and a delay logic unit configured to delay one of the data signal generated by the comparators or the clock signal generated by the gate.
上述及其他特徵、方面,以及實施例係於以下實施方式中描述。 The above and other features, aspects, and embodiments are described in the following embodiments.
第4A及4B圖係依據一實施例之範例顯示器裝置之示意圖。於第3A及4B圖中,顯示器裝置400可以組態成包含一時序控制器410、源極驅動器420_1至420_m、閘極驅動器430_1至430_m、多資訊訊號線LM_1至LM_m(m為非零整數)。 4A and 4B are schematic views of an exemplary display device in accordance with an embodiment. In FIGS. 3A and 4B, the display device 400 can be configured to include a timing controller 410, source drivers 420_1 to 420_m, gate drivers 430_1 to 430_m, and multi-information signal lines LM_1 to LM_m (m is a non-zero integer). .
時序控制器410可以組態來將時序控制訊號SCTRL_1至SCTRL_m透過對應的多資訊訊號線LM_1至LM_m傳送至對應的源極驅動器420_1至420_m。源極驅動器420_1至420_m可組 態來轉換所接收的時序控制訊號SCTRL_1至SCTRL_m並提供資料訊號SD_1至SD_m至面板440。 The timing controller 410 can be configured to transmit the timing control signals SCTRL_1 through SCTRL_m to the corresponding source drivers 420_1 through 420_m through the corresponding multi-information signal lines LM_1 through LM_m. Source drivers 420_1 to 420_m can be grouped The state switches the received timing control signals SCTRL_1 to SCTRL_m and provides the data signals SD_1 to SD_m to the panel 440.
閘極驅動器430可組態來提供掃描訊號SS_1至SS_n給面板440。面板440,其譬如是LCD面板、OLED面板、以及PDP面板,可組態來根據上述資料訊號SD_1至SD_m與掃描訊號SS_1至SS_n來提供影像畫面。 The gate driver 430 is configurable to provide scan signals SS_1 through SS_n to the panel 440. The panel 440, such as an LCD panel, an OLED panel, and a PDP panel, is configurable to provide an image frame based on the above-described data signals SD_1 to SD_m and scan signals SS_1 to SS_n.
舉例而言,每一時序控制訊號SCTRL_i(i為一介於1與m之整數)於一對應的多資訊訊號線LM_i上所攜載之資料可包含複數種資訊,譬如是時脈資訊及資料資訊。如此,時脈資訊可以嵌於時序控制訊號SCTRL_i之內。具體言之,每一時序控制訊號SCTRL_i可具有複數種狀態STATE_i,1,STATE_i,2,...,STATE_i,p(p係定義為狀態總數並為一非零整數),其中每一狀態STATE_i,j(j為狀態號碼並為一介於1與p之整數)可代表複數種資訊,而非單一種資訊。在一較佳的實施例中,每一狀態STATE_i,j至少同時表示時脈資訊與資料資訊。時序控制訊號SCTRL_i可隨時間而於不同狀態STATE_i,1,STATE_i,2,...,STATE_i,p之間轉換,方以傳送這些狀態各自代表的時脈資訊及資料資訊。 For example, each of the timing control signals SCTRL_i (i is an integer between 1 and m) carried on a corresponding multi-information signal line LM_i may contain a plurality of types of information, such as clock information and data information. . In this way, the clock information can be embedded in the timing control signal SCTRL_i. Specifically, each timing control signal SCTRL_i may have a plurality of states STATE_i, 1, STATE_i, 2, ..., STATE_i, p (p is defined as the total number of states and is a non-zero integer), wherein each state STATE_i , j (j is the state number and is an integer between 1 and p) can represent multiple kinds of information, not a single kind of information. In a preferred embodiment, each state STATE_i,j represents at least the clock information and the data information at the same time. The timing control signal SCTRL_i can be switched between different states STATE_i, 1, STATE_i, 2, ..., STATE_i, p over time to transmit the clock information and data information respectively represented by these states.
舉例而言,此實施例中的每一狀態STATE_i,j可代表一既定時脈訊號值CLOCK_i,j與一既定資料訊號值DATA_i,j。時序控制訊號可於不同狀態STATE_i,1,STATE_i,2,...,STATE_i,p之間轉換,以將同樣對應至這些不同狀態之不同時脈訊號值與不同資 料訊號值,同時提供給源極驅動器420_i。於較佳之情況中,狀態總數等於4,以及這四個狀態分別對應至(DATA,CLOCK)=(1,1)、(1,0)、(0,0)以及(0,1)(順序僅為範例而本發明不限制為如此)。 For example, each state STATE_i,j in this embodiment may represent a timed pulse signal value CLOCK_i,j and a predetermined data signal value DATA_i,j. The timing control signal can be converted between different states STATE_i, 1, STATE_i, 2, ..., STATE_i, p to different clock values and different resources corresponding to these different states. The signal value is supplied to the source driver 420_i at the same time. In the preferred case, the total number of states is equal to 4, and the four states correspond to (DATA, CLOCK) = (1, 1), (1, 0), (0, 0), and (0, 1), respectively. The invention is not limited to this as an example only).
於第4B圖中,每一源極驅動器420_i可以組態來包含一個別的解碼器450_i,以對各自的時序控制訊號SCTRL_i進行解碼,方以獲得從時序控制器410所傳送的資料資訊與時脈資訊。舉例而言,解碼器450_i可組態來偵測時序控制訊號SCTRL_i之狀態,以獲得所偵測狀態個別的資料資訊與時脈資訊。 In FIG. 4B, each source driver 420_i can be configured to include a further decoder 450_i to decode the respective timing control signal SCTRL_i to obtain the data information transmitted from the timing controller 410. Pulse information. For example, the decoder 450_i can be configured to detect the state of the timing control signal SCTRL_i to obtain individual data information and clock information of the detected state.
於第4A及4B圖中,僅有單一種訊號線,即上述的多資訊線LM_i,可設置於時序控制器410與對應的源極驅動器420_i之間。此外,僅有單一種訊號,即上述的時序控制訊號SCTRL_i,可用來同時傳送時脈資訊與資料資訊,其中每一狀態係對應至一時脈訊號值與一資料訊號值。 In the 4A and 4B diagrams, only a single type of signal line, that is, the above-described multi-information line LM_i, may be disposed between the timing controller 410 and the corresponding source driver 420_i. In addition, only a single type of signal, the timing control signal SCTRL_i, can be used to simultaneously transmit clock information and data information, wherein each state corresponds to a clock signal value and a data signal value.
於第4A圖中,顯示器裝置400係說明性地採用一種「點至點」之結構,即當中複數個源極驅動器420_1至420_m之中的每一個源極驅動器可透過一條各自的多資訊訊號線來連接至時序控制器410,而不用分享相同的訊號線。然而,亦可採用「單點至多點」之結構。 In FIG. 4A, the display device 400 illustratively employs a "point-to-point" structure in which each of the plurality of source drivers 420_1 through 420_m is permeable to a respective multi-information signal line. To connect to the timing controller 410 without sharing the same signal line. However, a "single point to many points" structure can also be used.
表格1係依據一實施例下之一整理第4A圖之時序控制訊號的狀態號碼以及其所對應之既定資料及時脈訊號值,以及表格2 係依據另一實施例下之一整理第4A圖之時序控制訊號的狀態號碼以及其所對應之既定資料及時脈訊號值。 Table 1 is a sort of the state code of the timing control signal of FIG. 4A and the corresponding data and time signal value corresponding to FIG. 4A according to one embodiment, and Table 2 According to another embodiment, the state code of the timing control signal of FIG. 4A and the corresponding data and time signal value corresponding thereto are arranged.
於表格1及表格2中,狀態總數p譬如皆等於4,亦即,時序控制訊號SCTRL_i可於四個狀態STATE_i,1至STATE_i,4之間 轉換(i為介於1與m之間的任何整數)。在此,每一狀態之號碼係由一參數NUM來編號。於表格1中,四個狀態係表示(DATA,CLOCK)=(1,1)、(1,0)、(0,0),以及(0,1),而於表格2中,四個狀態係表示(DATA,CLOCK)=(0,1)、(1,1)、(1,0),以及(0,0)。 In Table 1 and Table 2, the total number of states p is equal to 4, that is, the timing control signal SCTRL_i can be between four states STATE_i, 1 to STATE_i, 4 Convert (i is any integer between 1 and m). Here, the number of each state is numbered by a parameter NUM. In Table 1, the four states are (DATA, CLOCK) = (1, 1), (1, 0), (0, 0), and (0, 1), and in Table 2, four states. The system indicates (DATA, CLOCK) = (0, 1), (1, 1), (1, 0), and (0, 0).
於表格1中,在致能週期之期間內,此時有效資料資訊被傳送,或源極驅動器420_i被致能以接收資料資訊,可要求時脈訊號值CLOCK在0與1之間來回轉換,換言之,即以CLOCK=(1→0→1→0→...)之轉換模式來轉換。然而,在這些致能週期之期間內,不需要求資料訊號值DATA具有任何特定之轉換模式。結果,可要求時序控制訊號以(NUM)=(1或4→2或3→1或4→2或3)之模式來轉換。舉例而言,於某一週期內,時序控制訊號如以下方式來轉換(NUM)=(1→3→4→2),其代表對應的源極驅動器所接收的時脈與資料資訊分別為CLOCK=(1→0→1→0)以及資料資訊DATA=(1→0→0→1)。 In Table 1, during the period of the enablement period, the valid data information is transmitted at this time, or the source driver 420_i is enabled to receive the data information, and the clock signal value CLOCK can be required to be switched back and forth between 0 and 1. In other words, the conversion is performed in a conversion mode of CLOCK=(1→0→1→0→...). However, during these enablement periods, there is no need to request the data signal value DATA to have any particular conversion mode. As a result, the timing control signal can be required to be converted in a mode of (NUM) = (1 or 4 → 2 or 3 → 1 or 4 → 2 or 3). For example, in a certain period, the timing control signal is converted (NUM)=(1→3→4→2) in the following manner, which represents that the clock and data information received by the corresponding source driver are respectively CLOCK. = (1 → 0 → 1 → 0) and data information DATA = (1 → 0 → 0 → 1).
於表格2,時序控制訊號SCTRL可因類似理由而以(NUM)=(1或2→3或4→1或2→3或4)之模式來轉換。比較表格1及表格2,表格1可提供對傳輸正確性的額外確認機制。於表格1中,狀態號碼NUM之變化幅度可僅為1或2,這允許在變化幅度等於3的狀況發生時可偵測到錯誤。反之,表格2內的狀態號碼可為1、2或3,因而無法提供確認機制。 In Table 2, the timing control signal SCTRL can be converted in a mode of (NUM) = (1 or 2 → 3 or 4 → 1 or 2 → 3 or 4) for similar reasons. Comparing Table 1 and Table 2, Table 1 provides an additional confirmation mechanism for the correctness of the transmission. In Table 1, the state number NUM can vary by only 1 or 2, which allows an error to be detected when a condition with a magnitude of change of 3 occurs. Conversely, the status number in Table 2 can be 1, 2 or 3, and thus no confirmation mechanism can be provided.
在失能週期的期間內,此時沒有有效資料資訊被傳輸,或源極驅動器420_i,或源極驅動器420_i失能以停止接收資料資訊,可要求時脈訊號值CLOCK維持為0。此外,第5A及5B圖中時序控制訊號於失能期間內之狀態可進一步設定為以特定的模式來轉換,譬如分別是(NUM)=(...2→3→2→3→...)及(...3→4→3→4→...),以令解碼器450_i能夠組態來藉著偵測時序控制訊號SCTRL_i之狀態模式來決定失能週期之結束,以下將利用第8、9、10A,以及10B來詳細說明之。 During the period of the disabling period, no valid data information is transmitted at this time, or the source driver 420_i, or the source driver 420_i is disabled to stop receiving the data information, and the clock signal value CLOCK may be maintained at zero. In addition, the states of the timing control signals in the 5A and 5B diagrams may be further set to be converted in a specific mode, for example, (NUM)=(...2→3→2→3→.. .) and (...3→4→3→4→...) to enable the decoder 450_i to be configured to determine the end of the disabling period by detecting the state mode of the timing control signal SCTRL_i, It will be explained in detail using 8, 9, 10A, and 10B.
於第4A及4B圖中,時序控制單元SCTRL_i可為單端訊號,或較佳地,其亦可為一對差動訊號。此外,時序控制訊號之種種不同之電子特性,譬如是電壓位準、電流位準,皆可用來將時序控制訊號SCTRL_i設定為不同狀態。由於時序控制訊號SCTRL_i以不同的對應電流/電壓位準而設定為不同狀態,源極驅動器420_i內個別的解碼器450_i可以組態來藉由將時序控制訊號SCTRL_i之電流/電壓位準與至少一個電流/電壓位準相比較之方式來對時序控制訊號SCTRL_i進行解碼,從而獲得資料資訊與時脈資訊。 In Figures 4A and 4B, the timing control unit SCTRL_i can be a single-ended signal, or preferably it can also be a pair of differential signals. In addition, various electronic characteristics of the timing control signal, such as voltage level and current level, can be used to set the timing control signal SCTRL_i to different states. Since the timing control signal SCTRL_i is set to a different state with different corresponding current/voltage levels, the individual decoders 450_i in the source driver 420_i can be configured to at least one of the current/voltage levels of the timing control signal SCTRL_i. The current/voltage level is compared to decode the timing control signal SCTRL_i to obtain data information and clock information.
舉例而言,時序控制訊號SCTRL_i可為一單端訊號,其可於p個不同的電壓位準V_1至V_p之間轉換,其中p代表狀態總數。換言之,每一狀態各自具有這些電壓位準V_1至V_p當中之一電壓位準。於另一範例中,時序控制訊號SCTRL_i可為一對差 動訊號SCTRL_i(I)與SCTRL_(Q),任一者皆可於不同電壓位準之間轉換。具體言之,對於時序控制訊號SCTRL_i之每一狀態STATE_i,j而言,差動訊號SCTRL_i(I)可具有一個別位準VI_i,j,其可於第一複數個電壓位準VI_i_1至VI_i,q1之間轉換,以及另一個差動訊號SCTRL_i(I)則可具有一個別位準VQ_i,j,其可於第二複數個電壓位準VQ_i_1至VQ_i,q2之間轉換(q1與q2為非零整數)。換言之,每一狀態各自具有兩個電壓位準,其中一個電壓位準是該第一複數個電壓位準VI_i_1至VI_i,q1當中之一,而另一電壓位準則是該第二複數個電壓位準VQ_i_1至VQ_i,q2當中之一。較佳地,q1=q2。更佳地,q1及q2皆大或等於3。 For example, the timing control signal SCTRL_i can be a single-ended signal that can be switched between p different voltage levels V_1 to V_p, where p represents the total number of states. In other words, each state has a voltage level of one of these voltage levels V_1 to V_p. In another example, the timing control signal SCTRL_i can be a pair of differences The signal SCTRL_i(I) and SCTRL_(Q) can be switched between different voltage levels. Specifically, for each state STATE_i,j of the timing control signal SCTRL_i, the differential signal SCTRL_i(I) may have a different level VI_i,j, which may be at the first plurality of voltage levels VI_i_1 to VI_i, The conversion between q1, and the other differential signal SCTRL_i(I) may have a different level VQ_i,j, which can be converted between the second plurality of voltage levels VQ_i_1 to VQ_i, q2 (q1 and q2 are non- Zero integer). In other words, each state has two voltage levels, one of which is one of the first plurality of voltage levels VI_i_1 to VI_i, q1, and the other voltage level criterion is the second plurality of voltage levels. One of the quasi-VQ_i_1 to VQ_i, q2. Preferably, q1 = q2. More preferably, both q1 and q2 are either equal to or equal to three.
表格3係依據一實施例下之一整理一對供作時序控制訊號之差動訊號於不同狀態下之電壓位準,其中q1=q2=4以及p=4。 Table 3 is a voltage level of a pair of differential signals for timing control signals in different states according to one of the embodiments, wherein q1=q2=4 and p=4.
如表格3所示,差動訊號SCTRL_i(I)與SCTRL_i(Q)之電壓位準V(I)與V(Q),在此整體表示為(V(I),V(Q)),可針對狀態號碼1、2、3,以及4而分別設定為(1.5,0.9)、(1.3,1.1),(1.1,1.3),以及(0.9,1.5)。 As shown in Table 3, the voltage levels V(I) and V(Q) of the differential signals SCTRL_i(I) and SCTRL_i(Q) are collectively expressed as (V(I), V(Q)). For the status numbers 1, 2, 3, and 4, it is set to (1.5, 0.9), (1.3, 1.1), (1.1, 1.3), and (0.9, 1.5), respectively.
第5圖係依據一實施例下之一顯示表格3中之電壓位準與兩個既定DC電壓間之關係的示意圖。如圖所示,兩個DC電壓RH=1.4V與RL=1.0V與差動訊號SCTRL_i(I)與SCTRL_i(Q)於之四種電壓位準係一同繪示,以顯示其相對大小。四種電壓位準(V1,V2,V3,V4)=(1.5,1.3,1.1,0.9)與這兩個DC電壓RH=1.4V與RL=1.0V係構成對稱關係。可將這兩個既定電壓RH及RL提供給執行解碼中之源極驅動器420_1至420_m以定義此四種電壓位準V1至V4,當中細節將於以下參考第7圖來做描述。 Figure 5 is a schematic diagram showing the relationship between the voltage level in Table 3 and two predetermined DC voltages in accordance with one of the embodiments. As shown, two DC voltages RH=1.4V and RL=1.0V are plotted along with the four voltage levels of the differential signals SCTRL_i(I) and SCTRL_i(Q) to show their relative sizes. The four voltage levels (V1, V2, V3, V4) = (1.5, 1.3, 1.1, 0.9) and the two DC voltages RH = 1.4V and RL = 1.0V form a symmetrical relationship. The two predetermined voltages RH and RL may be supplied to the source drivers 420_1 to 420_m in the execution of decoding to define the four voltage levels V1 to V4, the details of which will be described below with reference to FIG.
表格4係依據另一實施例下之一整理一對供作時序控制訊號之差動訊號於不同狀態下之電壓位準,其中q1=q2=3以及p=4。 Table 4 is a voltage level of a pair of differential signals for timing control signals in different states according to one of the other embodiments, wherein q1=q2=3 and p=4.
如表格4所示,差動訊號SCTRL_i(I)與SCTRL_i(Q)之電壓位準V(I)與V(Q),在此整體表示為(V(I),V(Q)),可針對狀態號碼1、2、3,以及4而分別設定為(1.5,1.1)、(1.3,1.1),(1.1,1.3),以及(1.1,1.5)。 As shown in Table 4, the voltage levels V(I) and V(Q) of the differential signals SCTRL_i(I) and SCTRL_i(Q) are collectively expressed as (V(I), V(Q)). For the status numbers 1, 2, 3, and 4, it is set to (1.5, 1.1), (1.3, 1.1), (1.1, 1.3), and (1.1, 1.5), respectively.
第6圖係依據一實施例下之一顯示表格4中之電壓位準與一個既定DC電壓間之關係的示意圖。如圖所示,該DC電壓RH=1.2VV與差動訊號SCTRL_i(I)與SCTRL_i(Q)於之三種電壓位準係一同繪示,以顯示其相對大小。三種電壓位準(V1,V2,V3)=(1.5,1.3,1.1)與此DC電壓RH=1.2V係構成不對稱關係。可將這一個既定電壓RH提供給執行解碼中之源極驅動器420_1至420_m以定義此三種電壓位準V1至V3,當中細節將於以下參考第8圖來做描述。 Figure 6 is a schematic diagram showing the relationship between the voltage level in Table 4 and a predetermined DC voltage according to one of the embodiments. As shown, the DC voltage RH=1.2VV is plotted along with the three voltage levels of the differential signals SCTRL_i(I) and SCTRL_i(Q) to show their relative sizes. The three voltage levels (V1, V2, V3) = (1.5, 1.3, 1.1) and this DC voltage RH = 1.2V constitute an asymmetrical relationship. This one predetermined voltage RH may be supplied to the source drivers 420_1 to 420_m in the execution of decoding to define the three voltage levels V1 to V3, the details of which will be described below with reference to FIG.
第7圖係依據一實施例之一運用四狀態時序控制訊號之源極驅動器之一範例解碼器之示意圖。於第7圖中,係顯示第4A及4B圖之源極驅動器420_i(1 i m)的解碼器450_i,其中源極驅動器450_i係用運用一對四位準(q1=q2=4)之差動訊號SCTRL_i(I)與SCTRL_i(Q)來作為一四狀態(狀態總數p=4)之時序控制訊號SCTRL_i,如同表格3及第5圖所示。解碼器450係組態來接收此差動訊號SCTRL_i(I)與SCTRL_i(Q)與兩個既定電壓RH及RL以恢復時脈資訊與資料資訊。 Figure 7 is a schematic diagram of an example decoder of a source driver employing a four-state timing control signal in accordance with one embodiment. In Fig. 7, the source driver 420_i (1) of the 4A and 4B is shown. i m ) decoder 450_i, wherein the source driver 450_i uses a pair of four-bit (q1=q2=4) differential signals SCTRL_i(I) and SCTRL_i(Q) as a four-state (total number of states p= 4) The timing control signal SCTRL_i is as shown in Tables 3 and 5. The decoder 450 is configured to receive the differential signals SCTRL_i(I) and SCTRL_i(Q) and the two predetermined voltages RH and RL to recover clock information and data information.
一比較器810將差動訊號SCTRL_i(I)與SCTRL_i(Q)之電壓位準進行比較以獲得一輸出O1。解碼器450_i可將此輸出作為一資料訊號S_DATA,該資料訊號S_DATA並提供資料資訊;或較佳地,如第7圖所示,解碼器450_i可更包括一延遲邏輯單元850,其將該輸出O1延遲一所需相位(譬如為180°)以產生資料訊號S_DATA。 A comparator 810 compares the differential signal SCTRL_i(I) with the voltage level of SCTRL_i(Q) to obtain an output O1. The decoder 450_i can use the output as a data signal S_DATA, the data signal S_DATA and provide data information; or preferably, as shown in FIG. 7, the decoder 450_i can further include a delay logic unit 850, which outputs the output O1 is delayed by a desired phase (e.g., 180°) to generate a data signal S_DATA.
一比較器820將差動訊號SCTRL_i(I)之電壓位準與既定電壓RH相比較,以將比較結果提供為一輸出O2。類似地,一比較器830係將既定電壓RL與差動訊號SCTRL_i(I)之電壓位準相比較,以將比較結果提供為一輸出O3。一或閘840繼而根據該輸出O2與O3來產生一輸出O4。在建置有延遲邏輯單元850之情況下,此輸出O4可直接作為一時脈訊號S_CLOCK以提供時脈資訊,或著選擇性地,在不具備有延遲邏輯單元850之情況下,解碼器450_i可更包括一延遲邏輯單元(未顯示),其將或閘840之輸出O4延遲一所需相位以產生時脈訊號S_CLOCK。 A comparator 820 compares the voltage level of the differential signal SCTRL_i(I) with a predetermined voltage RH to provide the comparison result as an output O2. Similarly, a comparator 830 compares the predetermined voltage RL with the voltage level of the differential signal SCTRL_i(I) to provide a comparison result as an output O3. A OR gate 840 then produces an output O4 based on the outputs O2 and O3. In the case where the delay logic unit 850 is built, the output O4 can be directly used as a clock signal S_CLOCK to provide clock information, or alternatively, in the case where the delay logic unit 850 is not provided, the decoder 450_i can Further included is a delay logic unit (not shown) that delays the output O4 of the OR gate 840 by a desired phase to produce a clock signal S_CLOCK.
較佳地,解碼器450_i可更包括一致能輸入/輸出(Enable Input/Output;EIO)產生邏輯單元860以提供致能輸入/輸出訊號S_EIO。此致能輸入/輸出訊號S_EIO可以用來控制解碼器450_i之輸出,以使或不使源極驅動器420_i接收資料訊號S_DATA與時脈訊號S_CLOCK於解碼後進行後續處理。 Preferably, the decoder 450_i may further include an Enable Input/Output (EIO) generation logic unit 860 to provide an enable input/output signal S_EIO. The enable input/output signal S_EIO can be used to control the output of the decoder 450_i so that the source driver 420_i receives the data signal S_DATA and the clock signal S_CLOCK after decoding for subsequent processing.
於第7圖中,EIO產生邏輯單元可以組態來接收上述的輸出O1。EIO邏輯產生單元860繼而可於產生致能輸入輸出訊號S_EIO之過程中,根據所接收之輸出O1來偵測時序控制訊號SCTRL_i之狀態模式,以下將參照第9A及9B圖來詳細說明之。 In Figure 7, the EIO generation logic unit can be configured to receive the output O1 described above. The EIO logic generating unit 860 can then detect the state mode of the timing control signal SCTRL_i according to the received output O1 during the process of generating the enable input and output signal S_EIO, which will be described in detail below with reference to FIGS. 9A and 9B.
第8圖係依據另一實施例之一運用四狀態時序控制訊號之源極驅動器之另一範例解碼器之示意圖。於第8圖中,係顯示第4A及4B圖之源極驅動器420_i(1 i m)的解碼器450_i,其中源極驅動器450_i係用運用一對三位準(q1=q2=3)之差動訊號SCTRL_i(I)與SCTRL_i(Q)來作為一四狀態(狀態總數p=4)之時序控制訊號SCTRL_i,如同表格4及第6圖所示。在此,第8圖與第7圖之差異主要在於比較器830可利用比較器930來取代,其並改為比較差動訊號SCTRL_i(Q)之電壓位準與既定電壓RH。為了簡明之故,以下省略與第7圖類似之細節。 Figure 8 is a schematic illustration of another example decoder of a source driver employing a four-state timing control signal in accordance with another embodiment. In Fig. 8, the source driver 420_i (1) of the 4A and 4B is shown. i m ) decoder 450_i, wherein the source driver 450_i uses a pair of three-level (q1=q2=3) differential signals SCTRL_i(I) and SCTRL_i(Q) as a four-state (total number of states p= 4) The timing control signal SCTRL_i, as shown in Tables 4 and 6. Here, the difference between FIG. 8 and FIG. 7 is mainly that the comparator 830 can be replaced by the comparator 930, and the voltage level of the differential signal SCTRL_i (Q) is compared with the predetermined voltage RH. For the sake of brevity, details similar to those of Fig. 7 are omitted below.
第9A與9B圖分別係依據一實施例下之一四狀態時序控制訊號的範例訊號值之顯示圖以及所對應之代表訊號之波形圖。在此,第9A圖係顯示表格1中之一四狀態(即狀態總數p=4)之狀態號碼NUM、所對應之時脈訊號值CLOCK以及資料訊號值DATA,以及一輸入/輸出訊號值EIO。第9B圖則顯示在如第7圖之解碼器450之建置下,與第9A圖相對應之四位準差動訊號SCTRL_i(I)與SCTRL_i(Q)、時脈訊號S_CLOCK、資料訊號S_DATA,以及致能輸入/輸出訊號S_EIO之波形。如圖所示,差 動訊號SCTRL_i(I)與SCTRL_i(Q)係沿著時間而轉換於不同的狀態之間,而於任何時間點皆能同時傳遞時脈訊號值與資料訊號值。 The figures 9A and 9B are respectively a display diagram of an example signal value of a four-state timing control signal according to an embodiment and a waveform diagram of the corresponding representative signal. Here, FIG. 9A shows the state number NUM of one of the four states (ie, the total number of states p=4) in Table 1, the corresponding clock signal value CLOCK and the data signal value DATA, and an input/output signal value EIO. . FIG. 9B shows four-bit quasi-differential signals SCTRL_i(I) and SCTRL_i(Q), clock signal S_CLOCK, and data signal S_DATA corresponding to FIG. 9A in the construction of decoder 450 as shown in FIG. And the waveform of the enable input/output signal S_EIO. As shown, the difference The motion signals SCTRL_i(I) and SCTRL_i(Q) are switched between different states along time, and the clock signal value and the data signal value can be simultaneously transmitted at any time point.
在致能週期E1及E2之期間內,狀態號碼NUM係以(NUM)=(1或4→2或3→1或4→2或3→...)之模式來作切換,這反映出時脈訊號值CLOCK必須在1與0之間來回轉換之要求,正如表格1之相關說明中所描述。 During the period of the enable periods E1 and E2, the state number NUM is switched in the mode of (NUM)=(1 or 4→2 or 3→1 or 4→2 or 3→...), which reflects The clock signal value CLOCK must be converted back and forth between 1 and 0, as described in the relevant description in Table 1.
另一方面,於一失能週期D1之期間內,狀態號碼NUM可設定為以一特定之狀態模式來轉換,譬如是(2→3→2→3→2→...),其代表時脈訊號值CLOCK為(0→0→0→0→0→...)以及資料訊號值DATA為(1→0→1→1→1→...)。時脈訊號值CLOCK之這種狀態模式係反映出當源極驅動器420_i失能而停止對解碼輸出訊號(S_DATA與S_CLOCK)進行處理時,時脈訊號值CLOCK必須保持為0,正如表格1之相關說明中所述。然而,資料訊號值DATA之狀態模式(1→0→1→1→1)是來自於另一個為了產生致能輸入/輸出訊號S_EIO之額外要求,其乃鑒於一個諸如(2→3→2→3→2)之類的特殊模式的結束能夠被偵測到因而可以用來提供一失能週期結束之指示,亦即作為致能該源極驅動器410_i之提示。 On the other hand, during the period of one failure period D1, the state number NUM can be set to be switched in a specific state mode, for example (2→3→2→3→2→...), when it is represented The pulse signal value CLOCK is (0→0→0→0→0→...) and the data signal value DATA is (1→0→1→1→1→...). The state mode of the clock signal value CLOCK reflects that when the source driver 420_i is disabled and stops processing the decoded output signals (S_DATA and S_CLOCK), the clock signal value CLOCK must remain at 0, as shown in Table 1. Said in the description. However, the state mode of the data signal value DATA (1→0→1→1→1) comes from another additional requirement for generating the enable input/output signal S_EIO, which is in view of one such as (2→3→2→ The end of the special mode, such as 3→2), can be detected and thus can be used to provide an indication of the end of a disabling period, i.e., as a prompt to enable the source driver 410_i.
舉例而言,解碼器450_i可以組態為根據時序控制訊號SCTRL_i之狀態模式來產生一個用來致能該源極驅動器410_i之致能輸入/輸出訊號S_EIO。明確而言,在一失能週期之期間內, 譬如是週期D1,時序控制器可以提供時序控制訊號,此時序控制訊號乃具有以諸如(2→3→2→3→2→...)之類的特定狀態模式來轉換的狀態號碼。同時,解碼器450_i則偵測時序控制訊號之狀態模式,用以偵測失能週期之結束與一接續的致能週期之開始。如果解碼450_i偵測到狀態號碼NUM停止以特定模式來轉換,則解碼器450_i可為致能輸入/輸出訊號產生一脈波,方以致能該源極驅動器410_i。與此對應之實現方式係於第7圖中顯示,其中EIO產生邏輯單元860係於接收到輸出O1後,偵測時序控制訊號SCTROL_i之狀態模式,以產生致能輸入/輸出訊號S_EIO。 For example, the decoder 450_i can be configured to generate an enable input/output signal S_EIO for enabling the source driver 410_i according to the state mode of the timing control signal SCTRL_i. Specifically, during the period of a disability cycle, For example, the period D1, the timing controller can provide a timing control signal having a status number converted by a specific state mode such as (2→3→2→3→2→...). At the same time, the decoder 450_i detects the state mode of the timing control signal for detecting the end of the disable period and the beginning of a subsequent enable period. If the decoding 450_i detects that the status number NUM stops switching in a particular mode, the decoder 450_i may generate a pulse for the enable input/output signal to enable the source driver 410_i. The corresponding implementation is shown in FIG. 7 , wherein the EIO generation logic unit 860 detects the state mode of the timing control signal SCTROL_i after receiving the output O1 to generate the enable input/output signal S_EIO.
於第9B圖中,時脈訊號S_CLOCK以及資料訊號S_DATA可具有約180°的相位差異。與此對應之實現方式係顯示於第7圖中,其中延遲邏輯單元850將輸出O1延遲已產生資料訊號S_DATA。為了簡明之故,對於如表格4、第6圖與第8圖之3位準差動訊號的類似描述,係於以下省略說明之。 In FIG. 9B, the clock signal S_CLOCK and the data signal S_DATA may have a phase difference of about 180°. An implementation corresponding thereto is shown in FIG. 7, in which delay logic unit 850 delays output O1 by the generated data signal S_DATA. For the sake of brevity, similar descriptions of the 3-bit quasi-differential signals as in Tables 4, 6, and 8 are omitted below.
須注意,源極驅動器420_1至420_m係根據點至點結構來連接。然而,源極驅動器420_1至420_m可以任何單點至多點結構來連接。 It should be noted that the source drivers 420_1 to 420_m are connected according to a point-to-point structure. However, the source drivers 420_1 through 420_m may be connected in any single point to multipoint configuration.
第10A圖係依據另一實施例之另一範例顯示器裝置的示意圖,以及第10B圖係依據更另一實施例之更另一範例顯示器裝置的示意圖。在此,第10A及10B係顯示分別採用單點至雙點結構以及單點至m點結構(m為一整數)之顯示器裝置1100與1100’。 第10A與10B圖與第4A及4B圖之主要差異在於,顯示器裝置1100與1100’產生之時脈訊號所表示之資料量分別增為兩倍與m倍,因此時脈訊號可以增加以表示更多資料。為了簡明起見,與第4A及4B圖類似之特徵,以下係省略討論之。 10A is a schematic diagram of another exemplary display device according to another embodiment, and FIG. 10B is a schematic diagram of still another exemplary display device according to still another embodiment. Here, the 10A and 10B display display devices 1100 and 1100' each employing a single-point to two-dot structure and a single-point to m-dot structure (m is an integer). The main difference between the 10A and 10B and the 4A and 4B is that the amount of data represented by the clock signals generated by the display devices 1100 and 1100' is increased by two times and m times, respectively, so that the clock signal can be increased to indicate that More information. For the sake of brevity, features similar to those of Figures 4A and 4B are omitted from the following.
於上述之實施例中,由於僅有單一種訊號線設置於時序控制器與一對應的源極驅動器之間,因此訊號線之總數與製造成本能夠降低。此外,由於只有單一的時序控制訊號用來同時攜載時脈資訊與資料資訊,因此無須進行額外的解偏移即可達成更精確的資料取樣。此外,由於一或更多條的多資訊信號線可分別提供給源極驅動器,因此可解決諸如大的訊號負載、電磁干擾、以及因訊號延遲所造成的資料取樣失敗…等等問題,結果可以提供較高的傳輸速度。 In the above embodiment, since only a single signal line is disposed between the timing controller and a corresponding source driver, the total number of signal lines and manufacturing cost can be reduced. In addition, since only a single timing control signal is used to carry both clock information and data information, more accurate data sampling can be achieved without additional offset. In addition, since one or more multi-information signal lines can be separately supplied to the source driver, problems such as large signal load, electromagnetic interference, and data sampling failure due to signal delay can be solved, and the result can be provided. Higher transmission speed.
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.
11‧‧‧時脈訊號線 11‧‧‧clock signal line
12‧‧‧資料訊號線 12‧‧‧Information signal line
110_1~110_m‧‧‧源極驅動器 110_1~110_m‧‧‧Source Driver
32_1~32_m‧‧‧時脈訊號線 32_1~32_m‧‧‧clock signal line
32_1~32_m‧‧‧資料訊號線 32_1~32_m‧‧‧Information signal line
310_1~310_m‧‧‧源極驅動器 310_1~310_m‧‧‧Source Driver
410‧‧‧時序控制器 410‧‧‧Sequence Controller
420_1~420_m‧‧‧源極驅動器 420_1~420_m‧‧‧Source Driver
430_1~430_n‧‧‧閘極驅動器 430_1~430_n‧‧‧gate driver
450_1~450_n‧‧‧解碼器 450_1~450_n‧‧‧Decoder
810‧‧‧比較器 810‧‧‧ comparator
820‧‧‧比較器 820‧‧‧ comparator
830、930‧‧‧比較器 830, 930‧‧‧ comparator
840‧‧‧或閘 840‧‧‧ or gate
850‧‧‧延遲邏輯單元 850‧‧‧Delay logic unit
860‧‧‧致能輸入/輸出產生邏輯單元 860‧‧‧Enable input/output generation logic unit
LM_1~LM_m‧‧‧多資料訊號線 LM_1~LM_m‧‧‧Multiple signal line
O1-O4‧‧‧輸出 O1-O4‧‧‧ output
RH‧‧‧既定電壓 RH‧‧‧established voltage
RL‧‧‧既定電壓 RL‧‧‧established voltage
SCTRL_1~SCTRL_m‧‧‧時序控制訊號 SCTRL_1~SCTRL_m‧‧‧ timing control signal
SCTRL(I)‧‧‧時序控制訊號 SCTRL (I) ‧ ‧ timing control signal
SCTRL(Q)‧‧‧時序控制訊號 SCTRL (Q)‧‧‧ timing control signal
SD_1~SD_m‧‧‧資料訊號 SD_1~SD_m‧‧‧Information Signal
SS_1~SS_n‧‧‧掃描訊號 SS_1~SS_n‧‧‧ scan signal
S_DATA‧‧‧資料訊號 S_DATA‧‧‧Information Signal
S_EIO‧‧‧致能輸入/輸出訊號 S_EIO‧‧‧Enable input/output signals
S_CLOCK‧‧‧時脈訊號 S_CLOCK‧‧‧ clock signal
根據本發明的各種特點、功能以及實施例,皆可以從上述詳細說明,並同時參考所附圖式而達較佳之瞭解,該等圖式係包含: 第1圖係一利用RSDS標準之傳統顯示器裝置的示意圖;第2圖係一利用mini-LVDS標準之傳統顯示器裝置的示意圖;第3圖係一利用PPDS標準的傳統顯示器裝置的示意圖;第4A及4B圖係依據一實施例之範例顯示器裝置之示意圖;第5圖係依據一實施例下之顯示電壓位準與兩個既定DC電壓間之關係的示意圖;第6圖係依據另一實施例下之顯示電壓位準與一個既定DC電壓間之關係的示意圖;第7圖係依據一實施例之一運用四狀態時序控制訊號之源極驅動器之一範例解碼器之示意圖;第8圖係依據另一實施例之一運用四狀態時序控制訊號之源極驅動器之一範例解碼器之示意圖;第9A與9B圖分別係依據一實施例下之一四狀態時序控制訊號的範例訊號值之顯示圖以及所對應之代表訊號之波形圖;以及 第10A圖係依據另一實施例之另一範例顯示器裝置的示意圖;以及第10B圖係依據更另一實施例之更另一範例顯示器裝置的示意圖。 The various features, functions and embodiments of the present invention are described in the foregoing detailed description, 1 is a schematic diagram of a conventional display device using the RSDS standard; FIG. 2 is a schematic diagram of a conventional display device using the mini-LVDS standard; and FIG. 3 is a schematic view of a conventional display device using the PPDS standard; 4B is a schematic diagram of an exemplary display device according to an embodiment; FIG. 5 is a schematic diagram showing a relationship between a display voltage level and two predetermined DC voltages according to an embodiment; FIG. 6 is a diagram according to another embodiment. Schematic diagram showing the relationship between the voltage level and a predetermined DC voltage; FIG. 7 is a schematic diagram of an example decoder using a source driver of a four-state timing control signal according to an embodiment; FIG. 8 is based on another A schematic diagram of an example decoder using a source driver of a four-state timing control signal; and FIGS. 9A and 9B are diagrams showing an example signal value of a four-state timing control signal according to an embodiment; Corresponding waveform diagram of the representative signal; 10A is a schematic diagram of another exemplary display device in accordance with another embodiment; and FIG. 10B is a schematic diagram of still another exemplary display device in accordance with still another embodiment.
410‧‧‧時序控制器 410‧‧‧Sequence Controller
420_1~420_m‧‧‧源極驅動器 420_1~420_m‧‧‧Source Driver
430_1~430_n‧‧‧閘極驅動器 430_1~430_n‧‧‧gate driver
LM_1~LM_m‧‧‧多資料訊號線 LM_1~LM_m‧‧‧Multiple signal line
SCTRL_1~SCTRL_m‧‧‧時序控制訊號 SCTRL_1~SCTRL_m‧‧‧ timing control signal
SD_1~SD_m‧‧‧資料訊號 SD_1~SD_m‧‧‧Information Signal
SS_1~SS_n‧‧‧掃描訊號 SS_1~SS_n‧‧‧ scan signal
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98105850A TWI415087B (en) | 2009-02-24 | 2009-02-24 | Liquid crystal display device with clock signal embedded signaling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW98105850A TWI415087B (en) | 2009-02-24 | 2009-02-24 | Liquid crystal display device with clock signal embedded signaling |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201032204A TW201032204A (en) | 2010-09-01 |
TWI415087B true TWI415087B (en) | 2013-11-11 |
Family
ID=44854822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW98105850A TWI415087B (en) | 2009-02-24 | 2009-02-24 | Liquid crystal display device with clock signal embedded signaling |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI415087B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI452567B (en) * | 2011-09-05 | 2014-09-11 | Himax Tech Ltd | Display panel and driving circuit applying to display panel and associated driving method |
TWI556202B (en) | 2014-10-24 | 2016-11-01 | 友達光電股份有限公司 | Display driving apparatus and method for driving display apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050023851A (en) * | 2003-09-03 | 2005-03-10 | 엘지.필립스 엘시디 주식회사 | Method and Apparatus for Driving Liquid Crystal Display Device |
TWI267046B (en) * | 2005-09-23 | 2006-11-21 | Anapass Inc | Display, column driver integrated circuit, and multi-level detector, and multi-level detection method |
US20060262070A1 (en) * | 2002-05-16 | 2006-11-23 | Seung-Woo Lee | Liquid crystal display and driving method thereof |
TW200813946A (en) * | 2006-09-15 | 2008-03-16 | Au Optronics Corp | Liquid crystal display |
-
2009
- 2009-02-24 TW TW98105850A patent/TWI415087B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060262070A1 (en) * | 2002-05-16 | 2006-11-23 | Seung-Woo Lee | Liquid crystal display and driving method thereof |
KR20050023851A (en) * | 2003-09-03 | 2005-03-10 | 엘지.필립스 엘시디 주식회사 | Method and Apparatus for Driving Liquid Crystal Display Device |
TWI267046B (en) * | 2005-09-23 | 2006-11-21 | Anapass Inc | Display, column driver integrated circuit, and multi-level detector, and multi-level detection method |
TW200813946A (en) * | 2006-09-15 | 2008-03-16 | Au Optronics Corp | Liquid crystal display |
Also Published As
Publication number | Publication date |
---|---|
TW201032204A (en) | 2010-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9589524B2 (en) | Display device and method for driving the same | |
US9449577B2 (en) | Display device having synchronization unit and driving method thereof | |
US8279215B2 (en) | Display apparatus and method of driving the same | |
US9483131B2 (en) | Liquid crystal display and method of driving the same | |
US8947412B2 (en) | Display driving system using transmission of single-level embedded with clock signal | |
CN101751886B (en) | Liquid crystal display and driving method thereof | |
US20080246755A1 (en) | Display, Column Driver Integrated Circuit, and Multi-Level Detector, and Multi-Level Detection Method | |
KR101808344B1 (en) | Display device and driving method thereof | |
TWI508054B (en) | Source driver and method to reduce peak current therein | |
TW202226216A (en) | Data drive circuit, clock recovery method of the same, and display drive device having the same | |
WO2007108574A1 (en) | Display, timing controller and data driver for transmitting serialized multi-level data signal | |
US20100146175A1 (en) | Data driving apparatus and display device using the same | |
US20100164967A1 (en) | Display apparatus and method of driving the same | |
US7876130B2 (en) | Data transmitting device and data receiving device | |
KR101681782B1 (en) | Liquid crystal display | |
US20120206429A1 (en) | Method of processing data and a display apparatus performing the method | |
KR102219091B1 (en) | Display Device | |
KR20130009496A (en) | Display device and driving method thereof | |
KR101696469B1 (en) | Liquid crystal display | |
US20100176749A1 (en) | Liquid crystal display device with clock signal embedded signaling | |
TWI415087B (en) | Liquid crystal display device with clock signal embedded signaling | |
KR20160038154A (en) | Source driver and operating method thereof | |
KR20150080085A (en) | Image display device and driving method the same | |
KR20100129153A (en) | Liquid crystal display | |
US10013936B2 (en) | Gamma voltage generation circuit of source driver |