TWI413130B - Solar cells with positive transparent conductive oxide - Google Patents

Solar cells with positive transparent conductive oxide Download PDF

Info

Publication number
TWI413130B
TWI413130B TW099139328A TW99139328A TWI413130B TW I413130 B TWI413130 B TW I413130B TW 099139328 A TW099139328 A TW 099139328A TW 99139328 A TW99139328 A TW 99139328A TW I413130 B TWI413130 B TW I413130B
Authority
TW
Taiwan
Prior art keywords
transparent conductive
positive
conductive oxide
group
solar cell
Prior art date
Application number
TW099139328A
Other languages
English (en)
Other versions
TW201222557A (en
Inventor
Han Yi Chen
Chia Hsiang Chen
Huan Chieh Su
Kuo Liang Liu
Tri Rung Yew
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW099139328A priority Critical patent/TWI413130B/zh
Priority to US13/104,744 priority patent/US8609981B2/en
Publication of TW201222557A publication Critical patent/TW201222557A/zh
Application granted granted Critical
Publication of TWI413130B publication Critical patent/TWI413130B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/17Nanostrips, nanoribbons or nanobelts, i.e. solid nanofibres with two significantly differing dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)

Description

具有正型透明導電氧化物之太陽能電池
>>本發明係有關一種導電氧化物,尤指一種正型透明導電氧化物及具有正型透明導電氧化物之太陽能電池。
>>由於石油能源的耗盡,太陽能電池的技術發展為現今刻不容緩的事情之一,現今也有許多太陽能電池已經能夠大量製造並且應用,但太陽能面板因為必須使用大量面積來吸收太陽光,因此其體積大、重量重、安裝不方便已成為其最大的缺點。若將太陽能面板應用在建築結構上,通常會放置於無人使用且可大量接觸到太陽光的屋頂,如此一來,不僅屋頂空曠空間無法再加以利用,如果遇到天災像是颱風、颶風等,裝設於屋頂的太陽能面板更容易因為被吹落而造成公眾的危險。
>>為了解決太陽能面板之大面積佔用的問題,透明太陽能電池已經蓬勃的在發展中,若能做到高透光率的透明太陽能電池,便能將太陽能電池設置於一般建築使用的門、窗等,一般之門窗已經具有大面積之特點,並且門窗其中之一功用便在於透光,因此若能發展出高透光率的太陽能電池並將其裝設於建築物之門窗上,其不僅能解決目前太陽能面板佔面積的問題,更能提供建築物一般所需之電力來源。
>>而目前發展中,負型(N type)透明導電氧化物(Transparent Conductive Oxide,TCO)已能做到高導電、低阻抗、高透光率等條件。但正型(P type)因材料本質問題,尚無法滿足高導電、低阻抗、高透光率的要求。如U.Kumar Barik等共同作者於Thin Solid Films 492(2003)129-134發表之「Electrical and optical properties of reactive DC magnetron sputtered silver oxide thin films:role of oxygen」,其揭露了一種氧化銀的正型透明導電氧化物,其達到高電洞遷移率(6.1 cm2/V‧s)及低電阻(2.61×10-4 Ω‧cm)的優點,但其透光率皆低於2%,不符合透明 之要求。而如S.Golshahi等其共同作者於Thin Solid Films 518(2009)1149-1152發表之「P-type ZnO thin film deposited by spray pyrolysis technique:The effect of solution concentration」,其揭露了一種氧化鋅之正型透明導電氧化物,其電洞遷移率達到6.31~46.9(cm2/V‧s),且其透光率亦達到60~80%的透光度,但其阻抗之範圍在0.66×100~7.2×103(Ω‧cm)之間,因此,於目前為止,尚未有技術可以符合高電洞遷移率、低電阻及高透光性的條件。
>>本發明之主要目的,在於解決習知技術中之正型導電氧化物無法同時達到高電洞遷移率、低電阻及高透光性的條件的問題。
>>為達上述目的,本發明提供一種正型透明導電氧化物,其係包含有一摻雜一低於六價電子之銦的三氧化鉬。除此之外,本發明更提供一種具有正型透明導電氧化物之太陽能電池,其包含有一基板、一正型透明導電層、一吸光半導體層及一負型導電層。該正型透明導電層與該基板連接,該正型透明導電層係為該正型透明導電氧化物所構成;該吸光半導體層係設置於該正型透明導電層遠離該基板之一側;該負型導電層設置於該吸光半導體層遠離該正型透明導電層之一側。
>>由上述說明可知,本發明之正型透明導電氧化物包含該摻雜一低於六價電子之銦的三氧化鉬,藉由摻雜低於六價電子之銦增加電洞的個數,因而增加了電洞漂移率及降低其電阻值,並且使得其費米能階(Fermi Level)較為接近正型材料的範圍,藉此達到高電洞遷移率、低電阻及高透光性的條件。本發明可成長出單晶奈米線以及非晶薄膜,此非晶薄膜可直接成長在軟性基板上,可實際應用在軟性電子元件。此外,更利用該正型透明導電氧化物製作太陽能電池以達到實際應用的能力。
>>有關本發明之詳細說明及技術內容,現就配合圖式說明如 下:>>請參閱「圖1」、「圖2」及「圖3」所示,「圖1」係本發明一較佳實施例之螢光放射光譜示意圖,「圖2」係本發明一較佳實施例之能階曲線示意圖,「圖3」係本發明一較佳實施例之光激發螢光譜示意圖,如圖所示:本發明係為一種正型透明導電氧化物,其係包含有一摻雜一低於六價電子之元素的三氧化鉬,該低於六價電子之元素選自於由鹼金屬族、鹼土金屬族、三族元素、四族元素、五族元素、低於六價電子的過渡元素及其組合所組成之群組。由於鉬(Mo)為六價的材料,因此本發明藉由摻雜低於六價電子之元素,藉由取代的方式得到更多的電洞,於本實施例中,其係以銦(In)作為該低於六價電子之元素,銦為三價的金屬,因此進行摻雜後,每一個摻雜後的分子都會多出三個電洞(hole),而於本實施例中,其摻雜後之化學式為In-MoO3。而由「圖1」中可以得到摻雜銦之三氧化鉬1的螢光放射光譜與未摻雜之三氧化鉬2的螢光放射光譜,再由「圖2」中所示,可以得到摻雜銦之三氧化鉬1的費米能階(Fermi Level)及價電帶(Valence Band)之值,且由「圖3」中所示得知,尚未經過摻雜的三氧化鉬(MoO3)的費米能階是介於正型(P-type)及負型(N-type)之間,並且較為接近N-type一邊,但經過摻雜銦之後的三氧化鉬,其費米能階已經降至-5.2 eV,非常靠近P-type一邊,而此可以判斷摻雜銦之後的三氧化鉬為一種正型導電氧化物。
>>請參閱「圖4」所示,其係本發明一較佳實施例之波長透光率示意圖,如圖所示:本發明中80 nm之薄膜,於可見光波長的範圍390nm至780nm中,其透光率皆大於80%,甚至在波長為485 nm時,其透光率接近90%,由此可知,本發明可以達到良好的透光效果。
>>請參閱「圖5」及「圖6」所示,「圖5」係本發明一較佳實施例之薄膜電阻率示意圖,「圖6」則為本發明一較佳實施例之奈米線電阻率示意圖。如「圖5」所示:於摻雜銦之後, 三氧化鉬薄膜之電阻率可下降至2.5×10-3 Ω-cm,其電洞遷移率以及電洞載子濃度分別可達11.9 cm2/Vs及2.1×1020/cm3;如「圖6」所示:於摻雜銦之後,三氧化鉬奈米線之電阻率可下降至5.98×10-4 Ω-cm,由此可知,本發明可以達到良好的導電特性。
>>請參閱「圖7」所示,其係本發明一較佳實施例之成長非晶摻雜銦之三氧化鉬薄膜於軟性基板(聚醯亞胺)上之電阻率示意圖,如圖所示:將基板彎曲到達5.22 mm曲率,並重複五個循環後,其電阻率由原本的3.4×10-3Ω-cm至多增加至6.3×10-3 Ω-cm,仍維持在低電阻率範圍,由此可知,本發明可成功的成長在軟性基板上,並達到良好的導電特性。
>>請參閱「圖8A」及「圖8B」所示,其係本發明一較佳實施例之全透光電子元件應用示意圖,如「圖8A」所示:於一玻璃基板10上,濺鍍負型透明導電層11(氧化鋁鋅),以及本質半導體層12(氧化鋅),並於其上方成長本發明之摻雜銦之三氧化鉬薄膜做為正型透明導電氧化物13,組裝成全透光電子元件。如「圖8B」所示:由本發明之全透光電子元件之電流電壓曲線中可得到驅動電壓為1.4 eV,由此可知,本發明可成功的應用於全透光電子元件。
>>請參閱「圖9」所示,其係本發明一較佳實施例之太陽能電池製程示意圖,如圖所示:本發明更提供一種具有正型透明導電氧化物之太陽能電池,其包含有一基板20、一正型透明導電層22、一吸光半導體層23及一負型導電層24。於本實施例中,其更具有一電極層21,該電極層21與該基板20連接,而該正型透明導電層22與該電極層21連接並設置於相對該基板20之一側,該正型透明導電層22係為該正型透明導電氧化物所構成,也就是說,該正型透明導電氧化物包含有一摻雜一低於六價電子之元素的三氧化鉬,該低於六價電子之元素選自於由鹼金屬族、鹼土金屬族、三族元素、四族元素、五族元素低於六價的過渡元素及其組合所組成之群組,於本實施例中, 其係同樣以摻雜銦作為一較佳實施例之說明;該吸光半導體層23係設置於該正型透明導電層22遠離該基板20之一側;該負型導電層24設置於該吸光半導體層23遠離該正型透明導電層22之一側。
>>更進一步的說明,由「圖9」中可知本發明之太陽能電池的製作流程,其中先於該基板20及該電極層21上成長該正型透明導電層22,並於本實施例中,其係成長為一奈米線結構,於應用上,亦可將該正型透明導電層22做成薄膜狀,接著再將該吸光半導體層23成長在該正型透明導電層22上,並且成長為一奈米粒結構,藉由奈米線與奈米粒之配合,可以增加該正型透明導電層22與該吸光半導體層23之接觸面積,藉此得到更多解離之電子電洞對。接著,藉由濺鍍(Sputter)將該負型導電層24成長於該吸光半導體層23上。除此之外,該電極層21之材質可為鉑或鈦,該負型導電層24之材質可為氧化銦錫、FTO(氟摻雜之氧化錫)或氧化鋁鋅。而該吸光半導體層23係選自於由吸附染料之二氧化鈦、氧化鋅及三五族量子點所組成之群組。再者,太陽能電池中各層板之製備方法係以選自於由濺鍍法、蒸鍍法、自行組裝法、化學合成方法、溶膠凝膠法、旋轉塗佈、化學氣相沈積及物理氣相沈積所組成之群組的方法製備而成。
>>請再參閱「圖10A」及「圖10B」所示,「圖10A」為本發明一較佳實施例之摻雜過程示意圖,「圖10B」為本發明一較佳實施例之爐管製程示意圖。如圖所示:於本實施例中,其係將一來源板30放置於一爐管40的高溫區41,再將已經設置有該第一導電層之該基板20放置於該爐管40的低溫區42,並且由該爐管40的高溫區41通以一承載氣體50(Carrier Gas),該氣體於本實施例中為氬氣(Ar),藉由該承載氣體50將該來源板30上之來源材料帶至該爐管40的低溫區42沈積在該第一導電層上進而成為奈米線結構,藉此完成該正型透明導電層22之設置。
>>綜上所述,由於本發明之正型透明導電氧化物包含該摻雜一低於六價電子之元素的三氧化鉬,藉由摻雜低於六價電子之元素增加電洞的個數,因而增加了電洞漂移率及降低其電阻值,並且使得其費米能階(Fermi Level)較為接近正型材料的範圍,藉此達到高電洞遷移率、低電阻及高透光性的條件。本發明亦可成長出單晶奈米線以及非晶薄膜,此非晶薄膜可直接成長在軟性基板上,可實際應用在軟性電子元件。此外,更利用該正型透明導電氧化物製作太陽能電池以達到實際應用的能力。因此本發明極具進步性及符合申請發明專利之要件,爰依法提出申請,祈 鈞局早日賜准專利,實感德便。
>>以上已將本發明做一詳細說明,惟以上所述者,僅為本發明之一較佳實施例而已,當不能限定本發明實施之範圍。即凡依本發明申請範圍所作之均等變化與修飾等,皆應仍屬本發明之專利涵蓋範圍內。
1‧‧‧摻雜銦之三氧化鉬
2‧‧‧未摻雜之三氧化鉬
10‧‧‧玻璃基板
11‧‧‧負型透明導電層
12‧‧‧本質半導體層
13‧‧‧正型透明導電氧化物
20‧‧‧基板
21‧‧‧電極層
22‧‧‧正型透明導電層
23‧‧‧吸光半導體層
24‧‧‧負型導電層
30‧‧‧來源板
40‧‧‧爐管
41‧‧‧高溫區
42‧‧‧低溫區
50‧‧‧承載氣體
圖1,係本發明一較佳實施例之螢光放射光譜示意圖。
圖2,係本發明一較佳實施例之能階曲線示意圖。
圖3,係本發明一較佳實施例之光激發螢光譜示意圖。
圖4,係本發明一較佳實施例之不同波長透光率示意圖。
圖5,係本發明一較佳實施例之薄膜電阻率示意圖。
圖6,係本發明一較佳實施例之奈米線電阻率示意圖。
圖7,係本發明一較佳實施例之成長非晶摻雜銦之三氧化鉬薄膜於軟性基板(聚醯亞胺)上之電阻率示意圖。
圖8A,係本發明一較佳實施例之全透光電子元件結構示意圖。
圖8B,係本發明一較佳實施例之全透光電子元件電流電壓曲線示意圖。
圖9,係本發明一較佳實施例之太陽能電池製程示意圖。
圖10A,係本發明一較佳實施例之摻雜過程示意圖。
圖10B,係本發明一較佳實施例之爐管製程示意圖。
10‧‧‧玻璃基板
11‧‧‧負型透明導電層
12‧‧‧本質半導體層
13‧‧‧正型透明導電氧化物

Claims (5)

  1. 一種具有正型透明導電氧化物之太陽能電池,其包含有:一基板;一正型透明導電層,其與該基板連接,該正型透明導電層係為一正型透明導電氧化物所構成,該正型透明導電氧化物包含有一摻雜一低於六價電子之銦的三氧化鉬;一吸光半導體層,其係設置於該正型透明導電層遠離該基板之一側;一負型導電層,其係設置於該吸光半導體層遠離該正型透明導電層之一側;其中,該正型透明導電氧化物的透光率於可見光波長的範圍390nm至780nm中,為介於80%至90%之間;該三氧化鉬薄膜於摻雜銦後電阻率下降至2.5×10-3 Ω-cm,電洞載子濃度為2.1×1020/cm3
  2. 如申請專利範圍第1項所述之具有正型透明導電氧化物之太陽能電池,其中該正型透明導電層係為一薄膜或一奈米線結構,而該吸光半導體層係為一奈米粒結構。
  3. 如申請專利範圍第1項所述之具有正型透明導電氧化物之太陽能電池,其中更具有一電極層,該電極層設置於該基板與該正型透明導電層之間,該電極層之材質係選自於由鉑、鈦及其組合所組成之群組,該負型電極層之材質係選自於由氧化銦錫、氟摻雜之氧化錫、氧化鋁鋅所組成之群組。
  4. 如申請專利範圍第1項所述之具有正型透明導電氧化物之太陽能電池,其中該吸光半導體層係選自於由吸附染料之二氧化鈦、氧化鋅及三五族量子點所組成之群組。
  5. 如申請專利範圍第1項所述之具有正型透明導電氧化物之太陽能電池,其中太陽能電池中各層板之製備方法係以選自於由濺鍍法、蒸鍍法、自行組裝法、化學合成方法、溶膠凝膠法、旋轉塗佈、化學氣相沈積及物理氣相沈積所組成之群組的方法製備而 成。
TW099139328A 2010-11-16 2010-11-16 Solar cells with positive transparent conductive oxide TWI413130B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW099139328A TWI413130B (zh) 2010-11-16 2010-11-16 Solar cells with positive transparent conductive oxide
US13/104,744 US8609981B2 (en) 2010-11-16 2011-05-10 P-type transparent conductive oxide for solar cell comprising molybdenum trioxide doped with indium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099139328A TWI413130B (zh) 2010-11-16 2010-11-16 Solar cells with positive transparent conductive oxide

Publications (2)

Publication Number Publication Date
TW201222557A TW201222557A (en) 2012-06-01
TWI413130B true TWI413130B (zh) 2013-10-21

Family

ID=46046690

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099139328A TWI413130B (zh) 2010-11-16 2010-11-16 Solar cells with positive transparent conductive oxide

Country Status (2)

Country Link
US (1) US8609981B2 (zh)
TW (1) TWI413130B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5329501B2 (ja) * 2010-09-06 2013-10-30 シャープ株式会社 蛍光体
KR101284587B1 (ko) * 2012-05-17 2013-07-11 한국과학기술연구원 P-형 투명 산화물 반도체, 이를 포함하는 트랜지스터 및 그 제조방법
KR20150138947A (ko) 2014-05-30 2015-12-11 삼성디스플레이 주식회사 표시 장치
CN105789467B (zh) * 2016-04-19 2018-11-06 Tcl集团股份有限公司 一种In掺杂MoO3薄膜的制备方法及其在QLED中的应用
US10930809B2 (en) * 2016-06-04 2021-02-23 International Business Machines Corporation Photovoltaic devices with increased efficiency and methods for making the same
CN112624739A (zh) * 2020-11-13 2021-04-09 北京航空航天大学宁波创新研究院 一种氧化镍基陶瓷靶材、薄膜及薄膜制备工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1452790A (zh) * 2000-09-08 2003-10-29 阿克佐诺贝尔股份有限公司 彩色太阳能电池单元
TW200824115A (en) * 2006-08-01 2008-06-01 Cambridge Display Tech Ltd Methods of manufacturing opto-electrical devices
WO2009089472A2 (en) * 2008-01-10 2009-07-16 Massachusetts Institute Of Technology Photovoltaic devices

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007022106A2 (en) * 2005-08-15 2007-02-22 Konarka Technologies, Inc. Photovoltaic cells with interconnects to external circuit
TWI371112B (en) * 2007-10-02 2012-08-21 Univ Chang Gung Solar energy photoelectric conversion apparatus
US8022291B2 (en) * 2008-10-15 2011-09-20 Guardian Industries Corp. Method of making front electrode of photovoltaic device having etched surface and corresponding photovoltaic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1452790A (zh) * 2000-09-08 2003-10-29 阿克佐诺贝尔股份有限公司 彩色太阳能电池单元
TW200824115A (en) * 2006-08-01 2008-06-01 Cambridge Display Tech Ltd Methods of manufacturing opto-electrical devices
WO2009089472A2 (en) * 2008-01-10 2009-07-16 Massachusetts Institute Of Technology Photovoltaic devices

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
William B. Ingler Jr, et. al, ''Photoresponse of p-Type Zinc-Doped Iron(III) Oxide Thin Films '',American Chemical Society , 30日7月2004, Vol. 126, page 10238-10239. *
Zhenguo Ji, et. al, ''Fabrication and characterization of indium-doped p-type SnO2 thin film '', Journal of Crystal Growth , 31日7月2003, Vol. 259, page 282-285. *

Also Published As

Publication number Publication date
US20120118386A1 (en) 2012-05-17
TW201222557A (en) 2012-06-01
US8609981B2 (en) 2013-12-17

Similar Documents

Publication Publication Date Title
Koo et al. Improvement of transparent conducting performance on oxygen-activated fluorine-doped tin oxide electrodes formed by horizontal ultrasonic spray pyrolysis deposition
TWI413130B (zh) Solar cells with positive transparent conductive oxide
Noh et al. Photovoltaic property dependence of dye-sensitized solar cells on sheet resistance of FTO substrate deposited via spray pyrolysis
Selopal et al. Hierarchical self-assembled Cu2S nanostructures: fast and reproducible spray deposition of effective counter electrodes for high efficiency quantum dot solar cells
Raksha et al. Functional materials for dye-sensitized solar cells
JP5204079B2 (ja) 色素増感型太陽電池及びその製法
Hu et al. Low temperature fabrication of ZnO compact layer for high performance plastic dye-sensitized ZnO solar cells
Lee et al. Approach to transparent photovoltaics based on wide band gap Sb2S3 absorber layers and optics-based device optimization
Kouhestanian et al. Enhancing the electron transfer process of TiO2-based DSSC using DC magnetron sputtered ZnO as an efficient alternative for blocking layer
Li et al. Room-temperature sputtered aluminum-doped zinc oxide for semitransparent perovskite solar cells
Alhammadi et al. Effect of Gallium doping on CdS thin film properties and corresponding Cu (InGa) Se2/CdS: Ga solar cell performance
JP5641981B2 (ja) 量産に適した方法で製造可能な光電変換素子
CN102899624A (zh) 透明导电氧化物复合膜材料的制备方法
Braga et al. Transparent front contact optimization in dye sensitized solar cells: use of cadmium stannate and titanium oxide by sputtering
CN109378387A (zh) 一种基于PLD生长无机CuGaO2透明薄膜的半透明电池
Huang et al. Low-temperature growth of uniform ultrathin TiO2 blocking layer for efficient perovskite solar cell
Passoni et al. Multi-layered hierarchical nanostructures for transparent monolithic dye-sensitized solar cell architectures
Bu Improving the performance of dye-sensitized solar cells by incoporating a novel ZnO: Al charge injection layer
Aïssa et al. Photonic Cooler Based on Multistacked Thin Films with Near-Infrared Filter Properties
Okuya et al. Preparation of SnO2 transparent conducting films for dye-sensitized solar cells by SPD technique
Abrol et al. Selection of glass substrates to be used as electrodes in dye-sensitized solar cells
KR20220064152A (ko) 고투과도 비정형 산화물 상부 전극을 갖는 반투명 페로브스카이트 태양전지 및 이의 제조 방법
KR20110077923A (ko) 박막 태양전지의 전면 전극 및 그를 포함하는 박막 실리콘 태양전지
JP5405923B2 (ja) 光電変換素子及びその製造方法
CN215220756U (zh) 一种介观钙钛矿太阳能电池

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees