TWI410647B - Analytical system and method for electron emission properties - Google Patents

Analytical system and method for electron emission properties Download PDF

Info

Publication number
TWI410647B
TWI410647B TW098100642A TW98100642A TWI410647B TW I410647 B TWI410647 B TW I410647B TW 098100642 A TW098100642 A TW 098100642A TW 98100642 A TW98100642 A TW 98100642A TW I410647 B TWI410647 B TW I410647B
Authority
TW
Taiwan
Prior art keywords
electron emission
electron
energy
ignition
constant
Prior art date
Application number
TW098100642A
Other languages
Chinese (zh)
Other versions
TW200946932A (en
Inventor
Shirun Ho
Keizo Suzuki
Norihiro Uemura
Shunichiro Nobuki
Tatsuya Miyake
Shunsuke Mori
Yoshiro Mikami
Kazutaka Tsuji
Masatoshi Shiiki
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of TW200946932A publication Critical patent/TW200946932A/en
Application granted granted Critical
Publication of TWI410647B publication Critical patent/TWI410647B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/24Arrangements for measuring quantities of charge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16528Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values using digital techniques or performing arithmetic operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2879Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to electrical aspects, e.g. to voltage or current supply or stimuli or to electrical loads
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • H01J17/48Cold-cathode tubes with more than one cathode or anode, e.g. sequence-discharge tube, counting tube, dekatron
    • H01J17/49Display panels, e.g. with crossed electrodes, e.g. making use of direct current

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique capable of accurately separating a formation lag time and a statistical lag time in an analytic system and an analysis method for electron emission characteristics and identifying energetic density of one or a plurality of electron emission sources. <P>SOLUTION: Measurement data of an address discharge lag time t<SB>d</SB>to a suspension time t<SB>i</SB>and temperature T are input. Discharge probability frequency and existing discharge probability are calculated from the number of accumulation of the measurement data. An electron emission time constant t<SB>s</SB><SP>exp</SP>(t<SB>i</SB>, T) of a priming electron is calculated. A function for energy state density of an electron discharge source is set up, and an average value, a dispersed value, a searching range of an effective number, and a searching width of activated energy are established. The electron emission time constant t<SB>s</SB><SP>th</SP>(t<SB>i</SB>, T) of the priming electron is calculated by overlap integral of energy state density of the electron emission source and a window function. An average value, a dispersed value, and an effective number of the activated energy wherein an average mean square error of t<SB>s</SB><SP>exp</SP>(t<SB>i</SB>, T) and t<SB>s</SB><SP>th</SP>(t<SB>i</SB>, T) becomes the least are determined. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

電子放出特性之解析系統及解析方法 Analytical system and analytical method for electronic emission characteristics

本發明關於電子放出特性之解析技術,特別關於針對電漿顯示面板(PDP)或雜質能階(impurity level)之測定裝置中之氧化膜材料(MgO等)、離子結晶材料、及半導體材料等之電子放出源的電子放出特性之解析系統及解析方法。 The present invention relates to an analytical technique for electron emission characteristics, and particularly relates to an oxide film material (MgO or the like), an ion crystal material, and a semiconductor material in a measuring device for a plasma display panel (PDP) or an impurity level. An analysis system and an analysis method for the electron emission characteristics of the electron emission source.

近年來作為大畫面薄型彩色顯示裝置,PDP之開發被進行。 In recent years, development of a PDP has been carried out as a large-screen thin color display device.

例如圖18所示,3電極構造之AC面放電型PDP被廣泛開發。於AC面放電型PDP,2片玻璃基板、亦即前面基板1501與背面基板1508被對向配置,彼等之間隙成為放電空間1513。於放電空間1513,以數百~6百Torr以上壓力封入放電氣體、亦即He、Ne、Xe、Ar等混合氣體。在成為顯示面側的前面基板1501之下面,形成並置之由X電極1502與Y電極1503構成之維持放電電極對,作為重複施加驅動電壓進行繼續發光之用。通常,X電極、Y電極係由透明電極與補償透明電極之導電性的不透明電極構成。亦即,X電極係由X透明電極1502-1、1502-2、...,與不透明之X匯流排電極1504-1、1504-2、...構成,Y電極係由Y透明電極1503-1、1503-2、...,與不透明之Y匯流排電極1505-1、1505-2、...構 成。 For example, as shown in Fig. 18, an AC-discharge type PDP having a three-electrode structure has been widely developed. In the AC surface discharge type PDP, two glass substrates, that is, the front substrate 1501 and the rear substrate 1508 are opposed to each other, and the gap therebetween becomes the discharge space 1513. In the discharge space 1513, a discharge gas, that is, a mixed gas of He, Ne, Xe, or Ar, is sealed at a pressure of several hundred to six hundred Torr or more. On the lower surface of the front substrate 1501 on the display surface side, a pair of sustain discharge electrodes composed of the X electrode 1502 and the Y electrode 1503 are formed in parallel, and the driving voltage is repeatedly applied to continue the light emission. Generally, the X electrode and the Y electrode are composed of a transparent electrode and an opaque electrode that compensates for the conductivity of the transparent electrode. That is, the X electrode is composed of X transparent electrodes 1502-1, 1502-2, ..., and opaque X bus electrodes 1504-1, 1504-2, ..., and Y electrodes are made of Y transparent electrodes 1503. -1, 1503-2, ..., and opaque Y bus bar electrodes 1505-1, 1505-2, ... to make.

彼等維持放電電極,係藉由前面介電體1506覆蓋,於介電體表面形成氧化鎂(MgO)等之保護膜1507。MgO之二次電子放出係數較高,放電產生之He、Ne、Xe、Ar等之離子撞擊MgO時被放出電子,可發揮加強放電之功能,而降低放電開始電壓。另外,MgO具有極佳之耐濺鍍性,具有保護前面介電體1506之功能,免於放電產生之He、Ne、Xe、Ar等之離子直接撞擊前面介電體1506而帶來損傷。 The sustain discharge electrodes are covered by the front dielectric 1506 to form a protective film 1507 of magnesium oxide (MgO) or the like on the surface of the dielectric. The secondary electron emission coefficient of MgO is high, and ions such as He, Ne, Xe, and Ar generated by the discharge are emitted when the ions collide with MgO, and the function of enhancing discharge can be exerted to lower the discharge starting voltage. In addition, MgO has excellent sputtering resistance and functions to protect the front dielectric 1506, and ions such as He, Ne, Xe, and Ar which are generated by discharge are directly damaged by the front dielectric 1506.

另外,於背面基板1508之上面,在和維持放電電極正交之方向,設置位址放電用的位址電極(以下簡單稱為「A電極」)1509。該A電極1509係藉由背面介電體1510覆蓋,於背面介電體1510之上以挾持A電極1509的方式設置間隔壁1511。另外,在間隔壁1511之壁面與背面介電體1510之上面所形成之凹區域內塗敷螢光體1512。 Further, on the upper surface of the rear substrate 1508, an address electrode for address discharge (hereinafter simply referred to as "A electrode") 1509 is provided in a direction orthogonal to the sustain discharge electrode. The A electrode 1509 is covered by the back surface dielectric 1510, and the partition wall 1511 is provided on the back surface dielectric 1510 so as to sandwich the A electrode 1509. Further, a phosphor 1512 is applied to a concave portion formed on the wall surface of the partition wall 1511 and the upper surface of the back surface dielectric 1510.

於彼等構成,維持放電電極對與A電極之交叉部係對應於1個放電格,該放電格以二次元狀配列成為約2000×2000之矩陣狀構造。彩色顯示時以紅、綠、藍色螢光體被塗敷而成的3種放電格為一組而構成1畫素。 In the configuration, the intersection of the sustain discharge electrode pair and the A electrode corresponds to one discharge cell, and the discharge cells are arranged in a quadratic form to have a matrix structure of about 2000×2000. In the color display, three kinds of discharge cells coated with red, green, and blue phosphors are grouped to form one pixel.

以下說明PDP之動作。 The operation of the PDP will be described below.

PDP之發光原理為,藉由X、Y電極間被施加之驅動電壓,由放電氣體產生電子與離子構成之電漿,該電子使位於基底狀態之放電氣體跳升至激發狀態,藉由螢光體使 位於激發狀態之放電氣體所產生之紫外線轉換為可視光。 The principle of illumination of the PDP is that a plasma composed of electrons and ions is generated by the discharge gas by a driving voltage applied between the X and Y electrodes, and the electrons cause the discharge gas in the state of the substrate to jump to an excited state by fluorescence. Body The ultraviolet light generated by the discharge gas in the excited state is converted into visible light.

如圖19之方塊圖所示,PDP1600被組裝於電漿顯示器裝置1602。由影像源1603對驅動電路1601傳送顯示畫面之信號,驅動電路1601受取該信號轉換為驅動電壓而供給至PDP1600之各電極。 As shown in the block diagram of FIG. 19, the PDP 1600 is assembled to the plasma display device 1602. The signal of the display screen is transmitted from the image source 1603 to the drive circuit 1601, and the drive circuit 1601 receives the signal and converts it into a drive voltage and supplies it to each electrode of the PDP 1600.

圖20(A)為在圖19所示PDP1600顯示1個影像所要之1TV場期間之驅動電壓時序圖。如圖中之(I)所示,1TV場期間1700被分割成為維持電壓脈衝之施加次數不同的子場1701~1708。調整藉由各個子場之維持電壓脈衝施加次數、亦即維持放電所產生之發光強度,而表現灰階。設置具備基於2進法發光強度之重疊的8個子場時,3原色顯示用放電格分別可獲得28(=256)灰階之亮度顯示,可顯示約1678萬色之色顯示。子場,係如圖中之(II)所示,子場由放電格回復初期狀態的重置放電期間1709,選擇發光之放電格的位址放電期間1710,及進行發光顯示的維持放電期間1711構成。 Fig. 20(A) is a timing chart showing driving voltages during a 1 TV field required for displaying one image of the PDP 1600 shown in Fig. 19. As shown in (I) of the figure, the 1TV field period 1700 is divided into subfields 1701 to 1708 in which the number of times the sustain voltage pulses are applied is different. The gray scale is expressed by adjusting the number of times the sustain voltage pulse is applied to each subfield, that is, the intensity of the light generated by sustaining the discharge. When eight subfields having an overlap based on the two-emission luminous intensity are provided, the discharge color of the three primary color display can respectively obtain a brightness display of 2 8 (= 256) gray scales, and a color display of about 16.78 million colors can be displayed. In the subfield, as shown in (II) of the figure, the subfield is restored from the initial discharge state of the discharge cell 1709, the address discharge period 1710 of the discharge cell is selected, and the sustain discharge period 1711 for performing the luminescence display. Composition.

圖20(B)表示在圖20(A)所示位址放電期間1710被施加於A電極1509、X電極及Y電極之電壓波形。波形1712表示在位址放電期間1710中之1個A電極1509被施加的電壓波形,1713、1714表示在Y電極之第i號與第(i+1)號被施加的電壓波形,波形1717表示在X電極被施加的電壓波形,個別之電壓為V0、V21、V21及V1。如圖20(B)所示,在Y電極之第i行被施加掃描脈衝1715時,在位於和電壓V0之A電極1509之交點的 格,會於Y電極與A電極之間產生放電,該放電於Y電極與X電極之間遷移變化而引起位址放電。在位於Y電極之第i行與未被施加電壓V0的A電極1509之交點的格,不會產生位址放電。在Y電極之第(i+1)行被施加掃描脈衝1716時亦同樣。在產生位址放電的格,放電所產生之電荷會成為壁電荷而形成於覆蓋X、Y電極之介電體及保護膜1507之表面,而於X、Y電極間產生壁電壓Vw。依據該壁電荷之有無來決定次一接續之維持放電期間1711之維持放電之有無。 Fig. 20(B) shows voltage waveforms applied to the A electrode 1509, the X electrode, and the Y electrode during the address discharge period 1710 shown in Fig. 20(A). Waveform 1712 represents a voltage waveform applied to one of the A electrodes 1509 in the address discharge period 1710, and 1713, 1714 represents voltage waveforms applied to the ith and (i+1)th numbers of the Y electrode, and waveform 1717 represents The voltages applied to the X electrodes are individual voltages V0, V21, V21, and V1. As shown in FIG. 20(B), when the scan pulse 1715 is applied to the i-th row of the Y electrode, at the intersection of the A electrode 1509 at the voltage V0. The grid generates a discharge between the Y electrode and the A electrode, and the discharge changes between the Y electrode and the X electrode to cause address discharge. In the cell at the intersection of the i-th row of the Y electrode and the A electrode 1509 to which the voltage V0 is not applied, no address discharge occurs. The same applies to the case where the scan pulse 1716 is applied to the (i+1)th row of the Y electrode. In the cell where the address discharge occurs, the electric charge generated by the discharge becomes wall charges and is formed on the surface of the dielectric covering the X and Y electrodes and the protective film 1507, and a wall voltage Vw is generated between the X and Y electrodes. The presence or absence of the sustain discharge of the next sustain sustain discharge period 1711 is determined depending on the presence or absence of the wall charge.

圖21表示在位址放電期間1710,被施加於Y電極之電壓波形1801,被施加於A電極1509之電壓波形1802,及位址放電電流1803。A電極1509被施加電壓Va之後,位址放電電流到達峰值之時間稱為位址放電延遲時間td。另外,於圖21表示,在維持放電期間1711,在維持放電電極、亦即在X電極與Y電極之間一齊被施加的驅動電壓波形。於Y電極被重複施加驅動電壓波形1804之矩形波形之驅動電壓,於X電極被重複施加驅動電壓波形1805之矩形波形之驅動電壓。該矩形波形之驅動電壓被交互施加於Y電極與X電極。該維持放電電壓Vsus之電壓值被設定成為,可以藉由位址放電引起之Y電極與X電極之相對電壓差、亦即壁電壓Vw之有無來決定維持放電之有無。在產生位址放電的放電格之中,壁電壓Vw與維持放電電壓Vsus之和會使放電開始電壓上升,在未產生位址放電的放電格之中,維持放電電壓Vsus會使放電開 始電壓下降,依此而被設定。維持放電驅動電壓之1週期結束後,在產生位址放電的放電格之中,Y電極與X電極之相對電位被反轉。於該維持電極間被施加維持放電驅動電壓之第2週期時,再度地,壁電壓Vw與維持放電電壓Vsus之和會使放電開始電壓上升,重複放電。如此則,在產生位址放電的放電格之中,在施加有維持放電驅動電壓時間將產生發光,反之,在未產生位址放電的放電格之中則不產生發光。維持放電期間1711經過之後,於位址放電期間1710,稱呼對各A電極1509之電壓施加為止的時間為休止時間ti21 shows a voltage waveform 1801 applied to the Y electrode, a voltage waveform 1802 applied to the A electrode 1509, and an address discharge current 1803 during the address discharge period 1710. After 1509 is applied to the A electrode voltages Va, address discharge current reaches a peak of time here referred to as the discharge delay time t d. In addition, FIG. 21 shows a driving voltage waveform which is applied to the discharge electrode, that is, between the X electrode and the Y electrode, in the sustain discharge period 1711. The driving voltage of the rectangular waveform of the driving voltage waveform 1804 is repeatedly applied to the Y electrode, and the driving voltage of the rectangular waveform of the driving voltage waveform 1805 is repeatedly applied to the X electrode. The driving voltage of the rectangular waveform is alternately applied to the Y electrode and the X electrode. The voltage value of the sustain discharge voltage Vsus is set such that the presence or absence of the sustain discharge can be determined by the relative voltage difference between the Y electrode and the X electrode caused by the address discharge, that is, the presence or absence of the wall voltage Vw. In the discharge cell in which the address discharge is generated, the sum of the wall voltage Vw and the sustain discharge voltage Vsus causes the discharge start voltage to rise, and among the discharge cells in which the address discharge is not generated, the sustain discharge voltage Vsus causes the discharge start voltage to drop. , according to this is set. After the end of one cycle of sustain discharge driving voltage, the relative potential of the Y electrode and the X electrode is inverted in the discharge cell in which the address discharge is generated. When the second cycle of the sustain discharge driving voltage is applied between the sustain electrodes, the sum of the wall voltage Vw and the sustain discharge voltage Vsus is again increased, and the discharge start voltage is increased to repeat the discharge. In this case, in the discharge cell in which the address discharge is generated, light is generated when the sustain discharge driving voltage is applied, and in the discharge cell in which the address discharge is not generated, no light emission occurs. After the sustain discharge period 1711 elapses, the time until the application of the voltage to each of the A electrodes 1509 is referred to as the rest time t i in the address discharge period 1710.

又,關於此種PDP之技術有例如揭示於專利文獻1之技術等。 Further, the technique of such a PDP is disclosed, for example, in the technique of Patent Document 1.

專利文獻1:特開2007-109541號公報 Patent Document 1: JP-A-2007-109541

本發明人針對上述PDP之技術檢討結果發現以下問題。 The inventors found the following problems with respect to the technical review results of the above PDP.

例如,於PDP隨大畫面全數位化(Full High Vision)之進展,1面板內之放電格數目,及位址放電期間1710中待掃描之X電極1502與Y電極1503之線(Line)數有增加傾向。因此,對於1個放電格被施加的掃描脈衝1715或1716,縮短位址放電所要的時間、亦即位址放電延遲時間td,而實現高速動作乃成為重要課題。 For example, in the progress of the PDP with Full High Vision, the number of discharge cells in the panel, and the number of lines of the X electrode 1502 and the Y electrode 1503 to be scanned in the address discharge period 1710 are Increase the tendency. Accordingly, the scanning pulse is applied to a discharge cell 1715 or 1716, to shorten the time of address discharge, i.e., the address discharge delay time t d, to achieve high-speed operation is the important issue.

位址放電延遲時間td,係由:依存於Y電極、X電極、A電極之施加電壓與重置放電後之殘留壁電荷的形成延遲時間tf,與成為放電火種的電子(點火電子)由MgO被放出之前的統計延遲時間ts之和構成。於重置放電後之殘留壁電荷量存在變動時,形成延遲時間tf亦會產生變動。 The address discharge delay time t d is determined by the delay time t f between the applied voltage of the Y electrode, the X electrode, and the A electrode and the residual wall charge after the reset discharge, and the electron that becomes the discharge type (ignition electron) It is composed of the sum of the statistical delay times t s before the MgO is released. When variation exists in resetting the residual amount of wall charges after the discharge, the delay time t f is formed also fluctuates.

另外,如圖22所示,於MgO,立方晶構造之Mg原子1901或氧原子1902被放出的Mg缺損或氧缺損,或者因氧缺損而被捕獲質子(proton)的替換構造1903存在捕獲電子的電子放出源。點火電子由該電子放出源被放出至放電格空間,因為統計現象而於統計延遲時間產生變動。 Further, as shown in FIG. 22, in MgO, a Mg defect or an oxygen deficiency in which a Mg atom 1901 or an oxygen atom 1902 of a cubic crystal structure is released, or a replacement structure 1903 in which a proton is captured due to an oxygen deficiency, traps electrons. Electronic release source. The ignition electrons are discharged from the electron emission source to the discharge grid space, which varies due to statistical phenomena during statistical delay times.

圖23係將同一放電格中之位址放電延遲時間重複測定的測定資料,依位址放電延遲時間之每一個以累積數加以表示的放電延遲時間之頻率分布。即使是同一放電格,以約500ns為峰值,放電時間快的情況下為400ns,放電時間慢的情況下為1000ns以上,呈現左右非對稱之形狀。 Fig. 23 is a graph showing the measurement of the discharge delay time of the address discharge delay time in the same discharge cell, and the frequency distribution of the discharge delay time expressed by the cumulative number of each of the address discharge delay times. Even in the same discharge cell, the peak is about 500 ns, the discharge time is 400 ns when the discharge time is fast, and the discharge time is 1000 ns or more, and the left and right asymmetrical shape is exhibited.

圖24表示作為習知電子放出特性之解析系統及解析方法,輸入位址放電延遲時間之測定資料td,而進行形成延遲時間與統計延遲時間之解析的系統與方法,係依據以下順序被執行。 Fig. 24 is a view showing a system and method for analyzing the formation delay time and the statistical delay time by performing an analysis system and an analysis method of the conventional electron emission characteristics, and inputting the measurement data t d of the address discharge delay time, which are executed in the following order. .

(1)輸入位址放電延遲時間td與累積數之測定資料。 (1) Measurement data of the input address discharge delay time t d and the cumulative number.

(2)計算對於位址放電延遲時間td之累積數,算出 對於位址放電延遲時間td之已放電概率。 (2) calculated for the address discharge delay time t d is the cumulative number, address discharge is calculated for the delay time t d is discharged probability.

(3)算出已放電概率成為1%的時間t1%與成為95%的時間t95%(3) calculating the probability of discharge have 1% or 1% of the time T and the time becomes 95% t 95%.

(4)算出形成延遲時間tf=t1%,統計延遲時間ts=t95%-t1%(4) Calculate the formation delay time t f = t 1% , and the statistical delay time t s = t 95% - t 1% .

但是,上述現象論之解釋,係混合算出形成延遲時間與統計延遲時間,作為解析方法並不適當,在決定對於位址放電之高速動作的設計指針時,對形成延遲時間與統計延遲時間進行高精確度分離乃困難者。另外,對於統計延遲時間之決定要因、亦即電子放出源之電子放出特性,例如,電子放出源之能源狀態密度進行辨識乃困難者。又,多數種電子放出源存在之情況下,對於各電子放出源之能量狀態密度進行辨識乃不可能者。 However, the explanation of the above phenomenon theory is to calculate the formation delay time and the statistical delay time by mixing, and it is not appropriate as an analysis method. When determining the design pointer for the high-speed operation of the address discharge, the delay time and the statistical delay time are high. Accuracy separation is difficult. In addition, it is difficult to determine the cause of the statistical delay time, that is, the electron emission characteristics of the electron emission source, for example, the energy state density of the electron emission source. Moreover, in the case where a large number of electron emission sources exist, it is impossible to identify the energy state density of each electron emission source.

本發明之一目的在於提供,在電子放出特性之解析系統及解析方法中,可以對形成延遲時間與統計延遲時間進行高精確度分離,而且可以對1個或多數電子放出源之能量狀態密度進行辨識的技術。 An object of the present invention is to provide a high-precision separation between a formation delay time and a statistical delay time in an analysis system and an analysis method for electron emission characteristics, and can perform energy state density on one or a plurality of electron emission sources. Identification technology.

本發明之上述及其他目的及特徵可由本說明書及圖面加以理解。 The above and other objects and features of the present invention will be understood from the description and drawings.

本發明之實施例之代表性概要簡單說明如下。 A representative outline of an embodiment of the present invention is briefly described below.

亦即,代表性實施例之電子放出特性之解析系統及解析方法,係使用以下順序,解析1個或多數電子放出源之 能量狀態密度者。 That is, the analysis system and the analysis method of the electron emission characteristics of the representative embodiments analyze one or a plurality of electronic discharge sources using the following procedure. Energy state density.

(1)針對維持電壓施加後至位址電壓施加之間的休止時間ti、測定條件之溫度T之測定條件,輸入位址放電延遲時間td之測定資料。 (1) The measurement data of the address discharge delay time t d is input for the measurement condition of the rest time t i between the application of the voltage and the application of the address voltage, and the temperature T of the measurement condition.

(2)依據對於各休止時間ti與測定條件之溫度T之測定資料,來計算每一個位址放電延遲時間之累積數,算出放電概率頻繁度和已放電概率。 (2) Calculate the cumulative number of discharge delay times for each address based on the measurement data for each of the rest time t i and the temperature T of the measurement conditions, and calculate the discharge probability frequency and the discharged probability.

(3)算出由測定資料求出的點火電子之電子放出常數ts exp(ti,T)。 (3) Calculate the electron emission constant t s exp (t i , T) of the ignition electron obtained from the measurement data.

(4)設定電子放出源之能量狀態密度之函數,設定對於能量狀態密度之活化能量的平均值、分散值與有效數之探索範圍及探索寬度。 (4) Set the function of the energy state density of the electron emission source, and set the average value of the activation energy of the energy state density, the dispersion range and the search range and the exploration width of the effective number.

(5)藉由針對電子放出源之能量狀態密度與窗函數之能量的重疊積分,算出由計算求出的點火電子之電子放出常數ts th(ti,T)。 (5) The electron emission constant t s th (t i , T) of the ignition electron obtained by the calculation is calculated by the superposition of the energy state density of the electron emission source and the energy of the window function.

(6)對於休止時間ti與測定條件之溫度T之測定條件之總數,來決定使由測定資料求出的點火電子之電子放出常數ts exp(ti,T)與由計算求出的點火電子之電子放出常數ts th(ti,T)之平均二次方誤差成為最小的活化能量之平均值、分散值及有效數。 (6) The electron emission constant t s exp (t i , T) of the ignition electron obtained from the measurement data is determined from the total number of measurement conditions of the rest time t i and the temperature T of the measurement condition. The average quadratic error of the electron emission constant t s th (t i , T) of the ignition electron becomes the minimum value of the activation energy, the dispersion value, and the effective number.

(實施發明之最佳形態) (Best form of implementing the invention)

以下參照圖面說明本發明之實施形態。又,實施形態 說明之全圖中,同一構件原則上附加同一符號,並省略重複說明。 Embodiments of the present invention will be described below with reference to the drawings. Further, the embodiment In the entire drawings, the same components are denoted by the same reference numerals, and the repeated description is omitted.

(第1實施形態) (First embodiment)

圖1為本發明第1實施形態之電子放出特性之解析系統及解析方法中,其構成及順序之一例之方塊圖。圖2為該解析系統之硬體構成之一例之方塊圖。 1 is a block diagram showing an example of a configuration and a procedure of an electronic discharge characteristic analysis system and an analysis method according to a first embodiment of the present invention. Fig. 2 is a block diagram showing an example of the hardware configuration of the analysis system.

首先,依據圖1、2說明本發明第1實施形態之電子放出特性之解析系統之構成。本發明第1實施形態之解析系統,例如構成為對PDP中之氧化膜材料(MgO等)之電子放出源進行電子放出特性之解析的系統,由個人電腦2200,及計算裝置102等構成。個人電腦2200,係由包含記憶裝置的輸入裝置101,及包含影像處理裝置的輸出裝置103等構成。計算裝置102,係由CPU裝置2201,及記憶裝置2202等構成。CPU裝置2201與記憶裝置2202,係藉由資料傳送用耦合匯流排2204進行連接。 First, the configuration of an analysis system for electronic emission characteristics according to the first embodiment of the present invention will be described with reference to Figs. In the analysis system of the first embodiment of the present invention, for example, a system for analyzing the electronic emission characteristics of the electron emission source of the oxide film material (MgO or the like) in the PDP is constituted by the personal computer 2200, the computing device 102, and the like. The personal computer 2200 is composed of an input device 101 including a memory device, an output device 103 including a video processing device, and the like. The computing device 102 is composed of a CPU device 2201, a memory device 2202, and the like. The CPU device 2201 and the memory device 2202 are connected by a data transfer coupling bus 2204.

另外,於圖2,多數計算裝置102,係藉由資料傳送用耦合匯流排2205連接成為矩陣狀構成,但不限定於此,計算裝置102可為1個,或設於個人電腦2200內。 Further, in FIG. 2, the plurality of computing devices 102 are connected in a matrix by the data transfer coupling busbar 2205. However, the present invention is not limited thereto, and the computing device 102 may be provided in one computer or in the personal computer 2200.

以下,依據圖1、2說明本發明第1實施形態之電子放出特性解析系統之動作例。於計算裝置102,於記憶裝置2202被記憶(保持)電子放出特性之解析程式,依據個人電腦2200之指示,CPU裝置2201讀出該程式進行運算處理。運算處理之結果係被保存於記憶裝置2202。運算 處理必要之資料類,係由個人電腦2200介由資料傳送用耦合匯流排2205被傳送。另外,計算裝置102之運算處理之結果,係介由資料傳送用耦合匯流排2205被傳送至個人電腦2200。另外,於個人電腦2200,運算處理必要之資料,係由輸入裝置101被輸入,運算處理之結果,係於輸出裝置103被輸出、顯示。 Hereinafter, an operation example of the electronic emission characteristic analysis system according to the first embodiment of the present invention will be described with reference to Figs. In the computing device 102, the memory device 2202 is stored (holds) an analysis program of the electronic release characteristics, and the CPU device 2201 reads the program and performs arithmetic processing in accordance with an instruction from the personal computer 2200. The result of the arithmetic processing is stored in the memory device 2202. Operation The necessary data classes are processed by the personal computer 2200 via the data transfer coupling bus 2205. Further, the result of the arithmetic processing by the computing device 102 is transmitted to the personal computer 2200 via the data transfer coupling bus 2205. Further, in the personal computer 2200, information necessary for the arithmetic processing is input from the input device 101, and the result of the arithmetic processing is output and displayed on the output device 103.

如圖1所示,計算裝置102之運算處理係依據以下順序被執行。 As shown in FIG. 1, the arithmetic processing of the computing device 102 is performed in the following order.

首先,於步驟S102-1,使對PDP面板測定獲得之,對於維持電壓施加後至位址電壓施加之間的休止時間ti與MgO之測定條件之溫度T的位址放電延遲時間td之測定資料,由輸入裝置101被輸入至計算裝置102。 First, in step S102-1, the address discharge delay time t d obtained by measuring the temperature T of the measurement time between the rest time t i and the measurement condition of the application voltage after the application of the voltage to the PDP panel is performed. The measurement data is input to the computing device 102 by the input device 101.

之後,於步驟S102-2,於計算裝置102,依據對於各休止時間ti與MgO之測定條件之溫度T的測定資料,來計算每一個位址放電延遲時間之累積數,算出放電概率頻繁度P(t)。 Thereafter, in step S102-2, the calculation device 102 calculates the cumulative number of discharge delay times for each address based on the measurement data of the temperature T of the measurement conditions of each of the rest periods t i and MgO, and calculates the frequency of the discharge probability. P(t).

圖3表示以放電概率頻繁度之最大值為1予以規格化的放電概率頻繁度P(t)201。放電概率頻繁度P(t),於短時間側為高斯函數型,但於長時間側為減去尾端的非對稱形狀。使用該放電概率頻繁度P(t)與式(1)算出已放電概率G(t)。圖3表示已放電概率G(t)202。已放電概率G(t),係自下至上呈現凸的形狀,長時間側之斜率(斜度)成為平緩。 Fig. 3 shows the discharge probability frequency P(t) 201 normalized by the maximum value of the discharge probability frequency being one. The discharge probability frequency P(t) is a Gaussian function type on the short time side, but the asymmetric shape of the tail end is subtracted on the long time side. The discharge probability G(t) is calculated using the discharge probability frequency P(t) and the equation (1). Figure 3 shows the discharged probability G(t) 202. The discharged probability G(t) is a convex shape from bottom to top, and the slope (inclination) on the long-term side becomes gentle.

於步驟S102-3,欲除去形成延遲時間tf之擺動,求出點火電子之電子放出常數ts exp,而使用滿足[數8]之長時間區域中之已放電概率G(t)及其時刻t。 In step S102-3, in order to remove the wobble of the formation delay time t f , the electron emission constant t s exp of the ignition electron is obtained, and the discharged probability G(t) in the long-term region satisfying [number 8] is used and Time t.

其中,tf ave為形成延遲時間tf之平均值,σtf為形成延遲時間tf之分散值。形成延遲時間之平均值tf ave與形成延遲時間之分散值σtf,可以針對位址電壓施加時點火電子存在的短的休止時間ti之測定資料,由其之位址放電延遲時間之平均值與分散值算出。如圖3所示,使用滿足[數9]之長時間區域203之ta、tb、其之已放電概率G(ta)與G(tb)、以及式(2),算出點火電子之電子放出常數ts expWhere t f ave is the average value of the formation delay time t f and σ tf is the dispersion value forming the delay time t f . Forming the average value of the delay time t f ave and the dispersion value σ tf of the formation delay time, which can be used for the measurement of the short rest time t i of the ignition electrons when the address voltage is applied, and the average of the discharge delay time of the address The value and the dispersion value are calculated. As shown in FIG. 3, the ignition electrons are calculated using t a , t b of the long-term region 203 satisfying [Number 9], the discharged probabilities G(t a ) and G(t b ), and the equation (2). The electron emits a constant t s exp .

例如,對於ti=0.1ms、T=25℃之短的休止時間的位址放電延遲時間之測定資料之中,位址放電延遲時間之平均值tf ave=0.59μs,分散值σtf=0.09μs。解析對象之測定條件ti=50ms、T=25℃中之已放電概率G(t)成為63.2%與95%的時刻t63.2與t95分別=0.84μs與1.45μs。使用式(2)獲得之ts exp(ti=50ms、T=25℃)=0.31μs。因此, For example, for the measurement of the address discharge delay time of the short rest time of t i = 0.1 ms and T = 25 ° C, the average value of the address discharge delay time t f ave = 0.59 μs, the dispersion value σ tf = 0.09 μs. The measurement conditions t i = 50 ms of the analysis object, the time G of the discharge probability G(t) in T = 25 ° C became 63.2% and 95%, and the times t 63.2 and t 95 were respectively 0.84 μs and 1.45 μs. t s exp (t i = 50 ms, T = 25 ° C) obtained using the formula (2) = 0.31 μs. therefore,

成為0.71μs。由此可知滿足 Become 0.71μs. This shows that the satisfaction is satisfied.

之長時間區域之條件。 The condition of the long time zone.

同樣,於圖4,對於ti=1ms、10ms、50ms與T=-10℃、10℃、25℃、60℃之12個測定條件之測定資料所算出的點火電子之電子放出常數ts exp以描繪301表示。如此則,可以算出休止時間ti與MgO之測定條件之溫度T之 電子放出常數ts expSimilarly, in Fig. 4, the electron emission constant t s exp of the ignition electron calculated for the measurement data of 12 measurement conditions of t i = 1 ms, 10 ms, 50 ms, and T = -10 ° C, 10 ° C, 25 ° C, and 60 ° C. Expressed by depiction 301. In this way, the electron emission constant t s exp of the temperature T of the measurement conditions of the rest time t i and MgO can be calculated.

以下說明解析電子放出源之種類j的能量狀態密度Dj(E)的方法。由計算求出的點火電子之電子放出常數ts th,係藉由以下之式(3)與式(4)被設定和能量狀態密度Dj(E)的對應關係。 A method of analyzing the energy state density D j (E) of the type j of the electron emission source will be described below. The electron emission constant t s th of the ignition electron obtained by the calculation is set by the following equation (3) and equation (4) and the energy state density D j (E).

其中,fph為電子放出源之聲子振動數,kB為波耳茲曼常數。又,Wj(E、ti、T)為,針對休止時間ti與MgO之測定條件之溫度T之測定資料,以[數15] E m (t i ,T)=k B Tln(t i f ph,j ) Where f ph is the number of phonon vibrations of the electron emission source, and k B is the Boltzmann constant. Further, W j (E, t i , T) is a measurement data of the temperature T of the measurement conditions of the rest time t i and MgO, by [number 15] E m ( t i , T ) = k B T ln ( t i f ph,j )

為中心而具有最大值e-1ti -1與能量寬度±數kBT的窗函數。作為測定條件,係設定休止時間ti為一定,變化MgO之測定條件之溫度T之測定之中,窗函數以最大值 e-1ti -1為一定,而使由測定條件決定的探索能量之中心值Em(ti,T)推移。另外,設定MgO之測定條件之溫度T為一定,變化休止時間ti之測定之中,由測定條件決定的探索能量之中心值Em(ti,T)推移之同時,最大值e-1ti -1亦會歸隨變化。 A window function having a maximum value e -1 t i -1 and an energy width ± k B T centered. As a measurement condition, the rest time t i is set to be constant, and in the measurement of the temperature T in which the measurement condition of MgO is changed, the window function has a maximum value e −1 t i −1 and the search energy determined by the measurement condition is made constant. The center value E m (t i , T) changes. In addition, the temperature T at which the measurement condition of MgO is set is constant, and the center value E m (t i , T) of the search energy determined by the measurement condition is changed while the maximum value e -1 is measured during the measurement of the change in the rest time t i . t i -1 will also change.

圖5表示,休止時間ti=0.01ms、0.1ms、1ms、10ms、100ms、1000ms與MgO之測定條件之溫度T=-10℃、0℃、10℃、20℃、30℃、40℃、60℃之窗函數成為最大的能量[數16] E m (t i ,T)=k B Tln(t i f ph,j ) Fig. 5 shows the temperature of the measurement conditions of the rest time t i = 0.01 ms, 0.1 ms, 1 ms, 10 ms, 100 ms, 1000 ms and MgO T = -10 ° C, 0 ° C, 10 ° C, 20 ° C, 30 ° C, 40 ° C, The window function at 60 °C becomes the maximum energy [16] E m ( t i , T ) = k B T ln( t i f ph,j )

其中,電子放出源之聲子振動數fph設為3.1×1013Hz。在休止時間ti=0.01ms與MgO之測定條件之溫度T=-10℃之中,窗函數成為最大的能量為443meV。另外,在休止時間ti=1000ms與MgO之測定條件之溫度T=60℃之中,窗函數成為最大的能量為892meV。 Among them, the phonon vibration number f ph of the electron emission source is set to 3.1 × 10 13 Hz. Among the rest time t i =0.01 ms and the temperature T of -10 ° C of the measurement conditions of MgO, the maximum energy of the window function was 443 meV. Further, among the rest time t i = 1000 ms and the temperature T of the measurement condition of MgO T = 60 ° C, the maximum energy of the window function was 892 meV.

由圖6所示可知,電子放出常數ts th之逆數係相等於,針對成為未知之電子放出源之能量狀態密度Dj(E)401與測定條件所決定之窗函數Wj(E、ti、T)402之能量進行重疊積分之計算,而對全部電子放出源之種類j取其和。 As can be seen from Fig. 6, the inverse of the electron emission constant t s th is equal to the energy state density D j (E) 401 of the unknown electron emission source and the window function W j (E, determined by the measurement conditions). The energy of t i , T) 402 is calculated by overlapping integration, and the sum of all types of electron emission sources is taken as the sum.

於步驟S102-4,作為電子放出源之能量狀態密度Dj (E),在設定式(5)之高斯函數時,係依據圖7之條件,對1個電子放出源之種類j,算出有效數Nee,j、活化能量之平均值△Ea,j、活化能量之分散值σE,j。此時,為探索彼等參數值而應輸入之探索範圍及探索寬度及個數說明如下。 In step S102-4, when the Gaussian function of the equation (5) is set as the energy state density D j (E) of the electron emission source, the type j of one electron emission source is calculated according to the condition of FIG. The number N ee,j , the average value of the activation energy ΔE a,j , and the dispersion value of the activation energy σ E,j . At this time, the search range, the search width, and the number to be input in order to explore the values of these parameters are explained below.

測定條件ti=1ms、10ms、50ms、T=-10℃、10℃、25℃、60℃時,窗函數成為最大的能量係處於526meV~778meV之範圍。窗函數的能量寬度之3kBT約為75meV,因此,能量區域成為451meV~853meV。其中,活化能量之平均值△Ea,j之探索範圍,設為包含由測定條件決定的探索能量之中心值Em(ti,T)之最小值-3kBT至Em(ti,T)之最大值+3kBT的400meV~900meV。又,由測定條件決定的探索能量之中心值Em(ti,T)之能量間隔,其之最小間隔為10.1meV,最大間隔為52.2meV,平均間隔為31.5meV,因此實驗精確度為較高的30meV程度。其中,活化能量之平均值△Ea,j,與活化能量之分散值σE,j之能量探索寬度,設為由測定條件決定的探索能量之中心值Em(ti,T)之能量間隔之平均值以下的10meV。另外,有效數Nee,j,因為測定條件ti之時間級數(time order) 寬度為2位數程度,有效數之探索範圍設為該時間級數寬度、亦即2位數程度,設為1×105個/格~1×107個/格。其中,有效數Nee,j之探索點設為1×105個/格、1.1×105個/格、2×105個/格、2.1×105個/格、1×106個/格、1.1×106個/格、2×106個/格、2.1×106個/格、1×107個/格之201個。藉由上述,則對於活化能量之平均值△Ea,j的探索範圍係使400meV~900meV以10meV寬度加以離散化之51個探索點,對於活化能量之分散值σE,j的探索範圍係使5~100meV以10meV寬度加以離散化之10個探索點,對於有效數Nee,j的探索範圍係使1×105個/格~1×107個/格離散化之201個探索點構成,探索範圍、探索寬度及全部組合係輸入約1×105個參數值。 When the measurement conditions t i = 1 ms, 10 ms, 50 ms, T = -10 ° C, 10 ° C, 25 ° C, and 60 ° C, the energy system with the largest window function is in the range of 526 meV to 778 meV. The energy width of the window function is 3k B T of about 75 meV, so the energy region becomes 451 meV to 853 meV. Wherein, the search range of the average value of the activation energy ΔE a,j is set to include the minimum value -3k B T to E m (t i ) of the center value E m (t i , T) of the search energy determined by the measurement conditions. , T) maximum + 3k B T 400meV ~ 900meV. Moreover, the energy interval of the center value E m (t i , T) of the search energy determined by the measurement conditions has a minimum interval of 10.1 meV, a maximum interval of 52.2 meV, and an average interval of 31.5 meV, so the experimental precision is High 30meV level. Wherein, the average value of the activation energy ΔE a,j , and the energy search width of the dispersion value σ E,j of the activation energy are set as the energy of the center value E m (t i ,T) of the search energy determined by the measurement conditions. 10 meV below the average of the interval. In addition, the effective number N ee,j is because the time order width of the measurement condition t i is two digits, and the search range of the effective number is set to the width of the time series, that is, the number of two digits. It is 1 × 10 5 / grid ~ 1 × 10 7 / grid. Wherein, the search point of the significant number N ee,j is set to 1×10 5 /di, 1.1×10 5 /di, 2×10 5 /di, 2.1×10 5 /di, 1×10 6 / div, 1.1 × 10 6 cells / cells, 2 × 10 6 cells / cells, 2.1 × 10 6 cells / cells, 1 × 10 7 cells / lattice 201. By the above, the range of the average value of the activation energy ΔE a,j is 51 exploration points which are discretized from 400 meV to 900 meV at a width of 10 meV, and the range of exploration of the dispersion value σ E,j of the activation energy is 10 exploration points for discretizing 5~100meV with a width of 10meV. For the effective number N ee, the exploration range of j is 201 exploration points with 1 × 10 5 / Grid ~ 1 × 10 7 / Grid discretized The composition, the exploration range, the exploration width, and all combinations are input with about 1 × 10 5 parameter values.

於步驟S102-5,將設定有活化能量之平均值△Ea,j、活化能量之分散值σE,j與有效數Nee,j的各參數值之式(5)代入式(3),針對電子放出源之能量狀態密度Dj(E)與窗函數Wj(E、ti、T)之能量計算重疊積分,由其逆數可算出由計算求出的點火電子之電子放出常數ts th(ti,T)。其中,1個電子放出源之種類j之聲子振動數設為1.19×1013Hz。 In step S102-5, the equation (5) in which the average value of the activation energy ΔE a,j , the dispersion value of the activation energy σ E,j and the effective number N ee,j are set is substituted into the equation (3). Calculate the overlap integral for the energy state density D j (E) of the electron emission source and the energy of the window function W j (E, t i , T), and calculate the electron emission constant of the ignition electron obtained by the calculation from the inverse number t s th (t i , T). Among them, the number of phonon vibrations of the type j of one electron discharge source was set to 1.19 × 10 13 Hz.

於步驟S102-6,針對休止時間ti與MgO之測定條件之溫度T之測定條件之總數N=12個,使由式(6)表示之由測定資料求出的點火電子之電子放出常數ts exp(ti,T)與由計算求出的點火電子之電子放出常數ts th(ti,T)之平均二次方誤差RMSD成為最小,而求出活化能量之平均 值△Ea,j、活化能量之分散值σE,j與有效數Nee,jIn step S102-6, the total number of measurement conditions of the temperature T of the measurement conditions of the rest time t i and the MgO is N=12, and the electron emission constant of the ignition electron obtained from the measurement data represented by the formula (6) is obtained. s exp (t i , T) and the average quadratic error RMSD of the electron emission constant t s th (t i , T) of the ignition electron obtained by the calculation become minimum, and the average value of the activation energy ΔE a is obtained. , j , the dispersion value of the activation energy σ E, j and the effective number N ee,j .

ΣΣ N=12N=12 {t{t ss expExp (t(t i,i, T)-tT)-t ss thTh (t(t i,i, T)}T)} 22 (6)   (6)

於圖8,由測定資料求出的點火電子之電子放出常數ts exp(ti,T)以描繪301予以表示,由計算求出的點火電子之電子放出常數ts th(ti,T)以實線501表示。兩者具有極好之一致性。結果,計算出平均二次方誤差RMSD為最小值165ns,活化能量之平均值△Ea,j=760meV、活化能量之分散值σE,j=55meV、有效數Nee,j=1.3×106個/格。 In Fig. 8, the electron emission constant t s exp (t i , T) of the ignition electron obtained from the measurement data is represented by a plot 301, and the electron emission constant of the ignition electron obtained by the calculation is t s th (t i , T ) is indicated by a solid line 501. The two have excellent consistency. As a result, the average quadratic error RMSD is calculated to be a minimum value of 165 ns, the average value of the activation energy ΔE a, j = 760 meV, the dispersion value of the activation energy σ E, j = 55 meV, the effective number N ee, j = 1.3 × 10 6 / grid.

如上述說明,如圖9所示,作為未知之電子放出源之能量狀態密度Dj(E)601,而將活化能量之平均值△Ea,j=760meV、活化能量之分散值σE,j=55meV、有效數Nee,j=1.3×106個/格,由輸出裝置103加以輸出、顯示。 As described above, as shown in FIG. 9, as the energy state density D j (E) 601 of the unknown electron emission source, the average value of the activation energy ΔE a, j = 760 meV, the dispersion value σ E of the activation energy , j = 55 meV, the effective number N ee, j = 1.3 × 10 6 / division, which is output and displayed by the output device 103.

(第2實施形態) (Second embodiment)

圖10為本發明第2實施形態之電子放出特性之解析系統及解析方法中,其構成及順序之一例之方塊圖。 Fig. 10 is a block diagram showing an example of a configuration and a procedure of an electronic discharge characteristic analysis system and an analysis method according to a second embodiment of the present invention.

本發明第2實施形態之電子放出特性之解析系統之硬體構成及其動作例,係和上述第1實施形態相同,因此省略其說明。 The hardware configuration and operation example of the analysis system for the electronic emission characteristics according to the second embodiment of the present invention are the same as those of the first embodiment, and thus the description thereof will be omitted.

如圖10所示,第2實施形態之計算裝置102之運算處理係依據以下順序被執行。 As shown in Fig. 10, the arithmetic processing of the computing device 102 of the second embodiment is executed in the following order.

首先,於步驟S102-1~S102-3,係和上述第1實施形 態相同。於步驟S102中,使針對PDP面板測定獲得之,對於休止時間ti與MgO測定條件之溫度T的位址放電延遲時間td之測定資料,由輸入裝置101被輸入至計算裝置102。於步驟S102-2,依據對於各休止時間ti與MgO測定條件之溫度T的測定資料,來計算每一個位址放電延遲時間之累積數,算出放電概率頻繁度P(t)與已放電概率G(t)。於步驟S102-3,使用滿足[數18] First, steps S102-1 to S102-3 are the same as those of the first embodiment described above. In step S102, so as to obtain the measurement panel for PDP, for MgO quiescent time t I and the measured temperature T conditions of the address discharge delay time t d of the measured data, is input by the input device 101 to the computing device 102. In step S102-2, the cumulative number of discharge delay times for each address is calculated based on the measured data of the temperature T for each of the rest time t i and the MgO measurement conditions, and the discharge probability frequency P(t) and the discharged probability are calculated. G(t). In step S102-3, the use satisfies [number 18]

之長時間區域之ta、tb、其之已放電概率G(ta)與G(tb)、以及式(2),求出點火電子之電子放出常數ts expThe electron emission constant t s exp of the ignition electron is obtained for the long-term regions t a , t b , the discharge probability G(t a ) and G(t b ), and the equation (2).

於圖11,於ti=1ms、10ms、50ms,T=-10℃、0℃、10℃、25℃、40℃、60℃之測定條件,將由18個測定條件之由測定資料求出的點火電子之電子放出常數ts exp,以描繪801加以表示。 In Fig. 11, the measurement conditions of 18 measurement conditions are obtained from the measurement conditions of t i = 1 ms, 10 ms, 50 ms, T = -10 ° C, 0 ° C, 10 ° C, 25 ° C, 40 ° C, and 60 ° C. The electron emission constant t s exp of the ignition electron is represented by the depiction 801.

於步驟S102-4,作為第1種電子放出源之能量狀態密度D1(E),在設定式(7)之高斯函數時,係依據圖7算出有效數Nee,1、活化能量之平均值△Ea,1、活化能量之分散值σE,1。此時,針對為探索彼等參數值而應輸入之探索範圍及探索寬度及個數加以說明如下。 In step S102-4, as the energy state density D 1 (E) of the first electron emission source, when the Gaussian function of the equation (7) is set, the effective number N ee,1 and the average of the activation energy are calculated according to FIG. 7 . The value ΔE a,1 , the dispersion value of the activation energy σ E,1 . At this time, the search range, the search width, and the number to be input for exploring the values of the parameters are described below.

測定條件ti=1ms、10ms、50ms、T=-10℃、0℃、10℃、25℃、40℃、60℃時,窗函數的能量區域係成為451meV~853meV之範圍。和上述第1實施形態同樣,活化能量之平均值△Ea,1之探索範圍設為400meV~900meV。另外,由測定條件決定的探索能量之中心值Em(ti,T)之能量間隔,其之最小間隔為0.5meV,最大間隔為46.2meV,平均間隔為14.8meV,因此實驗精確度至多為10meV程度。其中,活化能量之平均值△Ea,1與活化能量之分散值σE,1之能量之探索寬度,設為由測定條件決定的探索能量之中心值Em(ti,T)之能量間隔之平均值以下的5meV。 When the measurement conditions t i = 1 ms, 10 ms, 50 ms, T = -10 ° C, 0 ° C, 10 ° C, 25 ° C, 40 ° C, and 60 ° C, the energy region of the window function is in the range of 451 meV to 853 meV. Similarly to the first embodiment described above, the average value of the activation energy ΔE a,1 is in the range of 400 meV to 900 meV. In addition, the energy interval of the center value E m (t i , T) of the search energy determined by the measurement condition has a minimum interval of 0.5 meV, a maximum interval of 46.2 meV, and an average interval of 14.8 meV, so the experimental precision is at most 10meV level. The energy of the average value of the activation energy ΔE a,1 and the dispersion value of the activation energy σ E,1 is the energy of the center value E m (t i ,T) of the energy of exploration determined by the measurement conditions. 5meV below the average of the intervals.

另外,有效數Nee,1,因為測定條件之時間級數寬度約為2位數,有效數之探索範圍設為該時間級數寬度、亦即2位數,設為將1×105個/格~1×107個/格予以離散化之201個。藉由上述,則對活化能量之平均值△Ea,1的探索範圍,係使400meV~900meV以5meV寬度加以離散化之101個探索點,對活化能量之分散值σE,1的探索範圍,係使5~100meV以5meV寬度加以離散化之20個探索點,對有效數Nee,1的探索範圍係使1×105個/格~1× 107個/格予以離散化之201個探索點構成,探索範圍、探索寬度及全部組合係輸入約4.1×105個參數值。 In addition, the effective number N ee,1 , because the time series width of the measurement condition is about 2 digits, the search range of the effective number is set to the width of the time series, that is, 2 digits, and 1 × 10 5 / grid ~ 1 × 10 7 / grid to discretize 201. According to the above, the search range of the average value ΔE a,1 of the activation energy is 101 exploration points which are discretized by 400 meV to 900 meV at a width of 5 meV , and the search range of the dispersion value σ E,1 of the activation energy is obtained. It is 20 exploration points that make 5~100meV discretized by 5meV width. For the effective number N ee, the range of exploration is 1 × 10 5 / grid ~ 1 × 10 7 / grid is discretized 201 The exploration points are composed, the exploration range, the exploration width, and all combinations are input with about 4.1×10 5 parameter values.

於步驟S102-5,將設定有活化能量之平均值△Ea,1、活化能量之分散值σE,1與有效數Nee,1的各參數值之式(7)代入式(3),針對電子放出源之能量狀態密度D1(E)與窗函數W1(E、ti、T)之能量計算重疊積分,由其逆數可算出由計算求出的點火電子之第1電子放出常數t1,s th(ti,T)。其中,第1種電子放出源之聲子振動數設為1.19×1013Hz。 In step S102-5, the formula (7) in which the average value of the activation energy ΔE a,1 , the dispersion value of the activation energy σ E,1 and the effective number N ee,1 are set is substituted into the equation (3). Calculate the overlap integral for the energy state density D 1 (E) of the electron emission source and the energy of the window function W 1 (E, t i , T), and calculate the first electron of the ignition electron obtained by the calculation from the inverse number The constant t 1 s th (t i , T) is released. Among them, the number of phonon vibrations of the first electron emission source was set to 1.19 × 10 13 Hz.

於步驟S102-6,針對休止時間ti與MgO之測定條件之溫度T之測定條件之總數N=18,使由式(8)表示由測定資料求出的點火電子之電子放出常數ts exp(ti,T)與由計算求出的點火電子之第1電子放出常數t1,s th(ti,T)之平均二次方誤差RMSD成為最小,而求出活化能量之平均值△Ea,1、活化能量之分散值σE,1與有效數Nee,1In step S102-6, the total number of measurement conditions of the temperature T of the measurement conditions of the rest time t i and MgO is N=18, and the electron emission constant t s exp of the ignition electron obtained from the measurement data is expressed by the equation (8). (t i , T) and the average quadratic error RMSD of the first electron emission constant t 1,s th (t i , T) of the ignition electron obtained by the calculation become minimum, and the average value of the activation energy is obtained. E a,1 , the dispersion value of the activation energy σ E,1 and the effective number N ee,1 .

ΣΣ N=18N=18 {t{t ss expExp (t(t i,i, T)-tT)-t 1,s1,s thTh (t(t i,i, T)}T)} 22 (8)   (8)

於圖12,由測定資料求出的點火電子之電子放出常數ts exp(ti,T)以描繪801予以表示,由計算求出的點火電子之第1電子放出常數t1,s th(ti,T)以實線901表示。兩者具有較佳之一致性。結果,被計算出平均二次方誤差RMSD為最小值115ns,活化能量之平均值△Ea,1=780meV、活化能量之分散值σE,1=95meV、有效數 Nee,1=1.0×106個/格。 In Fig. 12, the electron emission constant t s exp (t i , T) of the ignition electron obtained from the measurement data is represented by a drawing 801, and the first electron emission constant t 1, s th of the ignition electron obtained by the calculation is obtained. t i , T) is indicated by a solid line 901. Both have better consistency. As a result, the average quadratic error RMSD is calculated to be a minimum value of 115 ns, the average value of the activation energy ΔE a, 1 = 780 meV, the dispersion value of the activation energy σ E, 1 = 95 meV, the effective number N ee, 1 = 1.0 × 10 6 / grid.

如上述說明,如圖13所示,作為第1種電子放出源之能量狀態密度D1(E)之實線1001,而將活化能量之平均值△Ea,1=780meV、活化能量之分散值σE,1=95meV、有效數Nee,1=1.0×106個/格,由輸出裝置103加以輸出、顯示。 As described above, as shown in Fig. 13, as the solid line 1001 of the energy state density D 1 (E) of the first electron emission source, the average value of the activation energy ΔE a,1 = 780 meV, and the dispersion of the activation energy The value σ E, 1 = 95 meV, the effective number N ee, 1 = 1.0 × 10 6 / division, and is output and displayed by the output device 103.

接著,考慮新的電子放出源存在時,依據如圖10所示步驟S102-7,回至步驟S102-4,作為第2種電子放出源之能量狀態密度D2(E),在設定式(9)之高斯函數時,係依據圖7算出有效數Nee,2、活化能量之平均值△Ea,2、活化能量之分散值σE,2。此時,針對為探索彼等參數值而應輸入之探索範圍及探索寬度及個數加以說明如下。 Next, in consideration of the presence of a new electron emission source, according to step S102-7 shown in FIG. 10, the process returns to step S102-4 as the energy state density D 2 (E) of the second electron emission source, in the setting formula ( In the case of the Gaussian function of 9), the effective number N ee, 2 , the average value of the activation energy ΔE a, 2 , and the dispersion value of the activation energy σ E, 2 are calculated according to FIG. 7 . At this time, the search range, the search width, and the number to be input for exploring the values of the parameters are described below.

針對測定條件ti=1ms、10ms、50ms、T=-10℃、0℃、10℃、25℃、40℃、60℃,和第1種電子放出源之說明同樣,對活化能量之平均值△Ea,2的探索範圍,係使400meV~900meV以5meV寬度加以離散化之101個探索點,對活化能量之分散值σE,2的探索範圍,係使5~100meV以5meV寬度加以離散化之20個探索點,對有效 數Nee,2的探索範圍係使1×105個/格~1×107個/格予以離散化之201個探索點構成,探索範圍、探索寬度及全部組合係輸入約4.1×105個參數值。 For the measurement conditions t i =1 ms, 10 ms, 50 ms, T=-10 ° C, 0 ° C, 10 ° C, 25 ° C, 40 ° C, 60 ° C, as in the description of the first electron emission source, the average value of the activation energy The range of exploration of ΔE a,2 is 101 exploration points that discretize 400meV~900meV with a width of 5meV. The range of exploration of the dispersion value of activation energy σ E,2 is such that 5~100meV is dispersed by 5meV width. 20 exploration points, the exploration range of the effective number N ee, 2 is composed of 201 exploration points that discretize 1 × 10 5 / grid ~ 1 × 10 7 / grid, the scope of exploration, the width of exploration and All combinations are input with approximately 4.1 × 10 5 parameter values.

於步驟S102-5,將設定有活化能量之平均值△Ea,2、活化能量之分散值σE,2與有效數Nee,2的各參數值之式(9)代入式(3),針對電子放出源之能量狀態密度D2(E)與窗函數W2(E、ti、T)之能量計算重疊積分,由其逆數可算出由計算求出的點火電子之第2電子放出常數t2,s th(ti,T)。其中,第2種電子放出源之聲子振動數設為3.1×1013Hz。 In step S102-5, the equation (9) in which the average value of the activation energy ΔE a,2 , the dispersion value of the activation energy σ E,2 and the effective number N ee,2 are set is substituted into the equation (3). Calculate the overlap integral for the energy state density D 2 (E) of the electron emission source and the energy of the window function W 2 (E, t i , T), and calculate the second electron of the ignition electron obtained by the calculation from the inverse number The constant t 2,s th (t i ,T) is released. Among them, the number of phonon vibrations of the second electron emission source was set to 3.1 × 10 13 Hz.

於步驟S102-6,針對休止時間ti與MgO之測定條件之溫度T之測定條件之總數N=18,使由式(10)表示由測定資料求出的點火電子之電子放出常數ts exp(ti,T)與由計算求出的對點火電子之第1電子放出常數t1,s th(ti,T)與由計算求出的點火電子之第2電子放出常數t2,s th(ti,T)之和的平均二次方誤差RMSD成為最小,而求出活化能量之平均值△Ea,2、活化能量之分散值σE,2與有效數Nee,2In step S102-6, the total number of measurement conditions of the temperature T of the measurement conditions of the rest time t i and MgO is N=18, and the electron emission constant t s exp of the ignition electron obtained from the measurement data is expressed by the equation (10). (t i , T) and the first electron emission constant t 1 s th (t i , T) for the ignition electron obtained by the calculation and the second electron emission constant t 2, s of the ignition electron obtained by the calculation The average quadratic error RMSD of the sum of th (t i , T) is minimized, and the average value ΔE a,2 of the activation energy, the dispersion value σ E,2 of the activation energy , and the effective number N ee,2 are obtained .

ΣΣ N=18N=18 {t{t ss expExp (t(t i,i, T)-tT)-t 1,s1,s thTh (t(t i,i, T)-tT)-t 2,s2,s thTh (t(t i,i, T)}T)} 22

於圖14,由測定資料求出的點火電子之電子放出常數ts exp(ti,T)以描繪801予以表示,由計算求出的點火電子之電子放出常數ts th(ti,T)=由計算求出的點火電子 之第1電子放出常數t1,s th(ti,T)+由計算求出的點火電子之第2電子放出常數t2,s th(ti,T)以實線1001表示。兩者具有較佳之一致性。結果,被計算出平均二次方誤差RMSD減少為最小值95ns,被計算出活化能量之平均值△Ea,2=550meV、活化能量之分散值σE,2=20meV、有效數Nee,2=2.0×105個/格。 In Fig. 14, the electron emission constant t s exp (t i , T) of the ignition electron obtained from the measurement data is represented by a plot 801, and the electron emission constant of the ignition electron obtained by the calculation is t s th (t i , T == the first electron emission constant t 1,s th (t i ,T) of the ignition electron obtained by the calculation + the second electron emission constant t 2,s th (t i ,T of the ignition electron obtained by the calculation ) is indicated by a solid line 1001. Both have better consistency. As a result, it is calculated that the average quadratic error RMSD is reduced to a minimum value of 95 ns, and the average value of the activation energy is calculated as ΔE a, 2 = 550 meV, the dispersion value of the activation energy σ E, 2 = 20 meV, the effective number N ee, 2 = 2.0 × 10 5 / grid.

如此則,如圖15所示,作為第1種與第1種電子放出源之能量狀態密度D1(E)之實線1001、與D2(E)之實線1201,而將活化能量之平均值△Ea,1=780meV、活化能量之分散值σE,1=95meV、有效數Nee,1=1.0×106個/格,以及活化能量之平均值△Ea,2=550meV、活化能量之分散值σE,2=20meV、有效數Nee,2=2.0×105個/格,由輸出裝置103加以輸出、顯示。 Thus, as shown in FIG. 15, the solid line 1001 of the energy state density D 1 (E) of the first type and the first type of electron emission source and the solid line 1201 of D 2 (E) are activated energy. The average value ΔE a,1 =780 meV, the dispersion value of the activation energy σ E,1 =95 meV, the effective number N ee,1 =1.0×10 6 cells/division, and the average value of the activation energy ΔE a,2 =550 meV The dispersion value of the activation energy σ E, 2 = 20 meV, the effective number N ee, 2 = 2.0 × 10 5 / division, is output and displayed by the output device 103.

(第3實施形態) (Third embodiment)

圖16為本發明第3實施形態之電子放出特性之解析系統及解析方法中,其構成及順序之一例之方塊圖。 Fig. 16 is a block diagram showing an example of the configuration and sequence of an electronic discharge characteristic analysis system and an analysis method according to a third embodiment of the present invention.

本發明第3實施形態之電子放出特性之解析系統之硬體構成及其動作例,係和上述第1實施形態相同,因此省略其說明。 The hardware configuration and operation example of the analysis system for the electronic emission characteristics according to the third embodiment of the present invention are the same as those of the first embodiment, and thus the description thereof will be omitted.

如圖16所示,第3實施形態之計算裝置102之運算處理係依據以下順序被執行。 As shown in Fig. 16, the arithmetic processing of the computing device 102 of the third embodiment is executed in the following order.

首先,於步驟S102-1~S102-3,係和上述第1實施形態相同。於步驟S102-1,使針對PDP面板測定獲得之, 對於休止時間ti與MgO測定條件之溫度T的位址放電延遲時間td之測定資料,由輸入裝置101被輸入至計算裝置102。於步驟S102-2,依據對於各休止時間ti與MgO測定條件之溫度T的測定資料,來計算每一個位址放電延遲時間之累積數,算出放電概率頻繁度P(t)與已放電概率G(t)。於步驟S102-3,使用滿足 First, steps S102-1 to S102-3 are the same as those of the first embodiment described above. In step S102-1, so as to obtain the measurement panel for PDP, for MgO quiescent time t I and the measured temperature T conditions of the address discharge delay time t d of the measured data, is input by the input device 101 to the computing device 102. In step S102-2, the cumulative number of discharge delay times for each address is calculated based on the measured data of the temperature T for each of the rest time t i and the MgO measurement conditions, and the discharge probability frequency P(t) and the discharged probability are calculated. G(t). In step S102-3, the use is satisfied

之長時間區域之ta、tb、其之已放電概率G(ta)與G(tb)、以及式(2),求出點火電子之電子放出常數ts expThe electron emission constant t s exp of the ignition electron is obtained for the long-term regions t a , t b , the discharge probability G(t a ) and G(t b ), and the equation (2).

於圖17,於ti=16ms,T=-10℃、-5℃、0℃、5℃、10℃、20℃之測定條件,將由6個測定條件之測定資料所算出的點火電子之電子放出常數ts exp,以描繪1401加以表示。 In Fig. 17, the electrons of the ignition electrons calculated from the measurement data of the six measurement conditions are measured under the conditions of t i = 16 ms, T = -10 ° C, -5 ° C, 0 ° C, 5 ° C, 10 ° C, and 20 ° C. The constant t s exp is emitted and represented by the depiction 1401.

於步驟S1302-4,作為第1種電子放出源之能量狀態密度D(E),在設定式(11)之δ函數時,針對算出有效數Nee與活化能量之平均值△Ea之方法加以說明如下。 In step S1302-4, as the energy state density D(E) of the first electron emission source, when the δ function of the equation (11) is set, the method for calculating the average value ΔE a of the effective number N ee and the activation energy Explain as follows.

[數22] D(E)=N ee δ(E-△E a ) (11) [22] D ( E )= N ee δ ( E -△ E a ) (11)

使用式(3)與式(11)而獲得以下之式(12)。 Using the formula (3) and the formula (11), the following formula (12) is obtained.

於步驟S1302-5,橫軸取1/kBT,縱軸取 In step S1302-5, the horizontal axis takes 1/k B T and the vertical axis is taken

其中,電子放出源之聲子振動數設為3.1×1013Hz。 Among them, the number of phonon vibrations of the electron emission source was set to 3.1 × 10 13 Hz.

於步驟S1302-6,針對假定某一活化能量之平均值△Ea獲得之各測定條件之溫度T計算 In step S1302-6, to obtain the respective measurement conditions for the temperature T is calculated assuming a mean value of △ E a the activation energy

之值,最小二次方誤差調整後之直線1402之斜率為△Ea。依據該△Ea,再度計算對各測定條件之溫度T之 The value, the slope of the straight line 1402 after the adjustment of the minimum quadratic error is ΔE a . According to the ΔE a , the temperature T for each measurement condition is calculated again.

之值,求出以最小二次方誤差調整後之直線1402之斜率△Ea。由該反覆計算之收斂值,由斜率△Ea與截距(intercet)ln(fphNee)求出NeeThe value is obtained, and the slope ΔE a of the straight line 1402 adjusted by the minimum quadratic error is obtained. The convergence value of the repeated calculation, the slope and intercept △ E a (intercet) ln (f ph N ee) obtained N ee.

如圖17所示,獲得以最小二次方誤差調整時之相關係數為約0.96之極高之相關係數,可以求出活化能量之平均值△Ea為661meV,有效數Nee為6.2×105個/格。如上述說明,作為電子放出源之能量狀態密度D(E),而將活化能量之平均值△Ea=661meV、有效數Nee=6.2×105個/格,由輸出裝置103加以輸出、顯示。 As shown in Fig. 17, the correlation coefficient when the correlation coefficient at the minimum quadratic error adjustment is about 0.96 is obtained, and the average value of the activation energy ΔE a is 661 meV, and the effective number N ee is 6.2×10. 5 / grid. As described above, as the energy state density D(E) of the electron emission source, the average value of the activation energy ΔE a = 661 meV, the effective number N ee = 6.2 × 10 5 / division, and output by the output device 103, display.

(第1~第3實施形態之效果) (Effects of the first to third embodiments)

因此,依據上述第1~第3實施形態之電子放出特性之解析系統及解析方法,針對維持電壓施加後至位址電壓施加之間的休止時間ti與氧化膜(MgO等)之測定條件之溫度T,使用相對於彼等之位址放電延遲時間td之測定資料,可以算出對於1個或多數個電子放出源之能量狀態密度的活化能量之平均值、分散值及有效數。 Therefore, according to the analysis system and the analysis method of the electron emission characteristics of the first to third embodiments, the rest time t i between the application of the voltage and the application of the address voltage and the measurement conditions of the oxide film (MgO or the like) are The temperature T can be used to calculate the average value, the dispersion value, and the effective number of the activation energy of the energy state density of one or a plurality of electron emission sources using measurement data with respect to the address discharge delay time t d of the addresses.

以上依據實施形態具體說明本發明,但本發明並不限定於上述實施形態,在不脫離其要旨情況下可做各種變更實施。又,亦可適當組合上述第1~第3實施形態。 The present invention has been specifically described with reference to the embodiments, but the present invention is not limited to the embodiments described above, and various modifications can be made without departing from the scope of the invention. Further, the first to third embodiments described above may be combined as appropriate.

(產業上可利用性) (industrial availability)

本發明可以針對PDP或雜質能階之測定裝置中之氧化膜材料(MgO等)、離子結晶材料、及半導體材料等電子 放出源,有效實施電子放出特性之解析。 The present invention can be applied to an oxide film material (MgO, etc.), an ion crystal material, and a semiconductor material in a PDP or an impurity level measuring device. The source is released, and the analysis of the electron emission characteristics is effectively implemented.

(發明效果) (effect of the invention)

依據代表性實施例,針對維持電壓施加後至位址電壓施加之前的休止時間ti與氧化膜(MgO等)之測定條件之溫度T,使用相對於其之位址放電延遲時間td之測定資料,可以算出對於1個或多數電子放出源之能量狀態密度的活化能量之平均值、分散值及有效數。 Representative embodiments according to the rest time before the address voltage is applied to the oxide film t i measured (MgO etc.) conditions of temperature T, the use of the address with respect to its discharge delay time is measured for t D after the applied voltage is maintained The data can be used to calculate the average value, the dispersion value, and the effective number of the activation energy for the energy state density of one or a plurality of electron emission sources.

101‧‧‧輸入裝置 101‧‧‧ Input device

102‧‧‧計算裝置 102‧‧‧ Computing device

103‧‧‧輸出裝置 103‧‧‧Output device

201‧‧‧放電概率頻繁度 201‧‧‧Discharge probability frequency

202‧‧‧已放電概率 202‧‧‧Discharge probability

203‧‧‧長時間區域 203‧‧‧Long time zone

301、801、1401‧‧‧描繪 301, 801, 1401‧‧

501、901、1001、1201‧‧‧實線 501, 901, 1001, 1201‧‧‧ solid line

1402‧‧‧直線 1402‧‧‧ Straight line

401、601‧‧‧電子放出源之能量狀態密度 401, 601‧‧‧ Energy state density of electron emission sources

402‧‧‧窗函數 402‧‧‧ window function

1501‧‧‧前面基板 1501‧‧‧ front substrate

1502‧‧‧X電極 1502‧‧‧X electrode

1503‧‧‧Y電極 1503‧‧‧Y electrode

1504‧‧‧X匯流排電極 1504‧‧‧X bus bar electrode

1505‧‧‧Y匯流排電極 1505‧‧‧Y bus bar electrode

1506‧‧‧前面介電體 1506‧‧‧ Front dielectric

1507‧‧‧保護膜 1507‧‧‧Protective film

1508‧‧‧背面基板 1508‧‧‧Back substrate

1509‧‧‧位址電極(A電極) 1509‧‧‧ address electrode (A electrode)

1510‧‧‧背面介電體 1510‧‧‧Back dielectric

1511‧‧‧間隔壁 1511‧‧‧ partition wall

1512‧‧‧螢光體 1512‧‧‧Fertior

1513‧‧‧放電空間 1513‧‧‧Discharge space

1600‧‧‧電漿顯示器面板(PDP) 1600‧‧‧Plastic Display Panel (PDP)

1601‧‧‧驅動電路 1601‧‧‧ drive circuit

1602‧‧‧電漿顯示器裝置 1602‧‧‧Plastic display device

1603‧‧‧影像源 1603‧‧‧Image source

1700‧‧‧1TV場期間 1700‧‧1TV period

1701~1708‧‧‧子場 1701~1708‧‧‧Sub-field

1709‧‧‧重置放電期間 1709‧‧‧Reset discharge period

1710‧‧‧位址放電期間 1710‧‧‧ address discharge period

1711‧‧‧維持放電期間 1711‧‧‧Maintaining discharge period

1801‧‧‧施加於Y電極之電壓波形 1801‧‧‧ voltage waveform applied to the Y electrode

1802‧‧‧施加於A電極之電壓波形 1802‧‧‧ Voltage waveform applied to the A electrode

1803‧‧‧位址放電電流 1803‧‧‧ address discharge current

1804、1805‧‧‧驅動電壓波形 1804, 1805‧‧‧ drive voltage waveform

1803‧‧‧維持放電電流 1803‧‧‧Maintaining discharge current

1901‧‧‧Mg原子 1901‧‧‧Mg atom

1902‧‧‧氧原子 1902‧‧‧Oxygen atom

1903‧‧‧置換構造 1903‧‧‧Replacement structure

2200‧‧‧個人電腦 2200‧‧‧ PC

2201‧‧‧CPU裝置 2201‧‧‧CPU device

2202‧‧‧記憶裝置 2202‧‧‧ memory device

2204、2205‧‧‧資料傳送用耦合匯流排 2204, 2205‧‧‧Coupling busbar for data transmission

圖1為本發明第1實施形態之電子放出特性之解析系統及解析方法中,其構成及順序之一例之方塊圖。 1 is a block diagram showing an example of a configuration and a procedure of an electronic discharge characteristic analysis system and an analysis method according to a first embodiment of the present invention.

圖2為本發明第1實施形態之電子放出特性之解析系統及解析方法中,其解析系統之硬體構成之一例之方塊圖。 2 is a block diagram showing an example of a hardware configuration of an analysis system in an analysis system and an analysis method for electronic emission characteristics according to the first embodiment of the present invention.

圖3為本發明第1實施形態之電子放出特性之解析系統及解析方法中,使用已放電概率之點火電子之電子放出常數解析之說明圖。 3 is an explanatory diagram of analysis of an electron emission constant of an ignition electron having a discharge probability in the analysis system and the analysis method of the electron emission characteristics according to the first embodiment of the present invention.

圖4為本發明第1實施形態之電子放出特性之解析系統及解析方法中,由測定資料求出之點火電子之電子放出常數之表示用描繪圖。 4 is a diagram for showing the expression of the electron emission constant of the ignition electron obtained from the measurement data in the analysis system and the analysis method of the electron emission characteristics according to the first embodiment of the present invention.

圖5為本發明第1實施形態之電子放出特性之解析系統及解析方法中,對於休止時間ti與測定條件之溫度T之窗函數成為最大的能量表示用之圖。 Fig. 5 is a view showing an energy representation in which the window function of the temperature T of the rest time t i and the measurement condition is maximized in the analysis system and the analysis method of the electron emission characteristics according to the first embodiment of the present invention.

圖6為本發明第1實施形態之電子放出特性之解析系統及解析方法中,電子放出源之能量狀態密度與窗函數的能量重疊積分之說明圖。 Fig. 6 is an explanatory diagram showing an energy overlap between an energy state density of an electron emission source and a window function in an analysis system and an analysis method for an electron emission characteristic according to the first embodiment of the present invention.

圖7為本發明第1實施形態之電子放出特性之解析系統及解析方法中,活化能量的平均值、分散值、有效數之探索範圍及探索寬度之表示圖。 Fig. 7 is a view showing the average value of the activation energy, the dispersion value, the search range of the effective number, and the search width in the analysis system and the analysis method for the electron emission characteristics according to the first embodiment of the present invention.

圖8為本發明第1實施形態之電子放出特性之解析系統及解析方法中,對於電子放出源,由計算(實線)求出之點火電子之電子放出常數與由測定資料(描繪)求出之點火電子之電子放出常數之比較圖。 8 is an analysis system and an analysis method for an electron emission characteristic according to the first embodiment of the present invention, in which an electron emission constant of an ignition electron obtained by calculation (solid line) and a measurement data (drawing) are obtained for an electron emission source. A comparison chart of the electron emission constants of the ignition electrons.

圖9為本發明第1實施形態之電子放出特性之解析系統及解析方法中,電子放出源之能量狀態密度之表示圖。 Fig. 9 is a view showing the energy state density of the electron emission source in the analysis system and the analysis method of the electron emission characteristics according to the first embodiment of the present invention.

圖10為本發明第2實施形態之電子放出特性之解析系統及解析方法中,其構成及順序之一例之方塊圖。 Fig. 10 is a block diagram showing an example of a configuration and a procedure of an electronic discharge characteristic analysis system and an analysis method according to a second embodiment of the present invention.

圖11為本發明第2實施形態之電子放出特性之解析系統及解析方法中,由測定資料求出之點火電子之電子放出常數之表示用描繪圖。 FIG. 11 is a diagram for showing the expression of the electron emission constant of the ignition electron obtained from the measurement data in the analysis system and the analysis method of the electron emission characteristics according to the second embodiment of the present invention.

圖12為本發明第2實施形態之電子放出特性之解析系統及解析方法中,對於第1種電子放出源,由計算(實線)求出之點火電子之電子放出常數與由測定資料(描繪)求出之點火電子之電子放出常數之比較圖。 Fig. 12 is a diagram showing an electron emission constant and a measurement data of an ignition electron obtained by calculation (solid line) for the first electron emission source in the analysis system and the analysis method for the electron emission characteristics according to the second embodiment of the present invention. A comparison chart of the electron emission constants of the ignition electrons obtained.

圖13為本發明第2實施形態之電子放出特性之解析系統及解析方法中,第1種電子放出源之能量狀態密度之表示圖。 Fig. 13 is a view showing the energy state density of the first electron emission source in the analysis system and the analysis method for the electron emission characteristics according to the second embodiment of the present invention.

圖14為本發明第2實施形態之電子放出特性之解析系統及解析方法中,對於第1種與第2種電子放出源,由計算(實線)求出之點火電子之電子放出常數與由測定資料(描繪)求出之點火電子之電子放出常數之比較圖。 14 is a diagram showing an electron emission constant of an ignition electron obtained by calculation (solid line) for the first type and the second type of electron emission source in the analysis system and the analysis method for the electron emission characteristics according to the second embodiment of the present invention; A comparison chart of the electron emission constants of the ignition electrons obtained by the measurement data (drawing).

圖15為本發明第2實施形態之電子放出特性之解析系統及解析方法中,第1種與第2種電子放出源之能量狀態密度之表示圖。 Fig. 15 is a view showing the energy state density of the first type and the second type of electron emission source in the analysis system and the analysis method for the electron emission characteristics according to the second embodiment of the present invention.

圖16為本發明第3實施形態之電子放出特性之解析系統及解析方法中,其構成及順序之一例之方塊圖。 Fig. 16 is a block diagram showing an example of the configuration and sequence of an electronic discharge characteristic analysis system and an analysis method according to a third embodiment of the present invention.

圖17為本發明第3實施形態之電子放出特性之解析系統及解析方法中,使用點火電子放出常數之溫度依存性的電子放出源之活化能量與有效數之解析圖。 Fig. 17 is an analysis diagram showing activation energy and effective number of an electron emission source using temperature dependence of an ignition electron emission constant in an analysis system and an analysis method for electron emission characteristics according to a third embodiment of the present invention.

圖18為作為本發明前提被檢討的3電極構造之AC面放電型電漿顯示器面板之一部分構造之斜視圖。 Fig. 18 is a perspective view showing a partial structure of a three-electrode structure AC surface discharge type plasma display panel which is reviewed as a premise of the present invention.

圖19為作為本發明前提被檢討的電漿顯示器裝置之概略構成之方塊圖。 Fig. 19 is a block diagram showing a schematic configuration of a plasma display device which is reviewed as a premise of the present invention.

圖20(A)、(B)表示在作為本發明前提被檢討的電漿顯示器裝置中,在電漿顯示器面板顯示影像的1TV場期間之驅動電路之動作說明圖。 20(A) and (B) are explanatory views showing the operation of the drive circuit during the display of the 1TV field of the image on the plasma display panel in the plasma display device which is reviewed as a premise of the present invention.

圖21為作為本發明前提被檢討的電漿顯示器裝置之電漿顯示器面板的電壓時序列與放電電流波形之表示圖。 Fig. 21 is a view showing a voltage time series and a discharge current waveform of a plasma display panel of a plasma display device which is reviewed as a premise of the present invention.

圖22為作為本發明前提被檢討的氧化鎂(MgO)與電子放出源之結晶構造圖。 Fig. 22 is a view showing the crystal structure of magnesium oxide (MgO) and an electron emission source which are reviewed as a premise of the present invention.

圖23為作為本發明前提被檢討的,使用對於位址放 電延遲時間之測定資料的累積數及已放電概率,而作成之統計延遲時間ts與形成延遲時間tf之解析方法表示圖。 Fig. 23 is a diagram showing an analytical method for calculating the statistical delay time t s and the formation delay time t f using the cumulative number of the measured data of the address discharge delay time and the discharged probability as a premise of the present invention.

圖24為作為本發明前提被檢討的電子放出特性之解析系統及解析方法中,其構成及順序之一例之方塊圖。 Fig. 24 is a block diagram showing an example of the configuration and sequence of an analysis system and an analysis method for electronic emission characteristics which are reviewed as a premise of the present invention.

101‧‧‧輸入裝置 101‧‧‧ Input device

102‧‧‧計算裝置 102‧‧‧ Computing device

103‧‧‧輸出裝置 103‧‧‧Output device

2200‧‧‧個人電腦 2200‧‧‧ PC

Claims (18)

一種電子放出特性之解析系統,其特徵為:具有:計算裝置,具有:CPU,用於執行運算處理;記憶裝置,用於保持上述CPU所執行之程式及資料;及匯流排,用於結合上述CPU與上述記憶裝置;輸入裝置,用於輸入上述資料;及輸出裝置,用於輸出上述計算裝置之運算結果;上述程式,係解析1個或多數個電子放出源之能量狀態密度的程式;具有:第1步驟,輸入針對維持電壓施加後至位址電壓施加之間的休止時間ti與測定條件之溫度T之測定條件之位址放電延遲時間td之測定資料;第2步驟,依據對於上述休止時間ti與上述測定條件之溫度T之上述測定資料,來計算每一個位址放電延遲時間之累積數,算出放電概率頻繁度和已放電概率;第3步驟,依據上述已放電概率,算出由測定資料求出的點火電子之電子放出常數ts exp(ti,T);第4步驟,用於設定上述電子放出源之能量狀態密度之函數,設定對於能量狀態密度之活化能量的平均值、分散值、有效數之探索範圍及探索寬度;第5步驟,藉由針對上述電子放出源之能量狀態密度與窗函數之能量的重疊積分,算出由計算求出的點火電子 之電子放出常數ts th(ti,T);及第6步驟,對於上述休止時間ti與上述測定條件之溫度T之測定條件之總數,來決定使上述由測定資料求出的點火電子之電子放出常數ts exp(ti,T)與上述由計算求出的點火電子之電子放出常數ts th(ti,T)之平均二次方誤差成為最小的活化能量之平均值、分散值及有效數。 An analysis system for electronic emission characteristics, comprising: a computing device, comprising: a CPU for performing arithmetic processing; a memory device for maintaining a program and data executed by the CPU; and a bus bar for combining the above a CPU and the above memory device; an input device for inputting the data; and an output device for outputting a calculation result of the computing device; wherein the program is a program for analyzing an energy state density of one or a plurality of electron emission sources; In the first step, the measurement data of the address discharge delay time t d for the measurement condition of the rest time t i between the application of the sustain voltage and the application of the temperature T of the measurement condition is input; the second step is based on Calculating the cumulative number of discharge delay times for each address, calculating the frequency of the discharge delay time and the probability of discharge, and calculating the frequency of the above-described rest time t i and the temperature T of the above-mentioned measurement conditions; Calculating an electron emission constant t s exp (t i , T) of the ignition electron obtained from the measurement data; and a fourth step for setting the electricity a function of the energy state density of the sub-discharge source, setting an average value, a dispersion value, a search range and a search width of the activation energy for the energy state density; and a fifth step, by using the energy state density of the electron emission source The overlap integral of the energy of the window function calculates the electron emission constant t s th (t i , T) of the ignition electron obtained by the calculation; and the sixth step, the measurement of the temperature T of the rest time t i and the measurement condition The total number of conditions determines the electron emission constant t s exp (t i , T) of the ignition electron obtained from the measurement data and the electron emission constant t s th (t i , T of the ignition electron obtained by the above calculation) The average quadratic error becomes the minimum of the activation energy, the dispersion value, and the effective number. 如申請專利範圍第1項之電子放出特性之解析系統,其中於上述第3步驟,係使用滿足以下[數1]之長時間區域中之已放電概率G(t)及其時刻t,算出上述由測定資料求出的點火電子之電子放出常數ts exp(ti,T),相對於位址電壓施加時點火電子存在的短的休止時間ti之測定資料,tf ave為位址放電延遲時間之平均值,σtf為位址放電延遲時間之分散值, An analysis system for an electronic emission characteristic according to the first aspect of the patent application, wherein the third step is to calculate the above-described discharge probability G(t) in a long-term region satisfying the following [number 1] and the time t thereof. The electron emission constant t s exp (t i , T) of the ignition electron obtained from the measurement data, and the measurement data of the short rest time t i of the ignition electron when the address voltage is applied, t f ave is the address discharge The average value of the delay time, σ tf is the dispersion value of the address discharge delay time, 如申請專利範圍第2項之電子放出特性之解析系統,其中於上述第3步驟,係使用已放電概率G(t)為63.2%以上之G(t)及其時刻t,算出上述由測定資料求出的點火電子之電子放 出常數ts exp(ti,T)。 An analysis system for an electron emission characteristic according to the second aspect of the patent application, wherein in the third step, the measurement data is calculated using G(t) having a discharge probability G(t) of 63.2% or more and a time t thereof. The obtained electron emission constant of the ignition electron is t s exp (t i , T). 如申請專利範圍第1項之電子放出特性之解析系統,其中於上述第4步驟,係設定高斯函數作為上述電子放出源之能量狀態密度,對於1個電子放出源之種類j,探索有效數Nee,j、活化能量之平均值△Ea,j、活化能量之分散值σE,j之參數值時,係設定應輸入之探索範圍及探索寬度。 An analysis system for electronic emission characteristics according to the first aspect of the patent application, wherein in the fourth step, a Gaussian function is set as the energy state density of the electron emission source, and for the type j of one electron emission source, the effective number N is searched. When ee,j , the average value of the activation energy ΔE a,j , and the dispersion value of the activation energy σ E,j are set, the search range and the exploration width to be input are set. 如申請專利範圍第4項之電子放出特性之解析系統,其中於上述第4步驟,係設定高斯函數作為上述電子放出源之能量狀態密度,作為活化能量之平均值△Ea,j之探索範圍,係設定包含由測定條件決定的探索能量之中心值Em(ti,T)之最小值-3kBT至Em(ti,T)之最大值+3kBT的能量範圍,[數2] E m (t i ,T)=K B Tln(t i f ph,j ),其中,fph為電子放出源之聲子振動數,kB為波耳茲曼常數(Boltzmann’s constant)。 An analysis system for electronic emission characteristics according to item 4 of the patent application, wherein in the fourth step, a Gaussian function is set as the energy state density of the electron emission source as the average value of the activation energy ΔE a,j Set the energy range including the minimum value of the center value E m (t i, T) of the search energy determined by the measurement conditions -3k B T to the maximum value of E m (t i, T) + 3k B T , [ Number 2] E m ( t i , T )= K B T ln( t i f ph,j ) , where f ph is the number of phonon vibrations of the electron emission source, and k B is the Boltzmann constant (Boltzmann's constant ). 如申請專利範圍第4項之電子放出特性之解析系統,其中於上述第4步驟,係設定高斯函數作為上述電子放出源之能量狀態密 度,將活化能量之平均值△Ea,j與活化能量之分散值σE,j的能量之探索寬度,設為由測定條件決定的探索能量之中心值Em(ti,T)之能量間隔之平均值以下。 An analytical system for electronic emission characteristics according to item 4 of the patent application, wherein in the fourth step, a Gaussian function is set as the energy state density of the electron emission source, and the average value of the activation energy ΔE a,j and the activation energy are obtained. The search width of the energy of the dispersion value σ E,j is equal to or less than the average value of the energy intervals of the center values E m (t i, T) of the search energy determined by the measurement conditions. 如申請專利範圍第4項之電子放出特性之解析系統,其中於上述第4步驟,係設定高斯函數作為上述電子放出源之能量狀態密度,設定上述休止時間ti之時間級數寬度作為有效數Nee,j之探索範圍。 An analysis system for electronic emission characteristics according to item 4 of the patent application, wherein in the fourth step, a Gaussian function is set as an energy state density of the electron emission source, and a time series width of the rest time t i is set as a valid number. N ee, j 's scope of exploration. 如申請專利範圍第1項之電子放出特性之解析系統,其中相對於第1種電子放出源之能量狀態密度,算出由計算求出的點火電子之第1電子放出常數t1,s th(ti,T),決定有效數Nee,1、活化能量之平均值△Ea,1、活化能量之分散值σE,1之後,回至上述第4步驟,設定高斯函數作為第2種電子放出源之能量狀態密度,算出由計算求出的點火電子之第2電子放出常數t2,s th(ti,T),對於上述休止時間ti與上述測定條件之溫度T之測定條件之總和,決定使上述由測定資料求出的點火電子之電子放出常數ts exp(ti,T)與上述由計算求出的點火電子之第1電子放出常數ti,s th(ti,T)+上述由計算求出的點火電子之第2電子放出常數t2,s th(ti,T)的平均二次方誤差成為最小的有效數Nee,2、活化能量之平均值△Ea,2、活化能量之分散值σE,2An analysis system for an electron emission characteristic according to the first aspect of the patent application, wherein the first electron emission constant t 1, s th (t) of the ignition electron obtained by the calculation is calculated with respect to the energy state density of the first electron emission source i , T), determining the effective number N ee,1 , the average value of the activation energy ΔE a,1 , the dispersion value of the activation energy σ E,1 , and then returning to the fourth step, setting the Gaussian function as the second electron The energy state density of the source is released, and the second electron emission constant t 2,s th (t i ,T) of the ignition electron obtained by the calculation is calculated, and the measurement conditions of the rest time t i and the temperature T of the measurement condition are The sum determines the electron emission constant t s exp (t i , T) of the ignition electron obtained from the measurement data and the first electron emission constant t i, s th (t i , of the ignition electron obtained by the above calculation. T)+ The average quadratic error of the second electron emission constant t 2,s th (t i ,T) of the ignition electron obtained by the above calculation becomes the minimum effective number N ee,2 , and the average value of the activation energy Δ E a, 2 , the dispersion value of the activation energy σ E, 2 . 如申請專利範圍第4項之電子放出特性之解析系統,其中設定δ函數作為上述電子放出源之能量狀態密度,橫軸取1/kBT,縱軸取 由以最小二次方誤差加以修正後的直線之斜率△Ea與截距In(fphNee)來決定Nee;其中,fph為電子放出源之聲子振動數,kB為波可茲曼常數(Boltzmann’s constant)。 For example, in the analysis system of the electronic emission characteristic of the fourth application patent, wherein the δ function is set as the energy state density of the electron emission source, and the horizontal axis is 1/k B T , and the vertical axis is taken. △ E a by the slope and intercept of the In (f ph N ee) of the straight line to be corrected least squares error is determined N ee; wherein, f ph is the number of the electron emission source of the phonon, k B is the wave Boltzmann's constant. 一種電子放出特性之解析方法,係解析1個或多數個電子放出源之能量狀態密度者;其特徵為具有:第1步驟,輸入針對維持電壓施加後至位址電壓施加為止的休止時間ti與測定條件之溫度T之測定條件之位址放電延遲時間td之測定資料;第2步驟,依據對於上述休止時間ti與上述測定條件之溫度T之上述測定資料,來計算每一個位址放電延遲時間之累積數,算出放電概率頻繁度和已放電概率;第3步驟,依據上述已放電概率,算出由測定資料求出的點火電子之電子放出常數ts exp(ti,T);第4步驟,用於設定上述電子放出源之能量狀態密度之函數,設定對於能量狀態密度之活化能量的平均值、分 散值、有效數之探索範圍及探索寬度;第5步驟,藉由針對上述電子放出源之能量狀態密度與視窗函數之能量的重疊積分,算出由計算求出的點火電子之電子放出常數ts th(ti,T);及第6步驟,對於上述休止時間ti與上述測定條件之溫度T之測定條件之總數,來決定使上述由測定資料求出的點火電子之電子放出常數ts exp(ti,T)與上述由計算求出的點火電子之電子放出常數ts th(ti,T)之平均二次方誤差成為最小的活化能量之平均值、分散值及有效數。 A method for analyzing an electron emission characteristic is to analyze an energy state density of one or a plurality of electron emission sources; and the method includes: a first step of inputting a rest time t i until an application of a sustain voltage to an address voltage is applied The measurement data of the address discharge delay time t d of the measurement condition of the temperature T of the measurement condition; the second step, calculating each address based on the above-described measurement data for the above-described rest time t i and the temperature T of the above-mentioned measurement condition The cumulative number of discharge delay times is used to calculate the frequency of discharge probability and the probability of discharge; and in the third step, the electron emission constant t s exp (t i , T) of the ignition electron obtained from the measurement data is calculated based on the discharge probability; The fourth step is for setting a function of the energy state density of the electron emission source, setting an average value, a dispersion value, a search range and a search width of the activation energy for the energy state density; and the fifth step, by The overlap of the energy state density of the electron emission source and the energy of the window function, and calculating the electron emission of the ignition electron obtained by the calculation t s th (t i, T ); and a sixth step of, for the pause time t i and the temperature T of the total of the measurement conditions of the measurement conditions described above, is determined so that the information obtained by the measurement of electron emission constant ignition electronics The average value, the dispersion value, and the effective activation energy of t s exp (t i , T) and the average quadratic error of the electron emission constant t s th (t i , T) of the ignition electron obtained by the above calculation become the minimum number. 如申請專利範圍第10項之電子放出特性之解析方法,其中於上述第3步驟,係使用滿足以下[數4]之長時間區域中之已放電概率G(t)及其時刻t,算出上述由測定資料求出的點火電子之電子放出常數ts exp(ti,T),相對於位址電壓施加時點火電子存在的短的休止時間ti之測定資料,tf ave為位址放電延遲時間之平均值,σtf為位址放電延遲時間之分散值, The method for analyzing an electron emission characteristic according to the tenth aspect of the patent application, wherein the third step is to calculate the above-described discharge probability G(t) in the long-term region satisfying the following [number 4] and the time t thereof. The electron emission constant t s exp (t i , T) of the ignition electron obtained from the measurement data, and the measurement data of the short rest time t i of the ignition electron when the address voltage is applied, t f ave is the address discharge The average value of the delay time, σ tf is the dispersion value of the address discharge delay time, 如申請專利範圍第11項之電子放出特性之解析方法,其中 於上述第3步驟,係使用已放電概率G(t)為63.2%以上之G(t)及其時刻t,算出上述由測定資料求出的點火電子之電子放出常數ts exp(ti,T)。 The method for analyzing an electron emission characteristic according to the eleventh aspect of the patent application, wherein in the third step, the measurement data is calculated using G(t) having a discharge probability G(t) of 63.2% or more and a time t thereof. The obtained electron emission constant of the ignition electron is t s exp (t i , T). 如申請專利範圍第10項之電子放出特性之解析方法,其中於上述第4步驟,係設定高斯函數作為上述電子放出源之能量狀態密度,對於1個電子放出源之種類j,探索有效數Nee,j、活化能量之平均值△Ea,j、活化能量之分散值σE,j之參數值時,係設定應輸入之探索範圍及探索寬度。 The method for analyzing the electron emission characteristics of claim 10, wherein in the fourth step, the Gaussian function is set as the energy state density of the electron emission source, and for the type j of one electron emission source, the effective number N is searched. When ee,j , the average value of the activation energy ΔE a,j , and the dispersion value of the activation energy σ E,j are set, the search range and the exploration width to be input are set. 如申請專利範圍第13項之電子放出特性之解析方法,其中於上述第4步驟,係設定高斯函數作為上述電子放出源之能量狀態密度,作為活化能量之平均值△Ea,j之探索範圍,係設定包含由測定條件決定的探索能量之中心值Em(ti,T)之最小值-3kBT至Em(ti,T)之最大值+3kBT的能量範圍,[數5] E m (t i ,T)=k B Tln(t i f ph,j )其中,fph為電子放出源之聲子振動數,kB為波耳茲曼常數。 The method for analyzing the electron emission characteristics of the thirteenth aspect of the patent application, wherein in the fourth step, the Gaussian function is set as the energy state density of the electron emission source as the average value of the activation energy ΔE a,j Set the energy range including the minimum value of the center value E m (t i, T) of the search energy determined by the measurement conditions -3k B T to the maximum value of E m (t i, T) + 3k B T , [ Number 5] E m ( t i , T )= k B T ln( t i f ph,j ) where f ph is the number of phonon vibrations of the electron emission source, and k B is the Boltzmann constant. 如申請專利範圍第13項之電子放出特性之解析方法,其中於上述第4步驟,係設定高斯函數作為上述電子放出源之能量狀態密度,將活化能量之平均值△Ea,j與活化能量之分散值σE,j的能量之探索寬度,設為由測定條件決定的探索能量之中心值Em(ti,T)之能量間隔之平均值以下。 The method for analyzing the electron emission characteristics of the thirteenth aspect of the patent application, wherein in the fourth step, the Gaussian function is set as the energy state density of the electron emission source, and the average value of the activation energy ΔE a,j and the activation energy are obtained. The search width of the energy of the dispersion value σ E,j is equal to or less than the average value of the energy intervals of the center values E m (t i, T) of the search energy determined by the measurement conditions. 如申請專利範圍第13項之電子放出特性之解析方法,其中於上述第4步驟,係設定高斯函數作為上述電子放出源之能量狀態密度,設定上述休止時間ti之時間級數寬度作為有效數Nee,j之探索範圍。 The method for analyzing an electron emission characteristic according to claim 13 , wherein in the fourth step, a Gaussian function is set as an energy state density of the electron emission source, and a time series width of the rest time t i is set as a valid number. N ee, j 's scope of exploration. 如申請專利範圍第10項之電子放出特性之解析方法,其中相對於第1種電子放出源之能量狀態密度,算出由計算求出的點火電子之第1電子放出常數t1,s th(ti,T),決定有效數Nee,1、活化能量之平均值△Ea,1、活化能量之分散值σE,1之後,回至上述第4步驟,設定高斯函數作為第2種電子放出源之能量狀態密度,算出由計算求出的點火電子之第2電子放出常數t2,s th(ti,T),對於上述休止時間ti與上述測定條件之溫度T之測定條件之總和,決定使上述由測定資料求出的點火電子之電子放出常數ts exp(ti,T)與上述由計算求出的點火電子之第1電子放 出常數t1,s th(ti,T)+上述由計算求出的點火電子之第2電子放出常數t2,s th(ti,T)的平均二次方誤差成為最小的有效數Nee,2、活化能量之平均值△Ea,2、活化能量之分散值σE,2An analysis method of an electron emission characteristic according to claim 10, wherein the first electron emission constant t 1, s th (t) of the ignition electron obtained by the calculation is calculated with respect to the energy state density of the first electron emission source i , T), determining the effective number N ee,1 , the average value of the activation energy ΔE a,1 , the dispersion value of the activation energy σ E,1 , and then returning to the fourth step, setting the Gaussian function as the second electron The energy state density of the source is released, and the second electron emission constant t 2,s th (t i ,T) of the ignition electron obtained by the calculation is calculated, and the measurement conditions of the rest time t i and the temperature T of the measurement condition are The sum determines the electron emission constant t s exp (t i , T) of the ignition electron obtained from the measurement data and the first electron emission constant t 1, s th (t i , of the ignition electron obtained by the above calculation. T)+ The average quadratic error of the second electron emission constant t 2,s th (t i ,T) of the ignition electron obtained by the above calculation becomes the minimum effective number N ee,2 , and the average value of the activation energy Δ E a, 2 , the dispersion value of the activation energy σ E, 2 . 如申請專利範圍第13項之電子放出特性之解析方法,其中設定δ函數作為上述電子放出源之能量狀態密度,橫軸取1/kBT,縱軸取 由以最小二次方誤差加以修正後的直線之斜率△Ea與截距In(fphNee)來決定Nee;其中,fph為電子放出源之聲子振動數,kB為波可茲曼常數(Boltzmann’s constant)。 For example, in the analytical method of the electron emission characteristic of claim 13, wherein the δ function is set as the energy state density of the electron emission source, and the horizontal axis is 1/k B T , and the vertical axis is taken. △ E a by the slope and intercept of the In (f ph N ee) of the straight line to be corrected least squares error is determined N ee; wherein, f ph is the number of the electron emission source of the phonon, k B is the wave Boltzmann's constant.
TW098100642A 2008-03-28 2009-01-09 Analytical system and method for electron emission properties TWI410647B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085871A JP5301861B2 (en) 2008-03-28 2008-03-28 Electron emission characteristic analysis system and analysis method

Publications (2)

Publication Number Publication Date
TW200946932A TW200946932A (en) 2009-11-16
TWI410647B true TWI410647B (en) 2013-10-01

Family

ID=41252359

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098100642A TWI410647B (en) 2008-03-28 2009-01-09 Analytical system and method for electron emission properties

Country Status (3)

Country Link
JP (1) JP5301861B2 (en)
KR (1) KR101070578B1 (en)
TW (1) TWI410647B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107589361B (en) * 2017-09-06 2020-10-02 中国工程物理研究院电子工程研究所 Method for measuring trap energy level distribution in oxide layer of semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW432352B (en) * 1997-10-31 2001-05-01 Kopin Corp Color microdisplay with thin gap liquid crystal
TW462043B (en) * 1995-01-25 2001-11-01 Discovision Ass Laser driver for controlling electrical current directed to laser in optical disc system
TW527575B (en) * 1998-06-18 2003-04-11 Fujitsu Ltd Method for driving plasma display panel
TWI272784B (en) * 2002-04-22 2007-02-01 Nat Inst Of Advanced Ind Scien High-speed signal transmission system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4153983B2 (en) * 2000-07-17 2008-09-24 パイオニア株式会社 Protective film, film forming method thereof, plasma display panel and manufacturing method thereof
JP4344197B2 (en) * 2003-08-26 2009-10-14 パナソニック株式会社 Insulating film measuring apparatus, insulating film measuring method, and insulating film evaluating apparatus
JP4760317B2 (en) * 2005-11-10 2011-08-31 パナソニック株式会社 Plasma display panel inspection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW462043B (en) * 1995-01-25 2001-11-01 Discovision Ass Laser driver for controlling electrical current directed to laser in optical disc system
TW432352B (en) * 1997-10-31 2001-05-01 Kopin Corp Color microdisplay with thin gap liquid crystal
TW527575B (en) * 1998-06-18 2003-04-11 Fujitsu Ltd Method for driving plasma display panel
TWI272784B (en) * 2002-04-22 2007-02-01 Nat Inst Of Advanced Ind Scien High-speed signal transmission system

Also Published As

Publication number Publication date
JP5301861B2 (en) 2013-09-25
JP2009238680A (en) 2009-10-15
KR20090103704A (en) 2009-10-01
KR101070578B1 (en) 2011-10-05
TW200946932A (en) 2009-11-16

Similar Documents

Publication Publication Date Title
US6744218B2 (en) Method of driving a plasma display panel in which the width of display sustain pulse varies
JP2001013911A (en) Drive method for plasma display panel
Seo et al. Two-dimensional modeling of a surface type alternating current plasma display panel cell: Discharge dynamics and address voltage effects
US7705804B2 (en) Plasma display apparatus and driving method thereof
KR101022086B1 (en) Plasma display panel drive method and plasma display device
TWI410647B (en) Analytical system and method for electron emission properties
US20080150835A1 (en) Plasma display apparatus and driving method thereof
JP2007094383A (en) Plasma display apparatus and driving method thereof
EP1983501A1 (en) Plasma display panel driving method, and plasma display device
JP2005032468A (en) Aging method and aging apparatus for plasma display panel
JP5170322B2 (en) Plasma display apparatus and driving method of plasma display panel
Whang et al. Discharge physics of alternating current plasma display panels (PDPs)
JP2010287532A (en) Analytical method of electron emission level
Shin et al. Characteristics of an address discharge in ac plasma display panels
Tae et al. Analysis of microdischarge characteristics induced by synchronized auxiliary address pulse based on cross-sectional infrared observation in AC plasma display panel
JP2008209683A (en) Method for driving plasma display device
Shim et al. Effects of Panel Temperature on the Discharge Characteristics of Micro Discharge Cells
Jeon et al. Influence of wall charge on image sticking phenomena in AC plasma display panels
KR100681009B1 (en) Plasma Display Apparatus and Driving Method Thereof
US20080129764A1 (en) Method of driving a discharge display panel for effective addressing, driver therefor and display panel using the same
JP2011014286A (en) Plasma display panel and method of manufacturing the same, and plasma display device
JP2005148594A (en) Method for driving plasma display panel
JP4646989B2 (en) Plasma display panel driving method and display device
Choi et al. Investigation of wall and space charges decay using pulse technique in AC plasma display panel
KR20070094093A (en) Method for driving discharge display panel wherein discharge-sustain pulse includes electrical floating area

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees