TWI408377B - 差動式電壓感測系統及其方法 - Google Patents

差動式電壓感測系統及其方法 Download PDF

Info

Publication number
TWI408377B
TWI408377B TW099105410A TW99105410A TWI408377B TW I408377 B TWI408377 B TW I408377B TW 099105410 A TW099105410 A TW 099105410A TW 99105410 A TW99105410 A TW 99105410A TW I408377 B TWI408377 B TW I408377B
Authority
TW
Taiwan
Prior art keywords
signal
differential
coupled
sensing system
electrode
Prior art date
Application number
TW099105410A
Other languages
English (en)
Inventor
Wen Ying Chang
Cheng Hung Chang
Ying Ju Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW099105410A priority Critical patent/TWI408377B/zh
Priority to TW099105410D priority patent/TW201129809A/zh
Priority to US12/784,646 priority patent/US8519792B2/en
Priority to US13/447,573 priority patent/US8442628B2/en
Application granted granted Critical
Publication of TWI408377B publication Critical patent/TWI408377B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/37Monitoring; Protecting
    • A61N1/3702Physiological parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3925Monitoring; Protecting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3925Monitoring; Protecting
    • A61N1/3937Monitoring output parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45928Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit
    • H03F3/4595Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit by using feedforward means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0035Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using continuously variable impedance elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/398Electrooculography [EOG], e.g. detecting nystagmus; Electroretinography [ERG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/37Monitoring; Protecting
    • A61N1/371Capture, i.e. successful stimulation
    • A61N1/3712Auto-capture, i.e. automatic adjustment of the stimulation threshold
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/261Amplifier which being suitable for instrumentation applications
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/411Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising two power stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45544Indexing scheme relating to differential amplifiers the IC comprising one or more capacitors, e.g. coupling capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45591Indexing scheme relating to differential amplifiers the IC comprising one or more potentiometers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45594Indexing scheme relating to differential amplifiers the IC comprising one or more resistors, which are not biasing resistor

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Power Engineering (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

差動式電壓感測系統及其方法
本發明係關於一種用以達成輸入阻抗匹配的差動式電壓感測系統及其方法,尤指一種用於感測生物電訊號的差動式電壓感測系統及其方法。
隨著現代人對於健康的重視,以及全球人口老化的趨勢,生理訊號監測例如,心電圖(Electrocardiogram)、腦波圖(Electroencephalogram)、肌電圖(Electromyogram)和眼動圖(Electrooculogram)等的量測與應用,在市場上需求越來越大,同時產品也漸漸普及化。一般使用的生理訊號量測裝置係經由表面附著於人體皮膚的電極貼片來量測人體之生理訊號,並透過分析與紀錄來監測人體心臟或腦波等生理狀況。
來自人體的生理電訊號相當微弱,並且容易受到外在環境或是受測者本身其他生物電訊號的干擾。因此,一個具有高共模拒斥比(common mode rejection ratio,CMRR)的差動式電壓感測系統適合應用在微小訊號的量測,用以減少該雜訊對生理訊號量測的影響。差動式電壓感測系統的輸入信號通常具有相同的共模(common-mode)訊號與差模訊號。共模訊號的主要成分為雜訊,使用差動式放大方法係以振幅相等但相位相反的方式互相抵消,可有效消除此一共模雜訊並進一步放大微小的生理訊號。
然而,當差動式電壓感測系統的輸入阻抗不匹配時,會造成共模雜訊無法互抵消除,使得生理電訊號在量測時容易受雜訊干擾而失真。舉例而言,皮膚的表面狀態或是電極貼片的附著狀況會導致皮膚-電極介面阻抗的差異,使得差動式電壓感測系統的輸入阻抗不匹配。特別是使用多導程心電圖或是多極式腦波圖時,容易因為少數不良的電極而導致無法擷取到有效的生理電訊號。
美國專利號US6,208,888揭露一種輸入阻抗平衡的電壓量測系統。該電路包含一回饋控制器,其根據一差動訊號、一共模訊號和與一第一電極相關聯的一阻抗來調整與一第二電極相關聯的有效阻抗。因此,每一電極的訊號會有近似的增益衰減。然而,由於該電路的輸入匹配是藉由改變電路的轉換特性而達成,因此會產生一震盪雜訊。
美國專利號US5,233,985揭露一種心律調節器,其使用一運算放大器輸出電路以產生電激發脈衝訊號。該電路使用一可變電阻作為負載以擷取訊號,並尋找最佳之共模/差模匹配點,以進行訊號量測。然而,該方法係使用手動方式改變輸入阻抗值以達成匹配,並以虛擬負載控制訊號,其無法即時動態地調整放大器的輸入阻抗。
綜上所述,有必要提供一種用於感測生物電訊號的差動式電壓感測系統及其方法,以動態地達成輸入阻抗匹配而消除雜訊。
本發明揭示一種差動式電壓感測系統,用以達成輸入阻抗匹配,該差動式電壓感測系統包含一第一放大器電路、第一和第二可變電阻、一訊號擷取單元和一邏輯控制單元。該第一可變電阻具有耦接至一第一節點之一輸入端、耦接至該第一放大器電路之一第一輸入端的一輸出端和一控制端,而該第二可變電阻具有耦接至一第二節點之輸入端、耦接至該第一放大器電路之一第二輸入端的一輸出端和一控制端。該訊號擷取單元耦接於該第一放大器電路之一輸出端,而該邏輯控制單元耦接於該訊號擷取單元、該第一可變電阻之該第一控制端和該第二可變電阻之該第二控制端;其中該些第一和第二可變電阻的阻抗係根據該邏輯控制單元的輸出訊號而進行動態調整。
本發明一實施範例揭示一種差動式感測方法,用以達成輸入阻抗匹配,該方法包含以下步驟:提供一第一生物電訊號至一第一可變電阻以產生一第一訊號;提供一第二生物電訊號至一第二可變電阻以產生一第二訊號;差動放大該些第一和第二訊號以輸出一第三訊號;選擇該第三訊號的運作頻帶以輸出第一和第二邏輯訊號;以及根據該些第一和第二邏輯訊號動態調整該些第一和第二可變電阻其中一者之阻抗;其中該些第一和第二生物電訊號具有一共模訊號電壓位準與差模訊號電壓位準。
圖1顯示根據本發明一實施範例的差動式電壓感測系統10之架構示意圖。該差動式電壓感測系統10包含第一和第二電極介面11,12、第一和第二可變電阻VCR1 ,VCR2 、第一和第二放大器電路OP1 ,OP2 、一訊號擷取單元14和一邏輯控制單元16。如圖1所示,該第一電極介面11係耦接於一輸入節點in1 和一節點N1 之間,而該第二電極介面12係耦接於一輸入節點in2 和一節點N2 之間,其中輸入節點in1 和in2 係個別耦接於同一生理訊號源的兩不同位置。該些第一和第二電極介面11,12,係建構用以偵測來自一測試者之生物電訊號,例如一心電訊號、一腦波訊號、一肌電訊號或是一眼動訊號,其中該些生物電訊號具有一共模訊號電壓位準與差模訊號電壓位準。該些電極介面11,12具有有效皮膚-電極阻抗,其可以模型等效為一介面電阻Ri 並聯一介面電容Ci 。此外,電極間的阻抗可能廣泛地變化。舉例而言,當該測試者處於一運動狀態時,其增加的的汗水可能造成皮膚濕潤阻抗逐漸下降;或者,當電極乾燥老化或附著力不佳時,可能造成阻抗的增加。
參照圖1,該第一可變電阻VCR1 具有耦接至該節點N1 之第一輸入端、耦接至該第一放大器電路OP1 之一第三輸入端NA 之第一輸出端和一控制端。該第二可變電阻VCR2 具有耦接至該節點N2 之第二輸入端、耦接至該第一放大器電路OP1 之一第四輸入端NB 之第二輸出端和一控制端。該些可變電阻VCR1 ,VCR2 可為壓控式電阻,其阻值可隨控制端的電壓位準訊號而改變。此外,該第一放大器電路OP1 接收通過該些可變電阻VCR1 ,VCR2 的輸入訊號後,會將該輸入訊號進行第一次放大處理。接著,藉由耦接至該第一放大器電路OP1 的該第二放大器電路OP2 將訊號再次放大,以提供一後級電路進行訊號分析或運算。
如圖1所示,該訊號擷取單元14耦接於該第一放大器電路OP1 。在本實施範例中,該訊號擷取單元14可為一帶通濾波器,其建構以濾除該生物電訊號頻帶以外的雜訊,例如50;60Hz或是其他環境雜訊。該邏輯控制單元16耦接於該訊號擷取單元14和該些第一和第二可變電阻VCR1,VCR2之控制端,其建構以提供用以調整該些可變電阻VCR1 ,VCR2 的阻抗之控制訊號S1 ,S2 。在本實施範例中,該邏輯控制單元16可為一微控制器,或者,可為一單晶片處理器。
圖2顯示根據本發明一實施範例的差動式感測方法之流程圖,其中,該差動式感測方法係用以達成輸入阻抗匹配。在步驟S20,提供一第一生物電訊號至一第一可變電阻以產生一第一訊號。在步驟S22,提供一第二生物電訊號至一第二可變電阻以產生一第二訊號。該些第一和第二生物電訊號具有一共模訊號電壓位準與差模訊號電壓位準。在步驟S24,差動放大該些第一和第二訊號以輸出一第三訊號。在步驟26,選擇該第三訊號的運作頻帶以輸出第一和第二邏輯訊號。在步驟S28,根據該些第一和第二邏輯訊號動態調整該些第一和第二可變電阻其中一者之阻抗。以下配合圖1說明本發明之差動式感測方法的細節。
首先,第一和第二生物電訊號係個別地透過第一和第二電極介面11,12提供至第一和第二可變電阻,例如圖1所示的第一和第二可變電阻VCR1 ,VCR2 。在一實施範例中,當該些生物電訊號為心電訊號時,該第一電極11係設置或接近於一測試者左胸位置,而該第二電極12係設置或接近於該測試者右胸位置。如前所述,該些電極的有效阻抗可能不同,使得第一放大器電路OP1 的輸入阻抗彼此間不匹配。當第一放大器電路OP1 的輸入阻抗不匹配時,其輸出端N3 的電壓振幅將增加,甚至趨近飽和。在此狀況下,調整該些第一和第二可變電阻VCR1 ,VCR2 其中一者,例如電阻VCR1 之阻抗。如果調整電阻VCR1 的阻抗後,該第一放大器電路OP1 的輸出端N3 之電壓振幅開始下降,則繼續調整該可變電阻VCR1 的阻抗直至該輸出端N3 之電壓振幅出現最小值。此時,該差動式電壓感測系統10已進入最佳輸入匹配點。另一方面,如果調整電阻VCR1 的阻抗無法讓該第一放大器電路OP1 的輸出端N3 之電壓振幅下降,則回復該電阻VCR1 的初始阻抗,並開始調整電阻VCR2 的阻抗,以降低該輸出端N3 之電壓振幅。當該輸出端N3 之電壓振幅出現最小值時,表示該差動式電壓感測系統10已進入最佳輸入匹配點。
參照圖1,該些第一和第二可變電阻VCR1 ,VCR2 的阻抗調整係經由一邏輯控制單元16所實現。該邏輯控制單元16根據一訊號擷取單元14的輸出訊號傳送用以控制該些第一和第二可變電阻VCR1 ,VCR2 阻抗之訊號至該些可變電阻的控制端。在一實施範例中,該些可變電阻VCR1 ,VCR2 可為壓控電阻,且該邏輯控制單元16的輸出訊號可為電壓位準訊號。因此,該些第一和第二可變電阻VCR1 ,VCR2 之阻抗可分別隨該些訊號S1 和S2 之電壓位準上昇而昇高,或隨該些訊號S1 和S2 之電壓位準下降而降低。在另一實施範例中,該些第一和第二可變電阻VCR1 ,VCR2 之阻抗可分別隨該些訊號S1 和S2 之電壓位準上昇而降低,或隨該些訊號S1 和S2 之電壓位準下降而昇高。
圖3顯示根據本發明另一實施範例之差動式電壓感測系統30的架構示意圖,圖3中類似圖1之元件係以類似的參考數字顯示。參照圖3,該差動式電壓感測系統30包含一共模電壓位準輸出單元32和藉由一節點N4 附著於該測試者右腳的一右腳驅動(Driven Right Leg;DRL)電極34。該右腳驅動電極34係建構以主動地抑制共模雜訊並改善該差動式電壓感測系統30的共模拒斥比(Common Mode Rejection Ratio;CMRR)。
圖4顯示根據本發明又一實施範例之差動式電壓感測系統40的架構示意圖,圖4中類似圖1之元件係以類似的參考數字顯示。該差動式電壓感測系統40係使用多極式電極或是一電極陣列以貼附於人體皮膚。參照圖4,多工器42,44係個別耦接於該些第一和第二可變電阻VCR1 ,VCR2 ,且每一多工器具有連接至複數個電極的複數個輸入端。該些多工器42,44係建構以根據一掃描訊號,選擇性地連接該等電極中的其中一者至該些第一和第二可變電阻VCR1 ,VCR2 。此後,該邏輯控制單元16根據該訊號擷取單元14的輸出訊號而控制該些第一和第二可變電阻VCR1 ,VCR2 的阻抗。經由動態地調整該些電阻VCR1 ,VCR2 的阻抗,從該第一放大器電路OP1 的兩輸入端NA 和NB 至相對應的電極之間的串聯路徑總阻抗會相等。因此,可大幅抑制共模雜訊,避免輸出訊號受到環境雜訊、電極材料或是貼附狀態等等因素的影響。
本發明之技術內容及技術特點已揭示如上,然而熟悉本項技術之人士仍可能基於本發明之教示及揭示而作種種不背離本發明精神之替換及修飾。因此,本發明之保護範圍應不限於實施範例所揭示者,而應包括各種不背離本發明之替換及修飾,並為以下之申請專利範圍所涵蓋。
10...差動式電壓感測系統
11...第一電極介面
12...第二電極介面
14...訊號擷取單元
16...邏輯控制單元
Ri ...介面電阻
Ci ...介面電容
VCR1 ...第一可變電阻
VCR2 ...第二可變電阻
OP1 ...第一放大器電路
OP2 ...第二放大器電路
S20~S28...步驟
30...差動式電壓感測系統
32...共模電壓位準輸出單元
34...右腳驅動電極(DRL)
40...差動式電壓感測系統
42...多工器
44...多工器
圖1顯示根據本發明一實施範例的差動式電壓感測系統之架構示意圖;
圖2顯示根據本發明一實施範例的差動式感測方法之流程圖;
圖3顯示根據本發明另一實施範例之差動式電壓感測系統的架構示意圖;及
圖4顯示根據本發明又一實施範例之差動式電壓感測系統的架構示意圖。
10...差動式感測系統
11...第一電極介面
12...第二電極介面
14...訊號擷取單元
16...邏輯控制單元
Ri ...介面電阻
Ci ...介面電容
VCR1 ...第一可變電阻
VCR2 ...第二可變電阻
OP1 ...第一放大器電路
OP2 ...第二放大器電路

Claims (15)

  1. 一種差動式電壓感測系統,包含:一第一放大器電路;一第一可變電阻,其具有耦接至一第一節點之一輸入端、耦接至該第一放大器電路之一第一輸入端的一輸出端和一控制端;一第二可變電阻,其具有耦接至一第二節點之該第一放大器電路之一第二輸入端、耦接至該第一放大器電路之一第四輸入端的一輸出端和一控制端;一訊號擷取單元,耦接於該第一放大器電路之一輸出端;以及一邏輯控制單元,耦接於該訊號擷取單元、該第一可變電阻之該第一控制端和該第二可變電阻之該第二控制端;其中該些第一和第二可變電阻的阻抗係根據該邏輯控制單元的輸出訊號而進行動態調整,用以達成輸入阻抗匹配,從該第一放大器電路之該第一輸入端至一第一電極和該第二輸入端至一第二電極的總阻抗相等。
  2. 根據請求項1之差動式電壓感測系統,其中該訊號擷取單元為一帶通濾波器。
  3. 根據請求項1之差動式電壓感測系統,其中該邏輯控制單元為一微控制器,且其輸出訊號為電壓位準訊號。
  4. 根據請求項1之差動式電壓感測系統,其中更包含耦接於該第一節點之該第一電極和耦接於該第二節點之該第二電極,該些第一和第二電極係建構以個別地接收第一和第 二生物電訊號。
  5. 根據請求項4之差動式電壓感測系統,其中該些第一和第二生物電訊號具有一共模電壓位準的心電訊號、腦波訊號、肌電訊號或是眼動訊號。
  6. 根據請求項1之差動式電壓感測系統,其中更包含耦接至該第一放大器電路之一第二放大器電路。
  7. 根據請求項1之差動式電壓感測系統,其中更包含耦接至該第一放大器電路的一共模電壓位準輸出單元和耦接至該共模電壓位準輸出單元的一驅動電極。
  8. 根據請求項1之差動式電壓感測系統,其中更包含耦接於多極式電極或是一電極陣列的第一和第二多工器,且該些第一和第二多工器係個別耦接於該些第一和第二可變電阻。
  9. 一種差動式感測方法,用以達成輸入阻抗匹配,其包含:提供一第一生物電訊號至一第一可變電阻以產生一第一訊號;提供一第二生物電訊號至一第二可變電阻以產生一第二訊號;差動放大該些第一和第二訊號以輸出一第三訊號;選擇該第三訊號的運作頻帶以輸出第一和第二邏輯訊號;以及根據該些第一和第二邏輯S1 和S2 訊號動態調整該些第一和第二可變電阻其中一者之阻抗,而使一第一放大器電路之一第一輸入端至一第一電極和該第一放大器電路之一第二輸入端至一第二電極的總阻抗相等; 其中該些第一和第二生物電訊號具有一共模電壓位準與差模訊號電壓位準。
  10. 根據請求項9之差動式感測方法,其中該些第一和第二生物電訊號為心電訊號、腦波訊號、肌電訊號或是眼動訊號。
  11. 根據請求項9之差動式感測方法,其中更包含放大該第三訊號以提供至一後級電路。
  12. 根據請求項9之差動式感測方法,其中更包含提供該第三訊號的共模電壓位準至一驅動電極。
  13. 根據請求項9之差動式感測方法,其中更包含量測該第三訊號之一振幅,且當調整該些第一和第二可變電阻其中一者之阻抗無法使得該第三訊號之該振幅下降時,調整該些第一和第二可變電阻另一者之阻抗。
  14. 根據請求項9之差動式感測方法,其中該些第一和第二可變電阻為壓控電阻,且該些第一和第二邏輯訊號為電壓位準訊號。
  15. 根據請求項9之差動式感測方法,其中更包含選擇性地連接複數個電極中的其中二者至該些第一和第二可變電阻。
TW099105410A 2010-02-25 2010-02-25 差動式電壓感測系統及其方法 TWI408377B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW099105410A TWI408377B (zh) 2010-02-25 2010-02-25 差動式電壓感測系統及其方法
TW099105410D TW201129809A (en) 2010-02-25 2010-02-25 Differential sensing system and method for using the same
US12/784,646 US8519792B2 (en) 2010-02-25 2010-05-21 Differential voltage sensing system and method for using the same
US13/447,573 US8442628B2 (en) 2010-02-25 2012-04-16 Differential voltage sensing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099105410A TWI408377B (zh) 2010-02-25 2010-02-25 差動式電壓感測系統及其方法

Publications (1)

Publication Number Publication Date
TWI408377B true TWI408377B (zh) 2013-09-11

Family

ID=44476021

Family Applications (2)

Application Number Title Priority Date Filing Date
TW099105410A TWI408377B (zh) 2010-02-25 2010-02-25 差動式電壓感測系統及其方法
TW099105410D TW201129809A (en) 2010-02-25 2010-02-25 Differential sensing system and method for using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW099105410D TW201129809A (en) 2010-02-25 2010-02-25 Differential sensing system and method for using the same

Country Status (2)

Country Link
US (2) US8519792B2 (zh)
TW (2) TWI408377B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI421509B (zh) * 2011-12-28 2014-01-01 Ind Tech Res Inst 生物電訊號感測電路及方法
JP6205792B2 (ja) * 2013-04-01 2017-10-04 Tdk株式会社 心電計測装置、心電計測方法、及び心電計測プログラム
CN103239222A (zh) * 2013-04-17 2013-08-14 深圳市科曼医疗设备有限公司 心电信号采集装置与采集方法
DE102014214994A1 (de) 2014-07-30 2016-02-04 Siemens Aktiengesellschaft Unterdrückung von Gleichtaktstörsignalen bei der Messung von bioelektrischen Signalen
DE102014219943B4 (de) * 2014-10-01 2017-03-30 Siemens Healthcare Gmbh Schaltungsanordnung zur Unterdrückung von Gleichtaktstörsignalen bei der Messung von bioelektrischen Signalen
KR102362727B1 (ko) * 2014-12-18 2022-02-15 엘지이노텍 주식회사 맥박 측정 장치 및 이를 이용한 컴퓨팅 장치
DK3232922T3 (da) * 2014-12-19 2022-03-14 T&W Eng A/S Aktiv elektrode omfattende en forstærker med closed-loop-enhedsforstærkning med choppermodulation
DE102015204207B4 (de) 2015-03-10 2018-09-27 Siemens Healthcare Gmbh Elektrode zum Herstellen eines elektrischen Kontakts mit Haut
US10080898B2 (en) 2015-05-29 2018-09-25 Medtronic, Inc. Simultaneous physiological sensing and stimulation with saturation detection
US10434308B2 (en) 2015-05-29 2019-10-08 Medtronic, Inc. Impedance matching and electrode conditioning in patient interface systems
JP7039002B2 (ja) * 2016-12-14 2022-03-22 国立大学法人 名古屋工業大学 ウェアラブル生体センサ及びノイズキャンセル回路
JP6788876B2 (ja) * 2017-07-25 2020-11-25 パナソニックIpマネジメント株式会社 心電図信号処理装置、個人認証装置及び心電図信号処理方法
US11047821B2 (en) 2018-05-31 2021-06-29 Analog Devices International Unlimited Company Bio-impedance and contact impedances measurement
US11406307B2 (en) * 2018-12-21 2022-08-09 Biosense Webster (Israel) Ltd. Impedance measurements using burst pulses to prevent noise on ECG
CN110786848B (zh) * 2019-10-22 2022-03-15 天津大学 一种多生理参数信号单通道采集放大器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008696A (en) * 1998-04-21 1999-12-28 National Semiconductor Corporation Low noise amplifier with actively terminated input
US20050062530A1 (en) * 2003-08-19 2005-03-24 Agilent Technologies, Inc. Variable decision threshold apparatus
US6950694B2 (en) * 2000-04-28 2005-09-27 Cardiac Pacemakers, Inc. Automatic input impedance balancing for electrocardiogram (ECG) sensing applications
US20080004636A1 (en) * 2005-07-01 2008-01-03 Abbott Laboratories Clip applier and methods of use

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3802419A (en) * 1972-04-11 1974-04-09 Us Air Force Respiration monitor
US4320351A (en) * 1980-02-25 1982-03-16 Sri International Differential amplifying system with bootstrapping
EP0215677B1 (en) * 1985-09-20 1992-07-22 Nec Corporation Subscriber line interface circuit having means for combining dc and ac feedback signals
US5411529A (en) 1990-08-10 1995-05-02 Medtronic, Inc. Waveform discriminator for cardiac stimulation devices
US5233985A (en) 1990-08-10 1993-08-10 Medtronic, Inc. Cardiac pacemaker with operational amplifier output circuit
US5282840A (en) 1992-03-26 1994-02-01 Medtronic, Inc. Multiple frequency impedance measurement system
US6238338B1 (en) * 1999-07-19 2001-05-29 Altec, Inc. Biosignal monitoring system and method
JP3493890B2 (ja) * 1996-04-26 2004-02-03 カシオ計算機株式会社 感度設定装置および該装置を備える心電計
US6016446A (en) * 1998-02-27 2000-01-18 Cardiac Pacemakers, Inc. Cardiac rhythm management system including nonlinear, non-blanking sense amplifier
US6208888B1 (en) 1999-02-03 2001-03-27 Cardiac Pacemakers, Inc. Voltage sensing system with input impedance balancing for electrocardiogram (ECG) sensing applications
US6287328B1 (en) * 1999-04-08 2001-09-11 Agilent Technologies, Inc. Multivariable artifact assessment
US6133787A (en) * 1999-05-04 2000-10-17 Physio-Control Manufacturing Corporation Method and apparatus for controlling the common mode impedance misbalance of an isolated single-ended circuit
US6292690B1 (en) * 2000-01-12 2001-09-18 Measurement Specialities Inc. Apparatus and method for measuring bioelectric impedance
AU2001231265A1 (en) * 2000-01-31 2001-08-07 Justin D. Pearlman Multivariate cardiac monitor
US6597942B1 (en) * 2000-08-15 2003-07-22 Cardiac Pacemakers, Inc. Electrocardiograph leads-off indicator
US6716165B1 (en) * 2001-03-02 2004-04-06 Ge Medical Systems Information Technologies, Inc. Patient telemetry device and leadset designs for providing antenna diversity
US6567698B2 (en) * 2001-07-17 2003-05-20 Koninklijke Philips Electronics N.V. System and method for applying sequential low energy defibrillation pulses
GB0129390D0 (en) * 2001-12-07 2002-01-30 Clark Terrence D Electrodynamic sensors and applications thereof
US8923956B2 (en) * 2001-12-07 2014-12-30 The University Of Sussex Electrodynamic sensors and applications thereof
KR100467056B1 (ko) * 2002-08-31 2005-01-24 (주)유인바이오테크 자동혈압측정장치 및 방법
WO2007047892A1 (en) * 2005-10-20 2007-04-26 Light Sciences Oncology, Inc. External wearable light therapy treatment systems
US8200317B2 (en) * 2006-06-30 2012-06-12 Intel Corporation Method and apparatus for amplifying multiple signals using a single multiplexed amplifier channel with software controlled AC response
TW200836473A (en) * 2006-09-26 2008-09-01 Farbod Aram Broadband low noise amplifier
US7560969B2 (en) * 2007-09-10 2009-07-14 Himax Technologies Limited Receiver of high speed digital interface
US8301219B2 (en) * 2008-07-16 2012-10-30 The General Hospital Corporation Patient monitoring systems and methods
TWI390840B (zh) * 2008-11-12 2013-03-21 Realtek Semiconductor Corp 具有自動調整輸出阻抗功能之線驅動器
US8310309B2 (en) * 2010-05-03 2012-11-13 Qualcomm, Incorporated Noise-canceling for differential amplifiers requiring no external matching

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008696A (en) * 1998-04-21 1999-12-28 National Semiconductor Corporation Low noise amplifier with actively terminated input
US6950694B2 (en) * 2000-04-28 2005-09-27 Cardiac Pacemakers, Inc. Automatic input impedance balancing for electrocardiogram (ECG) sensing applications
US20050062530A1 (en) * 2003-08-19 2005-03-24 Agilent Technologies, Inc. Variable decision threshold apparatus
US20080004636A1 (en) * 2005-07-01 2008-01-03 Abbott Laboratories Clip applier and methods of use

Also Published As

Publication number Publication date
US8442628B2 (en) 2013-05-14
US20120194268A1 (en) 2012-08-02
TW201129809A (en) 2011-09-01
US8519792B2 (en) 2013-08-27
US20110204971A1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
TWI408377B (zh) 差動式電壓感測系統及其方法
US8390374B2 (en) Apparatus and method for amplification with high front-end gain in the presence of large DC offsets
Guermandi et al. A driving right leg circuit (DgRL) for improved common mode rejection in bio-potential acquisition systems
TWI481196B (zh) 生物電信號感測儀器與其基線漂移移除裝置
US20110251817A1 (en) Method and apparatus to determine impedance variations in a skin/electrode interface
US20160095528A1 (en) Circuit arrangement for suppressing common-mode interference signals during the measurement of bioelectric signals
US20110208028A1 (en) Device for measuring impedance of biologic tissues
US10117591B2 (en) Impedance bootstrap circuit for an interface of a monitoring device
EP2843833A2 (en) Reconfigurable measuring apparatus and method for controlling apparatus
WO2008080008A2 (en) Analog conditioning of bioelectric signals
Su et al. Wireless ECG detection system with low-power analog front-end circuit and bio-processing ZigBee firmware
JP7039002B2 (ja) ウェアラブル生体センサ及びノイズキャンセル回路
KR20150017928A (ko) 공통모드에 의한 차폐 구동을 통해 생체 신호를 측정하는 방법, 장치 및 회로
TW200932194A (en) A feed-forward automatic-gain control amplifier (FFAGCA) for biomedical application
KR102455629B1 (ko) 생체 신호 처리 장치 및 생체 신호 처리 방법
Zhu et al. A smart ECG sensor with in-situ adaptive motion-artifact compensation for dry-contact wearable healthcare devices
CN116919416A (zh) 导联脱落检测的校正电路、检测电路及检测方法
KR101569499B1 (ko) 공통모드제거비가 개선된 뇌파 신호 검출용 증폭 장치
Udupa et al. ECG analog front-end in 180 nm CMOS technology
Nagasato et al. Capacitively coupled ECG sensor system with digitally assisted noise cancellation for wearable application
CN213883192U (zh) 心脏手术用心率监测设备
CN213883469U (zh) 微创心脏手术远程控制设备
WO2020019169A1 (zh) 眼电信号处理电路及基于眼电的人机交互系统
US20220369987A1 (en) Signal acquisition circuit and physiological detection apparatus
Zhang et al. An Integrated Signal Acquisition AFE for Latency Quantification of ENG Signals