JP7039002B2 - ウェアラブル生体センサ及びノイズキャンセル回路 - Google Patents

ウェアラブル生体センサ及びノイズキャンセル回路 Download PDF

Info

Publication number
JP7039002B2
JP7039002B2 JP2017236280A JP2017236280A JP7039002B2 JP 7039002 B2 JP7039002 B2 JP 7039002B2 JP 2017236280 A JP2017236280 A JP 2017236280A JP 2017236280 A JP2017236280 A JP 2017236280A JP 7039002 B2 JP7039002 B2 JP 7039002B2
Authority
JP
Japan
Prior art keywords
variable element
voltage
impedance variable
signal detection
detection electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017236280A
Other languages
English (en)
Other versions
JP2018094412A (ja
Inventor
建青 王
六海 野呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Publication of JP2018094412A publication Critical patent/JP2018094412A/ja
Application granted granted Critical
Publication of JP7039002B2 publication Critical patent/JP7039002B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

本発明は、信号検出電極を用いて、心電図や筋電位や脳波などの生体信号をセンシングするウェアラブル生体センサ及びノイズキャンセル回路に関する。
従来、心電計や筋電計や脳波計などの生体信号は、身体に貼り付けられる2枚以上の信号検出電極を用いて検出し、差動増幅回路を用いて増幅することで取得されてきた。この際に、ウェアラブル生体センサにおいて、外部電磁界の存在によりコモンモードノイズが人体と大地間に生じ、差動増幅回路を通じて、ディファレンシャルモードノイズとしてセンサ回路の出力とグラウンド間に重畳される。
この際に、事前に周波数がわかっているノイズに対して、ノッチフィルタ等を用いて除去するのは従来技術(例えば特許文献1)であり、ハムノイズを対象としてノッチフィルタを用いずに、両信号検出電極間の電圧を所定の割合で分圧することによりハムノイズを相殺させる技術もある(特許文献2参照)。
特開2005-124903 特開2016-77580
しかし、電波利用の進歩に伴い、商用電源だけでなく、放送、アマチュア無線、RFID、さらにワイヤレス給電の利用が増加し、様々な周波数のノイズに対してノッチフィルタ等のフィルタ技術だけで対応するのは困難になるだけでなく、予想していない周波数のコモンモードノイズが消去されない問題がある。
また、各種のノッチフィルタやローパスフィルタやバンドパスフィルタなどを用いれば、生体信号の一部の周波数成分も除去されてしまう可能性がある。かかる問題の解決が望まれる。
(1)本発明の一の態様は、第1信号検出電極で検出された信号と第2信号検出電極で検出された信号とを差動増幅するウェアラブル生体センサであって、前記第1信号検出電極におけるインピーダンスと前記第2信号検出電極におけるインピーダンスとのアンバランスを補償するよう制御されるインピーダンス可変素子を備えるウェアラブル生体センサである。電極におけるインピーダンスのアンバランスを補償することで、アンバランスによりウェアラブル生体センサに誘起されるノイズを低減することができる。
(2)本発明の他の態様は、第1信号検出電極と第2信号検出電極とで検出された信号を差動増幅回路によって差動増幅するウェアラブル生体センサであって、前記第1信号検出電極におけるインピーダンスと前記第2信号検出電極におけるインピーダンスとのアンバランスを検出するノイズキャンセル回路と、前記アンバランスのために前記差動増幅回路から出力されるノイズを低減させるように前記ノイズキャンセル回路によって制御されるインピーダンス可変素子と、を備えるウェアラブル生体センサである。ノイズキャンセル回路は、検出したアンバランスに応じてインピーダンス可変素子を制御することで、差動増幅器から出力されるノイズを低減させることができる。
(3)本発明の他の態様は、第1信号検出電極に接続される第1インピーダンス可変素子と、第2信号検出電極に接続される第2インピーダンス可変素子と、前記第1インピーダンス可変素子を介して前記第1信号検出電極に接続されるとともに、前記第2インピーダンス可変素子を介して前記第2信号検出電極に接続され、前記第1信号検出電極で検出された信号と前記第2信号検出電極で検出された信号とを差動増幅する差動増幅回路と、前記第1インピーダンス可変素子と前記差動増幅回路との間における電圧、及び、前記第2インピーダンス可変素子と前記差動増幅回路との間における電圧を検出し、両電圧がほぼ同じになるように前記第1インピーダンス可変素子又は前記第2インピーダンス可変素子を制御するノイズキャンセル回路と、を備えるウェアラブル生体センサである。この場合、差動増幅回路に入力される両電圧がほぼ同じになり、差動増幅回路において、コモンモードノイズから変換されるディファレンシャルモードノイズを低減することができる。
(4)本発明の他の態様は、第1信号検出電極及び第2信号検出電極が外部接続され、前記第1信号検出電極で検出された信号と前記第2信号検出電極で検出された信号とを差動増幅するウェアラブル生体センサであって、第1インピーダンス可変素子と、第2インピーダンス可変素子と、前記第1インピーダンス可変素子を介して前記第1信号検出電極に接続されるとともに、前記第2インピーダンス可変素子を介して前記第2信号検出電極に接続され、前記第1信号検出電極で検出された信号と前記第2信号検出電極で検出された信号とを差動増幅する差動増幅回路と、前記第1インピーダンス可変素子と前記差動増幅回路との間における電圧、及び、前記第2インピーダンス可変素子と前記差動増幅回路との間における電圧を検出し、両電圧がほぼ同じになるように前記第1インピーダンス可変素子又は前記第2インピーダンス可変素子を制御するノイズキャンセル回路と、を内蔵するウェアラブル生体センサである。この場合、ウェアラブル生体センサに内蔵されたインピーダンス可変素子により、電極におけるインピーダンスのアンバランスを補償することができる。
(5)本発明の他の態様は、一対の信号検出電極と差動増幅回路を有するウェアラブル生体センサにおいて、前記一対の信号検出電極の各々に対してインピーダンス可変素子と、前記インピーダンス可変素子からの電圧を検出する非反転増幅回路と、前記非反転増幅回路で前記インピーダンス可変素子から検出された電圧の一方を基準とさせる電圧、他方を制御させる電圧と選択させるインピーダンス可変素子選択回路と、前記制御される電圧を、前記基準とさせる電圧レベルの電圧とさせる信号を生成し、前記制御させる電圧と選択したインピーダンス可変素子へフィードバックするインピーダンス可変素子制御回路と、を有する電圧補正回路を備え、前記インピーダンス可変素子から、前記制御される電圧及び前記基準とさせる電圧レベルの電圧を出力させ、前記差動増幅回路へ入力させることを特徴とするウェアラブル生体センサである。この態様によれば、各種のフィルタを用いずに、外部電磁界に由来するコモンモードノイズが差動増幅回路を通じてディファレンシャルノイズへ変換されることを阻止し、コモンモードノイズの影響を生体信号から除去する。よって、生体信号の周波数成分の劣化にも持たさず,ウェアラブル生体センサにおける商用電源や放送やRFIDやワイヤレス給電などの様々な周波数の外部電磁界によるコモンモードノイズを除去することができる。また、信号検出電極の貼付け具合の違いから生じる一対の信号検出電極と人体との間のインピーダンスのアンバランスを解消することもできる。
(6)ウェアラブル生体センサは、脳波を測定するセンサ、眼電位を測定するセンサ、心電を測定するセンサ、及び筋電位を測定するセンサからなる群から選択される一のセンサであってもよい。
(7)本発明の他の態様は、第1信号検出電極で検出された信号と第2信号検出電極で検出された信号とを差動増幅する差動増幅回路からコモンモードノイズの影響により出力されるノイズを低減するノイズキャンセル回路であって、前記第1信号検出電極におけるインピーダンスと前記第2信号検出電極におけるインピーダンスとのアンバランスを検出し、前記アンバランスを補償するインピーダンス可変素子を制御するよう構成されたノイズキャンセル回路である。
実施形態のウェアラブル生体センサを人体に取り付けた様子を示す。 実施形態のウェアラブル生体センサの構成を示す。 実施形態のウェアラブル生体センサの構成を示す。 ウェアラブル生体センサのコモンモードノイズに対する等価回路のブロック図を示す。 インピーダンス可変素子選択回路34の構成を示す。 インピーダンス可変素子制御回路36の構成を示す。 検証実験のブロック図を示す。 信号検出電極と人体との接触抵抗15、16の間のアンバランスが10~50%の際の検証結果を示す。 信号検出電極と人体との接触抵抗15、16の間のアンバランスを30%のときの代表的周波数における検証結果を示す。 差動増幅回路の回路図を示す。
以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。
図1に、実施形態のウェアラブル生体センサを人体に取り付けた生体信号検出システム1を示す。一対の信号検出電極10は、人体Hの診断したい部位の表面に接触で貼付けられる。また非接触で容量結合ができるように配置される。即ち、前者の場合は第1信号検出電極12と第2信号検出電極14は人体Hとの間にインピーダンスとして接触抵抗、後者の場合は第1信号検出電極12と第2信号検出電極14は人体Hとの間にインピーダンスとして結合容量が発生する。したがって、電極12,14におけるインピーダンスには、接触抵抗又は結合容量によるインピーダンスが含まれることになる。
人体の部位は、頭部に取り付けられて脳波、目の周囲の皮膚に取り付けられて眼電位、心臓部に取り付けられて心電図、腕などに取り付けられて筋電位や血圧などの生体信号が測定され診断に用いられる。すなわち、ウェアラブル生体センサは、頭部に取り付けられて脳波を測定するセンサであってもよいし、眼の周囲の皮膚に取り付けられて眼電位を測定するセンサであってもよいし、心臓部などに取り付けられて心電を測定するセンサであってもよいし、及び腕などに取り付けられて筋電位を測定するセンサであってもよい。一対の信号検出電極10は、第1信号検出電極12と第2信号検出電極14からなる。第1信号検出電極12は、第1ケーブル101介して、生体信号取得部30に接続され、第2信号検出電極14は、第2ケーブル102を介して、生体信号取得部30に接続される。
人体Hに取り付けられた一対の信号検出電極10と生体信号取得部(生体信号取得器)30で取得した生体信号は、その後通信機能を利用してパソコンやスマートフォン40に転送されて表示・解析され、日常のヘルスケアに用いられる。また、必要に応じて、インターネットを経由することで病院や医療センター50に送ることで不祥事の際の即時対応を可能にしたりする。また、通信機能を使わないで生体信号を人体Hに付けた記憶装置に取得してもよい。なお、前述の生体信号取得部(生体信号取得器)30は、ウェアラブル生体センサとして機能する。
(実施形態)
図2Aに、実施形態のウェアラブル生体センサ3の構成を示す。ウェアラブル生体センサ3は、信号検出電極10によって検出された信号を差動増幅する。差動増幅は、差動増幅回路38によって行われる。図2Aに示すウェアラブル生体センサ3は、インピーダンス可変素子20を備える。インピーダンス可変素子20は、第1信号検出電極12におけるインピーダンスと第2信号検出電極14におけるインピーダンスとのアンバランスを補償する。インピーダンス可変素子20は、両インピーダンスのアンバランスを補償するように制御される。
インピーダンス可変素子20の制御は、センサ3が備えるノイズキャンセル回路53によって行われる。ノイズキャンセル回路53は、両電極12,14におけるインピーダンスのアンバランスを検出し、そのアンバランスを補償するためのインピーダンス可変素子20を制御する。換言すると、ノイズキャンセル回路53は、両電極12,14におけるインピーダンスのアンバランスのために差動増幅回路38から出力されるノイズ(ディファレンシャルモードノイズ;干渉電圧)を低減させるように、インピーダンス可変素子20を制御する。以下では、ノイズキャンセル回路53及びインピーダンス可変素子20を含む回路を電圧補正回路5という。ウェアラブル生体センサ3は、一対の信号検出電極10で検出された電圧信号を電圧補正回路5にてほぼ同じ大きさとさせて、差動増幅回路38にてノイズを除去させると共に生体信号を増幅して出力する。
電圧補正回路5は、第1信号検出電極12及び第2信号検出電極14の各々に対してインピーダンス可変素子20(第1インピーダンス可変素子23及び第2インピーダンス可変素子24)を設け検出された信号を電圧化して制御する。第1インピーダンス可変素子23は、第1信号検出電極12に接続され、第2インピーダンス可変素子24は、第2信号検出電極に接続される。差動増幅回路38の第1入力には、第1インピーダンス可変素子23を介して、第1信号検出電極12が接続される。差動増幅回路38の第2入力には、第2インピーダンス可変素子23を介して、第2信号検出電極14が接続される。
ノイズキャンセル回路53は、第1インピーダンス可変素子23と差動増幅回路38(の第1入力)との間における第1電圧Vc1と、第2インピーダンス可変素子24と差動増幅回路38(の第2入力)との間における第2電圧Vc2と、を検出する。ノイズキャンセル回路53は、検出された第1電圧Vc1と第2電圧Vc2とに基づいて、インピーダンス可変素子20を制御する。ノイズキャンセル回路53は、これらの電圧Vc1,Vc2が、ほぼ同じになるように、インピーダンス可変素子20を制御する。
本実施形態では、ノイズキャンセル回路53は、第1インピーダンス可変素子23と差動増幅回路38(の第1入力)との間における第1電圧Vc1と、第2インピーダンス可変素子24と差動増幅回路38(の第2入力)との間における第2電圧Vc2と、を検出するため、インピーダンス可変素子をフィードバック制御する制御系を構成することができる。例えば、電極12,14におけるインピーダンスのアンバランスを、電極12,14とインピーダンス可変素子23,25との間で検出することも考えられるが、この場合、フィードバック制御系を構成できない。フィードバック制御系を構成することで、制御が容易となる。
ノイズキャンセル回路53は、非反転増幅回路32にて、第1インピーダンス可変素子23及び第2インピーダンス可変素子24からの電圧Vc1,Vc2を検出する。これらの電圧Vc1,Vc2は、第1信号検出電極12と第2信号検出電極14の貼付け具合や、外部からの電波ノイズにより異なった電圧値になっている。ここで、人体Hと電極が接触している場合には接触抵抗、非接触している場合には結合容量が発生する。このため、前者の場合にはインピーダンス可変素子20として可変抵抗を用い、後者の場合にはインピーダンス可変素子20として可変コンデンサを用いる。
両電極12,14におけるインピーダンスは、前述の接触抵抗又は結合容量の影響を受けて、アンバランスになる。両電極12,14におけるインピーダンスがアンバランスであると、検出される電圧Vc1,Vc2も異なった値(アンバランス)になる。ここで、検出される電圧Vc1,Vc2は、主に、コモンモードノイズの電圧である。一般に、心電の信号レベルは、コモンノードノイズのレベルに比べて十分に小さいため、検出される電圧Vc1,Vc2は、概ねコモンノードノイズ電圧であり、心電電圧の影響は少ない。そして、両電極12,14におけるインピーダンスがアンバランスであると、検出される電圧Vc1,Vc2も異なった値になる。これを利用し、本実施形態では、電圧Vc1,Vc2のアンバランスを検出することにより、両電極12,14におけるインピーダンスのアンバランスを検出する。
ノイズキャンセル回路53は、例えば、検出された電圧Vc1,Vc2に基づいて、第1インピーダンス可変素子23又は及び第2インピーダンス可変素子24のうち、制御対象となるインピーダンス可変素子を選択し、選択されたインピーダンス可変素子のインピーダンスをフィードバック制御して、電圧Vc1,Vc2をほぼ同じにする。
ノイズキャンセル回路53が備えるインピーダンス可変素子選択回路34にて、第1インピーダンス可変素子23又は及び第2インピーダンス可変素子24からの電圧の内、一方を基準とさせ他方を制御させると選定される。例えば、低い電圧を基準とさせ高い電圧を制御させると選定される。
更にインピーダンス可変素子制御回路36にて、制御されると選定させた電圧を、基準とさせた電圧レベルとする電圧信号を生成させ、制御されるインピーダンス可変素子20(第1インピーダンス可変素子23又は第2インピーダンス可変素子24)へフィードバックされる。例えば、第1インピーダンス可変素子23からの電圧Vc1を基準とさせる電圧、第2インピーダンス可変素子24からの電圧Vc2を制御させる電圧とした場合、インピーダンス可変素子制御回路36より、第2インピーダンス可変素子24へ出力電圧を基準とさせる電圧レベル(後述する閾値を設定)にさせる電圧信号をフィードバックする。
よって、電圧補正回路5により、インピーダンス可変素子20(第1インピーダンス可変素子23及び第2インピーダンス可変素子24)の両出力端子からのノイズを含む電圧Vc1,Vc2がほぼ同じ大きさと制御されて(後述する閾値を設定)差動増幅回路38へ送られるので、差動増幅回路38にてノイズが除去され、出力側に生体信号だけ出力される。なお、グラウンド電極の表示を省略している。
また、従来ノイズ除去に用いられるフィルタは、通常一対の信号検出電極10と差動増幅回路38の間に設定させている。
図2Bは、図2Aに示すセンサ3と同様のセンサ3の説明図である。センサ3は、筐体100を備える。筐体100には、内部回路300が内蔵されている。内部回路300は、インピーダンス可変素子20、差動増幅回路38、ノイズキャンセル回路53を含む。筐体100は、ケーブル接続用の端子111,112を備える。端子111,112には、電極12,14が接続されたケーブル101,102が外部接続される。ケーブル101,102に接続される電極12,14は、ケーブル101,102に一体的に設けられていてもよいし、着脱自在であってもよい。電極12,14は使い捨てタイプであってもよい。なお、図では、2本のケーブル101,102が描かれているが、複数のケーブルが1本にまとめられていてもよい。
図2Bに示すように、インピーダンス可変素子20は、外部接続される電極12,14側、すなわち筐体300の外側、に設けられているのではなく、センサ3に内蔵されている。電極12,14側にインピーダンス可変素子20が設けられていると、電極12,14付近が、大型化し、電極12,14の取り扱い性が低下する。また、電極12,14が交換されたり、使い捨てのため破棄されたりする場合、インピーダンス可変素子20が無駄になる。かかる問題は、インピーダンス可変素子20が、センサ3に内蔵されていること、回避できる。
図3に、人体Hとの間に接触抵抗が発生することを想定したインピーダンス可変素子の一例として、CdS(Cadmium Sulfide)セルと制御用LED(Light Emitting Diode)からなる可変抵抗22を用いたウェアラブル生体センサのコモンモードノイズに対する等価回路のブロック図を示す。CdSセルは光の強度を用いて抵抗値を可変に制御することができる。外部電磁界から生じるコモンモードノイズ源(Vc)60は、生体信号を検出する一対の信号検出電極の人体表面との接触抵抗(Re1、Re2)15、16を通して、制御用LEDとCdSセルからなる可変抵抗22(第1可変抵抗25、第2可変抵抗26)と接続する。この際に、ディファレンシャルモードのグラウンド62と、コモンモードのグラウンドとなる大地64との間に、寄生容量(Cg)66が存在する。このときの差動増幅回路38のディファレンシャルモード出力電圧(Vo)とコモンモードノイズ(Vc)との関係式を式(1)に示す。
Figure 0007039002000001

ここで、図9に示すように、RsとRfは差動増幅回路38中の差動増幅回路用抵抗である。なお、図9において、381はオペアンプである。Re1=Re2、すなわち接触抵抗15と16はバランスが取れているならば、Vo=0であり、コモンモードからディファレンシャルモードへのモード変換が起きず、生体信号へのノイズの重畳が発生しない。
もし、一対の信号検出電極10の人体Hとの接触抵抗15、16がアンバランスであれば、電極10におけるインピーダンスがアンバランスとなる。ノイズキャンセル回路54は、接触抵抗15,16のアンバランス値を、インピーダンス可変素子選択回路34を用いて検出し、どちらの可変抵抗22(第1可変抵抗25又は第2可変抵抗26)を使用するかを決定する。そして、ノイズキャンセル回路54は、インピーダンス可変素子制御回路36を用いて、選択した可変抵抗22(第1可変抵抗25又は第2可変抵抗26)のLEDに印加する電圧を制御することでCdSセルの抵抗値を制御し、一対の信号電極10と人体との接触抵抗15、16間のアンバランスを解消する。これにより、コモンモードノイズのディファレンシャルモードノイズへのモード変換がなくなり、その結果ウェアラブル生体センサ3における外部電磁界に起因するノイズが除去される。
インピーダンス可変素子選択回路34は、例えば、図4に示すようにピークホールド回路41と比較器42で構成される。インピーダンス可変素子(CdSセル)の選択のため、CdSセル25,26の初期抵抗は最も低い値に設定される。したがって、制御前の初期状態において、両CdS25,26は同じ抵抗値(インピーダンス)を持つ。
ピークホールド回路41は、交流成分で現れるコモンモードノイズの電圧Vc1,Vc2の最大値を検出し比較可能にする。コモンモードノイズの電圧Vc1,Vc2それぞれの最大値を検出することで、コモンモードノイズ電圧レベルの違いを容易に比較することができる。比較器42はピークホールド回路41の結果を比較することで、例えば、電圧が大きい側のインピーダンス可変素子を制御の対象として選択し、インピーダンス可変素子制御回路36に入力する。インピーダンス可変素子を再び選択するまでの時間間隔は、使用環境等を考慮し、あらかじめ相応しい値を決める。
インピーダンス可変素子制御回路36は、制御の対象として選択されたインピーダン可変素子への制御量を決定する。制御量は、コモンモードノイズの電圧Vc1,Vc2の差の最大値に基づき、電圧Vc1,Vc2(コモンノードノイズレベル;コモンノードノイズ電圧)がほぼ同じになるように決定される。以下では、インピーダンス可変素子制御回路36は、CdSセルを用いた場合で動作原理を説明する。
インピーダンス可変素子制御回路36は、例えば、図5に示すように、差動増幅回路43、ピークホールド回路44、比較器45、マイクロコンピュータ46、およびローパスフィルタ(以下、LPFと記す)47から構成される。制御すべき可変抵抗22をインピーダンス可変素子選択回路34で決定した後、初めに差動増幅回路43を用いて非反転増幅回路32の出力の差(電圧Vc1,Vc2の差)を検出し、ピークホールド回路44を用いてその最大値を検出する。その後、検出された最大値を、比較器45を用いて予め設定した閾値と比較し、検出された最大値が、閾値よりも大きい場合にはマイクロコンピュータ46でカウントを1つあげ、そのカウントに応じたPWM(Pulse Width Modulation)信号を出力する。したがって、PWM信号のパルス幅は、電圧Vc1,Vc2の差の最大値に応じたものとなる。
その後、LPF47を通すことでPWM信号を直流成分に変換し、制御用LEDを有するCdSセル22に印加する電圧を制御する。CdSセル22に印加する電圧によって、CdSの抵抗が変化する。
これを一定の周期で行う。その周期長は対象にするコモンモードノイズ電圧の周波数などを考慮し、あらかじめ相応しい値を決定する。これにより、一対の信号電極10の人体との接触抵抗15、16のバランスが取れ、非反転増幅回路32の出力の差が小さくなり、ピークホールド回路44から出力された電圧値が比較器45の閾値を下回ると、マイクロコンピュータ46のカウントが変化しなくなり、可変抵抗22に印加する電圧が固定される。すなわち、インピーダンス可変素子制御回路36は、電圧Vc1,Vc2の差の最大値が閾値よりも小さくなるまで制御を行い、電圧Vc1,Vc2をほぼ同じにする。よって、このように、フィルタ回路を使用せずに、身体に取り付けられるウェアラブル生体センサ3に生ずる外部電磁界によるコモンモードノイズの影響を除去できる。
(実施例)
図6に、検証実験のブロック図を示す。検証実験回路は、信号発生器51、生体信号検出器のコモンモード等価回路52、コモンモードノイズキャンセル回路53、バッテリー駆動のディジタルオシロスコープから構成される。擬似コモンモードノイズ電圧(Vc)を発生させるために信号発生器51を使用し、ディジタルオシロスコープ54を用いてウェアラブル生体センサの生体信号取得部30からの出力電圧(Vo)を測定する。一対の信号検出電極の接触抵抗値は、10kΩを基準値とした際のアンバランスの割合で決定した。また、信号発生器51から出力するコモンモードノイズ電圧を1V、コモンモードノイズの周波数を60Hzから100kHz、差動増幅回路38の利得を60dB、回路グラウンド62と大地64の間の寄生容量66は200pFとした。
図7は、上述実験条件において、本発明を使用した際と使用しない際のウェアラブル生体センサの1kHz(左図)と80kHz(右図)における出力電圧(Vo)の測定結果である。本発明回路により、コモンモードノイズからディファレンシャルノイズへのモード変換が抑えられ、生体信号に重畳される各周波数のノイズが大幅に除去されたことが確認できる。丸印はノイズ除去回路3がない場合、三角印はノイズ除去回路3が有る場合を示す。なお三角印の値が0Vとならないのは閾値を設定しているからである。
図8に、信号検出電極と人体との接触抵抗15、16のアンバランスが30%の際のウェアラブル生体センサの出力(Vo)を示す。図から、外部電磁界によるウェアラブル生体センサへのノイズが大幅に低減され、例えば、自動車へのワイヤレス給電用の80kHzの周波数において、30%の接触抵抗のアンバランスによるウェアラブル生体センサに誘起されるノイズは約1/100に低減され、本発明の高い有効性を示している。丸印はノイズ除去回路53がない場合、三角印はノイズ除去回路53が有る場合を示す。なお三角印の値が0Vとならないのは閾値を設定しているからである。
本発明の一実施形態は、人体に貼付けする一対の信号検出電極10と、電圧を用いて制御するインピーダンス可変素子20と、生体信号取得部30の差動増幅回路38と、非反転増幅回路32と、インピーダンス可変素子選択回路34と、インピーダンス可変素子制御回路36を有するシステムである。
この一実施形態によれば、従来ノッチフィルタ等のフィルタを使用して、低減させた外部電磁界によるコモンモードノイズを、フィルタを使用せずに除去することができる。また、従来ではフィルタが除去する周波数と同じ成分の生体信号も低減させてしまうが、本手法では、生体信号を低減させず、ノイズのみを除去することができる。
高齢化社会において、各種のウェアラブル生体センサが身体に取り付けられ、健康状態をモニタリングする需要が大幅に増え、2014年を「ウェアラブル元年」と呼ばれるほど高い市場性有する分野である。本発明は、各種の生活環境電磁界によるウェアラブル生体センサへの混入ノイズを除去する技術であり、ウェアラブル生体センサを実現・普及する要素技術の一つとして,将来の市場性が十分高いと思われる。
1 生体信号検出システム
3 ウェアラブル生体センサ
5 電圧補正回路
10 一対の信号検出電極
12 第1信号検出電極
14 第2信号検出電極
15 接触抵抗(第1信号検出電極と人体間)
16 接触抵抗(第2信号検出電極と人体間)
20 インピーダンス可変素子(抵抗またコンデンサ)
22 可変抵抗(制御用LEDを有するCdSセルから構成)
23 第1インピーダンス可変素子
24 第2インピーダンス可変素子
25 第1可変抵抗(制御用LEDを有するCdSセルから構成)
26 第2可変抵抗(制御用LEDを有するCdSセルから構成)
30 生体信号取得部
32 非反転増幅回路
34 インピーダンス可変素子選択回路
36 インピーダンス可変素子制御回路
38 差動増幅回路
40 パソコンやスマートフォン
41 インピーダンス可変素子選択回路で用いるピークホールド回路
42 インピーダンス可変素子選択回路で用いる比較器
43 インピーダンス可変素子制御回路で用いる差動増幅回路
44 インピーダンス可変素子制御回路で用いるピークホールド回路
45 インピーダンス可変素子制御回路で用いる比較器
46 マイクロコンピュータ
47 ローパスフィルタ(LPF)
50 病院や医療センター
51 信号発生器
52 ウェアラブル生体センサのコモンモード等価回路
53 コモンモードノイズ除去回路(ノイズキャンセル回路)
54 バッテリー駆動ディジタルオシロスコープ
60 コモンモードノイズを模擬した信号源
62 回路グラウンド
64 大地
66 回路グラウンドと大地の間の寄生容量
100 筐体
101 第1ケーブル
102 第2ケーブル
111 端子
112 端子
300 内部回路
381 増幅器
H 人体

Claims (5)

  1. 第1信号検出電極に接続される第1インピーダンス可変素子と、
    第2信号検出電極に接続される第2インピーダンス可変素子と、
    前記第1インピーダンス可変素子を介して前記第1信号検出電極に接続される第1入力を有するとともに、前記第2インピーダンス可変素子を介して前記第2信号検出電極に接続される第2入力を有し、前記第1信号検出電極で検出された信号と前記第2信号検出電極で検出された信号とを差動増幅する差動増幅回路と、
    前記第1インピーダンス可変素子と前記差動増幅回路の前記第1入力との間における第1電圧、及び、前記第2インピーダンス可変素子と前記差動増幅回路の前記第2入力との間における第2電圧をそれぞれ検出し、検出された前記第1電圧及び前記第2電圧に基づいて、両電圧がほぼ同じになるように前記第1インピーダンス可変素子又は前記第2インピーダンス可変素子を制御するノイズキャンセル回路と、
    を備え
    前記ノイズキャンセル回路は、検出された前記第1電圧及び前記第2電圧に基づいて、前記第1インピーダンス可変素子及び前記第2インピーダンス可変素子のうちノイズキャンセルのために制御されるインピーダンス可変素子を選択する、
    ウェアラブル生体センサ。
  2. 第1信号検出電極及び第2信号検出電極が外部接続され、前記第1信号検出電極で検出された信号と前記第2信号検出電極で検出された信号とを差動増幅するウェアラブル生体センサであって、
    第1インピーダンス可変素子と、
    第2インピーダンス可変素子と、
    前記第1インピーダンス可変素子を介して前記第1信号検出電極に接続される第1入力を有するとともに、前記第2インピーダンス可変素子を介して前記第2信号検出電極に接続される第2入力を有し、前記第1信号検出電極で検出された信号と前記第2信号検出電極で検出された信号とを差動増幅する差動増幅回路と、
    前記第1インピーダンス可変素子と前記差動増幅回路の前記第1入力との間における第1電圧、及び、前記第2インピーダンス可変素子と前記差動増幅回路の前記第2入力との間における第2電圧をそれぞれ検出し、検出された前記第1電圧及び前記第2電圧に基づいて、両電圧がほぼ同じになるように前記第1インピーダンス可変素子又は前記第2インピーダンス可変素子を制御するノイズキャンセル回路と、
    を内蔵し、
    前記ノイズキャンセル回路は、検出された前記第1電圧及び前記第2電圧に基づいて、前記第1インピーダンス可変素子及び前記第2インピーダンス可変素子のうちノイズキャンセルのために制御されるインピーダンス可変素子を選択する、
    ウェアラブル生体センサ。
  3. 一対の信号検出電極と差動増幅回路を有するウェアラブル生体センサにおいて、
    前記一対の信号検出電極の各々に対してインピーダンス可変素子と、
    前記インピーダンス可変素子からの電圧を検出する非反転増幅回路と、
    前記非反転増幅回路で前記インピーダンス可変素子から検出された電圧の一方を基準とさせる電圧、他方を制御させる電圧と選択させるインピーダンス可変素子選択回路と、
    前記制御される電圧を、前記基準とさせる電圧レベルの電圧とさせる信号を生成し、前記制御させる電圧と選択したインピーダンス可変素子へフィードバックするインピーダンス可変素子制御回路と、を有する電圧補正回路を備え、
    前記インピーダンス可変素子から、前記制御される電圧及び前記基準とさせる電圧レベルの電圧を出力させ、前記差動増幅回路へ入力させることを特徴とするウェアラブル生体センサ。
  4. 脳波を測定するセンサ、眼電位を測定するセンサ、心電を測定するセンサ、及び筋電位を測定するセンサからなる群から選択される一のセンサである請求項1~のいずれか1項に記載のウェアラブル生体センサ。
  5. 第1信号検出電極で検出された信号と第2信号検出電極で検出された信号とを差動増幅する差動増幅回路からコモンモードノイズの影響により出力されるノイズを低減するノイズキャンセル回路であって、前記差動増幅回路は、第1インピーダンス可変素子を介して第1信号検出電極に接続される第1入力を有するとともに、第2インピーダンス可変素子を介して第2信号検出電極に接続される第2入力を有し、
    前記第1インピーダンス可変素子と前記差動増幅回路の前記第1入力との間における第1電圧、及び、前記第2インピーダンス可変素子と前記差動増幅回路の前記第2入力との間における第2電圧をそれぞれ検出し、検出された前記第1電圧及び前記第2電圧に基づいて、両電圧がほぼ同じになるように前記第1インピーダンス可変素子又は前記第2インピーダンス可変素子を制御するよう構成されているとともに、
    検出された前記第1電圧及び前記第2電圧に基づいて、前記第1インピーダンス可変素子及び前記第2インピーダンス可変素子のうちノイズキャンセルのために制御されるインピーダンス可変素子を選択するよう構成されたノイズキャンセル回路。
JP2017236280A 2016-12-14 2017-12-08 ウェアラブル生体センサ及びノイズキャンセル回路 Active JP7039002B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016241873 2016-12-14
JP2016241873 2016-12-14

Publications (2)

Publication Number Publication Date
JP2018094412A JP2018094412A (ja) 2018-06-21
JP7039002B2 true JP7039002B2 (ja) 2022-03-22

Family

ID=62631535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017236280A Active JP7039002B2 (ja) 2016-12-14 2017-12-08 ウェアラブル生体センサ及びノイズキャンセル回路

Country Status (1)

Country Link
JP (1) JP7039002B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102058372B1 (ko) * 2018-07-09 2019-12-24 엘지전자 주식회사 체성분 측정장치
KR102184930B1 (ko) * 2018-11-09 2020-12-01 한국과학기술원 2 전극 기반 심전도 측정 장치
NO20200093A1 (ja) * 2020-01-24 2021-07-26
DK180663B1 (en) * 2020-04-27 2021-11-11 Paragit Solutions Aps Apparatus and method for detection of biopotential signals
CN113180676B (zh) * 2021-05-28 2024-08-16 西安交通大学 一种基于电容耦合电极的便携式多导联心电采集系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040077961A1 (en) 1999-02-03 2004-04-22 Cardiac Pacemakers, Inc. Voltage sensing system with input impedance balancing for electrocardiogram (ECG) sensing applications
JP2008086392A (ja) 2006-09-29 2008-04-17 Casio Comput Co Ltd 生体情報検出装置
US20110204971A1 (en) 2010-02-25 2011-08-25 Industrial Technology Research Institute Differential voltage sensing system and method for using the same
JP2011161021A (ja) 2010-02-10 2011-08-25 Akio Kimura 耐振動脳波計

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327445A (ja) * 1996-06-13 1997-12-22 Suzuki Motor Corp 生体計測用センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040077961A1 (en) 1999-02-03 2004-04-22 Cardiac Pacemakers, Inc. Voltage sensing system with input impedance balancing for electrocardiogram (ECG) sensing applications
JP2008086392A (ja) 2006-09-29 2008-04-17 Casio Comput Co Ltd 生体情報検出装置
JP2011161021A (ja) 2010-02-10 2011-08-25 Akio Kimura 耐振動脳波計
US20110204971A1 (en) 2010-02-25 2011-08-25 Industrial Technology Research Institute Differential voltage sensing system and method for using the same

Also Published As

Publication number Publication date
JP2018094412A (ja) 2018-06-21

Similar Documents

Publication Publication Date Title
JP7039002B2 (ja) ウェアラブル生体センサ及びノイズキャンセル回路
Guermandi et al. A driving right leg circuit (DgRL) for improved common mode rejection in bio-potential acquisition systems
US11116453B2 (en) Apparatus and method for measuring biosignals
JP6659536B2 (ja) 電位測定装置及び電位検出方法
JP6219942B2 (ja) 心電図におけるリアルタイムqrs期間測定
Buxi et al. Correlation between electrode-tissue impedance and motion artifact in biopotential recordings
KR101800706B1 (ko) 잡음이 제거된 생체 신호를 측정하는 장치, 단위 측정기 및 방법
TWI481196B (zh) 生物電信號感測儀器與其基線漂移移除裝置
US8366628B2 (en) Signal sensing in an implanted apparatus with an internal reference
Romero et al. Motion artifact reduction in ambulatory ECG monitoring: an integrated system approach
US9968301B2 (en) Body-driven pseudorandom signal injection for biomedical acquisition channel calibration
KR20150017928A (ko) 공통모드에 의한 차폐 구동을 통해 생체 신호를 측정하는 방법, 장치 및 회로
Svärd et al. Design and evaluation of a capacitively coupled sensor readout circuit, toward contact-less ECG and EEG
Lacirignola et al. Hardware design of a wearable ECG-sensor: Strategies implementation for improving CMRR and reducing noise
WO2018018570A1 (zh) 用于心电测量的装置和方法
CN110267592B (zh) 具有电容除颤保护的ecg传感器
Das et al. Design and development of an Internet‐of‐Things enabled wearable ExG measuring system with a novel signal processing algorithm for electrocardiogram
Mahajan et al. Performance analysis of a DRL-less AFE for battery-powered wearable EEG
Fauzani et al. Two electrodes system: Performance on ECG FECG and EMG detection
Ramli et al. Design and fabrication of a low cost heart monitor using reflectance photoplethysmogram
Jamaluddin et al. Flexible bio-signals channels acquisition system for ECG and EMG application
Lichtman et al. A smart electrocardiogram monitoring system on android
JP6077776B2 (ja) 皮膚電気活動測定装置
KR20140144009A (ko) 생체 신호 측정 장치
Ghapanchizadeh et al. Developing multichannel surface EMG acquisition system by using instrument opamp INA2141

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171219

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220302

R150 Certificate of patent or registration of utility model

Ref document number: 7039002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150