TWI407325B - 製程品質預測系統及其方法 - Google Patents

製程品質預測系統及其方法 Download PDF

Info

Publication number
TWI407325B
TWI407325B TW099115738A TW99115738A TWI407325B TW I407325 B TWI407325 B TW I407325B TW 099115738 A TW099115738 A TW 099115738A TW 99115738 A TW99115738 A TW 99115738A TW I407325 B TWI407325 B TW I407325B
Authority
TW
Taiwan
Prior art keywords
batch
quality prediction
product
measurement
virtual measurement
Prior art date
Application number
TW099115738A
Other languages
English (en)
Other versions
TW201142640A (en
Inventor
Shi Shang Jang
Tain-Hong Pan
Shan Hill Wong
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW099115738A priority Critical patent/TWI407325B/zh
Priority to US12/853,497 priority patent/US8452441B2/en
Publication of TW201142640A publication Critical patent/TW201142640A/zh
Application granted granted Critical
Publication of TWI407325B publication Critical patent/TWI407325B/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/32Circuit design at the digital level
    • G06F30/33Design verification, e.g. functional simulation or model checking
    • G06F30/3308Design verification, e.g. functional simulation or model checking using simulation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32194Quality prediction
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2223/00Indexing scheme associated with group G05B23/00
    • G05B2223/02Indirect monitoring, e.g. monitoring production to detect faults of a system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/32Circuit design at the digital level
    • G06F30/33Design verification, e.g. functional simulation or model checking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Factory Administration (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

製程品質預測系統及其方法
本發明是有關於一種製程品質預測系統及其方法,特別是有關於一種以先前資料預測目前製程品質的系統及其方法。
目前,基於製程成本的考量,大部份於半導體製程中,對於生產機台之產品品質檢測方法大多是採用抽檢方式,即:在每個製程批量(一個批量含有25片晶圓)中抽出2~3片晶圓進行實際量測,來監測製程品質是否穩定,並決定了產出的品質。因此,若某批量產品在製造的過程中出了問題,必須等待檢測時才會發現,而此時的製程可能繼續產生好幾批的不良品。因此,從製程的操作變數發生變化到產品的品質出現問題,有一定的時間落後,如何在最短的時間內預測出產品的品質問題,是目前半導體製造商面臨的主要問題。
虛擬量測(Virtual Metrology)技術是解決這一問題的主要手段之一,其基本概念是利用大量的可以線上測量的預測變數,如錯誤偵測(Fault Detect)及分類資料(Classification data)去估計生產產品的品質,以便於在生產機台發生異常時能夠即時發現,並同時判斷偵測不良品,節約後續製程的能源與資源,提高 生產的良率。然而,錯誤偵測與分類資料的數據量龐大,並且某些變數之間存在強烈的相關性,傳統的處理方法是採用統計回歸的方法,而其中應用最多的,就是主成分回歸分析方法(principal component regression,PCR)與部分最小平方方法(partial least squares,PLS)。主成分回歸分析方法及部分最小平方方法能夠將高維度與存在共線性的資料投影到一個由正交的主要因素或潛在變數定義的空間上,而使新得到的變數之間彼此相互獨立。另外,製程總是受到一些未知擾動的影響,一般穩定狀態的主成分回歸分析方法及部分最小平方方法不適用與半導體製程。
但對於主成分回歸分析方法及部分最小平方方法來說,通常用資料壓縮來取代原始變數,現場工程師無法立即理解到各個變數對產品品質的影響,也無法找到發生變異的關鍵因素。
現有已申請之專利方面,應用於半導體業的台灣專利前案093115993之“生產制程之品質預測系統與方法”利用機台的特性來選擇相應的推估模式,預估將來要生產的產品品質,然而此方法限定機台無法做任何的維護和調整;另外,更不能反映出在此批量製程中,關鍵變數在哪裡。
應用於半導體業的臺灣專利前案095120601之“應用於半導體製造之品質控制的虛擬量測預估方法與系統”設定晶圓的取樣頻率,並且根據實測值與預估值之間的差異值,修正管制圖,以決定下一步動作。此方法能反映機台的變異,但是不能反映機台變異的根源,另外,若情況有擾動時,誤判率較高。
應用於半導體業的臺灣專利前案094121585之“即時預估量測系統、即時預估量測系統內整合製程資訊以及用以預測一虛擬量測工具中至少一個輸出的方法”提出一種即時預估量測系統架構。此方法要求與製程相關的各個資訊系統至少有一個輸出變量,無法容許根據不同的設備特性來使用適合的相關變數。
應用於半導體製程的美國專利前案6616759之“Method of monitoring and/or controlling a semiconductor manufacturing apparatus and a system”提出一種基於部分最小平方方法算出製程新的參數設定值,但此方法不能讓工程師了解各別變數對產品品質的影響。
應用於半導體晶圓溫度預測的美國專利前案6666577之“Method for predicting temperature,test wafer for use in temperature prediction and method for evaluating lamp heating system”提出一種預測晶圓製程溫度的方法,此方法只能適用於特定種類的機台,缺乏通用性。
綜上所述,前述多個台灣及美國專利前案,僅述及如何預測機台的方法,其精準度不高,易受其他因素影響,且無法找出影響製程中成品之製造結果的重要關鍵參數。因此,目前於半導體製程中,一個能預測且分析出製程關鍵因素的方法是不可或缺的。
有鑑於上述習知技藝之問題,本發明之目的就是在提供一種製程品質預測系統及其方法,結合錯誤偵測與分類系統,以變數選擇取代變數壓縮,找到影響製程變化的關鍵變數,以移動時間窗口 (moving window)克服系統的漂移與偏移等擾動,提供一虛擬量測工具來預測該制程的效能與產品的良率。
根據本發明之目的,提出一種製程品質預測系統,其包括一製程裝置、一量測裝置、一錯誤偵測與分類單元、一資料收集單元及一虛擬量測自動化單元,製程裝置係對至少一批次產品進行一製程動作,量測裝置係對至少一批次產品進行抽樣檢測,並得到一批次產品實際測量值,錯誤偵測與分類單元,係以電性連接方式連接製程裝置及量測裝置,係對製程動作進行記錄,並得到一製程參數,資料收集單元係連接錯誤偵測與分類單元,經由錯誤偵測與分類單元得到製程參數,並由量測裝置得到批次產品實際測量值,虛擬量測自動化單元,係跟具製程參數及批次產品實際量測值建立關於虛擬量測的一預估模組,並以預估模組及時預測出目前製程動作中的一批次產品品質預測值。
其中,批次產品可為晶圓或基板。
其中,虛擬量測自動化單元於製程參數及批次產品實際量測值中過濾去除與製程動作無關之資料,並提取出一製程特徵值集合。
其中,虛擬量測自動化單元係利用製程特徵值集合更新一移動時間窗口模組,並得到影響製程動作之一關鍵變數集合。
其中,虛擬量測自動化單元係利用一變異數分析方法分析關鍵變數集合得到預估模型。
其中,虛擬量測自動化單元係利用製程特徵值集合更新一移動時間窗口模組,並得到影響製程動作之一關鍵變數集合。
其中,移動時間窗口模組係用以表示最近一段時間之製程動作中至少一批次產品的所有資料。
其中,關鍵變數集合細選擇性使用逐次回歸方法獲取影響製程動作之變數。
根據本發明之目的,再提出一種製程品質預測方法,其步驟如下,在一製程裝置中以一製程動作處理至少一批次產品,藉由一量測裝置對至少一批次產品進行抽樣檢測,由資料收集單元經由一錯誤偵測與分類單元得到一製程參數,並由錯誤偵測與分類單元得到一批次產品實際測量值,再藉由一虛擬量測自動化單元於製程參數及批次產品實際量測值,得到一預估模型,以預估模型即時預測出目前的一批次產品品質預測值。
承上所述,依本發明之種製程品質預測系統及其方法,其可具有一或多個下述優點:
(1)此製程品質預測系統可藉由目前的製程資料更新預測的基準,藉此可改善製程裝置的運作以減少製程中的浪費。
(2)此製程品質預測方法可藉由即時分析的方式,提供一種改良的製程,並可應用於各種半導體的製作過程。
(3)此製程品質預測方法透過移動窗口模組,即時捕獲系統的擾動,提高預估的精度。
(4)此製程品質預測方法可藉由關鍵變數選擇方式,提供給現場工程師參考,以改善製程。
100‧‧‧製程品質預測系統
110‧‧‧製程裝置
111‧‧‧批次產品
112‧‧‧抽樣批次產品
120‧‧‧量測裝置
130‧‧‧錯誤偵測與分類單元
140‧‧‧資料收集單元
150‧‧‧虛擬量測化自動單元
160‧‧‧批次產品品質預測值
210‧‧‧提取模組
220‧‧‧移動窗口模組
2210‧‧‧第一窗口
2211‧‧‧第二窗口
222‧‧‧統計回歸方法
230‧‧‧變異數分析模組
240‧‧‧未測批次產品的品質
S30~S34‧‧‧步驟
310‧‧‧氣體入口
320‧‧‧真空幫浦
330‧‧‧下鋁片
340‧‧‧沈積室
350‧‧‧上鋁板
360‧‧‧射頻(RF)電壓
370‧‧‧晶片
380‧‧‧分隔壁
S410~S470‧‧‧步驟
第1圖係為本發明之製程品質預測系統之示意圖;第2圖係為本發明之虛擬量測自動化單元之架構示意圖;第3圖係為本發明之製程品質預測方法之流程圖;第4圖係為本發明之製程品質預測方法之實施例架構圖:第5圖係為本發明之製程品質預測方法之實例品質預測流程示意圖;第6圖係為本發明之實例之製程參數變化圖;第7圖係為本發明之製程品質預測方法之實施例射頻端反射能量之示意圖;第8圖係為本發明之製程品質預測方法之實施例預估模組分析圖;第9圖係為本發明之製程品質預測方法之實施例之實際量測值與預估模組比較圖;第10圖係為本發明之製程品質預測方法之實施例實際誤差分析圖;以及第11圖係為本發明之製程品質預測方法之實施例之實際量測值與預估模組比較圖。
請參閱第1圖,其係為本發明之製程品質預測系統之示意圖。圖中,此製程品質預測系統100包括一製程裝置110、一量測裝置120、一錯誤偵測與分類單元130、一資料收集單元140及一虛擬量測化自動單元150,製程裝置100係對至少一批次產品111進行一製程動作,量測裝置120對批次產品111抽出抽樣批次產品112 進行抽樣檢測,錯誤偵測與分類單元130係電性連接於製程裝置110,對製程動作進行記錄,得到一製程參數,資料收集單元140係連接錯誤偵測與分類單元130,由錯誤偵測與分類單元130得到製程參數,並由量測裝置120得到批次產品實際量測值,虛擬量測自動化單元150係根據製程參數及批次產品實際量測值建立關於虛擬量測的一預估模組,並以此預估模組及即時偵測出目前製程動作中的一批次產品品質預測值160,後將批次產品品質預測值160回饋至製程品質預測系統100進行後續處理,或者根據批次產品品質預測值160進行暫停製程裝置110之動作,進行後續維護。
然而,在過去的製程裝置110中,製程裝置110會隨著運行而老化,失去精準度,或者由於製程裝置110本身的問題及操作者的不同,也會造成製程裝置110的失去精準度,虛擬量測自動化單元150因為這些問題往往產生無法運作或預估的結果並不正確,因此,本發明提出了一種新的虛擬量測自動化單元之架構來避免上述問題。
請參閱第2圖,其係為本發明之虛擬量測自動化單元之架構示意圖。圖中,當批次產品在製程裝置進行加工時,利用量測裝置進行取樣,在批次產品完成製程時,由錯誤偵測與分類系統與量測系統傳送製程參數與批次產品實際測量值到一提取模組210,提取模組210由製程參數與批次產品實際測量值提取出一製程特徵值集合,由一移動窗口模組(Moving window)220更新其製程特徵值集合,以移動窗口221中之向後滾動參考套用製程特徵值集合 ,如第一窗口2210向後套用為第二窗口2211,再以統計回歸方法(Stepwise Regression)222,得到影響製程動作之一關鍵變數集合,再以變異數分析模組(Analysis of Covariance,ANCOVA)230得到一預估模組,利用此預估模組得到未測批次產品的品質240。
本發明之虛擬量測可取代傳統的量測系統,當將製程參數與批次產品實際測量值輸入虛擬量測自動化單元時,即可產生預估模組。預估模組包括:Ω={χ12,...,χ n }
其中,Ω為採用統計回歸方法222以逐步回歸的方法選擇出的關鍵變數空間,χ i 為錯誤偵測與分類系統的製程參數。
其中,τ k 為製程中所有製程裝置的效能。
請參閱第3圖,其係為本發明之製程品質預測方法之流程圖。圖中,其步驟包括:(S30)於一製程裝置中依一製程動作處理至少一批次產品;(S31)藉由一量測裝置對至少一批次產品進行抽樣檢測;(S32)由資料收集單元經由一錯誤偵測與分類單元得到一製程參 數,並由錯誤偵測與分類單元得到一批次產品實際測量值;(S33)藉由一虛擬量測自動化單元於製程參數及該批次產品實際量測值,得到一預估模型;以及(S34)以預估模型即時預測出目前的一批次產品品質預測值。
請參閱第4圖,其係為本發明之製程品質預測方法之實施例架構圖。圖中,為半導體生產工廠電漿輔助化學氣相沈積(Plasma Enhanced Chemical Vapor Deposition,PECVD)架構圖,其中沈積室340是由上下兩片的鋁板,上鋁板350及下鋁板330再加上鋁或玻璃之分隔壁380所構成,晶片370、則放在下鋁板330上,上下鋁板350及330則由電阻線圈(coil)或燈泡加熱到100℃至400℃之間的溫度範圍。當上下鋁板350及330之間外加一射頻(RF)電壓360時,兩個鋁板330及350會有輝光放射現象,由氣體入口310導入氣體,並作徑向流動通過輝光放射區域,而中央處由真空幫浦320加以排出。
請參照第5圖,其係為本發明之製程品質預測方法之實例例品質預測流程示意圖。圖中,其包括下列步驟:(S410)於製程動作中,收集感測器之資訊;(S420)於製程參數中,選擇提取出一製程特徵值集合;(S430)於製程特徵值集合中選擇一關鍵變數集合;(S440)以統計回歸(Stepwise Regression)模組以關鍵變數集合逐次回歸後,再利用變異數分析模組得到一預估模組; (S450)以預估模組進行預測;(S460)判斷預估模組之預測結果是否相符;以及(S470)以預測結果調整製程動作之參數。
藉由量測機台所提供的過去批次產品的量測品質值(y i=1, y i=2,..., y i=n ),加上由製程機台目前正在製程動作中的製程參數,即可預測出該批生產產品的預測品質[y ^ i+j ]。
首先,進行步驟S410,收集感測器資訊。此沉積製程動作一共有21個製程階段(Step),一個製程階段中就有59偵測量,也就是有59個變數,所以如果將所有的變數加起來,在沉積製程裡就有1239個變數。我們由工廠得知其中有10個製程階段(2、4、5、7、10、13、15、19、23、24)對沉積的厚度有相當大的影響,其中製程階段10和製程階段19為最主要的步驟,分別為沉積(deposition)和濺鍍(sputter),其餘的製程階段都是為了要使程製穩定的製程階段,如要到達所需的溫度、壓力、流量或是要穩壓、恆溫等等所需要的必要製程階段。接下來,將固定或是單一的變數予以刪除,最後剩下319個輸入變數。
接著,進行步驟S420,選擇各個製程參數的特徵值。晶元製造時,請參閱第6圖,其係為本發明之實例例之製程參數變化圖。製程參數在製程中變化的過程由圖中所顯示,我們發現晶元的溫度在時間上的變化有較大的改變,並且在製程階段10和製程階段19 的區段中更加明顯,因此,在製程特徵值集合的方面只考慮製程階段10和製程階段19。
請參閱第7圖,其係為本發明之製程品質預測方法之實施例射頻端反射能量之示意圖。圖中雖然射頻端反射能量對反應變數有影響,但是由於每個製程階段下的能量對時間的變化都是固定的,因此並沒有取其製程特徵值集合的必要。
復參閱第5圖,接著,進行步驟S430,以選擇關鍵變數用於建立預估模組。進過資訊的預處理,得到319個輸入變數,如果要一筆一筆由圖形來看其變數是否對厚度有所影響,是很困難的,即使可行,也只能看出單一變數對厚度之影響而已,卻無法顧及變數之間的交互作用,因此,利用統計回歸的方法,將變數一筆一筆的加入或是刪除,看是否對整個模型的解釋效果良好,來取決於變數的去留。為了避免變數取的太多,在程式設計時,將設限變數取的個數最多只能取到10個,程式就會停止判別其他變數的影響。
接著,進行步驟S440,以統計回歸方法選出來的變數當成輸入變數,而最後形成的厚度就成為了輸出變數,然後使用變異數分析模組來建立預估模型,每次以一百筆資料來建立模型,每當一筆新的資料進來,就有一筆舊的資料刪除,從新再建立起預估模型,以此類推,接著,進行步驟S450,對建立的預估模型,以預估模型進行品質預測,若不滿足所需的精度要求,則進行新的一輪處理過程。否則,接受此模型作為最終的模型。
請參閱第8圖及第9圖,其係為本發明之製程品質預測方法之實施例預估模組分析圖及本發明之製程品質預測方法之實施例之實際量測值與預估模組比較圖。在第8圖中,實體線條部分為預估模型用統計方法所計算出的3倍標準差,如果在實體線條部分外表示是離群部分,其可信度較差;而在第9圖中為虛擬量測模型預測結果,實體線條部分為實際有量測的點所形成的,粗體星狀點是由預估模型來預測原始資料之最後一筆的值,圓圈部分表示是預估模型預測出來的值和實際有量測的點相差超出3個標準差的點,而細體星狀點為我們最主要的目的,也就是由預估模型來虛擬量測的點之值。誤差的性能指標可使用均方誤差(Mean Square Error,MSE),如下所示:
使用統計回歸方法挑選變數來建模的結果相當的良好,平均預估模型的MSE為252,而平均預測品質為96.3%,調整後之實際品質為95.1%。
請參照第10圖與第11圖,其係為本發明之製程品質預測方法之實施例實際誤差分析圖及本發明之製程品質預測方法之實施例之實際量測值與預估模組比較圖。於第10圖中,星狀點代表將所預測之品質預估值與實際量測值之差所繪製出來的圖,第11圖的星狀點則是預估模型預測品質之值落點所在的位置,此預測的結果MSE為41.65。
以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。
100‧‧‧製程品質預測系統
110‧‧‧製程裝置
111‧‧‧批次產品
112‧‧‧抽樣批次產品
120‧‧‧量測裝置
130‧‧‧錯誤偵測與分類單元
140‧‧‧資料收集單元
150‧‧‧虛擬量測化自動單元
160‧‧‧批次產品品質預測值

Claims (8)

  1. 一種製程品質預測系統,其包括:一製程裝置,係對至少一批次產品進行一製程動作;一量測裝置,係對該至少一批次產品進行抽樣檢測,並得到一批次產品實際量測值;一錯誤偵測與分類單元,係以電性連接該製程裝置,係對該製程動作進行記錄,得到一製程參數;一資料收集單元,係連接該錯誤偵測與分類單元與該量測裝置,由該錯誤偵測與分類單元得到該製程參數,並由該量測裝置得到該批次產品實際量測值;以及一虛擬量測自動化單元,根據該製程參數及該批次產品實際量測值建立關於虛擬量測的一預估模型,並以該預估模型即時預測出目前該製程動作中的一批次產品品質預測值;其中該批次產品為晶圓或基板;其中該虛擬量測自動化單元於該製程參數及該批次產品實際量測值中濾除與該製程動作無關之資料,並提取出一製程特徵值集合;其中該虛擬量測自動化單元係利用該製程特徵值集合更新一移動時間窗口模組,並得到影響該製程動作之一關鍵變數集合。
  2. 如申請專利範圍第1項所述之製程品質預測系統,其中該虛擬量測自動化單元係利用一變異數分析方法分析該關鍵變數集合得到該預估模型。
  3. 如申請專利範圍第2項所述之製程品質預測系統,其中該移動時間窗口模組係用以表示最近一段時間之該製程動作中該至少一基板的所有資料。
  4. 如申請專利範圍第2項所述之製程品質預測系統,其中該關鍵變數集合係選擇性使用逐次回歸方法獲取影響該製程動作的變數。
  5. 一種製程品質預測方法,其包括下列步驟:於一製程裝置中以一製程動作處理至少一批次產品;藉由一量測裝置對該至少一批次產品進行抽樣檢測,由該資料收集單元經由一錯誤偵測與分類單元得到一製程參數,並由該資料收集單元經由該量測裝置得到一批次產品實際量測值;藉由一虛擬量測自動化單元於該製程參數及該批次產品實際量測值,得到一預估模型;以及以該預估模型即時預測出目前的一批次產品品質預測值;其中該批次產品為晶圓或基板;其中該虛擬量測自動化單元於該製程參數及該批次產品實際量測值中濾除與該製程動作無關之資料,並提取出一製程特徵值集合;其中該虛擬量測自動化單元係利用該製程特徵值集合更新一移動時間窗口模組,並得到影響該製程動作之一關鍵變數集合。
  6. 如申請專利範圍第5項所述之製程品質預測方法,其中該虛擬量測自動化單元係利用一變異數分析方法分析該關鍵變數集合該得到該預估模型。
  7. 如申請專利範圍第5項所述之製程品質預測方法,其中該移動時 間窗口模組係用以表示最近一段時間之該製程動作之該至少一基板的所有資料。
  8. 如申請專利範圍第5項所述之製程品質預測方法,其中該關鍵變數集合係選擇性使用逐次回歸方法獲取影響該製程動作之變數。
TW099115738A 2010-05-17 2010-05-17 製程品質預測系統及其方法 TWI407325B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW099115738A TWI407325B (zh) 2010-05-17 2010-05-17 製程品質預測系統及其方法
US12/853,497 US8452441B2 (en) 2010-05-17 2010-08-10 Process quality predicting system and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099115738A TWI407325B (zh) 2010-05-17 2010-05-17 製程品質預測系統及其方法

Publications (2)

Publication Number Publication Date
TW201142640A TW201142640A (en) 2011-12-01
TWI407325B true TWI407325B (zh) 2013-09-01

Family

ID=44912450

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099115738A TWI407325B (zh) 2010-05-17 2010-05-17 製程品質預測系統及其方法

Country Status (2)

Country Link
US (1) US8452441B2 (zh)
TW (1) TWI407325B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI557674B (zh) * 2014-09-17 2016-11-11 東芝股份有限公司 品質管理裝置及其管理方法
US10269660B2 (en) 2015-05-27 2019-04-23 National Cheng Kung University Metrology sampling method with sampling rate decision scheme and computer program product thereof

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9158867B2 (en) * 2012-10-09 2015-10-13 Taiwan Semiconductor Manufacturing Co., Ltd. 2D/3D analysis for abnormal tools and stages diagnosis
US9508042B2 (en) * 2012-11-05 2016-11-29 National Cheng Kung University Method for predicting machining quality of machine tool
CN104657526B (zh) * 2013-11-21 2017-09-29 郑芳田 工具机的加工品质的预测方法
US20150332167A1 (en) * 2014-05-13 2015-11-19 Tokyo Electron Limited System and method for modeling and/or analyzing manufacturing processes
US10275565B2 (en) 2015-11-06 2019-04-30 The Boeing Company Advanced automated process for the wing-to-body join of an aircraft with predictive surface scanning
TWI625615B (zh) * 2016-11-29 2018-06-01 財團法人工業技術研究院 預測模型建立方法及其相關預測方法與電腦程式產品
US10413984B2 (en) * 2016-12-08 2019-09-17 Metal Industries Research & Development Centre Method for predicting precision of electrical discharge machine
TWI614699B (zh) * 2016-12-30 2018-02-11 國立成功大學 大量客製化產品的品質預測方法
KR20180131246A (ko) * 2017-05-31 2018-12-10 주식회사 지오네트 빅데이터 분석을 통한 공정 관리 방법
TWI657402B (zh) * 2017-06-13 2019-04-21 環球晶圓股份有限公司 晶圓製造管理方法以及晶圓製造管理系統
CN112384924B (zh) * 2018-07-26 2024-07-05 西门子股份公司 产品性能预测模型的建立方法和装置、计算机设备、计算机可读存储介质、产品性能预测方法及预测系统
KR20210060467A (ko) * 2018-09-18 2021-05-26 바이엘 악티엔게젤샤프트 생산 공정의 생성물로서의 화합물 및/또는 그 제형의 품질을 예측하기 위한 시스템 및 방법
US10712730B2 (en) 2018-10-04 2020-07-14 The Boeing Company Methods of synchronizing manufacturing of a shimless assembly
FR3101712B1 (fr) * 2019-10-07 2021-10-22 Safran Aircraft Engines Procédé et dispositif de contrôle de conformité d’une pièce
JP7275023B2 (ja) * 2019-12-27 2023-05-17 富士フイルム株式会社 品質管理装置、品質管理方法、およびプログラム
US20220066410A1 (en) * 2020-08-28 2022-03-03 Pdf Solutions, Inc. Sequenced Approach For Determining Wafer Path Quality
CN114578780B (zh) * 2022-05-06 2022-08-16 广东祥利科技有限公司 交联聚乙烯在线生产监测方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6829056B1 (en) * 2003-08-21 2004-12-07 Michael Barnes Monitoring dimensions of features at different locations in the processing of substrates
TW200540674A (en) * 2004-06-03 2005-12-16 Univ Nat Cheng Kung Quality prognostics system and method for manufacturing processes
TW200745895A (en) * 2006-06-07 2007-12-16 Powerchip Semiconductor Corp Method and system for virtual metrology prediction and prediction model building in semiconductor manufacture
US20080275588A1 (en) * 2007-05-03 2008-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Prediction of uniformity of a wafer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6666577B2 (en) 2000-11-02 2003-12-23 Matsushita Electric Industrial Co., Ltd. Method for predicting temperature, test wafer for use in temperature prediction, and method for evaluating lamp heating system
US6616759B2 (en) 2001-09-06 2003-09-09 Hitachi, Ltd. Method of monitoring and/or controlling a semiconductor manufacturing apparatus and a system therefor
US20060036345A1 (en) * 2004-08-09 2006-02-16 An Cao Systems and method for lights-out manufacturing
US20060129257A1 (en) 2004-12-13 2006-06-15 Taiwan Semiconductor Manufacturing Co., Ltd. Novel method and apparatus for integrating fault detection and real-time virtual metrology in an advanced process control framework
TWI297506B (en) 2006-06-09 2008-06-01 Powerchip Semiconductor Corp Method and system for virtual metrology prediction for quality control in semiconductor manufacture
US8396582B2 (en) * 2008-03-08 2013-03-12 Tokyo Electron Limited Method and apparatus for self-learning and self-improving a semiconductor manufacturing tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6829056B1 (en) * 2003-08-21 2004-12-07 Michael Barnes Monitoring dimensions of features at different locations in the processing of substrates
TW200540674A (en) * 2004-06-03 2005-12-16 Univ Nat Cheng Kung Quality prognostics system and method for manufacturing processes
TW200745895A (en) * 2006-06-07 2007-12-16 Powerchip Semiconductor Corp Method and system for virtual metrology prediction and prediction model building in semiconductor manufacture
US20080275588A1 (en) * 2007-05-03 2008-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Prediction of uniformity of a wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI557674B (zh) * 2014-09-17 2016-11-11 東芝股份有限公司 品質管理裝置及其管理方法
US10269660B2 (en) 2015-05-27 2019-04-23 National Cheng Kung University Metrology sampling method with sampling rate decision scheme and computer program product thereof

Also Published As

Publication number Publication date
US20110282480A1 (en) 2011-11-17
TW201142640A (en) 2011-12-01
US8452441B2 (en) 2013-05-28

Similar Documents

Publication Publication Date Title
TWI407325B (zh) 製程品質預測系統及其方法
JP7045368B2 (ja) 複雑な多変量ウエハ処理機器における機械学習を実行する方法及びプロセス
US8437870B2 (en) System and method for implementing a virtual metrology advanced process control platform
US10635993B2 (en) System and method for learning and/or optimizing manufacturing processes
TWI783298B (zh) 探索裝置及探索方法
TWI509550B (zh) 在虛擬量測中使用適應性預測演算法及決定何時使用適應性預測演算法之方法及設備
US7062411B2 (en) Method for process control of semiconductor manufacturing equipment
KR100604523B1 (ko) 프로세스와 품질과의 관계에 관한 모델 작성 장치 및 모델작성 방법
US9915624B2 (en) Optical metrology for in-situ measurements
JP4615222B2 (ja) ライン末端データマイニングとプロセスツールデータマイニングとの相関
TW201838053A (zh) 由光譜之時間序列的特徵部抽取以控制程序終點的方法
US11556117B2 (en) Real-time anomaly detection and classification during semiconductor processing
CN108171142B (zh) 一种确定复杂工业过程中关键变量因果关系的方法
Bleakie et al. Feature extraction, condition monitoring, and fault modeling in semiconductor manufacturing systems
US11126172B2 (en) Methods and systems for applying run-to-run control and virtual metrology to reduce equipment recovery time
TWI641934B (zh) 虛擬量測系統與方法
KR102268290B1 (ko) 반도체 가공 장치를 진단하는 진단 시스템 및 그것의 제어 방법
TWI649649B (zh) 用於改進製造產量之基於事件處理的系統
CN101118422A (zh) 半导体制造的虚拟量测预估与建立预估模型的方法与系统
CN105489524A (zh) 化合物半导体产品制造过程中的工艺验证方法
Susto et al. Least angle regression for semiconductor manufacturing modeling
CN103278714B (zh) 一种混合制程的虚拟测量方法与系统
US12106984B2 (en) Accelerating preventative maintenance recovery and recipe optimizing using machine-learning based algorithm
US20220283574A1 (en) Method for Controlling a Production Process for Producing Components
WO2023220931A1 (en) Analysis of multi-run cyclic processing procedures

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees