TWI401866B - Predicting-type synchronous rectification controller, switching power converter with the predicting-type synchronous rectification controller and controlling method thereof - Google Patents

Predicting-type synchronous rectification controller, switching power converter with the predicting-type synchronous rectification controller and controlling method thereof Download PDF

Info

Publication number
TWI401866B
TWI401866B TW099123722A TW99123722A TWI401866B TW I401866 B TWI401866 B TW I401866B TW 099123722 A TW099123722 A TW 099123722A TW 99123722 A TW99123722 A TW 99123722A TW I401866 B TWI401866 B TW I401866B
Authority
TW
Taiwan
Prior art keywords
signal
synchronous rectification
sawtooth wave
voltage
secondary side
Prior art date
Application number
TW099123722A
Other languages
Chinese (zh)
Other versions
TW201206030A (en
Inventor
Ta Ching Hsu
Original Assignee
Niko Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niko Semiconductor Co Ltd filed Critical Niko Semiconductor Co Ltd
Priority to TW099123722A priority Critical patent/TWI401866B/en
Priority to US13/092,944 priority patent/US8576587B2/en
Publication of TW201206030A publication Critical patent/TW201206030A/en
Application granted granted Critical
Publication of TWI401866B publication Critical patent/TWI401866B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Description

預測式同步整流控制器、具有該預測式同步整流控制器之交換式電源轉換電路以及其控制方法Predictive synchronous rectification controller, switching power conversion circuit with the same, and control method thereof

本發明係關於一種應用於交換式電源轉換電路之一同步整流控制器及其控制方法,尤其是一種預測式同步整流控制器及其控制方法。The invention relates to a synchronous rectification controller applied to an exchange type power conversion circuit and a control method thereof, in particular to a predictive synchronous rectification controller and a control method thereof.

在電源轉換的技術領域中,利用電晶體開關取代二極體以降低功耗,是一個常見的技術手段。In the technical field of power conversion, it is a common technical means to use a transistor switch to replace a diode to reduce power consumption.

第1圖係一典型具有次級側同步整流功能之電源轉換電路。電源轉換電路之初級側具有一脈寬調變控制器11與一主開關12。脈寬調變控制器11依據來自隔離回授裝置13之回授訊號,輸出脈波訊號控制主開關12之導通或截止。電源轉換電路之次級側具有一同步整流開關15與一次級側同步整流控制器20。次級側同步整流控制器20依據來自變壓器14之次級側繞組142的訊號,控制同步整流開關15之導通或截止。Figure 1 is a typical power conversion circuit with a secondary side synchronous rectification function. The primary side of the power conversion circuit has a pulse width modulation controller 11 and a main switch 12. The pulse width modulation controller 11 outputs a pulse signal to control the on/off of the main switch 12 in accordance with the feedback signal from the isolated feedback device 13. The secondary side of the power conversion circuit has a synchronous rectification switch 15 and a primary side synchronous rectification controller 20. The secondary side synchronous rectification controller 20 controls the on or off of the synchronous rectification switch 15 in accordance with the signal from the secondary side winding 142 of the transformer 14.

當主開關12導通時,直流輸入端VIN提供電力至變壓器14的初級側繞組140。在此同時,同步整流開關15則是呈現截止。因此,來自直流輸入端VIN的電力會儲存於變壓器14中。隨後,當主開關12轉為截止時,次級側同步整流控制器20偵測到次級側繞組142之電壓極性的變化,控制同步整流開關15導通。此時,變壓器14開始釋放儲存的能量至輸出端VO以及濾波電容16。When the main switch 12 is turned on, the DC input terminal VIN supplies power to the primary side winding 140 of the transformer 14. At the same time, the synchronous rectification switch 15 is rendered off. Therefore, power from the DC input terminal VIN is stored in the transformer 14. Subsequently, when the main switch 12 is turned off, the secondary side synchronous rectification controller 20 detects a change in the polarity of the voltage of the secondary side winding 142, and controls the synchronous rectification switch 15 to be turned on. At this time, the transformer 14 starts to release the stored energy to the output terminal VO and the filter capacitor 16.

值得注意的是,次級側同步整流控制器20必須準確控制同步整流開關15之工作週期,以模擬二極體的運作,避免造成轉換效率損失或導致開關燒毀。就第1圖之電源轉換電路而言,初級側的主開關12與次級側的同步整流開關15必須交替導通。為了防止主開關12與同步整流開關15的導通時間重疊,在主開關12之導通時間與同步整流開關15的導通時間之間,必須預留一死區時間(dead time)。亦即,在此死區時間內,主開關12與同步整流開關15都是呈現截止。It is worth noting that the secondary side synchronous rectification controller 20 must accurately control the duty cycle of the synchronous rectification switch 15 to simulate the operation of the diode, avoiding loss of conversion efficiency or causing the switch to burn. In the power conversion circuit of Fig. 1, the primary side switch 12 on the primary side and the synchronous rectifier switch 15 on the secondary side must be alternately turned on. In order to prevent the on-time of the main switch 12 from being overlapped with the synchronous rectification switch 15, a dead time must be reserved between the on-time of the main switch 12 and the on-time of the synchronous rectification switch 15. That is, during this dead time, both the main switch 12 and the synchronous rectification switch 15 are turned off.

第1圖中的次級側同步整流控制器20係採用複雜的數位控制方式以計算死區時間。如圖中所示,此次級側同步整流控制器20具有一時脈緩衝單元(Clock Buffer)22、一數位截止控制器(Digital Turn-off Controller)24與一輸出驅動單元26。The secondary side synchronous rectification controller 20 in Fig. 1 employs a complicated digital control method to calculate the dead time. As shown in the figure, the secondary side synchronous rectification controller 20 has a clock buffer unit 22, a digital turn-off controller 24 and an output driving unit 26.

第2圖係第1圖中之數位截止控制器24的方塊示意圖。如圖中所示,數位截止控制器24包括一振盪單元242、一第一計數器243、一第二計數器244、一限定狀態控制裝置(Finite States Machine)246與一輸出控制單元(Output Control)248。其中,第一計數器243與第二計數器244均為可上數與下數之計數器。振盪單元242係用以產生一內部計數時脈訊號CLK,供第一計數器243與第二計數器244計數之用。限定狀態控制裝置246接收外部同步訊號SYNC,並依據此外部同步訊號Sync控制第一計數器242與第二計數器243的計數期間。此外部同步訊號Sync係變壓器14之次級側繞組142的輸出訊號。Fig. 2 is a block diagram showing the digital cutoff controller 24 in Fig. 1. As shown in the figure, the digital cut-off controller 24 includes an oscillating unit 242, a first counter 243, a second counter 244, a limited state control unit 246, and an output control unit 248. . The first counter 243 and the second counter 244 are both counters that can be counted up and down. The oscillating unit 242 is configured to generate an internal counting clock signal CLK for counting by the first counter 243 and the second counter 244. The limited state control means 246 receives the external synchronization signal SYNC and controls the counting period of the first counter 242 and the second counter 243 in accordance with the external synchronization signal Sync. The external sync signal Sync is the output signal of the secondary side winding 142 of the transformer 14.

第3圖係數位截止控制器24中各控制訊號的波形圖。請同時參照第2圖,限定狀態控制裝置246偵測到外部同步訊號Sync之第一開關週期TS1的前緣時,控制第一計數器242開始上數,直到限定狀態控制裝置246偵測到外部同步訊號Sync之第二開關週期TS2的前緣。隨後,限定狀態控制裝置246控制第一計數器242開始下數,直到限定狀態控制裝置246偵測到外部同步訊號Sync之第三開關週期TS3的前緣。假定第一計數器242於第一開關週期TS1中上數到n,當第一計數器242下數到n-x時,限定狀態控制裝置246隨即產生一輸出截止訊號,控制輸出控制單元248停止輸出導通訊號(即高電位之驅動訊號OUT)。x的數值為預設之死區時間的計數數量,其大小可透過死區設定端DTS加以設定。Figure 3 is a waveform diagram of the control signals in the controller 24 of the off-controller. Referring to FIG. 2 simultaneously, when the state control device 246 detects the leading edge of the first switching period TS1 of the external synchronization signal Sync, the first counter 242 is controlled to start counting until the limited state control device 246 detects the external synchronization. The leading edge of the second switching cycle TS2 of the signal Sync. Subsequently, the limited state control device 246 controls the first counter 242 to start counting down until the limited state control device 246 detects the leading edge of the third switching period TS3 of the external synchronization signal Sync. Assuming that the first counter 242 counts up to n in the first switching period TS1, when the first counter 242 counts down to nx, the limited state control device 246 generates an output cutoff signal, and the control output control unit 248 stops outputting the pilot number ( That is, the high-level driving signal OUT). The value of x is the counted number of preset dead time times, and the size can be set by the dead zone setting terminal DTS.

此外,限定狀態控制裝置246偵測到外部同步訊號Sync之第二開關週期TS2的前緣時,會同時控制第二計數器243開始上數,直到限定狀態控制裝置246偵測到外部同步訊號Sync之第三開關週期TS3的前緣。第二計數器243與第一計數器242的運作相類似。於第三開關週期TS3中,限定狀態控制裝置246即是依據第二計數器243之計數數量,產生一輸出截止訊號,控制輸出控制單元248停止輸出導通訊號。In addition, when the limited state control device 246 detects the leading edge of the second switching period TS2 of the external synchronization signal Sync, the second counter 243 is simultaneously controlled to start counting until the limited state control device 246 detects the external synchronization signal Sync. The leading edge of the third switching period TS3. The second counter 243 is similar in operation to the first counter 242. In the third switching period TS3, the limited state control means 246 generates an output cutoff signal according to the number of counts of the second counter 243, and the control output control unit 248 stops outputting the pilot number.

此次級側同步整流控制器20利用計數器242,243之上數與下數歷程,可以有效預測下一個開關週期中同步整流開關的導通時間,同時維持大致固定的死區時間。不過,此次級側同步整流控制器20之電路設計相當複雜,製作成本不易降低。The secondary side synchronous rectification controller 20 utilizes the number of counters 242, 243 above and the number of passes to effectively predict the on-time of the synchronous rectification switch in the next switching cycle while maintaining a substantially fixed dead time. However, the circuit design of the secondary side synchronous rectification controller 20 is quite complicated, and the manufacturing cost is not easily reduced.

本發明之一主要目的係針對傳統之預測式次級側同步整流控制器,電路結構過於複雜的問題,提出解決的方法。One of the main objects of the present invention is to solve the problem that the conventional predictive secondary side synchronous rectification controller has a complicated circuit structure and proposes a solution.

本發明之另一主要目的係提供一種類比型次級側同步整流控制器,可以準確控制死區時間,以避免電源轉換效率降低或導致開關燒毀。Another main object of the present invention is to provide an analog type secondary side synchronous rectification controller that can accurately control the dead time to avoid a decrease in power conversion efficiency or cause a switch to burn out.

為了達到前述目的,本發明之一實施例提供一種預測式同步整流控制器,用以控制至少一個開關。此同步整流控制器具有一鋸齒波產生器、一峰值取樣單元、一輸出控制單元。其中,鋸齒波產生器係接收一同步訊號,以產生一鋸齒波訊號。峰值取樣單元係擷取鋸齒波訊號之一峰值電壓,據以產生一參考電壓訊號。輸出控制單元係比較鋸齒波訊號與參考電壓訊號,以產生一同步整流控制訊號,控制開關之導通狀態。In order to achieve the foregoing objective, an embodiment of the present invention provides a predictive synchronous rectification controller for controlling at least one switch. The synchronous rectification controller has a sawtooth generator, a peak sampling unit, and an output control unit. The sawtooth generator receives a synchronization signal to generate a sawtooth signal. The peak sampling unit captures a peak voltage of one of the sawtooth signals to generate a reference voltage signal. The output control unit compares the sawtooth wave signal with the reference voltage signal to generate a synchronous rectification control signal to control the conduction state of the switch.

本發明之一實施例並提供一具有預測式同步整流功能之電源轉換電路。此電源轉換電路具有一變壓器、一同步整流開關與一預測式次級側同步整流控制器。其中,變壓器包括一初級側繞組與一次級側繞組。同步整流開關係連接至次級側繞組。預測式次級側同步整流控制器係用以控制同步整流開關。此次級側同步整流控制器具有一鋸齒波產生器、一峰值取樣單元與一輸出控制單元。其中,鋸齒波產生器接收一同步訊號,以產生一鋸齒波訊號。峰值取樣單元擷取鋸齒波訊號之一峰值電壓,據以產生一參考電壓訊號。輸出控制單元係比較鋸齒波訊號與參考電壓訊號,以產生一同步整流控制訊號,控制同步整流開關之導通狀態。An embodiment of the present invention provides a power conversion circuit having a predictive synchronous rectification function. The power conversion circuit has a transformer, a synchronous rectification switch and a predictive secondary side synchronous rectification controller. Wherein, the transformer comprises a primary side winding and a primary side winding. A synchronous rectification relationship is connected to the secondary side winding. The predictive secondary side synchronous rectification controller is used to control the synchronous rectification switch. The secondary side synchronous rectification controller has a sawtooth generator, a peak sampling unit and an output control unit. The sawtooth generator receives a sync signal to generate a sawtooth signal. The peak sampling unit captures a peak voltage of one of the sawtooth signals to generate a reference voltage signal. The output control unit compares the sawtooth wave signal with the reference voltage signal to generate a synchronous rectification control signal to control the conduction state of the synchronous rectification switch.

本發明之一實施例並提供一種預測式同步整流控制方法,以控制一電源轉換電路之一同步整流開關。此預測式同步整流控制方法至少包括下列步驟:(a)依據一同步訊號,產生一週期相同之鋸齒波訊號;(b)依據鋸齒波訊號之峰值電壓,在鋸齒波訊號之下一週期,產生一逐步衰減之參考電壓訊號,此參考電壓訊號之一最大電壓小於鋸齒波訊號之該峰值電壓;以及(c)比較參考電壓訊號與下一週期之鋸齒波訊號,以產生一同步整流控制訊號,控制同步整流開關之導通狀態。An embodiment of the present invention provides a predictive synchronous rectification control method for controlling a synchronous rectification switch of a power conversion circuit. The predictive synchronous rectification control method comprises at least the following steps: (a) generating a sawtooth wave signal with the same period according to a synchronous signal; and (b) generating a peak voltage of the sawtooth wave signal according to a peak period of the sawtooth wave signal. a gradually attenuating reference voltage signal, the maximum voltage of one of the reference voltage signals being less than the peak voltage of the sawtooth wave signal; and (c) comparing the reference voltage signal with the sawtooth wave signal of the next cycle to generate a synchronous rectification control signal, Controls the conduction state of the synchronous rectification switch.

關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。The advantages and spirit of the present invention will be further understood from the following detailed description of the invention.

本發明為一種預測式同步整流控制器與方法。此控制電路與控制方法可應用於返馳式、順向式、半橋式或全橋式拓樸於電流連續模式(Current Continuous Mode,CCM)之控制。此外,本發明之預測式同步整流控制器係採用簡易之類比電路控制同步整流開關之導通週期,適於各種定頻之交換式電源供應器的次級側同步整流控制。The invention is a predictive synchronous rectification controller and method. The control circuit and control method can be applied to the control of a flyback, forward, half bridge or full bridge topology in Current Continuous Mode (CCM). In addition, the predictive synchronous rectification controller of the present invention adopts a simple analog circuit to control the on-period of the synchronous rectification switch, and is suitable for the secondary side synchronous rectification control of the switching power supply of various fixed frequencies.

本發明之預測式同步整流控制器,依據一次級側同步訊號產生一鋸齒波訊號,並擷取鋸齒波訊號之峰值電壓,產生相對應之參考電壓,並將此參考電壓與下一工作週期之鋸齒波訊號相比較,以產生一死區訊號,截止同步整流開關。The predictive synchronous rectification controller of the invention generates a sawtooth wave signal according to the primary side side synchronization signal, and captures the peak voltage of the sawtooth wave signal to generate a corresponding reference voltage, and the reference voltage and the next duty cycle The sawtooth wave signals are compared to generate a dead zone signal, and the synchronous rectifier switch is turned off.

第4圖係本發明同步整流電源轉換電路一第一實施例之電路圖。本實施例係一返馳式電源轉換電路。如圖中所示,此電源轉換電路之初級側具有一脈寬調變控制器31與一主開關32。脈寬調變控制器31依據來自隔離回授裝置33之回授訊號,輸出脈波訊號控制主開關32之導通或截止。此電源轉換電路之次級側具有一同步整流開關35與一次級側同步整流控制器40。此次級側同步整流控制器40係依據一對應於初級側之脈波訊號之同步訊號Sync0,控制同步整流開關32之導通狀態。在本實施例中,次級側同步整流控制器40係依據來自於變壓器34之次級側輔助繞組344的一同步訊號Sync0,控制同步整流開關35之導通或截止。此同步訊號Sync0的高低電位變化與初級側之脈波訊號相反。Fig. 4 is a circuit diagram showing a first embodiment of the synchronous rectification power conversion circuit of the present invention. This embodiment is a flyback power conversion circuit. As shown in the figure, the primary side of the power conversion circuit has a pulse width modulation controller 31 and a main switch 32. The pulse width modulation controller 31 outputs a pulse signal to control the on or off of the main switch 32 in accordance with the feedback signal from the isolated feedback device 33. The secondary side of the power conversion circuit has a synchronous rectification switch 35 and a primary side synchronous rectification controller 40. The secondary side synchronous rectification controller 40 controls the conduction state of the synchronous rectification switch 32 according to a synchronization signal Sync0 corresponding to the pulse signal of the primary side. In the present embodiment, the secondary side synchronous rectification controller 40 controls the on or off of the synchronous rectification switch 35 in accordance with a synchronization signal Sync0 from the secondary side auxiliary winding 344 of the transformer 34. The high-low potential change of the synchronous signal Sync0 is opposite to the pulse signal of the primary side.

當脈波訊號控制主開關32導通時,直流輸入端VIN提供電力至變壓器34的初級側繞組341。在此同時,次級側同步整流控制器40控制同步整流開關35截止。因此,來自直流輸入端VIN的電力會儲存於變壓器34中。隨後,當脈波訊號控制主開關32轉為截止時,同步訊號Sync0之電位產生變化。次級側同步整流控制器40偵測到同步訊號Sync0之電位產生變化後,控制同步整流開關35導通。此時,變壓器34開始釋放儲存的能量至輸出端VO以及濾波電容36。When the pulse signal control main switch 32 is turned on, the DC input terminal VIN supplies power to the primary side winding 341 of the transformer 34. At the same time, the secondary side synchronous rectification controller 40 controls the synchronous rectification switch 35 to be turned off. Therefore, power from the DC input terminal VIN is stored in the transformer 34. Subsequently, when the pulse signal control main switch 32 is turned off, the potential of the sync signal Sync0 changes. After detecting the change in the potential of the synchronization signal Sync0, the secondary side synchronous rectification controller 40 controls the synchronous rectification switch 35 to be turned on. At this point, transformer 34 begins to release stored energy to output VO and filter capacitor 36.

第6圖係第4圖之次級側同步整流控制器40一第一實施例之電路示意圖。如圖中所示,此次級側同步整流控制器40具有一鋸齒波產生器42、一峰值取樣單元44、一輸出控制單元46與一輸出驅動單元48。其中,鋸齒波產生器42接收一同步訊號Sync0,以產生一鋸齒波訊號Ramp。峰值取樣單元44擷取鋸齒波訊號Ramp之一峰值電壓,據以產生一參考電壓訊號PS。輸出控制單元46係比較鋸齒波訊號Ramp與參考電壓訊號PS,以產生一同步整流控制訊號SRC。輸出驅動單元48依據此同步整流控制訊號SRC,產生一驅動訊號OUT,控制同步整流開關35之導通狀態。Fig. 6 is a circuit diagram showing a first embodiment of the secondary side synchronous rectification controller 40 of Fig. 4. As shown in the figure, the secondary side synchronous rectification controller 40 has a sawtooth wave generator 42, a peak sampling unit 44, an output control unit 46 and an output driving unit 48. The sawtooth generator 42 receives a sync signal Sync0 to generate a sawtooth signal Ramp. The peak sampling unit 44 captures a peak voltage of the sawtooth wave signal Ramp to generate a reference voltage signal PS. The output control unit 46 compares the sawtooth wave signal Ramp with the reference voltage signal PS to generate a synchronous rectification control signal SRC. The output driving unit 48 generates a driving signal OUT according to the synchronous rectification control signal SRC, and controls the conduction state of the synchronous rectification switch 35.

鋸齒波產生器42具有一鋸齒波產生電容422、一充電電源424與一重置開關426。其中,充電電源424係用以對鋸齒波產生電容422充電,以產生鋸齒波訊號Ramp。鋸齒波訊號Ramp之上升斜率係受到鋸齒波產生電容422所控制。重置開關426係用以洩放鋸齒波產生電容422所儲存之電荷。此重置開關426之導通狀態係由同步訊號Sync0所控制。在本實施例中,充電電源424係一定電流源。不過,本發明並不限於此,此充電電源亦可以是一定電壓源。The sawtooth generator 42 has a sawtooth generating capacitor 422, a charging power source 424 and a reset switch 426. The charging power source 424 is configured to charge the sawtooth generating capacitor 422 to generate a sawtooth wave signal Ramp. The rising slope of the sawtooth wave signal Ramp is controlled by the sawtooth wave generating capacitance 422. The reset switch 426 is used to bleed the charge stored by the sawtooth generating capacitor 422. The turn-on state of the reset switch 426 is controlled by the sync signal Sync0. In the present embodiment, the charging power source 424 is a constant current source. However, the present invention is not limited thereto, and the charging power source may also be a certain voltage source.

峰值取樣單元44具有一保持電容442、一洩放元件444與一參考偏壓源446。保持電容442係用以儲存來自鋸齒波產生器42之鋸齒波訊號Ramp。洩放元件444則是用以洩放儲存於保持電容442之電荷。保持電容之一高壓端之輸出訊號即為前述參考電壓訊號PS。參考偏壓源446係設置於保持電源442與鋸齒波產生器42之間,用以拉低鋸齒波產生器42所輸出之鋸齒波訊號Ramp的電壓,使保持電容442所儲存之最大電壓小於鋸齒波訊號Ramp之峰值電壓。本實施例之洩放元件444係一洩放阻抗。不過,本發明並不限於此,此洩放元件444亦可以是一定電流源或是其他輸入等效阻抗。The peak sampling unit 44 has a holding capacitor 442, a bleeder element 444 and a reference bias source 446. The holding capacitor 442 is for storing the sawtooth wave signal Ramp from the sawtooth wave generator 42. The bleeder element 444 is for discharging the charge stored in the holding capacitor 442. The output signal of one of the high voltage terminals of the holding capacitor is the aforementioned reference voltage signal PS. The reference bias source 446 is disposed between the holding power source 442 and the sawtooth wave generator 42 for lowering the voltage of the sawtooth wave signal Ramp outputted by the sawtooth wave generator 42 so that the maximum voltage stored by the holding capacitor 442 is smaller than the sawtooth. The peak voltage of the wave signal Ramp. The bleeder element 444 of this embodiment is a bleeder impedance. However, the present invention is not limited thereto, and the bleeder element 444 may also be a constant current source or other input equivalent impedance.

輸出控制單元46具有一比較器462與一截止開關464。比較器462係比較鋸齒波訊號Ramp與預測參考電壓訊號PS的電位,以產生一死區時間控制訊號Comp以導通截止開關464。此死區時間控制訊號Comp之持續時間即為所定義之死區時間(dead time)。當截止開關464導通時,原本處於高電位之同步訊號Sync0的電位被拉低,而產生同步整流控制訊號SRC至輸出驅動單元48以控制同步整流開關35之導通時間。The output control unit 46 has a comparator 462 and a cut-off switch 464. The comparator 462 compares the potential of the sawtooth wave signal Ramp with the predicted reference voltage signal PS to generate a dead time control signal Comp to turn on the cut-off switch 464. The duration of the dead time control signal Comp is the defined dead time. When the cut-off switch 464 is turned on, the potential of the synchronous signal Sync0 which is originally at a high level is pulled low, and the synchronous rectification control signal SRC is generated to the output driving unit 48 to control the on-time of the synchronous rectification switch 35.

其次,本實施例之次級側同步整流控制器具有一電源輸入端VCC。外部電源係透過此電源輸入端VCC供電至鋸齒波產生器42與輸出驅動單元48。請同時參照第4圖所示,在本實施例中,此電源輸入端VCC係連接至至一次級側輔助繞組344。不過,本發明並不限於此。此電源輸入端VCC亦可連接至其他直流電源。Next, the secondary side synchronous rectification controller of this embodiment has a power input terminal VCC. The external power source is supplied to the sawtooth generator 42 and the output drive unit 48 through the power input terminal VCC. Referring to FIG. 4 at the same time, in the present embodiment, the power input terminal VCC is connected to the primary side auxiliary winding 344. However, the invention is not limited thereto. This power input terminal VCC can also be connected to other DC power supplies.

第7圖係第6圖之同步整流控制器的控制波形圖。如圖中所示,在第一次級側導通週期ta1中,同步訊號Sync0處於高電位,重置開關426處於截止狀態。此時,充電電源424向鋸齒波產生電容422充電,使鋸齒波產生電容422之高壓端的電位逐步提高(亦即鋸齒波訊號Ramp的電位)。隨後,進入第一初級側導通週期tb1時,同步訊號Sync0轉變為低電位。此時,重置開關426導通,鋸齒波產生電容422迅速放電,以形成鋸齒波訊號Ramp。隨後,進入第二次級側導通週期ta2時,同步訊號Sync0重行轉變為高電位,重置開關426再度截止,使鋸齒波產生電容422重新充電。Fig. 7 is a control waveform diagram of the synchronous rectification controller of Fig. 6. As shown in the figure, in the first secondary side conduction period ta1, the synchronization signal Sync0 is at a high potential, and the reset switch 426 is in an off state. At this time, the charging power source 424 charges the sawtooth wave generating capacitor 422 to gradually increase the potential of the high voltage end of the sawtooth wave generating capacitor 422 (that is, the potential of the sawtooth wave signal Ramp). Subsequently, when entering the first primary side conduction period tb1, the synchronization signal Sync0 transitions to a low potential. At this time, the reset switch 426 is turned on, and the sawtooth wave generating capacitor 422 is rapidly discharged to form the sawtooth wave signal Ramp. Subsequently, when entering the second secondary side conduction period ta2, the synchronization signal Sync0 is reset to a high potential, and the reset switch 426 is turned off again to recharge the sawtooth generation capacitor 422.

鋸齒波訊號Ramp的電壓會透過參考偏壓源446儲存至保持電容442。參考偏壓源446所提供之一偏壓Vr會使保持電容442所儲存之最大電壓小於鋸齒波訊號Ramp之峰值電壓。在進入第一初級側導通週期tb1時,鋸齒波訊號Ramp的電位會快速降低。相較之下,由於保持電容442內的電荷是透過一具有高阻抗之洩放元件444緩慢釋放,因此,由保持電容442之高壓端所輸出之預測參考電壓訊號PS的電位會逐步緩慢降低。The voltage of the sawtooth wave signal Ramp is stored to the holding capacitor 442 through the reference bias source 446. The bias voltage Vr provided by the reference bias source 446 causes the maximum voltage stored by the holding capacitor 442 to be less than the peak voltage of the sawtooth signal Ramp. When entering the first primary side conduction period tb1, the potential of the sawtooth wave signal Ramp is rapidly lowered. In contrast, since the charge in the holding capacitor 442 is slowly released through the bleeder element 444 having a high impedance, the potential of the predicted reference voltage signal PS outputted from the high voltage terminal of the holding capacitor 442 gradually decreases gradually.

進入第二次級側導通週期ta2後,鋸齒波訊號Ramp的電位再度上升。不過,預測參考電壓訊號PS的電位依然緩慢降低。起初,鋸齒波訊號Ramp的電位仍然是低於預測參考電壓訊號PS的電位。隨著鋸齒波訊號Ramp之電位逐步上升,在一特定時點,當鋸齒波訊號Ramp的電位上升至超過預測參考電壓訊號PS的電位後,比較器462隨即產生一死區(dead time)控制訊號Comp。死區時間控制訊號Comp係用以調整同步訊號Sync0之第二次級側導通週期ta2的時間長度,以產生同步整流控制訊號SRC。After entering the second secondary side conduction period ta2, the potential of the sawtooth wave signal Ramp rises again. However, the potential of the predicted reference voltage signal PS is still slowly decreasing. Initially, the potential of the sawtooth signal Ramp is still lower than the potential of the predicted reference voltage signal PS. As the potential of the sawtooth wave signal Ramp gradually rises, at a certain time point, when the potential of the sawtooth wave signal Ramp rises above the potential of the predicted reference voltage signal PS, the comparator 462 then generates a dead time control signal Comp. The dead time control signal Comp is used to adjust the length of the second secondary side conduction period ta2 of the synchronization signal Sync0 to generate the synchronous rectification control signal SRC.

此高電位之死區時間控制訊號Comp會持續到第二初級側導通週期ta2開始。如圖中所示,同步整流控制訊號SRC之上升段的時點與同步訊號Sync0相同,不過,同步整流控制訊號SRC之下降段的時點則是由死區時間控制訊號Comp決定。This high potential dead time control signal Comp continues until the second primary side conduction period ta2 begins. As shown in the figure, the rising point of the synchronous rectification control signal SRC is the same as the synchronization signal Sync0. However, the timing of the falling portion of the synchronous rectification control signal SRC is determined by the dead time control signal Comp.

死區時間控制訊號Comp在次級側導通週期ta1,ta2,ta3內定義出死區時間td。如圖中所示,對應於第二導通週期(包括第二初級側導通週期tb2與第二次級側導通週期ta2)之死區時間是透過比較第二導通週期之預測參考電壓訊號PS與對應於第二次級側導通週期ta2之鋸齒波訊號Ramp所決定。第二導通週期之預測參考電壓訊號PS的最大電壓則是由對應於第一次級側導通週期ta1之鋸齒波訊號Ramp的峰值電壓所決定。The dead time control signal Comp defines a dead time td in the secondary side conduction period ta1, ta2, ta3. As shown in the figure, the dead time corresponding to the second on period (including the second primary side conduction period tb2 and the second secondary side conduction period ta2) is a comparison with the predicted reference voltage signal PS corresponding to the second conduction period. It is determined by the sawtooth wave signal Ramp of the second secondary side conduction period ta2. The maximum voltage of the predicted reference voltage signal PS of the second conduction period is determined by the peak voltage of the sawtooth wave signal Ramp corresponding to the first secondary side conduction period ta1.

在各個導通週期中,鋸齒波訊號Ramp的上升斜率與預測參考電壓訊號PS的下降斜率都是維持一定。因此,各個導通週期之高電位同步整流控制訊號SRC的持續時間是由前一個導通週期之鋸齒波訊號Ramp的峰值電壓所決定,也就是由前一個次級側導通週期之時間長度所決定。During each conduction period, the rising slope of the sawtooth wave signal Ramp and the falling slope of the predicted reference voltage signal PS are both maintained constant. Therefore, the duration of the high potential synchronous rectification control signal SRC of each on period is determined by the peak voltage of the sawtooth signal Ramp of the previous on period, that is, by the length of time of the previous secondary side conduction period.

鋸齒波訊號Ramp的上升斜率可透過改變鋸齒波產生電容422之電容值加以調整,預測參考電壓訊號PS的下降斜率可透過洩放元件444與保持電容442加以調整。死區時間的長短可透過改變鋸齒波訊號Ramp的上升斜率以及預測參考電壓訊號PS的下降斜率加以調整。鋸齒波產生電容422之電容值越大,洩放元件444之阻抗越大,保持電容442之電容值越大,死區時間越短。The rising slope of the sawtooth wave signal Ramp can be adjusted by changing the capacitance value of the sawtooth wave generating capacitor 422. The falling slope of the predicted reference voltage signal PS can be adjusted through the bleeder element 444 and the holding capacitor 442. The length of the dead time can be adjusted by changing the rising slope of the sawtooth signal Ramp and the falling slope of the predicted reference voltage signal PS. The larger the capacitance value of the sawtooth wave generating capacitor 422, the larger the impedance of the bleeder element 444, the larger the capacitance value of the holding capacitor 442, and the shorter the dead time.

第5圖係本發明同步整流返馳式電源轉換電路一第二實施例之電路圖。相較於第4圖之實施例中,同步整流開關35係設置於次級側繞組342與接地端之間,本實施例之同步整流開關35則是設置於次級側繞組342與輸出端VO之間。此外,相較於第4圖之實施例中,次級側同步整流控制器40是連接至輔助繞組344擷取所需的電能,本實施例之次級側同步整流控制器40則是連接至次級側繞組342,輔助繞組344亦改為串接至次級側繞組342之輸出端。雖然電路連接有所不同,不過,本實施例之次級側同步整流控制器40的運作原理與第4圖之實施例大致相同,在此不予以贅述。Fig. 5 is a circuit diagram showing a second embodiment of the synchronous rectification flyback power conversion circuit of the present invention. In the embodiment of FIG. 4, the synchronous rectification switch 35 is disposed between the secondary side winding 342 and the ground. The synchronous rectification switch 35 of the embodiment is disposed on the secondary side winding 342 and the output end VO. between. In addition, in the embodiment of FIG. 4, the secondary side synchronous rectification controller 40 is connected to the auxiliary winding 344 to extract the required electric energy, and the secondary side synchronous rectification controller 40 of the present embodiment is connected to The secondary side winding 342, the auxiliary winding 344 is also changed in series to the output of the secondary side winding 342. Although the circuit connection is different, the operation principle of the secondary side synchronous rectification controller 40 of the present embodiment is substantially the same as that of the embodiment of FIG. 4, and details are not described herein.

第8圖係本發明次級側同步整流控制器一第二實施例之電路示意圖。第9圖係相對應之控制訊號的波形圖。相較於第6圖之實施例,本實施例之鋸齒波產生器42具有一後緣觸發單元427,擷取同步訊號Sync0之後緣(Falling Edge),以產生後緣觸發脈波FTP控制重置開關426導通,使鋸齒波產生電容422放電。此外,第6圖之鋸齒波產生器42是利用同步訊號Sync0控制重置開關426進行週期性的導通,而產生非連續性的鋸齒波訊號Ramp。相較之下,本實施例利用觸發脈波FTP導通重置開關426,大幅縮短重置開關426的導通時間,而產生近似連續性的鋸齒波訊號Ramp。此次級側同步整流控制器之其他部份的運作原理與第6圖之實施例大致相同,在此不予以贅述。Figure 8 is a circuit diagram of a second embodiment of the secondary side synchronous rectification controller of the present invention. Figure 9 is a waveform diagram of the corresponding control signal. Compared with the embodiment of FIG. 6, the sawtooth wave generator 42 of the embodiment has a trailing edge triggering unit 427 for capturing the edge of the synchronization signal Sync0 to generate a trailing edge trigger pulse wave FTP control reset. Switch 426 is turned "on" to cause sawtooth generation capacitor 422 to discharge. In addition, the sawtooth wave generator 42 of FIG. 6 controls the reset switch 426 to perform periodic conduction by the synchronization signal Sync0 to generate a discontinuous sawtooth wave signal Ramp. In contrast, the present embodiment utilizes the trigger pulse wave FTP to turn on the reset switch 426 to greatly shorten the on-time of the reset switch 426 to generate an approximately continuous sawtooth wave signal Ramp. The operation of the other parts of the secondary side synchronous rectification controller is substantially the same as that of the embodiment of Fig. 6, and will not be described herein.

第10圖係本發明同步整流電源轉換電路一第三實施例之電路示意圖。本實施例係一順向式電源轉換電路。其與本發明第一實施例之返馳式電源轉換電路的差別在於,本實施例之次級側繞組542的極性與第一實施例之次級側繞組342不同,本實施例之同步整流開關55之設置位置與第一實施例之同步整流開關35不同。此同步整流開關55與次級側繞組542構成一迴路。並且,在同步整流開關55與濾波電容36之間連接有一電感56。此外,本實施例省略了第一實施例中的輔助繞組344。Figure 10 is a circuit diagram showing a third embodiment of the synchronous rectification power conversion circuit of the present invention. This embodiment is a forward power conversion circuit. The difference from the flyback power conversion circuit of the first embodiment of the present invention is that the polarity of the secondary side winding 542 of the present embodiment is different from that of the secondary side winding 342 of the first embodiment, and the synchronous rectifier switch of this embodiment The setting position of 55 is different from that of the synchronous rectification switch 35 of the first embodiment. The synchronous rectification switch 55 and the secondary side winding 542 form a loop. Further, an inductor 56 is connected between the synchronous rectification switch 55 and the filter capacitor 36. Further, the present embodiment omits the auxiliary winding 344 in the first embodiment.

其次,在本實施例中,次級側同步整流控制器60係連接至次級側整流二極體57之前端以擷取同步訊號Sync1。相較於第4圖與第5圖之實施例中,同步訊號Sync1與初級側之脈波訊號的高低電位變化恰恰相反。在本實施例中,同步訊號Sync1則是與初級側之脈波訊號的高低電位變化一致。也就是說,在初級側導通週期中,同步訊號Sync1會呈現高電位,而非低電位。Next, in the present embodiment, the secondary side synchronous rectification controller 60 is connected to the front end of the secondary side rectifying diode 57 to capture the synchronizing signal Sync1. Compared with the embodiment of FIG. 4 and FIG. 5, the synchronization signal Sync1 has the opposite change of the high and low potentials of the pulse signal on the primary side. In this embodiment, the sync signal Sync1 is consistent with the high and low potential changes of the pulse signal on the primary side. That is to say, in the primary side conduction period, the synchronization signal Sync1 will assume a high potential instead of a low potential.

第11圖顯示利用本發明之次級側同步整流控制器,將第10圖中之同步訊號Sync1轉換為死區時間控制訊號Comp以控制同步整流開關55之導通狀態之控制訊號的波形圖。不同於第9圖之實施例是採用後緣觸發的方式控制重置開關426導通,以形成鋸齒波訊號Ramp。由於本實施例之同步訊號Sync1與初級側之脈波訊號的高低電位變化一致,本實施例改以前緣(Rising Edge)觸發的方式,產生前緣觸發脈波RTP控制重置開關導通,以形成鋸齒波訊號Ramp。本實施例之死區時間控制訊號Comp與同步整流控制訊號SRC之產生原理,與第6圖及第9圖之實施例大致相同,在此不予以贅述。Fig. 11 is a view showing the waveform of the control signal for converting the sync signal Sync1 in Fig. 10 into the dead time control signal Comp to control the on state of the synchronous rectification switch 55 by the secondary side synchronous rectification controller of the present invention. The embodiment different from FIG. 9 controls the reset switch 426 to be turned on by using a trailing edge trigger to form a sawtooth wave signal Ramp. Since the synchronization signal Sync1 of the embodiment is consistent with the high and low potential changes of the pulse signal on the primary side, the Rising Edge triggering mode is generated in the embodiment to generate a leading edge trigger pulse RTP control reset switch to be turned on to form Sawtooth signal Ramp. The principle of the generation of the dead time control signal Comp and the synchronous rectification control signal SRC in this embodiment is substantially the same as the embodiment of the sixth and ninth embodiments, and will not be described herein.

本發明利用同步訊號Sync0,Sync1定義出的導通週期,產生鋸齒波訊號Ramp,搭配峰值取樣技術擷取鋸齒波訊號Ramp之峰值電壓,並設定一參考偏壓Vr,以產生死區時間控制訊號Comp。因此,本發明可以取代習知複雜的數位控制電路。其次,由於本發明搭配峰值取樣技術所擷取之峰值電壓會因應實際工作週期的長短而變化,因而可以因應實際工作週期的改變。死區時間長短,則可透過鋸齒波產生電容422、保持電容442等元件加以設定。綜上所述,本發明之次級側同步整流控制器是一種預測式的控制方式,擷取前一週期之鋸齒波訊號,以設定死區時間。因此,能適用於工作頻率偏差大、電源電壓變動範圍大的條件下,以達到高效率的電源控制。The invention utilizes the on-period defined by the synchronous signal Sync0, Sync1, generates a sawtooth wave signal Ramp, uses the peak sampling technique to capture the peak voltage of the sawtooth wave signal Ramp, and sets a reference bias voltage Vr to generate a dead time control signal Comp . Therefore, the present invention can replace the conventional complicated digital control circuit. Secondly, since the peak voltage drawn by the peak sampling technique of the present invention varies depending on the length of the actual duty cycle, it can be adapted to the actual duty cycle. The length of the dead time can be set by the sawtooth wave generating capacitor 422 and the holding capacitor 442. In summary, the secondary side synchronous rectification controller of the present invention is a predictive control method that captures the sawtooth wave signal of the previous cycle to set the dead time. Therefore, it can be applied to a high-efficiency power supply control under conditions in which the operating frequency deviation is large and the power supply voltage variation range is large.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。另外本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent. In addition, any of the objects or advantages or features of the present invention are not required to be achieved by any embodiment or application of the invention. In addition, the abstract sections and headings are only used to assist in the search of patent documents and are not intended to limit the scope of the invention.

11,31...脈寬調變控制器11,31. . . Pulse width modulation controller

12,32...主開關12,32. . . Main switch

13,33...回授裝置13,33. . . Feedback device

15,35...同步整流開關15,35. . . Synchronous rectifier switch

20...次級側同步整流控制器20. . . Secondary side synchronous rectification controller

14...變壓器14. . . transformer

141...初級側繞組141. . . Primary side winding

142...次級側繞組142. . . Secondary side winding

VIN...輸入端VIN. . . Input

VO...輸出端VO. . . Output

16,36...濾波電容16,36. . . Filter capacitor

22...時脈緩衝單元twenty two. . . Clock buffer unit

24...數位截止控制器twenty four. . . Digital cutoff controller

26...輸出驅動單元26. . . Output drive unit

242...振盪單元242. . . Oscillation unit

243...第一計數器243. . . First counter

244...第二計數器244. . . Second counter

246...限定狀態控制裝置246. . . Limited state control device

248...輸出控制單元248. . . Output control unit

CLK...計數時脈訊號CLK. . . Counting clock signals

Sync,Sync0,Sync1...同步訊號Sync, Sync0, Sync1. . . Synchronization signal

TS1...第一開關週期TS1. . . First switching cycle

TS2...第二開關週期TS2. . . Second switching cycle

TS3...第三開關週期TS3. . . Third switching cycle

DTS...死區設定端DTS. . . Dead zone setting

40...次級側同步整流控制器40. . . Secondary side synchronous rectification controller

34...變壓器34. . . transformer

341...初級側繞組341. . . Primary side winding

342...次級側繞組342. . . Secondary side winding

344...輔助繞組344. . . Auxiliary winding

42...鋸齒波產生器42. . . Sawtooth generator

44...峰值取樣單元44. . . Peak sampling unit

46...輸出控制單元46. . . Output control unit

48...輸出驅動單元48. . . Output drive unit

Ramp...鋸齒波訊號Ramp. . . Sawtooth signal

PS...預測參考電壓訊號PS. . . Prediction reference voltage signal

SRC...同步整流控制訊號SRC. . . Synchronous rectification control signal

OUT...驅動訊號OUT. . . Drive signal

Comp...死區時間控制訊號Comp. . . Dead time control signal

FTP...後緣觸發脈波FTP. . . Trailing edge triggered pulse wave

RTP...前緣觸發脈波RTP. . . Leading edge triggered pulse wave

422...鋸齒波產生電容422. . . Sawtooth generation capacitor

424...充電電源424. . . Charger

426...重置開關426. . . Reset switch

442...保持電容442. . . Holding capacitor

444...洩放元件444. . . Drain element

446...參考偏壓源446. . . Reference bias source

462...比較器462. . . Comparators

464...截止開關464. . . Cut-off switch

427...後緣觸發單元427. . . Trailing edge trigger unit

54...變壓器54. . . transformer

541...初級側繞組541. . . Primary side winding

542...次級側繞組542. . . Secondary side winding

55...同步整流開關55. . . Synchronous rectifier switch

56...電感56. . . inductance

57...整流二極體57. . . Rectifier diode

60...次級側同步整流控制器60. . . Secondary side synchronous rectification controller

第1圖係一典型具有次級側同步整流功能之電源轉換電路。Figure 1 is a typical power conversion circuit with a secondary side synchronous rectification function.

第2圖係第1圖中之數位截止控制器的方塊示意圖。Figure 2 is a block diagram of the digital cut-off controller in Figure 1.

第3圖係數位截止控制器之控制訊號的波形圖。Figure 3 shows the waveform of the control signal of the coefficient off controller.

第4圖係本發明同步整流電源轉換電路一第一實施例之電路圖。Fig. 4 is a circuit diagram showing a first embodiment of the synchronous rectification power conversion circuit of the present invention.

第5圖係本發明同步整流電源轉換電路一第二實施例之電路圖。Fig. 5 is a circuit diagram showing a second embodiment of the synchronous rectification power conversion circuit of the present invention.

第6圖係第4圖之次級側同步整流控制器一第一實施例之電路示意圖。Figure 6 is a circuit diagram of a first embodiment of the secondary side synchronous rectification controller of Figure 4;

第7圖係第6圖之同步整流控制器的控制波形圖。Fig. 7 is a control waveform diagram of the synchronous rectification controller of Fig. 6.

第8圖係本發明次級側同步整流控制器一第二實施例之電路示意圖。Figure 8 is a circuit diagram of a second embodiment of the secondary side synchronous rectification controller of the present invention.

第9圖係第8圖之次級側同步整流控制器之控制訊號一較佳實施例的波形圖。Figure 9 is a waveform diagram of a preferred embodiment of the control signal of the secondary side synchronous rectification controller of Figure 8.

第10圖係本發明同步整流電源轉換電路一第三實施例之電路示意圖。Figure 10 is a circuit diagram showing a third embodiment of the synchronous rectification power conversion circuit of the present invention.

第11圖係第10圖之次級側同步整流控制器之控制訊號一較佳實施例的波形圖。Figure 11 is a waveform diagram of a preferred embodiment of the control signal of the secondary side synchronous rectification controller of Figure 10.

31...脈寬調變控制器31. . . Pulse width modulation controller

32...主開關32. . . Main switch

33...回授裝置33. . . Feedback device

35...同步整流開關35. . . Synchronous rectifier switch

VIN...輸入端VIN. . . Input

VO...輸出端VO. . . Output

36...濾波電容36. . . Filter capacitor

Sync0...同步訊號Sync0. . . Synchronization signal

40...次級側同步整流控制器40. . . Secondary side synchronous rectification controller

34...變壓器34. . . transformer

341...初級側繞組341. . . Primary side winding

342...次級側繞組342. . . Secondary side winding

344...輔助繞組344. . . Auxiliary winding

42...鋸齒波產生器42. . . Sawtooth generator

44...峰值取樣單元44. . . Peak sampling unit

46...輸出控制單元46. . . Output control unit

48...輸出驅動單元48. . . Output drive unit

Ramp...鋸齒波訊號Ramp. . . Sawtooth signal

PS...預測參考電壓訊號PS. . . Prediction reference voltage signal

OUT...驅動訊號OUT. . . Drive signal

Claims (20)

一種次級側同步整流控制器,用以控制至少一個同步整流開關,該次級側同步整流控制器包含:一鋸齒波產生器,接收一同步訊號,以產生一鋸齒波訊號;一峰值取樣單元,擷取該鋸齒波訊號之一峰值電壓,據以產生一電壓逐步遞減之預測參考電壓訊號;以及一輸出控制單元,比較該鋸齒波訊號與該預測參考電壓訊號,以產生一死區時間控制訊號控制該同步整流開關之導通狀態,當該鋸齒波訊號之電位高於該預測參考電壓訊號之電位時,該輸出控制單元關斷該同步整流開關。A secondary side synchronous rectification controller for controlling at least one synchronous rectification switch, the secondary side synchronous rectification controller comprising: a sawtooth wave generator, receiving a synchronization signal to generate a sawtooth wave signal; and a peak sampling unit And extracting a peak voltage of the sawtooth wave signal to generate a predicted voltage reference signal whose voltage is gradually decreasing; and an output control unit comparing the sawtooth wave signal and the predicted reference voltage signal to generate a dead time control signal The conduction state of the synchronous rectification switch is controlled. When the potential of the sawtooth wave signal is higher than the potential of the predicted reference voltage signal, the output control unit turns off the synchronous rectification switch. 如申請專利範圍第1項所述之次級側同步整流控制器,其中,該鋸齒波產生器包括:一鋸齒波產生電容;一充電電源,對該鋸齒波產生電容充電,以產生該鋸齒波訊號;以及一重置開關,以洩放該鋸齒波產生電容所儲存之電荷,該重置開關係由該同步訊號所控制。The secondary side synchronous rectification controller of claim 1, wherein the sawtooth wave generator comprises: a sawtooth wave generating capacitor; and a charging power source that generates a capacitance charge to the sawtooth wave to generate the sawtooth wave And a reset switch to bleed the sawtooth wave to generate a charge stored by the capacitor, the reset relationship being controlled by the synchronous signal. 如申請專利範圍第2項所述之次級側同步整流控制器,其中,該充電電源係一定電流源或是一定電壓源。The secondary side synchronous rectification controller according to claim 2, wherein the charging power source is a certain current source or a certain voltage source. 如申請專利範圍第1項所述之次級側同步整流控制器,其中,該峰值取樣單元包括:一保持電容,用以接收該鋸齒波訊號;以及一洩放元件,用以洩放儲存於該保持電容之電荷;其中,該保持電容之一高壓端輸出該預測參考電壓訊號。The secondary side synchronous rectification controller of claim 1, wherein the peak sampling unit comprises: a holding capacitor for receiving the sawtooth wave signal; and a bleeder element for venting and storing The charge of the holding capacitor; wherein a high voltage terminal of the holding capacitor outputs the predicted reference voltage signal. 如申請專利範圍第4項所述之次級側同步整流控制器,其中,該洩放元件係一洩放阻抗或一定電流源。The secondary side synchronous rectification controller of claim 4, wherein the bleeder element is a bleeder impedance or a constant current source. 如申請專利範圍第4項所述之次級側同步整流控制器,其中,該峰值取樣單元更包括一參考偏壓源,用以拉低該保持電容之一儲存電壓,使該儲存電壓之最大值小於該鋸齒波訊號之該峰值電壓。The secondary side synchronous rectification controller of claim 4, wherein the peak sampling unit further comprises a reference bias source for lowering a storage voltage of the holding capacitor to maximize the storage voltage. The value is less than the peak voltage of the sawtooth signal. 如申請專利範圍第1項所述之次級側同步整流控制器,其中,該同步訊號係一次級側繞組之輸出訊號。The secondary side synchronous rectification controller according to claim 1, wherein the synchronous signal is an output signal of the primary side winding. 如申請專利範圍第1項所述之次級側同步整流控制器,其中,該輸出控制單元依據該死區時間控制信號與該同步訊號,產生一同步整流控制訊號控制該同步整流開關之導通狀態。The secondary side synchronous rectification controller according to claim 1, wherein the output control unit generates a synchronous rectification control signal to control an on state of the synchronous rectification switch according to the dead time control signal and the synchronization signal. 一種具有次級側同步整流功能之電源轉換電路,包含:一變壓器,該變壓器包括一初級側繞組與一次級側繞組;一同步整流開關,連接至該次級側繞組;一次級側同步整流控制器,用以控制該同步整流開關,該次級側同步整流控制器包括:一鋸齒波產生器,接收一同步訊號,以產生一鋸齒波訊號;一峰值取樣單元,擷取該鋸齒波訊號之一峰值電壓,據以產生一電壓逐步遞減之預測參考電壓訊號;以及一輸出控制單元,比較該鋸齒波訊號與該預測參考電壓訊號,以產生一死區時間控制訊號控制該同步整流開關之導通狀態,當該鋸齒波訊號之電位高於該預測參考電壓訊號之電位時,該輸出控制單元關斷該開關。A power conversion circuit with a secondary side synchronous rectification function, comprising: a transformer comprising a primary side winding and a primary side winding; a synchronous rectification switch connected to the secondary side winding; and a primary stage side synchronous rectification control And the secondary side synchronous rectification controller comprises: a sawtooth wave generator, receiving a synchronization signal to generate a sawtooth wave signal; and a peak sampling unit for capturing the sawtooth wave signal a peak voltage is generated to generate a predicted voltage reference signal whose voltage is gradually decreasing; and an output control unit compares the sawtooth wave signal and the predicted reference voltage signal to generate a dead time control signal to control the conduction state of the synchronous rectifier switch When the potential of the sawtooth wave signal is higher than the potential of the predicted reference voltage signal, the output control unit turns off the switch. 如申請專利範圍第9項所述之電源轉換電路,其中,該鋸齒波產生器包括:一鋸齒波產生電容;一充電電源,對該鋸齒波產生電容充電,以產生該鋸齒波訊號;以及一重置開關,以洩放該鋸齒波產生電容所儲存之電荷,該重置開關係由該同步訊號所控制。The power conversion circuit of claim 9, wherein the sawtooth generator comprises: a sawtooth wave generating capacitor; a charging power source that generates a capacitance charge to the sawtooth wave to generate the sawtooth wave signal; The switch is reset to bleed the sawtooth wave to generate a charge stored by the capacitor, and the reset relationship is controlled by the sync signal. 如申請專利範圍第10項所述之電源轉換電路,其中,該充電電源係一定電流源或是一定電壓源。The power conversion circuit of claim 10, wherein the charging power source is a constant current source or a certain voltage source. 如申請專利範圍第9項所述之電源轉換電路,其中,該峰值取樣單元包括:一保持電容,用以接收該鋸齒波訊號;以及一洩放元件,用以洩放儲存於該保持電容之電荷;其中,該保持電容之一高壓端輸出該預測參考電壓訊號。The power conversion circuit of claim 9, wherein the peak sampling unit comprises: a holding capacitor for receiving the sawtooth wave signal; and a bleeder element for venting and storing the holding capacitor a charge; wherein a high voltage terminal of the holding capacitor outputs the predicted reference voltage signal. 如申請專利範圍第12項所述之電源轉換電路,其中,該洩放元件係一洩放阻抗或一定電流源。The power conversion circuit of claim 12, wherein the bleeder element is a bleeder impedance or a constant current source. 如申請專利範圍第12項所述之電源轉換電路,其中,該峰值取樣單元更包括一參考偏壓源,用以拉低該保持電容之一儲存電壓,使該儲存電壓之最大值小於該鋸齒波訊號之該峰值電壓。The power conversion circuit of claim 12, wherein the peak sampling unit further comprises a reference bias source for lowering a storage voltage of the holding capacitor so that the maximum value of the storage voltage is less than the sawtooth The peak voltage of the wave signal. 如申請專利範圍第9項所述之電源轉換電路,其中,該次級側同步整流控制器包括一電源輸入端,該電源輸入端係連接至一次級側輔助繞組。The power conversion circuit of claim 9, wherein the secondary side synchronous rectification controller comprises a power input terminal connected to the primary side auxiliary winding. 如申請專利範圍第9項所述之同步整流控制器,其中,該同步訊號係該次級測繞組之一輸出訊號。The synchronous rectification controller of claim 9, wherein the synchronization signal is one of the output signals of the secondary winding. 一種預測式同步整流控制方法,用以控制一交換式電源轉換電路之至少一同步整流開關,至少包括下列步驟:依據一同步訊號,產生一週期相同之鋸齒波訊號;依據該鋸齒波訊號之該峰值電壓,在該鋸齒波訊號之下一週期,產生一電壓逐步遞減之預測參考電壓訊號;以及比較該預測參考電壓訊號與該下一週期之該鋸齒波訊號,以產生一死區時間控制訊號控制該同步整流開關之導通狀態。A predictive synchronous rectification control method for controlling at least one synchronous rectification switch of a switched power conversion circuit includes at least the following steps: generating a sawtooth wave signal of the same period according to a synchronization signal; according to the sawtooth wave signal The peak voltage, under a period of the sawtooth wave signal, generates a predicted voltage reference signal whose voltage is gradually decreasing; and compares the predicted reference voltage signal with the sawtooth wave signal of the next cycle to generate a dead time control signal control The on state of the synchronous rectification switch. 如申請專利範圍第17項所述之預測式同步整流控制方法,其中,該預測參考電壓訊號之一最大電壓小於相對應之該鋸齒波訊號之該峰值電壓。The predictive synchronous rectification control method according to claim 17, wherein a maximum voltage of one of the predicted reference voltage signals is smaller than a corresponding peak voltage of the corresponding sawtooth wave signal. 如申請專利範圍第17項所述之預測式同步整流控制方法,其中,利用該死區時間控制訊號控制該同步整流開關之步驟包括:擷取該同步訊號,該同步訊號定義有至少一次級側導通週期;利用該死區時間控制訊號,縮短相對應之該同步訊號之該次級側導通週期之時間長度;以及利用調整後之該同步訊號控制該同步整流開關之導通狀態。The predictive synchronous rectification control method of claim 17, wherein the step of controlling the synchronous rectification switch by using the dead time control signal comprises: capturing the synchronization signal, wherein the synchronization signal defines at least one stage side conduction. a period of time; using the dead time control signal to shorten a length of time of the secondary side conduction period of the corresponding synchronization signal; and controlling the conduction state of the synchronous rectification switch by using the adjusted synchronization signal. 如申請專利範圍第17項所述之預測式同步整流控制方法,其中,比較該預測參考電壓訊號與該下一週期之該鋸齒波訊號以產生一死區時間控制訊號之步驟,係於該預測參考電壓訊號之電位低於該下一週期之該鋸齒波訊號時,產生該死區時間控制訊號。The predictive synchronous rectification control method of claim 17, wherein the step of comparing the predicted reference voltage signal with the sawtooth signal of the next period to generate a dead time control signal is based on the prediction reference The dead time control signal is generated when the potential of the voltage signal is lower than the sawtooth signal of the next cycle.
TW099123722A 2010-07-20 2010-07-20 Predicting-type synchronous rectification controller, switching power converter with the predicting-type synchronous rectification controller and controlling method thereof TWI401866B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW099123722A TWI401866B (en) 2010-07-20 2010-07-20 Predicting-type synchronous rectification controller, switching power converter with the predicting-type synchronous rectification controller and controlling method thereof
US13/092,944 US8576587B2 (en) 2010-07-20 2011-04-23 Predictive synchronous rectification controller, switching power converter with predictive synchronous rectification controller and controlling method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099123722A TWI401866B (en) 2010-07-20 2010-07-20 Predicting-type synchronous rectification controller, switching power converter with the predicting-type synchronous rectification controller and controlling method thereof

Publications (2)

Publication Number Publication Date
TW201206030A TW201206030A (en) 2012-02-01
TWI401866B true TWI401866B (en) 2013-07-11

Family

ID=45493492

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099123722A TWI401866B (en) 2010-07-20 2010-07-20 Predicting-type synchronous rectification controller, switching power converter with the predicting-type synchronous rectification controller and controlling method thereof

Country Status (2)

Country Link
US (1) US8576587B2 (en)
TW (1) TWI401866B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI514741B (en) * 2014-01-27 2015-12-21 Leadtrend Tech Corp Synchronous rectification control method and synchronous rectification controller capable of providing a programmable dead time
TWI562522B (en) * 2014-12-30 2016-12-11 Monolithic Power Systems Inc Switching converter and its controller and control method
US9787198B1 (en) 2016-05-23 2017-10-10 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods with prediction mechanisms for synchronization rectifier controllers
TWI627826B (en) * 2017-05-16 2018-06-21 力林科技股份有限公司 Power conversion apparatus and synchronous rectification controller thereof
US10063153B2 (en) 2012-04-12 2018-08-28 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms
US10148189B2 (en) 2017-02-24 2018-12-04 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods with timing control for synchronization rectifier controllers
US10193451B2 (en) 2012-04-12 2019-01-29 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms
US10411605B2 (en) 2012-04-12 2019-09-10 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms
US10622903B2 (en) 2012-04-12 2020-04-14 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms
US11757366B2 (en) 2020-05-29 2023-09-12 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for synchronous rectification of power supply systems
US11764697B2 (en) 2020-01-20 2023-09-19 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for controlling synchronous rectification

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140001674A (en) * 2012-06-28 2014-01-07 삼성전기주식회사 Pwm control circuit for dc-dc converter, flyback converter and method for pwm controlling dc-dc converter
CN102723856B (en) * 2012-07-02 2014-06-25 矽力杰半导体技术(杭州)有限公司 Synchronous rectifier control circuit and switch power supply employing same
TWI497892B (en) * 2012-07-13 2015-08-21 Tpv Electronics Fujian Co Ltd Liquid crystal display products and its flyback power conversion device
CN102882377B (en) * 2012-09-20 2014-11-05 矽力杰半导体技术(杭州)有限公司 Synchronous rectifying control method and circuit
TWI504114B (en) * 2013-09-03 2015-10-11 System General Corp Control circuits and synchronous rectifying control circuits
US9584035B2 (en) 2013-11-12 2017-02-28 Fairchild Semiconductor Corporation Dual-edge tracking synchronous rectifier control techniques for a resonant converter
TWI555320B (en) * 2014-01-27 2016-10-21 葉文中 Method for providing switch-timing, synchronous rectifier controller, and adaptive timing controller
CN104901564B (en) * 2014-03-07 2017-09-26 通嘉科技股份有限公司 Switching sequence provides method, synchronous rectifying controller and adaptability timing controller
US9479067B2 (en) 2014-04-01 2016-10-25 Infineon Technologies Austria Ag System and method for a switched-mode power supply
TWI569562B (en) * 2015-11-16 2017-02-01 通嘉科技股份有限公司 Method for controlling a dead time of a secondary side of a power converter
CN106817017B (en) * 2015-11-30 2019-10-18 通嘉科技股份有限公司 The method for controlling the secondary side idle time of power adapter
TWI583119B (en) 2016-01-14 2017-05-11 通嘉科技股份有限公司 Synchronous rectifier applied to a power converter and operation method thereof
US10680526B2 (en) * 2017-01-13 2020-06-09 Analog Devices Global Power transfer and feedback across a common isolator
US10063159B1 (en) * 2017-06-30 2018-08-28 Dialog Semiconductor Inc. Adaptive synchronous rectifier sensing deglitch
US9917525B1 (en) * 2017-08-16 2018-03-13 Nxp B.V. SMPS with synchronous rectification having deadtime responsive to peak voltage
TWI663825B (en) * 2017-12-01 2019-06-21 宏碁股份有限公司 Power conversion apparatus and control method
IT201800004743A1 (en) * 2018-04-20 2019-10-20 SYNCHRONOUS RECTIFIER CIRCUIT, CORRESPONDING DEVICE AND PROCEDURE
TWI711244B (en) * 2019-09-27 2020-11-21 通嘉科技股份有限公司 Power supplies
US11621645B2 (en) 2020-06-04 2023-04-04 Stmicroelectronics International N.V. Methods and device to drive a transistor for synchronous rectification
US11606041B2 (en) * 2021-06-24 2023-03-14 Halo Microelectronics International Synchronous rectifier continuous conduction mode detection apparatus and control method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945282A (en) * 1987-12-10 1990-07-31 Hitachi, Ltd. Image display panel having antistatic film with transparent and electroconductive properties and process for processing same
US6011703A (en) * 1997-07-30 2000-01-04 Lucent Technologies Inc. Self-synchronized gate drive for power converter employing self-driven synchronous rectifier and method of operation thereof
US7075346B1 (en) * 2004-11-12 2006-07-11 National Semiconductor Corporation Synchronized frequency multiplier for multiple phase PWM control switching regulator without using a phase locked loop
TWM333715U (en) * 2008-01-22 2008-06-01 Hipro Electronics Taiwan Co Ltd Control circuit of synchronous rectification
TWM334571U (en) * 2007-09-21 2008-06-11 Glacialtech Inc Forward converter with self-driven synchronous rectifier
TW200840193A (en) * 2007-03-27 2008-10-01 Linear Techn Inc Synchronous rectifier control for synchronous boost converter
TW200924368A (en) * 2007-11-23 2009-06-01 System General Corp A synchronous regulation circuit for a power converter
US20090257250A1 (en) * 2008-04-15 2009-10-15 Green Mark Technology Inc. Synchronous rectifier dc/dc converters using a controlled-coupling sense winding
TW201018068A (en) * 2008-10-27 2010-05-01 Green Mark Technology Inc Synchronous rectifier DC/DC converters using a controlled-coupling sense winding

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945292A (en) * 1988-08-08 1990-07-31 Unisys Corp. Dynamic vertical height control circuit
US6490179B1 (en) * 2001-10-31 2002-12-03 Innoveta Technologies Post-regulated power supply
US7595624B2 (en) * 2005-11-30 2009-09-29 Texas Instruments Incorporated Slope compensation for switching regulator
US7688602B2 (en) * 2008-04-29 2010-03-30 Infineon Technologies Austria Ag Synchronous rectifier control circuit and method
JP2010172092A (en) * 2009-01-21 2010-08-05 Funai Electric Co Ltd Synchronous rectifier circuit
US8711581B2 (en) * 2009-01-29 2014-04-29 Fairchild Korea Semiconductor Ltd. Synchronous rectifier network unit circuit and method
US8310847B2 (en) * 2009-08-04 2012-11-13 Niko Semiconductor Co., Ltd. Secondary side post regulator of flyback power converter with multiple outputs

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945282A (en) * 1987-12-10 1990-07-31 Hitachi, Ltd. Image display panel having antistatic film with transparent and electroconductive properties and process for processing same
US6011703A (en) * 1997-07-30 2000-01-04 Lucent Technologies Inc. Self-synchronized gate drive for power converter employing self-driven synchronous rectifier and method of operation thereof
US7075346B1 (en) * 2004-11-12 2006-07-11 National Semiconductor Corporation Synchronized frequency multiplier for multiple phase PWM control switching regulator without using a phase locked loop
TW200840193A (en) * 2007-03-27 2008-10-01 Linear Techn Inc Synchronous rectifier control for synchronous boost converter
TWM334571U (en) * 2007-09-21 2008-06-11 Glacialtech Inc Forward converter with self-driven synchronous rectifier
TW200924368A (en) * 2007-11-23 2009-06-01 System General Corp A synchronous regulation circuit for a power converter
TWM333715U (en) * 2008-01-22 2008-06-01 Hipro Electronics Taiwan Co Ltd Control circuit of synchronous rectification
US20090257250A1 (en) * 2008-04-15 2009-10-15 Green Mark Technology Inc. Synchronous rectifier dc/dc converters using a controlled-coupling sense winding
TW201018068A (en) * 2008-10-27 2010-05-01 Green Mark Technology Inc Synchronous rectifier DC/DC converters using a controlled-coupling sense winding

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10411604B2 (en) 2012-04-12 2019-09-10 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms
US10622902B2 (en) 2012-04-12 2020-04-14 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms
US10193451B2 (en) 2012-04-12 2019-01-29 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms
US10411605B2 (en) 2012-04-12 2019-09-10 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms
US11588405B2 (en) 2012-04-12 2023-02-21 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms
US10063153B2 (en) 2012-04-12 2018-08-28 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms
US10122284B2 (en) 2012-04-12 2018-11-06 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms
US11581815B2 (en) 2012-04-12 2023-02-14 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms
US11764684B2 (en) 2012-04-12 2023-09-19 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms
US10622903B2 (en) 2012-04-12 2020-04-14 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for regulating power conversion systems with output detection and synchronized rectifying mechanisms
TWI514741B (en) * 2014-01-27 2015-12-21 Leadtrend Tech Corp Synchronous rectification control method and synchronous rectification controller capable of providing a programmable dead time
TWI562522B (en) * 2014-12-30 2016-12-11 Monolithic Power Systems Inc Switching converter and its controller and control method
US10483856B2 (en) 2016-05-23 2019-11-19 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods with prediction mechanisms for synchronization rectifier controllers
TWI608695B (en) * 2016-05-23 2017-12-11 System controller and method for regulating power converter
US9787198B1 (en) 2016-05-23 2017-10-10 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods with prediction mechanisms for synchronization rectifier controllers
US10148189B2 (en) 2017-02-24 2018-12-04 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods with timing control for synchronization rectifier controllers
US10651747B2 (en) 2017-02-24 2020-05-12 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods with timing control for synchronization rectifier controllers
TWI627826B (en) * 2017-05-16 2018-06-21 力林科技股份有限公司 Power conversion apparatus and synchronous rectification controller thereof
US11764697B2 (en) 2020-01-20 2023-09-19 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for controlling synchronous rectification
US11757366B2 (en) 2020-05-29 2023-09-12 On-Bright Electronics (Shanghai) Co., Ltd. Systems and methods for synchronous rectification of power supply systems

Also Published As

Publication number Publication date
US20120020123A1 (en) 2012-01-26
US8576587B2 (en) 2013-11-05
TW201206030A (en) 2012-02-01

Similar Documents

Publication Publication Date Title
TWI401866B (en) Predicting-type synchronous rectification controller, switching power converter with the predicting-type synchronous rectification controller and controlling method thereof
TWI499191B (en) Active clamp circuits
CN102377357B (en) Secondary synchronous rectification controller and power switching circuit thereof
TWI578675B (en) Power converter and control method using same
CN106059304B (en) Switch with efficient voltage reduction using secondary switches
JP5463759B2 (en) Switching power supply device and switching power supply control circuit
TWI448063B (en) Controllers and switching methods for power converters and controlling methods for quasi-resonant power converters
US8665611B2 (en) Controller for a resonant switched-mode power converter
JP6069957B2 (en) Switching power supply
TWI556545B (en) Charge control circuit, flyback power conversion system and charging control method
CN108880296B (en) Power supply conversion system
JP5181014B2 (en) Circuit regulator and its synchronous timing pulse generation circuit
CN109428471B (en) Method and apparatus for bi-directional switch mode power supply with fixed frequency operation
CN113489328B (en) Zero-voltage switching control circuit, flyback power supply circuit and control method thereof
JP2010098935A (en) Switching power supply device, and circuit and method for controlling the same
KR101542645B1 (en) On time sampling prevention
CN111585444A (en) Switching converter and method for operating a switching converter
Hsieh et al. A primary-side-control quasi-resonant flyback converter with tight output voltage regulation and self-calibrated valley switching
EP4266564A1 (en) Control circuit for isolated power supply, and isolated power supply and control method therefor
TWI650927B (en) Zero voltage switching flyback converter for primary switch turn-off transitions
CN111162676B (en) Flyback power supply circuit and zero voltage switching control circuit and control method thereof
US10256717B2 (en) Zero current detection circuit for converter soft switching control
TWI653813B (en) Forced zero voltage switching flyback converter and using method
JP6554942B2 (en) Switching power supply
Wu et al. Quasi-resonant flyback converter with new valley voltage detection mechanism