TWI400875B - Device for controlling a motor speed - Google Patents

Device for controlling a motor speed Download PDF

Info

Publication number
TWI400875B
TWI400875B TW099100771A TW99100771A TWI400875B TW I400875 B TWI400875 B TW I400875B TW 099100771 A TW099100771 A TW 099100771A TW 99100771 A TW99100771 A TW 99100771A TW I400875 B TWI400875 B TW I400875B
Authority
TW
Taiwan
Prior art keywords
target
motor
rotational speed
speed
signal
Prior art date
Application number
TW099100771A
Other languages
Chinese (zh)
Other versions
TW201029311A (en
Inventor
Kazumasa Takai
Original Assignee
Sanyo Electric Co
Sanyo Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co, Sanyo Semiconductor Co Ltd filed Critical Sanyo Electric Co
Publication of TW201029311A publication Critical patent/TW201029311A/en
Application granted granted Critical
Publication of TWI400875B publication Critical patent/TWI400875B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/06Arrangements for speed regulation of a single motor wherein the motor speed is measured and compared with a given physical value so as to adjust the motor speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Description

電動機速度控制裝置Motor speed control device

本發明係有關一種採用反饋控制來控制電動機的旋轉速度的電動機速度控制裝置。The present invention relates to a motor speed control device that uses feedback control to control the rotational speed of a motor.

能夠從電動機模組獲得週期按照電動機的旋轉速度ω發生變化的脈衝信號PI從而進行電動機的速度控制。電動機速度控制裝置計測該脈衝信號中出現的脈衝的週期τP ,並根據該週期檢測電動機的旋轉速度ω,從而進行反饋(feed back)控制使旋轉速度ω成為目標值ωTThe speed control of the motor can be performed by obtaining a pulse signal PI whose period changes in accordance with the rotational speed ω of the motor from the motor module. The motor speed control device measures the period τ P of the pulse appearing in the pulse signal, and detects the rotational speed ω of the motor based on the period, thereby performing feedback back control so that the rotational speed ω becomes the target value ω T .

若能從電動機獲得例如在相互相差90°的旋轉位置同步而生成的兩種脈衝信號PI,則在電動機速度控制裝置中能夠辨別電動機的旋轉方向。If the two kinds of pulse signals PI generated by synchronizing the rotational positions that are different from each other by 90° are obtained from the electric motor, the rotational direction of the electric motor can be discriminated in the motor speed control device.

專利文獻1:日本特開平8-126374號公報Patent Document 1: Japanese Patent Laid-Open No. Hei 8-126374

但是,在僅能從電動機獲得一種脈衝信號PI的情況下,即使能根據脈衝週期τP 檢測出旋轉速度的大小,也不能辨別旋轉速度的方向。因此,例如有以下的問題:因為脈衝信號PI中產生的顫動(chattering)等,一旦在脈衝週期τP 的測量值中產生誤差,則有可能脫離向目標旋轉速度的控制,將電動機導向反轉失控。例如,在以正方向且低速的目標旋轉速度旋轉的狀態下,若將旋轉速度錯誤地檢測為比實際大的值,則反饋控制會要使旋轉速度返回到目標旋轉速度。結果,從實際低速的旋轉狀態向旋轉速度為負的方向移動,引起旋轉方向的反轉。在該反轉的旋轉速度的絕對值比目標旋轉速度的絕對值大時,電動機速度控制裝置識別為正方向且比目標旋轉速度快的旋轉狀態,繼續使旋轉速度向負方向進一步移動。結果,旋轉速度達到負方向的最大值,電動機成為反轉失控狀態。However, in the case where only one pulse signal PI can be obtained from the motor, even if the magnitude of the rotational speed can be detected based on the pulse period τ P , the direction of the rotational speed cannot be discerned. Therefore, for example, there is a problem that, due to chattering or the like generated in the pulse signal PI, once an error occurs in the measured value of the pulse period τ P , there is a possibility that the control to the target rotational speed is released, and the motor is reversed. out of control. For example, in a state where the rotation speed is erroneously detected to be larger than the actual value in a state of rotating at the target rotation speed in the forward direction and the low speed, the feedback control returns the rotation speed to the target rotation speed. As a result, it moves from the actual low-speed rotation state to the negative rotation speed, causing the rotation direction to reverse. When the absolute value of the reverse rotation speed is larger than the absolute value of the target rotation speed, the motor speed control device recognizes the rotation state that is the positive direction and is faster than the target rotation speed, and continues to further move the rotation speed in the negative direction. As a result, the rotation speed reaches the maximum value in the negative direction, and the motor becomes the reverse runaway state.

本發明是為了解決上述問題點而研創者,目的是提供一種能夠僅根據一種脈衝信號檢測反轉失控狀態並使其恢復為正常狀態的電動機速度控制裝置。The present invention has been made in order to solve the above problems, and an object of the invention is to provide a motor speed control device capable of detecting a reverse runaway state based on only one type of pulse signal and returning it to a normal state.

本發明的電動機速度控制裝置係具有:前饋控制部,其輸入設定電動機的目標旋轉速度的大小和方向的目標設定值,並根據前述目標設定值生成目標指令信號,進行使前述電動機的旋轉速度成為前述目標旋轉速度的前饋控制;反饋控制部,其生成對應於當前的前述旋轉速度與前述目標旋轉速度之差的誤差信號,並根據前述誤差信號生成補償指令信號,進行將前述旋轉速度調節為前述目標旋轉速度的反饋控制;驅動控制部,其生成將前述目標指令信號和前述補償指令信號合成後的合成信號,根據該合成信號控制前述電動機的驅動;以及反轉失控判斷部,其將前述補償指令信號或前述合成信號作為監視對象信號,在該監視對象信號的對前述旋轉速度的調節方向與前述目標旋轉速度的方向相反、且該監視對象信號的強度超過了預定的臨限值的狀態持續了預定期間時,判斷為前述電動機 處於在與前述目標旋轉速度相反方向上失控的反轉失控狀態,前述反轉失控判斷部具有週期測量部,該週期測量部對在前述電動機進行一次旋轉期間與電動機的旋轉同步地輸出的週期信號的週期進行判定,根據前述週期測量部的輸出值判定前述電動機的旋轉速度的大小。The motor speed control device according to the present invention includes a feedforward control unit that inputs a target set value for setting a magnitude and a direction of a target rotational speed of the motor, and generates a target command signal based on the target set value to perform a rotational speed of the motor. a feedforward control that is the target rotational speed; a feedback control unit that generates an error signal corresponding to a difference between the current rotational speed and the target rotational speed, and generates a compensation command signal based on the error signal to perform the rotational speed adjustment a feedback control for the target rotation speed; a drive control unit that generates a composite signal obtained by combining the target command signal and the compensation command signal, controls driving of the motor based on the composite signal; and a reverse runaway determination unit that The compensation command signal or the composite signal is a monitoring target signal, and the direction of adjustment of the rotation speed of the monitoring target signal is opposite to the direction of the target rotation speed, and the intensity of the monitoring target signal exceeds a predetermined threshold value. The state continues When the predetermined period, it is determined that the motor In a reverse runaway state that is out of control in a direction opposite to the target rotational speed, the reverse runaway determination unit includes a cycle measuring unit that outputs a periodic signal synchronized with the rotation of the motor during one rotation of the motor. The cycle is determined, and the magnitude of the rotational speed of the motor is determined based on the output value of the cycle measuring unit.

電動機速度控制裝置從電動機能夠知道其旋轉速度的大小但是不能直接知道其旋轉的方向。另一方面,電動機速度控制裝置知道目標旋轉速度的方向,並且根據補償指令信號或合成信號也知道要使旋轉速度向哪個方向以怎樣程度的強度變化。根據本發明,利用從這些目標旋轉速度以及補償指令信號或合成信號掌握的資訊,對於反轉失控狀態,根據旋轉速度的調節方向與目標旋轉速度的方向相反且對旋轉速度的調節的強度非常大的狀態繼續的情況,能夠推斷是否處於反轉失控狀態。反轉失控狀態起因於反饋控制。本發明的電動機速度控制裝置檢測到反轉失控狀態時,能夠對電動機進行制動從而脫離反轉失控狀態,並且迅速地恢復到可以反饋控制的狀態從而恢復正常的控制狀態。The motor speed control device can know the magnitude of its rotational speed from the motor but cannot directly know the direction of its rotation. On the other hand, the motor speed control device knows the direction of the target rotational speed, and also knows to what extent the rotational speed is to be changed in accordance with the compensation command signal or the composite signal. According to the present invention, with information grasped from these target rotational speeds and compensation command signals or composite signals, for the reverse runaway state, the direction of adjustment of the rotational speed is opposite to the direction of the target rotational speed and the intensity of the adjustment of the rotational speed is very large. In the case where the state continues, it can be inferred whether or not the state is reversed. The reverse runaway state results from feedback control. When the motor speed control device of the present invention detects the reverse runaway state, the motor can be braked to be out of the reverse runaway state, and quickly returned to the state that can be feedback controlled to restore the normal control state.

以下,根據圖式說明本發明的實施的形態(以下稱為實施形態)。Hereinafter, an embodiment of the present invention (hereinafter referred to as an embodiment) will be described based on the drawings.

[裝置的構成][Configuration of device]

第1圖是用於說明實施形態的電動機速度控制裝置20的功能性構成的概略方塊圖。電動機速度控制裝置20由MPU(Micro Processing Unit;微處理單元)22設定控制目標值等參數從而動作,並生成給電動機驅動電路24的PWM(Pulse Width Modulation;脈寬調變)信號。電動機驅動電路24具有H橋接電路,由H橋接電路將來自電動機驅動電路24的PWM信號轉換為給電動機模組26的驅動信號。電動機模組26包括DC電動機、驅動對象機構以及編碼器(encoder)。驅動對象機構例如是照相機的變焦機構。DC電動機能夠以基本上與來自電動機驅動電路24的驅動信號的電壓成比例的轉速旋轉,並按照電壓的極性來切換旋轉方向。編碼器直接地、或根據驅動對象機構的驅動量而間接地檢測DC電動機的旋轉量。編碼器按DC電動機的每個預定的旋轉角度生成脈衝,並將其作為脈衝信號PI輸入到電動機速度控制裝置20。Fig. 1 is a schematic block diagram for explaining a functional configuration of a motor speed control device 20 according to the embodiment. The motor speed control device 20 is operated by an MPU (Micro Processing Unit) 22 to set a parameter such as a control target value, and generates a PWM (Pulse Width Modulation) signal to the motor drive circuit 24. The motor drive circuit 24 has an H-bridge circuit that converts the PWM signal from the motor drive circuit 24 into a drive signal to the motor module 26 by an H-bridge circuit. The motor module 26 includes a DC motor, a drive target mechanism, and an encoder. The drive target mechanism is, for example, a zoom mechanism of the camera. The DC motor is rotatable at a rotational speed substantially proportional to the voltage of the drive signal from the motor drive circuit 24, and switches the direction of rotation in accordance with the polarity of the voltage. The encoder indirectly detects the amount of rotation of the DC motor directly or according to the amount of driving of the drive target mechanism. The encoder generates a pulse for each predetermined rotation angle of the DC motor and inputs it as a pulse signal PI to the motor speed control device 20.

電動機速度控制裝置20具有驅動目標暫存器30、目標計數值暫存器32、控制暫存器34、前饋(feed forward)濾波器36、脈衝週期測量部38、計數時脈生成電路40、比較電路42、反饋濾波器44、合成電路46、PWM信號產生電路48以及匯流排(bus)50。第2圖是該電動機速度控制裝置20中的驅動目標暫存器30、前饋濾波器36、反饋濾波器44以及合成電路46的方塊線圖。The motor speed control device 20 has a drive target register 30, a target count value register 32, a control register 34, a feed forward filter 36, a pulse period measuring unit 38, a count clock generation circuit 40, Comparison circuit 42, feedback filter 44, synthesis circuit 46, PWM signal generation circuit 48, and bus 50. 2 is a block diagram of the drive target register 30, the feedforward filter 36, the feedback filter 44, and the synthesizing circuit 46 in the motor speed control device 20.

驅動目標暫存器30和前饋濾波器36構成前饋控制部,該前饋控制部生成根據目標旋轉速度ωT 而決定的目標指令信號,並藉由前饋控制使電動機的旋轉速度成為目標旋轉速度。The drive target register 30 and the feedforward filter 36 constitute a feedforward control unit that generates a target command signal determined based on the target rotational speed ω T and targets the rotational speed of the motor by feedforward control spinning speed.

驅動目標暫存器30記憶根據電動機的目標旋轉速度ωT 而設定的目標設定值Kr。作為目標設定值Kr,設定對與目標旋轉速度ωT 的大小成比例的絕對值賦予與目標旋轉速度ωT 的方向(旋轉方向)相對應的符號的值。目標設定值Kr藉由MPU 22存儲於驅動目標暫存器30。The drive target register 30 memorizes the target set value Kr set in accordance with the target rotational speed ω T of the motor. A target setting value Kr, given set value proportional to the magnitude of the absolute value of the target rotational speed ω T and the target rotational speed ω T direction (rotational direction) should be relatively symbols. The target set value Kr is stored in the drive target register 30 by the MPU 22.

前饋濾波器36根據驅動目標暫存器30中存儲的目標設定值Kr生成目標指令信號。如第2圖所示,前饋濾波器36具有濾波器60和乘法器62,該濾波器60具有與作為控制對象的電動機相對應的傳遞函數(transfer function)。從驅動目標暫存器30讀出的目標設定值Kr經由濾波器60輸入至乘法器62。在電動機速度控制裝置20中,雖然目標旋轉速度ωT 能夠可變設定,但是乘法器62的乘法係數(增益)Ks設為不依存於該設定為可變的目標旋轉速度ωT 的固定值。乘法器62對與目標設定值Kr相對應的濾波器60的輸出信號乘以Ks從而生成目標指令信號。The feedforward filter 36 generates a target command signal based on the target set value Kr stored in the drive target register 30. As shown in Fig. 2, the feedforward filter 36 has a filter 60 and a multiplier 62 having a transfer function corresponding to the motor to be controlled. The target set value Kr read out from the drive target register 30 is input to the multiplier 62 via the filter 60. In the motor speed control device 20, although the target rotational speed ω T can be variably set, the multiplication coefficient (gain) Ks of the multiplier 62 is set to a fixed value that does not depend on the target rotational speed ω T that is set to be variable. The multiplier 62 multiplies the output signal of the filter 60 corresponding to the target set value Kr by Ks to generate a target command signal.

Ks可以決定為對目標旋轉速度ωT 預先設定的可調節範圍的上限值ωMAX 。在該情況下,作為目標設定值Kr,設定用目標旋轉速度ωT 除以設定上限值ωMAX 所得到的相對值。Ks can be determined as an upper limit value ω MAX of an adjustable range that is preset for the target rotational speed ω T . In this case, as the target set value Kr, the relative value obtained by dividing the target rotational speed ω T by the set upper limit value ω MAX is set.

目標計數值暫存器32、脈衝週期測量部38以及反饋濾波器44構成反饋控制部,生成對應於當前的旋轉速度ω與目標旋轉速度ωT 之差的誤差信號Ve,並根據該誤差信號Ve生成補償指令信號,從而進行使旋轉速度ω接近目標旋轉速度ωT 的反饋控制。The target count value register 32, the pulse period measuring unit 38, and the feedback filter 44 constitute a feedback control unit that generates an error signal Ve corresponding to the difference between the current rotational speed ω and the target rotational speed ω T , and based on the error signal Ve The compensation command signal is generated to perform feedback control that causes the rotational speed ω to approach the target rotational speed ω T .

脈衝週期測量部38輸入來自電動機模組26的脈衝信號PI,檢測脈衝信號PI中出現的脈衝。該脈衝係基本上與電動機的旋轉相應地生成,其脈衝週期τP 與電動機的旋轉速度ω成反比例地變化。脈衝週期測量部38用計數時脈(基準時脈)CLK計測該脈衝週期τP 。即,脈衝週期測量部38以當前的旋轉速度ω下的脈衝週期τP 對計數時脈CLK進行計數,求得相當於脈衝週期τP 的測量計數值C。The pulse period measuring unit 38 receives the pulse signal PI from the motor module 26, and detects a pulse appearing in the pulse signal PI. This pulse is basically generated in accordance with the rotation of the motor, and the pulse period τ P changes inversely proportional to the rotational speed ω of the motor. The pulse period measuring unit 38 measures the pulse period τ P by the count clock (reference clock) CLK. In other words, the pulse period measuring unit 38 counts the count clock CLK at the pulse period τ P at the current rotational speed ω, and obtains the measured count value C corresponding to the pulse period τ P .

計數時脈生成電路40使具有預定頻率的主時脈(master clock)分頻從而生成計數時脈CLK,並提供給脈衝週期測量部38。計數時脈生成電路40根據電動機的目標旋轉速度ωT 使計數時脈CLK的頻率FC 變化,使與目標旋轉速度ωT 相對應的脈衝週期τP 下的脈衝週期測量部38的計數值C成為不依存於目標旋轉速度ωT 的固定的目標計數值CN 。例如,計數時脈生成電路40利用驅動目標暫存器30記憶的目標設定值Kr,藉由與目標設定值Kr成比例地改變頻率FC ,能夠使目標計數值CN 保持一定。The count clock generation circuit 40 divides the master clock having a predetermined frequency to generate the count clock CLK, and supplies it to the pulse period measuring unit 38. The count clock generation circuit 40 changes the frequency F C of the count clock CLK in accordance with the target rotational speed ω T of the motor, and causes the count value C of the pulse period measuring unit 38 at the pulse period τ P corresponding to the target rotational speed ω T . It becomes a fixed target count value C N that does not depend on the target rotational speed ω T . For example, the count clock generation circuit 40 can keep the target count value C N constant by changing the frequency F C in proportion to the target set value Kr by using the target set value Kr stored in the drive target register 30.

目標計數值暫存器32被設定目標計數值CN 。比較電路42求得從脈衝週期測量部38輸出的測量計數值C與目標計數值暫存器32記憶的目標計數值CN 之差(C-CN ),生成與該差相對應的誤差信號Ve。The target count value register 32 is set to the target count value C N . The comparison circuit 42 obtains a difference (CC N ) between the measured count value C output from the pulse period measuring unit 38 and the target count value C N stored in the target count value register 32, and generates an error signal Ve corresponding to the difference.

反饋濾波器44根據誤差信號Ve生成用於將旋轉速度ω調節成目標旋轉速度ωT 的補償指令信號。如第2圖所示,反饋濾波器44具有PID濾波器64和乘法器66。來自比較電路42的誤差信號Ve被輸入到PID濾波器64。PID濾波器64對誤差信號Ve平行進行P操作、I操作以及D操作,將這些處理結果相加合成之後輸出。The feedback filter 44 generates a compensation command signal for adjusting the rotational speed ω to the target rotational speed ω T based on the error signal Ve. As shown in FIG. 2, the feedback filter 44 has a PID filter 64 and a multiplier 66. The error signal Ve from the comparison circuit 42 is input to the PID filter 64. The PID filter 64 performs P operation, I operation, and D operation in parallel with the error signal Ve, and adds and combines these processing results and outputs them.

乘法器66對PID濾波器64的輸出乘以係數(倍率)之後輸出。從反饋濾波器44輸出該乘法器66的輸出信號作為補償指令信號。The multiplier 66 multiplies the output of the PID filter 64 by a coefficient (magnification) and outputs it. The output signal of the multiplier 66 is output from the feedback filter 44 as a compensation command signal.

在此,乘法器66的倍率被設定為與目標旋轉速度ωT 成比例的值。藉此,補償指令信號被以與目標旋轉速度ωT 相對應的倍率予以倍率縮放(scaling)。在本實施形態中,如上述用目標旋轉速度ωT 對上限值ωMAX 的相對值定義目標設定值Kr,乘法器66的倍率被設定為驅動目標暫存器30中記憶的目標設定值Kr。即,由MPU 22對驅動目標暫存器30設定目標設定值Kr時,成為其絕對值自動地被利用為乘法器66的倍率,不需要另外設定倍率。Here, the magnification of the multiplier 66 is set to a value proportional to the target rotational speed ω T . Thereby, the compensation command signal is scaled at a magnification corresponding to the target rotational speed ω T . In the present embodiment, the target set value Kr is defined by the relative value of the target rotational speed ω T to the upper limit value ω MAX as described above, and the multiplier of the multiplier 66 is set to the target set value Kr stored in the drive target register 30. . In other words, when the target set value Kr is set by the MPU 22 to the drive target register 30, the absolute value is automatically used as the magnification of the multiplier 66, and it is not necessary to separately set the magnification.

合成電路46和PWM信號產生電路48構成控制電動機的驅動的驅動控制部。合成電路46將從前饋濾波器36輸出的目標指令信號和從反饋濾波器44輸出的補償指令信號相加從而生成合成信號。PWM信號產生電路48生成工作比(duty ratio)按照合成信號的值變化的PWM信號,並輸出給電動機驅動電路24。The synthesizing circuit 46 and the PWM signal generating circuit 48 constitute a drive control unit that controls the driving of the motor. The synthesizing circuit 46 adds the target command signal output from the feedforward filter 36 and the compensation command signal output from the feedback filter 44 to generate a composite signal. The PWM signal generating circuit 48 generates a PWM signal whose duty ratio changes according to the value of the composite signal, and outputs it to the motor drive circuit 24.

另外,由MPU 22改寫控制暫存器34中存儲的參數,經由該參數能夠控制電動機速度控制裝置20的各部分的動作和處理內容。Further, the MPU 22 rewrites the parameters stored in the control register 34, and the operation and processing contents of the respective portions of the motor speed control device 20 can be controlled via the parameters.

如上前述,電動機速度控制裝置20使計數時脈CLK的頻率FC 按照目標旋轉速度ωT 發生變化,將脈衝週期τP 內的目標計數值維持為不依存於目標旋轉速度ωT 的一定值CN 。藉此,脈衝信號PI的頻率FP 的每單位量的計數值CN 的權重β成為β=CN /FP 。在反饋濾波器44中輸入根據具有該權重β的計數值CN 生成的誤差信號Ve。而且,電動機速度控制裝置20利用反饋濾波器44的乘法器66乘以與目標旋轉速度ωT 成比例的倍率,對補償指令信號進行倍率縮放。因為該倍率與頻率FP 成比例,所以在電動機速度控制裝置20中的反饋控制的增益成為與權重β和乘法器66的倍率之積相對應的值,成為不依存於目標旋轉速度ωT 的一定值。As described above, the motor speed control device 20 changes the frequency F C of the count clock CLK in accordance with the target rotational speed ω T , and maintains the target count value in the pulse period τ P at a constant value C that does not depend on the target rotational speed ω T . N. Thereby, the weight β of the count value C N per unit amount of the frequency F P of the pulse signal PI becomes β=C N /F P . An error signal Ve generated based on the count value CN having the weight β is input to the feedback filter 44. Further, the motor speed control device 20 multiplies the multiplier 66 of the feedback filter 44 by a magnification proportional to the target rotational speed ω T to perform magnification scaling on the compensation command signal. Since the magnification is proportional to the frequency F P , the gain of the feedback control in the motor speed control device 20 becomes a value corresponding to the product of the weight β and the magnification of the multiplier 66, and becomes a value that does not depend on the target rotational speed ω T . A certain value.

另一方面,可以使目標設定值Kr不是目標旋轉速度ωT 對上限值ωMAX 的相對值,而例如可以是目標旋轉速度ωT 本身。在該情況下,在上述構成中,則將在乘法器62的增益設定為1即可,此外,也可以是將乘法器62本身予以省略的構成。On the other hand, the target set value Kr can be made not to be a relative value of the target rotational speed ω T to the upper limit value ω MAX , but may be, for example, the target rotational speed ω T itself. In this case, in the above configuration, the gain of the multiplier 62 may be set to 1, or the multiplier 62 itself may be omitted.

在上述構成中,在改變了目標旋轉速度ωT 的情況下,用驅動目標暫存器30的內容自動地設定乘法器66的倍率。另一方面,即使改變目標旋轉速度ωT ,目標計數值CN 也不改變,所以沒有必要改變目標計數值暫存器32的內容。In the above configuration, when the target rotational speed ω T is changed, the magnification of the multiplier 66 is automatically set by the content of the drive target register 30. On the other hand, even if the target rotational speed ω T is changed, the target count value C N does not change, so it is not necessary to change the content of the target count value register 32.

順帶一提,即使在沒有將脈衝週期τP 內的目標計數值保持為一定的以往的結構中,只要僅設置乘法器66並使其倍率按FP 的平方發生變化則能夠使反饋控制的增益成為不依存於ωT 的一定值。但是,在增大倍率的同時,乘法器66中的數位運算的負荷增大。使倍率以FP 的平方變化時,例如,在FP 變化100倍時不得不使倍率變化10000倍。這意味著在以定點(fixed-point)數位運算器構成乘法器66的情況下不得不假設運算位數以14位元(bit)變化,使得處理負荷和電路規模的增加變大。另一方面,在本實施形態的構成中,FP 變化100倍時的運算位數的變動幅度成為7位元,負擔相對地減輕。Incidentally, even in the conventional configuration in which the target count value in the pulse period τ P is not kept constant, the gain of the feedback control can be made by merely providing the multiplier 66 and changing the magnification by the square of F P . It becomes a certain value that does not depend on ω T . However, while increasing the magnification, the load of the digital operation in the multiplier 66 is increased. When the magnification is changed by the square of F P , for example, when the F P is changed by 100 times, the magnification has to be changed by 10,000 times. This means that in the case where the multiplier 66 is constituted by a fixed-point digital operator, it is necessary to assume that the number of bits of operation is changed by 14 bits, so that the increase in processing load and circuit scale becomes large. On the other hand, in the configuration of the present embodiment, the fluctuation range of the number of calculation bits when the F P changes by 100 times becomes 7 bits, and the burden is relatively reduced.

此外,PID濾波器64等數位濾波器的處理基本上可以由加法和乘法構成。在本實施形態中,在反饋濾波器44中追加的是乘法器66,不用追加除法。因此,可以共用進行上記數位濾波器的運算的ALU(Arithmetic Logic Unit;算術邏輯單元)來實現乘法器66的乘法處理。藉此,可以避免追加乘法器66為另外的電路,從而能夠謀求電路規模的縮小。Further, the processing of the digital filter such as the PID filter 64 can basically be constituted by addition and multiplication. In the present embodiment, the multiplier 66 is added to the feedback filter 44, and no division is required. Therefore, the multiplication processing of the multiplier 66 can be realized by sharing an ALU (Arithmetic Logic Unit) that performs an operation of counting the digital filter. Thereby, it is possible to prevent the additional multiplier 66 from being a separate circuit, and it is possible to reduce the circuit scale.

此外,可以將乘法器66配置在PID濾波器64之前、或分別配置在PID濾波器64內的P、I、D各操作處。Further, the multipliers 66 may be disposed before the PID filter 64 or at respective operations of P, I, and D in the PID filter 64.

[目標旋轉速度ωT 切換時的動作][Operation at the time of target rotation speed ω T switching]

下面,說明電動機速度控制裝置20的動作。電動機速度控制裝置20具備包括前饋濾波器36的前饋控制手段、和包括反饋濾波器44的反饋控制手段,這些手段基本上平行動作。在穩定狀態下,前饋控制在旋轉速度ω內主要擔當將直流位準保持在目標旋轉速度ωT 的作用,反饋控制對與直流位準重疊的比較小的振幅的交流成分的收斂起主導作用。Next, the operation of the motor speed control device 20 will be described. The motor speed control device 20 is provided with a feedforward control means including a feedforward filter 36, and a feedback control means including a feedback filter 44, which substantially operate in parallel. In the steady state, the feedforward control mainly plays the role of maintaining the DC level at the target rotational speed ω T within the rotational speed ω . The feedback control plays a leading role in the convergence of the AC component with a relatively small amplitude overlapping with the DC level. .

電動機速度控制裝置20為了進一步提高電動機的旋轉開始時或其他目標旋轉速度ωT 的切換時的瞬態響應,在目標旋轉速度ωT 的切換時能夠使反饋控制暫時停止。In order to further improve the transient response at the time of starting the rotation of the motor or the switching of the other target rotational speed ω T , the motor speed control device 20 can temporarily stop the feedback control at the time of switching the target rotational speed ω T .

在該動作中,判斷當前的旋轉速度ω是否相對於目標旋轉速度ωT 處於預定的範圍RΔ 內,在範圍RΔ 外時,僅使前饋控制手段和反饋控制手段中的前饋控制單元動作,另一方面,在範圍RΔ 內時則使雙方動作。In this action, it is judged whether the current rotational speed ω is within a predetermined range R Δ with respect to the target rotational speed ω T , and when the range is outside the range R Δ , only the feedforward control means and the feedforward control unit in the feedback control means are made The action, on the other hand, operates both in the range R Δ .

例如,可以設定預定的臨限值Δω ,從而定義為若則在範圍RΔ 內,若|ω-ωT |>Δω 則在範圍RΔ 外。For example, a predetermined threshold Δ ω can be set to be defined as Then, within the range R Δ , if |ω−ω T |>Δ ω is outside the range R Δ .

是否在範圍RΔ 內,例如,可以根據誤差信號Ve來判斷。因此,可以使反饋濾波器44具有下述動作切換功能:進行根據誤差信號Ve的上述判斷從而使PID濾波器64的動作停止或重新開始。Whether or not it is within the range R Δ can be judged based on the error signal Ve, for example. Therefore, the feedback filter 44 can be made to have a function switching function of performing the above-described determination based on the error signal Ve to stop or restart the operation of the PID filter 64.

動作切換的一種方法是:如上前述,按照旋轉速度的偏差|ω-ωT |與臨限值Δω 的比較結果,切換反饋控制的進行(on)/不進行(off)。在該方法中,即使目標旋轉速度ωT 發生改變,若偏差是臨限值Δω 以下則不停止反饋控制,另一方面,即使目標旋轉速度ωT 未發生改變,若偏差比臨限值Δω 大則停止反饋控制。作為其他方法,也可以是如下方法:若目標旋轉速度ωT 發生改變,則與偏差的大小無關地暫且使反饋控制停止,一旦檢測到偏差成為臨限值以下,則重新開始反饋控制。One method of switching the motion is to switch the progress of the feedback control (on)/off (off) according to the comparison result of the deviation of the rotational speed |ω-ω T | and the threshold Δ ω as described above. In this method, even if the target rotational speed ω T changes, if the deviation is less than the threshold Δ ω , the feedback control is not stopped, and on the other hand, if the target rotational speed ω T does not change, if the deviation is greater than the threshold Δ When ω is large, the feedback control is stopped. As another method, if the target rotational speed ω T is changed, the feedback control is temporarily stopped regardless of the magnitude of the deviation, and when the deviation is detected to be less than the threshold value, the feedback control is restarted.

藉由該動作,在目標旋轉速度ωT 的切換時等產生的大的偏差不易殘留在反饋濾波器44中的運算結果中,能夠去除或降低旋轉速度ω越過目標旋轉速度ωT 的超調(overshoot)。此外,從該觀點出發,較佳為反饋濾波器44在其動作停止時將到目前為止的運算結果重置(reset)為初始狀態。By this operation, a large deviation occurring at the time of switching the target rotational speed ω T or the like is less likely to remain in the calculation result of the feedback filter 44, and the overshoot of the rotational speed ω over the target rotational speed ω T can be removed or reduced ( Overshoot). Further, from this point of view, it is preferable that the feedback filter 44 resets the result of the calculation so far to the initial state when the operation thereof is stopped.

另外,在本實施形態中,旋轉速度ω用脈衝週期τP 中的計數時脈CLK的計數值表示。因此,是否在範圍RΔ 內,具體而言可根據測量計數值C與目標計數值CN 之差(C-CN )來判斷。例如,可設定預定臨限值ΔC ,從而定義為若|C-CN |ΔC 則在範圍RΔ 內,若|C-CN |>ΔC 則在範圍RΔ 外。Further, in the present embodiment, the rotational speed ω is represented by the count value of the count clock CLK in the pulse period τ P . Therefore, whether or not it is within the range R Δ can be determined based on the difference (CC N ) between the measured count value C and the target count value C N . For example, a predetermined threshold Δ C can be set to define as |CC N | Δ C is in the range R Δ , and if |CC N |> Δ C is outside the range R Δ .

[脈衝週期τP 的測量][Measurement of pulse period τ P ]

為了掌握旋轉速度ω,脈衝週期測量部38對計數時脈CLK進行計數從而測量脈衝週期τP 。因此,脈衝信號PI中的脈衝的邊緣(edge)的檢測精度低時,電動機的速度控制的精度也下降。因此,希望減輕在脈衝端可能產生的顫動等雜訊的影響。In order to grasp the rotational speed ω, the pulse period measuring unit 38 counts the count clock CLK to measure the pulse period τ P . Therefore, when the detection accuracy of the edge of the pulse in the pulse signal PI is low, the accuracy of the speed control of the motor also decreases. Therefore, it is desirable to mitigate the effects of noise such as chatter that may occur at the pulse end.

第3圖是說明電動機速度控制裝置20的脈衝週期計測方法的信號波形圖。在第3圖中示出:橫軸是時間軸,分別將計數時脈CLK、脈衝信號PI、PI中的脈衝的下降邊緣(後端)檢測信號TE、下降邊緣週期計數值NT、脈衝的上升邊緣(前端)檢測信號LE、上升邊緣週期計數值NL、以及與脈衝週期τP 相關的計數值C在縱方向上使時間軸一致地排列表示。Fig. 3 is a signal waveform diagram for explaining a pulse period measuring method of the motor speed control device 20. In the third diagram, the horizontal axis is the time axis, and the falling edge (back end) detection signal TE of the pulse in the clock pulse CLK, the pulse signal PI, PI, the falling edge period count value NT, and the pulse rise are respectively counted. The edge (front end) detection signal LE, the rising edge period count value NL, and the count value C associated with the pulse period τ P are represented by aligning the time axes in the vertical direction.

在第3圖所示的例中,電動機速度控制裝置20關於從電動機模組26向電動機速度控制裝置20輸入的脈衝信號PI中出現的目的脈衝,根據從L位準狀態向H位準狀態遷移的脈衝端來計測脈衝週期τPIn the example shown in Fig. 3, the motor pulse speed control device 20 shifts the target pulse appearing in the pulse signal PI input from the motor module 26 to the motor speed control device 20 according to the transition from the L level state to the H level state. The pulse end measures the pulse period τ P .

脈衝週期測量部38在由計數時脈生成電路40提供的計數時脈CLK的例如上升邊緣的時序(timing)對脈衝信號PI進行取樣(sampling)(狀態檢測步驟)。另外,在第3圖中示出了波形4在脈衝信號PI的脈衝2的前後的邊緣產生的顫動。The pulse period measuring unit 38 samples the pulse signal PI at a timing of, for example, a rising edge of the count clock CLK supplied from the count clock generating circuit 40 (state detecting step). Further, in Fig. 3, the wobbling of the waveform 4 at the edges before and after the pulse 2 of the pulse signal PI is shown.

脈衝週期測量部38可以在取樣值從L位準變化為H位準時,開始計測脈衝週期τP 。具體而言,脈衝週期測量部38檢測取樣值的從L位準往H位準之變化作為脈衝信號PI的上升邊緣,並使上升邊緣檢測信號LE發生脈衝70。脈衝70的寬度為計數時脈CLK的1個週期τCLK 。脈衝週期測量部38在脈衝70上升時,除了後述的進行例外處理的情況之外,輸出對脈衝週期τP 進行計時的上升邊緣週期計數器的當前時刻的計數值NL作為測量計數值C(脈衝週期τP 的計測完成)。然後,脈衝週期測量部38從下一個計數時脈CLK的週期開始進入新的脈衝週期τP 的計測(時刻T1)。即,脈衝週期測量部38在時刻T1將計數值NL重置為0之後,開始與計數時脈CLK同步地每次使計數值NL遞增1。The pulse period measuring unit 38 can start measuring the pulse period τ P when the sample value changes from the L level to the H level. Specifically, the pulse period measuring unit 38 detects a change from the L level to the H level of the sample value as the rising edge of the pulse signal PI, and causes the rising edge detection signal LE to generate the pulse 70. The width of the pulse 70 is one cycle τ CLK of the count clock CLK . When the pulse 70 rises, the pulse period measuring unit 38 outputs the count value NL of the current time of the rising edge period counter that counts the pulse period τ P as the measured count value C (pulse period), except for the case where the exception processing is performed later. The measurement of τ P is completed). Then, the pulse period measuring unit 38 enters the measurement of the new pulse period τ P from the period of the next counting clock CLK (time T1). In other words, the pulse period measuring unit 38 resets the count value NL to 0 at time T1, and starts incrementing the count value NL by one every time in synchronization with the count clock CLK.

脈衝週期測量部38在取樣值從H位準變化為L位準時,開始預定的抑止期間Pd的計時(抑止期間計時步驟)。具體而言,脈衝週期測量部38檢測取樣值的從H位準往L位準之變化作為脈衝信號PI的下降邊緣,並使下降邊緣檢測信號TE發生脈衝72。脈衝72的寬度為τCLK 。脈衝週期測量部38在脈衝72上升時,停止到目前為止的下降邊緣週期計數器的計數,從下一個計數時脈CLK的週期開始,進入新的抑止期間Pd的計時(時刻T1)。即,脈衝週期測量部38在脈衝72的下降邊緣使計數值NT重置為0之後,開始與計數時脈CLK同步地每次使計數值NT遞增1。The pulse period measuring unit 38 starts the counting of the predetermined suppression period Pd (the suppression period counting step) when the sample value changes from the H level to the L level. Specifically, the pulse period measuring unit 38 detects a change from the H level to the L level of the sample value as the falling edge of the pulse signal PI, and causes the falling edge detection signal TE to generate the pulse 72. The width of pulse 72 is τ CLK . When the pulse 72 rises, the pulse period measuring unit 38 stops the counting of the falling edge period counter up to now, and starts the counting of the new suppression period Pd from the period of the next counting clock CLK (time T1). That is, the pulse period measuring unit 38 increments the count value NT by one every time after the count value NT is reset to 0 at the falling edge of the pulse 72, and starts counting with the count clock CLK.

對於脈衝信號PI的從L位準往H位準的變化,在不存在顫動等雜訊的情況下,即解釋為屬於脈衝週期τP 的計測對象之目的脈衝的上升邊緣。因此,在發生了脈衝70的情況下,如上前述,能夠結束到目前為止的脈衝週期τP 的計測,開始下一個脈衝週期τP 的計測。但是,在存在顫動等雜訊的情況下,在顫動等雜訊脈衝的上升邊緣時也發生脈衝信號PI的從L位準往H位準的變化,脈衝週期測量部38會檢測該變化從而發生脈衝70。The change from the L level to the H level of the pulse signal PI is interpreted as the rising edge of the target pulse of the measurement target belonging to the pulse period τ P in the absence of noise such as chatter. Therefore, when the pulse 70 has occurred, as described above, the measurement of the pulse period τ P up to now can be ended, and the measurement of the next pulse period τ P can be started. However, when there is noise such as chattering, the pulse signal PI changes from the L level to the H level when the rising edge of the noise pulse such as flutter occurs, and the pulse period measuring unit 38 detects the change and occurs. Pulse 70.

雜訊可能在目的脈衝的中途產生脈衝信號PI的下降邊緣以及其後的上升邊緣。該脈衝信號PI的變動與目的脈衝本來的H位準持續期間相比,基本上在十分短的期間內發生。因此,作為上升邊緣檢測信號LE中發生了脈衝70時的例外處理,脈衝週期測量部38在從根據先行的下降邊緣的脈衝72到脈衝70為止的經過時間小於預定的抑止期間時,判斷為該脈衝信號PI的變動是由雜訊引起的,繼續當前已經在進行的脈衝週期τP 的計測。The noise may generate a falling edge of the pulse signal PI and a rising edge thereafter in the middle of the target pulse. The fluctuation of the pulse signal PI occurs substantially in a very short period of time compared to the original H-level duration of the destination pulse. Therefore, as an exception process when the pulse 70 is generated in the rising edge detection signal LE, the pulse period measuring unit 38 determines that the elapsed time from the pulse 72 based on the preceding falling edge to the pulse 70 is less than the predetermined suppression period. The fluctuation of the pulse signal PI is caused by the noise, and the measurement of the pulse period τ P which is currently being performed is continued.

藉由下降邊緣週期計數器的計數值NT而計時的上述抑止期間Pd乃用於該判斷中者,根據在目的脈衝端產生的顫動的週期的假設值來進行設定。The above-described suppression period Pd counted by the count value NT of the falling edge period counter is used for the determination, and is set based on the assumed value of the period of the wobbling generated at the destination pulse end.

在第3圖所示的例中,抑止期間Pd被設定為計數時脈CLK的2時脈。若脈衝70發生時的計數值NT小於“2”,則脈衝週期測量部38繼續計數值NL的遞增(例如,時刻T2、T3、T4),另一方面,若脈衝70發生時的計數值NT為“2”以上,則輸出該時點的計數值NL作為表示脈衝週期τP 的測量計數值C,並且重置上升邊緣週期計數器從而開始下一次脈衝週期τP 的計測(例如,時刻T5)。In the example shown in FIG. 3, the suppression period Pd is set to 2 clocks of the count clock CLK. If the count value NT when the pulse 70 occurs is less than "2", the pulse period measuring unit 38 continues the increment of the count value NL (for example, the times T2, T3, T4), and on the other hand, if the count value of the pulse 70 occurs, the count value NT When it is "2" or more, the count value NL at that time point is output as the measured count value C indicating the pulse period τ P , and the rising edge period counter is reset to start the measurement of the next pulse period τ P (for example, the timing T5).

在以往方法的脈衝信號PI中出現的目的脈衝的邊緣的檢測位置成為顫動結束了之後的時序。因此,由於顫動的持續期間的變異,脈衝週期的計測值發生變異,並且,在脈衝週期τP 的檢測中產生延遲。The detection position of the edge of the target pulse appearing in the pulse signal PI of the conventional method becomes the timing after the end of the wobbling. Therefore, the measured value of the pulse period is mutated due to the variation of the duration of the wobbling, and a delay occurs in the detection of the pulse period τ P .

與此相對,根據電動機速度控制裝置20中的脈衝週期τP 的測量方法,如上前述,從顫動結束前的脈衝信號PI的上升邊緣開始脈衝週期τP 的計測,另一方面,在脈衝如顫動以短週期間斷時,使脈衝週期τP 的計測繼續。藉此,將顫動誤檢測為目的脈衝的情況予以抑制。此外,根據該測量方法,能夠進行不受脈衝的前端部分的顫動期間的變異的影響的脈衝週期計測。因此,能夠精度良好地測量脈衝週期τP 。而且,到脈衝週期τP 的檢測為止的延遲減少,所以能夠提高電動機速度控制的穩定性等。On the other hand, according to the method of the motor speed control means measures the pulse period τ P 20, as the start pulse period τ P from the measurement signal before the end of the rising pulse edge flutter PI, on the other hand, as the pulse wobbling When the short period is interrupted, the measurement of the pulse period τ P is continued. Thereby, the case where the chattering is erroneously detected as the target pulse is suppressed. Further, according to this measurement method, it is possible to perform pulse period measurement that is not affected by variations in the wobbling period of the tip end portion of the pulse. Therefore, the pulse period τ P can be measured with high precision. Further, since the delay until the detection of the pulse period τ P is reduced, the stability of the motor speed control and the like can be improved.

基本上顫動的週期與脈衝信號PI的脈衝週期τP 成比例。即,較佳為使抑止期間Pd也與脈衝週期τP 成比例。在此,電動機速度控制裝置20根據目標旋轉速度ωT 使計數時脈CLK的頻率FC 變化,所以與脈衝週期τP 成比例地變化的抑止期間Pd若用計數時脈CLK的時脈數表示則成為不依存於旋轉速度ω的一定值。即,在脈衝信號PI的上升邊緣時(脈衝70的發生時)判斷有無經過抑止期間Pd所用的下降邊緣週期計數器的計數值NT的臨限值(在第3圖的例中為“2”)可以是不依存於旋轉速度ω的一定值。The period of substantially dithering is proportional to the pulse period τ P of the pulse signal PI. That is, it is preferable that the suppression period Pd is also proportional to the pulse period τ P . Here, since the motor speed control device 20 changes the frequency F C of the count clock CLK in accordance with the target rotational speed ω T , the suppression period Pd that changes in proportion to the pulse period τ P is represented by the number of clocks of the count clock CLK. Then, it becomes a constant value that does not depend on the rotational speed ω. In other words, at the rising edge of the pulse signal PI (when the pulse 70 is generated), it is determined whether or not there is a threshold value of the count value NT of the falling edge period counter used for the suppression period Pd ("2" in the example of Fig. 3) It may be a certain value that does not depend on the rotational speed ω.

[對反轉失控的對策][Countermeasures for reversing out of control]

從電動機模組26輸入至電動機速度控制裝置20的脈衝信號PI僅是1相,所以電動機速度控制裝置20不能辨別旋轉速度的方向。電動機速度控制裝置20有可能產生電動機的反轉失控。但是,電動機速度控制裝置20在成為反轉失控狀態時,能夠檢測反轉失控狀態並使其恢復為正常狀態。電動機速度控制裝置20具備判斷反轉失控狀態的反轉失控判斷部(未圖示)、和進行恢復成正常狀態的恢復處理部(未圖示)。這些反轉失控判斷部和恢復處理部例如可以藉由脈衝週期測量部38、計數時脈生成電路40、反饋濾波器44、PWM信號產生電路48、控制暫存器34等電動機速度控制裝置20的各部經由匯流排50進行聯繫動作來實現。此外,作為反轉失控判斷部和恢復處理部,也可以設置第1圖中未示出的獨立的電路方塊,統合控制電動機速度控制裝置20的各部。該統合性控制也可由MPU 22來實現,在該情況下,MPU 22構成本發明的電動機速度控制裝置的一部。Since the pulse signal PI input from the motor module 26 to the motor speed control device 20 is only one phase, the motor speed control device 20 cannot discriminate the direction of the rotational speed. It is possible for the motor speed control device 20 to generate a reverse runaway of the motor. However, when the motor speed control device 20 is in the reverse runaway state, it is possible to detect the reverse runaway state and return it to the normal state. The motor speed control device 20 includes a reverse runaway determination unit (not shown) that determines the reverse runaway state, and a recovery processing unit (not shown) that returns to the normal state. The inversion runaway determination unit and the restoration processing unit can be, for example, the pulse period measurement unit 38, the count clock generation circuit 40, the feedback filter 44, the PWM signal generation circuit 48, and the motor speed control device 20 such as the control register 34. Each unit is realized by a contact operation via the bus bar 50. Further, as the reverse runaway determination unit and the restoration processing unit, independent circuit blocks not shown in the first drawing may be provided, and each unit of the motor speed control device 20 may be integrated. This integration control can also be implemented by the MPU 22, in which case the MPU 22 forms part of the motor speed control device of the present invention.

反轉失控判斷部將由合成電路46生成的合成信號作為監視對象信號。反轉失控判斷部在監視對象信號的對旋轉速度ω的調節方向與目標旋轉速度ωT 的方向相反、且監視對象信號的強度超過了預定臨限值的狀態持續了預定期間時,判斷為電動機在與目標旋轉速度ωT 相反方向上失控的反轉失控狀態。反轉失控判斷部檢測到反轉失控狀態時,恢復處理部使旋轉速度ω從反轉失控狀態恢復成目標旋轉速度ωT 。另外,在反轉失控狀態中,與目標指令信號相比,補償指令信號成為具支配性的信號,所以也可以取代合成信號而將補償指令信號作為監視對象信號。The reverse runaway determination unit uses the composite signal generated by the synthesizing circuit 46 as a monitoring target signal. When the direction of adjustment of the rotational speed ω of the monitoring target signal is opposite to the direction of the target rotational speed ω T and the state of the intensity of the monitoring target signal exceeds the predetermined threshold value for a predetermined period of time, the reverse rotation control unit determines that the motor is present. The reverse runaway state that is out of control in the opposite direction to the target rotational speed ω T . When the reverse runaway determination unit detects the reverse runaway state, the recovery processing unit returns the rotational speed ω from the reverse runaway state to the target rotational speed ω T . Further, in the reverse runaway state, since the compensation command signal becomes a dominant signal as compared with the target command signal, the compensation command signal may be used as the monitoring target signal instead of the composite signal.

第4圖是說明反轉失控狀態的判斷動作的流程圖。電動機速度控制裝置20在未檢測到反轉失控狀態時,進行通常控制下的動作(S5)。反轉失控判斷部在通常控制下的動作中監視有無發生反轉失控(S10至S25)。Fig. 4 is a flow chart for explaining the judgment operation of the reverse runaway state. When the reverse rotation control state is not detected, the motor speed control device 20 performs an operation under normal control (S5). The reverse runaway determination unit monitors the presence or absence of reverse runaway during the normal control operation (S10 to S25).

根據驅動目標暫存器30中所設定的目標設定值Kr的符號可以掌握目標旋轉速度ωT 的方向。另一方面,可以根據合成信號的符號掌握監視對象信號的對旋轉速度ω的調節方向。因此,可以藉由目標設定值Kr的符號與合成信號的符號是否不同來判斷監視對象信號的對旋轉速度ω的調節方向是否與目標旋轉速度ωT 的方向相反(S10)。若符號相同,則判斷為電動機未反轉失控,繼續通常控制S5。The direction of the target rotational speed ω T can be grasped based on the sign of the target set value Kr set in the drive target register 30. On the other hand, the direction of adjustment of the rotational speed ω of the monitoring target signal can be grasped based on the sign of the composite signal. Therefore, whether or not the direction of adjustment of the rotational speed ω of the monitoring target signal is opposite to the direction of the target rotational speed ω T can be determined by whether or not the sign of the target set value Kr is different from the sign of the synthesized signal (S10). If the symbols are the same, it is determined that the motor is not reversed out of control, and the normal control S5 is continued.

另一方面,在符號不同的情況下,判斷監視對象信號的強度即絕對值是否超過了預定臨限值Vr(S15)。若合成信號的絕對值為臨限值Vr以下,則判斷為電動機未反轉失控,繼續通常控制S5。臨限值Vr能夠設定為例如使由電動機驅動電路24生成的驅動信號飽和那樣程度的比較大的值。On the other hand, when the symbols are different, it is judged whether or not the intensity of the monitoring target signal, that is, the absolute value, exceeds the predetermined threshold value Vr (S15). When the absolute value of the combined signal is equal to or less than the threshold value Vr, it is determined that the motor is not reversed and the control is continued, and the normal control S5 is continued. The threshold value Vr can be set to a relatively large value such as to saturate the drive signal generated by the motor drive circuit 24.

在合成信號的絕對值超過臨限值Vr時,進行對監視計時器的操作(S20)。在該監視計時器操作S20中,若監視計時器是停止狀態則啓動監視計時器,若已經啓動則監視計時器值遞增。When the absolute value of the composite signal exceeds the threshold value Vr, the operation of the watchdog timer is performed (S20). In the watchdog timer operation S20, the watchdog timer is started if the watchdog timer is in the stop state, and the watchdog timer value is incremented if it has been started.

反轉失控判斷部判斷監視計時器值是否超過預定值Tr(S25)。在監視計時器值為Tr以下的期間係繼續通常控制S5。在該期間,若在處理S10、S15中判斷為不是反轉失控,則監視計時器停止,且被重置(S30)。另一方面,一旦監視計時器值超過Tr,則判斷為是反轉失控狀態(S35),開始進行恢復至正常狀態的恢復動作。The reverse runaway determination unit determines whether the watchdog timer value exceeds the predetermined value Tr (S25). The normal control S5 is continued while the watchdog timer value is equal to or less than Tr. During this period, if it is determined in the processes S10 and S15 that the reverse runaway is not the case, the watchdog timer is stopped and reset (S30). On the other hand, when the watchdog timer value exceeds Tr, it is determined that it is the reverse runaway state (S35), and the recovery operation to return to the normal state is started.

第5圖是說明恢復至正常狀態的恢復動作的流程圖。此外,第6圖是說明恢復動作的示意圖,是表示旋轉速度ω與脈衝週期τP 之間的關係的圖。在第6圖中,橫軸是旋轉速度ω,縱軸是脈衝週期τPFigure 5 is a flow chart illustrating the recovery action to return to the normal state. Further, Fig. 6 is a view for explaining the recovery operation, and is a view showing the relationship between the rotational speed ω and the pulse period τ P . In Fig. 6, the horizontal axis is the rotational speed ω, and the vertical axis is the pulse period τ P .

在檢測出反轉失控狀態後,電動機速度控制裝置20轉移到對電動機的旋轉進行制動的制動控制(S50)。就制動控制而言,例如,PWM信號產生電路48設定PWM信號的工作比,以使電動機驅動電路24使電動機在使旋轉停止的方向上發生最大的驅動力。另外,制動控制可以是其他方法,例如,可以採用強制性地使電動機的端子間短路從而使其停止的短路制動。After detecting the reverse runaway state, the motor speed control device 20 shifts to the brake control for braking the rotation of the motor (S50). In terms of the brake control, for example, the PWM signal generating circuit 48 sets the duty ratio of the PWM signal so that the motor drive circuit 24 causes the motor to generate the maximum driving force in the direction in which the rotation is stopped. Further, the brake control may be another method, and for example, a short-circuit brake that forcibly shorts the terminals of the motor to stop it may be employed.

在此,如上前述,在僅在包含目標旋轉速度ωT 的預定範圍RΔ 內進行反饋控制,而在範圍RΔ 外僅進行前饋控制的情況下,制動控制以在絕對值比低速側邊界ωL 小的範圍內設定的制動結束速度ωBS 結束,其中,該低速側邊界ωL 乃為範圍RΔ 的下限以及上限中絕對值比目標旋轉速度ωT 小者。例如,在第6圖所示的ωT >0的情況下,範圍RΔ 的下限為ωLHere, as described above, the feedback control is performed only in the predetermined range R Δ including the target rotational speed ω T , and in the case where only the feedforward control is performed outside the range R Δ , the brake control is at the absolute value than the low-speed side boundary ω L is set within a range smaller end of the brake end speed ω BS, wherein the low speed side boundary ω L R Δ is the range of lower and upper limits of the absolute value of the target rotational speed ω T than small ones. For example, in the case where ω T >0 shown in Fig. 6, the lower limit of the range R Δ is ω L .

旋轉速度ω是否達到制動結束速度ωBS ,能夠根據脈衝週期測量部38計測的測量計數值C來判斷。在檢測到反轉失控狀態時,使計數時脈CLK的頻率FC 從對應於目標旋轉速度ωT 的值改變為對應於制動結束速度ωBS 的值(S55)。藉此,在制動結束速度ωBS 下的測量計數值C與目標計數值暫存器32中存儲的目標計數值CN 一致,此時的誤差信號Ve成為0。Whether or not the rotational speed ω reaches the brake end speed ω BS can be determined based on the measured count value C measured by the pulse period measuring unit 38. When the reverse runaway state is detected, the frequency F C of the count clock CLK is changed from the value corresponding to the target rotational speed ω T to the value corresponding to the brake end speed ω BS (S55). Thereby, the measured count value C at the braking end speed ω BS coincides with the target count value C N stored in the target count value register 32, and the error signal Ve at this time becomes zero.

例如,在符號與目標旋轉速度ωT 相反的範圍內設定ωBS 的情況下,從反轉失控狀態施加制動時,在ω達到ωBS 為止即在|ω|>|ωBS |的範圍內為C-CN <0,ω=ωBS 時C-CN =0,ω超過ωBS 進一步接近停止狀態,|ω|<|ωBS |時成為C-CN >0。因此,監視誤差信號Ve的符號,若成為Ve>0則可以判斷為旋轉速度ω超過了制動結束速度ωBS (S60)。For example, when ω BS is set in a range in which the sign is opposite to the target rotational speed ω T , when braking is applied from the reverse runaway state, when ω reaches ω BS , that is, within the range of |ω|>|ω BS | When CC N <0, ω = ω BS , CC N =0, ω exceeds ω BS and further approaches the stop state, and |ω|<|ω BS | becomes CC N >0. Therefore, if the sign of the monitoring error signal Ve is Ve>0, it can be determined that the rotational speed ω exceeds the braking end speed ω BS (S60).

此外,旋轉速度ω是否達到制動結束速度ωBS ,能夠根據目標旋轉速度ωT (或制動結束速度ωBS )的符號以及從反饋濾波器44輸出的補償指令信號的符號來進行判斷。Further, whether or not the rotational speed ω reaches the braking end speed ω BS can be determined based on the sign of the target rotational speed ω T (or the braking end speed ω BS ) and the sign of the compensation command signal output from the feedback filter 44.

達到制動結束速度ωBS 時,恢復到通常控制(S65)。在恢復至通常控制的恢復處理S65中,計數時脈CLK的頻率FC 返回到與目標旋轉速度ωT 相對應的值。直到ω達到ωL 為止,電動機藉由前饋控制被加速。ω達到ωL 時除了前饋控制之外,開始反饋控制,恢復ω維持在目標旋轉速度ωT 的正常狀態。另外,在將ωBS 的符號設定為與目標旋轉速度ωT 相反的情況下,在恢復到通常控制的時點,電動機還在與目標旋轉速度ωT 相反的方向上旋轉,但是藉由前饋控制進一步減速,進而通過ω=0而在與目標旋轉速度ωT 相同方向上開始旋轉。然後,達到ω=ωL 時,如上前述,開始反饋控制。When the braking end speed ω BS is reached, the normal control is returned (S65). In the recovery process S65 that returns to the normal control, the frequency F C of the count clock CLK is returned to a value corresponding to the target rotational speed ω T . Until ω reaches ω L , the motor is accelerated by feedforward control. When ω reaches ω L , in addition to the feedforward control, feedback control is started, and the recovery ω is maintained at the normal state of the target rotational speed ω T . Further, in the case where the sign of ω BS is set to be opposite to the target rotational speed ω T , the motor is also rotated in the opposite direction to the target rotational speed ω T at the time of returning to the normal control, but by feedforward control Further deceleration, and further rotation is started in the same direction as the target rotational speed ω T by ω=0. Then, when ω = ω L is reached, as described above, the feedback control is started.

另外,在未設定進行反饋控制的範圍RΔ 的情況下,即,在通常控制下總是平行進行前饋控制和反饋控制的情況下,需要繼續制動控制直到不會再次導致反轉失控狀態的旋轉速度ω為止。Further, in the case where the range R Δ for performing the feedback control is not set, that is, in the case where the feedforward control and the feedback control are always performed in parallel under the normal control, it is necessary to continue the brake control until the reverse runaway state is not caused again. The rotation speed ω is up.

在此,與目標旋轉速度ωT 方向相反大小相同的速度(-ωT )是成為藉由反饋控制而導致反轉失控還是達成目標旋轉速度ωT 的分水嶺的臨界速度。因此,在未設定範圍RΔ 的情況下,繼續制動控制直到達到絕對值比臨界速度(-ωT )小的預定的制動結束速度ωBS 為止,在成為|ωBs |>|ω|的時點,恢復到採用了前饋控制手段和反饋控制手段的原來的通常控制。In this case, the target rotational speed ω T in the opposite direction of the same size speed (-ω T) is to be reversed by the feedback control which led to loss of control or reach a critical watershed speed of the target rotational speed ω T's. Therefore, when the range R Δ is not set, the brake control is continued until the predetermined braking end speed ω BS whose absolute value is smaller than the critical speed (-ω T ), when it becomes |ω Bs |>|ω| , return to the original normal control using feedforward control means and feedback control means.

如上述,在未設定範圍RΔ 的控制中,制動結束速度ωBS 基本上被設定為絕對值比臨界速度(-ωT )小的值。As described above, in the control in which the range R Δ is not set, the brake end speed ω BS is basically set to a value whose absolute value is smaller than the critical speed (-ω T ).

2、70、72...脈衝2, 70, 72. . . pulse

4...波形4. . . Waveform

20...電動機速度控制裝置20. . . Motor speed control device

22...MPUtwenty two. . . MPU

24...電動機驅動電路twenty four. . . Motor drive circuit

26...電動機模組26. . . Motor module

30...驅動目標暫存器30. . . Drive target register

32...目標計數值暫存器32. . . Target count value register

34...控制暫存器34. . . Control register

36...前饋濾波器36. . . Feedforward filter

38...脈衝週期測量部38. . . Pulse period measurement unit

40...計數時脈生成電路40. . . Counting clock generation circuit

42...比較電路42. . . Comparison circuit

44...反饋濾波器44. . . Feedback filter

46...合成電路46. . . Synthetic circuit

48...PWM信號產生電路48. . . PWM signal generation circuit

50...匯流排50. . . Busbar

60...濾波器60. . . filter

62、66...乘法器62, 66. . . Multiplier

64...PID濾波器64. . . PID filter

C...計數值C. . . Count value

CN ...目標計數值C N . . . Target count value

CLK...計數時脈(基準時脈)CLK. . . Count clock (reference clock)

Kr...目標設定值Kr. . . Target setting

Ks...乘法係數(增益)Ks. . . Multiplication coefficient (gain)

LE...上升邊緣檢測信號LE. . . Rising edge detection signal

NL...上升邊緣週期計數值NL. . . Rising edge period count

T1至T5...時刻T1 to T5. . . time

NT...下降邊緣週期計數值NT. . . Falling edge period count value

TE...下降邊緣檢測信號TE. . . Falling edge detection signal

PI...脈衝信號PI. . . Pulse signal

第1圖是用於說明本發明實施形態的電動機速度控制裝置的功能性構成的概略方塊圖。Fig. 1 is a schematic block diagram for explaining a functional configuration of a motor speed control device according to an embodiment of the present invention.

第2圖是本發明實施形態的電動機速度控制裝置的驅動目標暫存器、前饋濾波器、反饋濾波器以及合成電路的方塊線圖。Fig. 2 is a block diagram showing a drive target register, a feedforward filter, a feedback filter, and a synthesizing circuit of the motor speed control device according to the embodiment of the present invention.

第3圖是說明本發明實施形態的電動機速度控制裝置的脈衝週期計測方法的信號波形圖。Fig. 3 is a signal waveform diagram for explaining a pulse period measuring method of the motor speed control device according to the embodiment of the present invention.

第4圖是說明本發明實施形態的電動機速度控制裝置所進行的反轉失控狀態的判斷動作的流程圖。Fig. 4 is a flow chart for explaining the operation of determining the reverse runaway state by the motor speed control device according to the embodiment of the present invention.

第5圖是說明本發明實施形態的電動機速度控制裝置所進行的恢復成正常狀態的恢復動作的流程圖。Fig. 5 is a flow chart for explaining a recovery operation of returning to a normal state by the motor speed control device according to the embodiment of the present invention.

第6圖是表示用於說明恢復動作的旋轉速度與脈衝週期之間的關係的圖。Fig. 6 is a view showing a relationship between a rotation speed and a pulse period for explaining a recovery operation.

該代表圖無元件符號及其所代表之意義。The representative figure has no component symbols and the meanings it represents.

Claims (3)

一種電動機速度控制裝置,係具有:前饋控制部,其輸入設定電動機的目標旋轉速度的大小和方向的目標設定值,根據前述目標設定值生成目標指令信號,進行使前述電動機的旋轉速度成為前述目標旋轉速度的前饋控制;反饋控制部,其生成對應於當前的前述旋轉速度與前述目標旋轉速度之差的誤差信號,根據前述誤差信號生成補償指令信號,進行將前述旋轉速度調節為前述目標旋轉速度的反饋控制;驅動控制部,其生成將前述目標指令信號和前述補償指令信號合成後的合成信號,根據該合成信號控制前述電動機的驅動;以及反轉失控判斷部,其將前述補償指令信號或前述合成信號作為監視對象信號,在該監視對象信號的對前述旋轉速度的調節方向與前述目標旋轉速度的方向相反、且該監視對象信號的強度超過了預定的臨限值的狀態持續了預定期間時,判斷為前述電動機處於在與前述目標旋轉速度相反方向上失控的反轉失控狀態,前述反轉失控判斷部具有週期測量部,該週期測量部對在前述電動機進行一次旋轉期間與電動機的旋轉同步地輸出的週期信號的週期進行判定,根據前述週期測量部的輸出值判定前述電動機的旋轉速度的大小。 A motor speed control device includes a feedforward control unit that inputs a target set value for setting a magnitude and a direction of a target rotational speed of the motor, generates a target command signal based on the target set value, and causes a rotational speed of the motor to be the aforementioned Feedforward control of the target rotational speed; a feedback control unit that generates an error signal corresponding to the difference between the current rotational speed and the target rotational speed, generates a compensation command signal based on the error signal, and adjusts the rotational speed to the target a feedback control of the rotation speed; a drive control unit that generates a composite signal obtained by combining the target command signal and the compensation command signal, controls driving of the motor based on the composite signal; and a reverse runaway determination unit that adds the compensation command The signal or the composite signal is a monitoring target signal, and the state in which the direction of adjustment of the rotation speed of the monitoring target signal is opposite to the direction of the target rotation speed and the intensity of the monitoring target signal exceeds a predetermined threshold continues. Pre-regular When it is determined that the motor is in a reverse runaway state that is out of control in a direction opposite to the target rotational speed, the reverse runaway determination unit includes a cycle measuring unit that rotates the motor during one rotation of the motor. The period of the periodic signal outputted in synchronization is determined, and the magnitude of the rotational speed of the motor is determined based on the output value of the period measuring unit. 如申請專利範圍第1項之電動機速度控制裝置,其中, 具有:動作切換部,其判斷當前的前述旋轉速度相對於前述目標旋轉速度是否在預定範圍內,在該範圍外時,僅使前述前饋控制部和前述反饋控制部中的前述前饋控制部動作,另一方面,在前述範圍內時,使雙方動作;以及恢復處理部,其在檢測到前述反轉失控狀態時,使前述旋轉速度從前述反轉失控狀態向前述目標旋轉速度恢復;前述恢復處理部檢測到前述反轉失控狀態時,轉移到對前述電動機的旋轉進行制動的制動控制;前述旋轉速度小於低速側界限的情況下結束前述制動控制,前述低速側界限為在前述範圍的上限和下限中絕對值比前述目標旋轉速度小者。 For example, the motor speed control device of claim 1 of the patent scope, wherein The operation switching unit determines whether the current rotation speed is within a predetermined range with respect to the target rotation speed, and when the range is outside the range, only the feedforward control unit and the feedforward control unit of the feedback control unit are provided. Actuating, on the other hand, when both are within the above range, the recovery processing unit recovers the rotational speed from the reverse runaway state to the target rotational speed when the reverse runaway state is detected; When the recovery processing unit detects the reverse runaway state, it shifts to brake control for braking the rotation of the motor. When the rotation speed is lower than the low speed limit, the brake control is terminated, and the low speed limit is an upper limit of the range. The absolute value in the lower limit and the lower limit is smaller than the aforementioned target rotational speed. 如申請專利範圍第1項之電動機速度控制裝置,其中,具有恢復處理部,其在檢測到前述反轉失控狀態時,使前述旋轉速度從前述反轉失控狀態向前述目標旋轉速度恢復;前述恢復處理部在檢測到前述反轉失控狀態時,轉移到對前述電動機的旋轉進行制動的制動控制;前述旋轉速度成為比臨界速度低時結束前述制動控制,前述臨界速度與前述目標旋轉速度相比方向相反、大小相同。 The motor speed control device according to the first aspect of the invention, further comprising: a recovery processing unit that recovers the rotation speed from the reverse runaway state to the target rotation speed when detecting the reverse runaway state; When detecting the reverse runaway state, the processing unit shifts to brake control for braking the rotation of the motor; when the rotation speed is lower than the critical speed, the brake control is ended, and the critical speed is compared with the target rotation speed. On the contrary, the size is the same.
TW099100771A 2009-01-23 2010-01-13 Device for controlling a motor speed TWI400875B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009012793A JP5341534B2 (en) 2009-01-23 2009-01-23 Motor speed control device

Publications (2)

Publication Number Publication Date
TW201029311A TW201029311A (en) 2010-08-01
TWI400875B true TWI400875B (en) 2013-07-01

Family

ID=42353641

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099100771A TWI400875B (en) 2009-01-23 2010-01-13 Device for controlling a motor speed

Country Status (5)

Country Link
US (1) US8198844B2 (en)
JP (1) JP5341534B2 (en)
KR (1) KR101052663B1 (en)
CN (1) CN101789742B (en)
TW (1) TWI400875B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8873944B2 (en) * 2012-10-09 2014-10-28 Allegro Microsystems, Llc Methods and apparatus for positioning a coil motor
US9291876B2 (en) * 2013-05-29 2016-03-22 Allegro Microsystems, Llc System and method for controlling a motor
US9584059B2 (en) * 2014-06-17 2017-02-28 Allegro Microsystems, Llc Motor control system and interface
JP6313186B2 (en) * 2014-10-30 2018-04-18 ミネベアミツミ株式会社 Motor drive control device and control method of motor drive control device
WO2018047394A1 (en) * 2016-09-08 2018-03-15 パナソニックIpマネジメント株式会社 Motor control device, motor position control method, and industrial machine
JP6409893B2 (en) * 2017-03-06 2018-10-24 オムロン株式会社 Motor control device
WO2019111670A1 (en) * 2017-12-05 2019-06-13 日本電産株式会社 Rotation control device, mobile body and conveyance robot
CN108111085B (en) * 2018-01-24 2020-04-03 深圳市英威腾电气股份有限公司 Electric transmission equipment, frequency converter and motor control method thereof
JP7056362B2 (en) * 2018-05-10 2022-04-19 オムロン株式会社 Motor control device and programming device
CN110011586A (en) * 2019-03-25 2019-07-12 深圳市汇川技术股份有限公司 Permanent magnet synchronous motor demagnetization guard method, system, device and storage medium
WO2021176657A1 (en) 2020-03-05 2021-09-10 平田機工株式会社 Control device, motor unit, conveying device, electric cylinder, storage medium, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628006A (en) * 1992-04-06 1994-02-04 Mitsubishi Electric Corp Two-freedom control device and servo control device for motor
JPH08126374A (en) * 1994-10-24 1996-05-17 Oriental Motor Co Ltd Control method for dc motor using pulse width modulation signal
JP2006158009A (en) * 2004-11-25 2006-06-15 Fuji Electric Systems Co Ltd Door opening and shutting device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460671A (en) * 1977-10-21 1979-05-16 Ricoh Co Ltd Positioning system
US4680515A (en) * 1985-05-21 1987-07-14 Crook James C Digital speed control of motors
JPS6443084A (en) * 1987-08-10 1989-02-15 Hitachi Ltd Servo abnormality detection
JPH02106185A (en) * 1988-10-13 1990-04-18 Toshiba Corp Speed regulator for induction motor
US5270631A (en) * 1991-04-16 1993-12-14 Olympus Optical Co., Ltd. Linear DC motor driving device
JP3091388B2 (en) * 1995-04-19 2000-09-25 ファナック株式会社 Motor runaway detection method and runaway detection device
JPH10268939A (en) * 1997-03-24 1998-10-09 Shinkawa Ltd Dc motor position control circuit and its method
JPH11215873A (en) * 1998-01-27 1999-08-06 Yaskawa Electric Corp Method of detecting run-out of motor, and motor driver
JP5167684B2 (en) * 2007-04-20 2013-03-21 富士電機株式会社 Door drive control device and door drive control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628006A (en) * 1992-04-06 1994-02-04 Mitsubishi Electric Corp Two-freedom control device and servo control device for motor
JPH08126374A (en) * 1994-10-24 1996-05-17 Oriental Motor Co Ltd Control method for dc motor using pulse width modulation signal
JP2006158009A (en) * 2004-11-25 2006-06-15 Fuji Electric Systems Co Ltd Door opening and shutting device

Also Published As

Publication number Publication date
JP5341534B2 (en) 2013-11-13
CN101789742B (en) 2012-08-29
CN101789742A (en) 2010-07-28
KR20100086959A (en) 2010-08-02
US20100188032A1 (en) 2010-07-29
TW201029311A (en) 2010-08-01
JP2010172117A (en) 2010-08-05
US8198844B2 (en) 2012-06-12
KR101052663B1 (en) 2011-07-28

Similar Documents

Publication Publication Date Title
TWI400875B (en) Device for controlling a motor speed
TWI398644B (en) Pulse period measuring method
TWI401878B (en) Device for controlling a motor speed
JP5491207B2 (en) Stepping motor drive device
US9998048B2 (en) Motor control apparatus for vector-controlling sensorless motor
JP2009232666A (en) Back electromotive force phase detection device and method,and excitation controller and method
EP2731258B1 (en) Motor control apparatus, image forming apparatus and motor control method
WO2016161213A1 (en) Fractional delay adjustment in a field-oriented control architecture
JP2007236102A (en) Controller of induction motor
JP2009095154A (en) Motor controller and its speed detection method
JP4538786B2 (en) Motor control device
JP2001178166A (en) Speed control apparatus for motor
US20140062357A1 (en) Motor driving apparatus and operating method thereof
JPH11178380A (en) Motor speed controller
JP2007252139A (en) Motor controller and motor control method
JP3102520B2 (en) Drive device for brushless motor
JP2008064699A (en) Motor speed detector
JP2005012878A (en) Control switching method of motor speed controller
JPS6179165A (en) Analog speed detecting method using rotary encoder

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees