WO2019111670A1 - Rotation control device, mobile body and conveyance robot - Google Patents

Rotation control device, mobile body and conveyance robot Download PDF

Info

Publication number
WO2019111670A1
WO2019111670A1 PCT/JP2018/042446 JP2018042446W WO2019111670A1 WO 2019111670 A1 WO2019111670 A1 WO 2019111670A1 JP 2018042446 W JP2018042446 W JP 2018042446W WO 2019111670 A1 WO2019111670 A1 WO 2019111670A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
rotational speed
rotating body
wheel
control
Prior art date
Application number
PCT/JP2018/042446
Other languages
French (fr)
Japanese (ja)
Inventor
惇史 山本
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201880078356.3A priority Critical patent/CN111433704A/en
Publication of WO2019111670A1 publication Critical patent/WO2019111670A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D13/00Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover
    • G05D13/62Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover characterised by the use of electric means, e.g. use of a tachometric dynamo, use of a transducer converting an electric value into a displacement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • H02P5/50Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another by comparing electrical values representing the speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a rotation control device that controls the rotation state of a rotating body, a moving body, and a transfer robot.
  • a mobile object such as a transfer robot or an articulated robot
  • a plurality of rotating bodies such as wheels and joints are provided, and each rotating body is driven by each motor to individually control the rotational state of each rotating body.
  • attitude and the movement of a moving body or a robot are controlled.
  • Patent Document 1 discloses a technique for performing phase difference synchronization (PLL) control of a reference signal indicating a rotation reference of a motor and a rotation angle detected for the motor.
  • PLL phase difference synchronization
  • an object of the present invention is to provide a rotation control device, a moving body, and a transfer robot capable of suppressing distortion of posture and motion even when control of a rotating body is disturbed. .
  • a rotation control device includes a first controller that controls the rotational speed of a first rotating body to a target first rotational speed, and a second control that controls the rotational speed of a second rotating body. And a second controller for controlling the rotational speed, wherein the first controller inputs information on the second rotational speed received from the outside to the second controller, and the first rotational
  • the relative relationship between the rotational state of the body and the rotational state of the second rotary body is determined, and the first measurement of the rotational state of the first rotary body and the second measurement of the rotational state of the second rotary body A value is obtained, correction control is made to approximate the relationship between the first measured value and the second measured value to the relative relationship, and the correction control is added to the first rotating body.
  • a moving body includes a base, a first wheel for moving the base, a second wheel for moving the base, and a first for rotationally driving the first wheel.
  • Drive a second drive for rotationally driving the second wheel, and a rotation speed of a first rotating body, which is one of the first wheel and the first drive, as a target first rotation
  • a first controller for controlling the speed
  • a second controller for controlling the rotational speed of the second rotating body, which is one of the second wheel and the second driver, to the target second rotational speed
  • the first controller inputs information on the second rotation speed received from the outside to the second controller, and the rotation state of the first rotor and the second rotation Determine the relative relationship between the rotational state of the body and the first rotational state of the first rotating body
  • the fixed control value and the second measurement value of the rotational state of the second rotating body are acquired, and the correction control is calculated to bring the relationship between the first measurement value and the second measurement value closer to the relative relationship, and the correction control Is added to the first rotating body.
  • a transfer robot includes a base having a mounting table on which a load is placed, a first wheel for moving the base, and a second wheel for moving the base.
  • a first driver that rotationally drives the first wheel a second driver that rotationally drives the second wheel, and a first that is one of the first wheel and the first driver
  • a first controller for controlling the rotational speed of the rotating body to the target first rotational speed, and the rotational speed of the second rotating body, which is one of the second wheel and the second driver,
  • a second controller for controlling to a second rotational speed, wherein the first controller inputs information on the second rotational speed received from the outside to the second controller, and Determine the relative relationship between the rotation state of the second rotation body and the rotation state of the second rotation body, Note that the first measured value of the rotational state of the first rotating body and the second measured value of the rotational state of the second rotating body are acquired, and the relationship between the first measured value and the second measured value is A correction control that approximates the relative relationship is calculated, and the correction control is added
  • the first rotating body rotates following the second rotating body. Distortion in the posture or movement of a moving body or robot equipped with the two rotating bodies is suppressed.
  • FIG. 1 is a block diagram of a control system including a transfer robot according to an embodiment of the present invention. It is a figure which shows the operation
  • FIG. 1 is a perspective view showing an embodiment of a transfer robot of the present invention.
  • the transfer robot 1 of the present embodiment also corresponds to an embodiment of the mobile unit of the present invention.
  • the transfer robot 1 is used, for example, to transfer materials in a factory.
  • the transfer robot 1 includes a vehicle body (base) 2 and two wheels 4A and 4B supported by the vehicle body 2 and rotating.
  • the vehicle body 2 is a substantially horizontal frame provided below the transport robot 1.
  • the wheels 4A and 4B are the same shape and size, and are arranged concentrically.
  • printed boards 10A, 10B, 12A, 12B for driving the wheel motors 6A, 6B are mounted on the vehicle body 2.
  • printed circuit boards 10A and 10B include drive circuits including inverters and motor drivers
  • printed circuit boards 12A and 12B include main control circuits including microcomputer boards.
  • FIG. 2 is a block diagram of a control system including the transfer robot 1 according to the embodiment of the present invention.
  • the transfer robot 1 can communicate with an external computer (external control device) 40 that remotely operates the transfer robot 1 by wireless communication.
  • the wireless communication method may be, for example but not limited to, Wi-Fi (registered trademark).
  • the transfer robot 1 has two motor units, that is, a first motor unit 42A and a second motor unit 42B. These two motor units 42A and 42B are in one-to-one correspondence with the two wheels 4A and 4B shown in FIG. 1, and each of the two motor units 42A and 42B drives the corresponding wheels 4A and 4B. It includes wheel motors 6A and 6B.
  • the motor units 42A and 42B are supplied with power by a power supply 43.
  • the power source 43 is a battery housed in a battery case 8 (see FIG. 1).
  • the two motor units 42A and 42B have the same structure as hardware, and the wheel motors 6A and 6B, the wireless communication circuits 44A and 44B, and the main control units 46A and 46B, respectively. It has memories 48A, 48B, motor drive control units 50A, 50B, drive circuits 52A, 52B and speed sensors 54A, 54B.
  • the wireless communication circuit 44A, the main control unit 46A, the memory 48A, the motor drive control unit 50A, and the drive circuit 52A of the first motor unit 42A are separately mounted on two printed circuit boards as hardware, as shown in FIG. Among the four printed circuit boards 10A, 10B, 12A, and 12B shown, they are mounted on two printed circuit boards 10A and 12A located on the first wheel 4A side. Specifically, the wireless communication circuit 44A, the main control unit 46A, the memory 48A, and the motor drive control unit 50A are mounted on the lower printed circuit board 12A, and the drive circuit 52A is mounted on the upper printed circuit board 10A.
  • the wireless communication circuit 44B, the main control unit 46B, the memory 48B, the motor drive control unit 50B and the drive circuit 52B of the second motor unit 42B are separately mounted on two printed circuit boards as hardware,
  • the four printed circuit boards 10A, 10B, 12A, 12B shown in FIG. 1 are mounted on two printed circuit boards 10B, 12B located on the second wheel 4B side.
  • the wireless communication circuit 44B, the main control unit 46B, the memory 48B and the motor drive control unit 50B are mounted on the lower printed circuit board 12B, and the drive circuit 52B is mounted on the upper printed circuit board 10B.
  • Each of the two wireless communication circuits 44A and 44B has a function of wirelessly communicating with the external computer 40.
  • the first wireless communication circuit 44A is normally used for wireless communication with the external computer 40, and the second wireless communication circuit 44B communicates, for example, due to a failure of the first wireless communication circuit 44A. It is used as a backup in case of failure.
  • the second wireless communication circuit 44B may be used as an aid to the first wireless communication circuit 44A.
  • the first wireless communication circuit 44A may be used for reception from the external computer 40, and the second wireless communication circuit 44B may be used for transmission to the external computer 40.
  • each of the main control units 46A and 46B is, for example, a processor, and the two main control units 46A and 46B are implemented by reading and executing programs stored in a recording medium (not shown).
  • the combination operates as one embodiment of the rotation control device of the present invention. Therefore, the program (program code) itself read from the recording medium implements the function of the main control units 46A and 46B in the present embodiment.
  • the recording medium which recorded the said program can comprise embodiment of this invention.
  • the first main control unit 46A wirelessly communicates with the external computer 40 using the wireless communication circuit 44A.
  • the first main control unit 46A controls the drive of the wheel motor 6A by controlling the motor drive control unit 50A. Furthermore, the first main control unit 46A is communicably connected to the second main control unit 46B in a wired manner.
  • the second main control unit 46B also controls the drive of the wheel motor 6B by controlling the motor drive control unit 50B. Further, when communication failure occurs in the first main control unit 46A, the second main control unit 46B uses the wireless communication circuit 44B to replace the first main control unit 46A with wireless communication with the external computer 40. Do.
  • Each of the memories 48A and 48B stores data necessary for each of the main control units 46A and 46B to perform processing. Each of main control units 46A and 46B reads necessary data from memories 48A and 48B.
  • the memories 48A and 48B in the present embodiment are volatile memories (for example, SRAMs), but may be nonvolatile memories (for example, flash memories). Also, each of the memories 48A and 48B may include both volatile memory and non-volatile memory.
  • the motor drive control units 50A and 50B control the drive (for example, the rotational speed) of the wheel motors 6A and 6B in accordance with the commands from the main control units 46A and 46B.
  • Each of the motor drive control units 50A and 50B can perform, for example, PID (Proportional-Integral-Differential) control or vector control, and for example, a microprocessor, an application specific integrated circuit (ASIC), or a DSP (Digital Signal Processor) It is.
  • Each of drive circuits 52A and 52B drives wheel motors 6A and 6B under the control of motor drive control units 50A and 50B.
  • Each of the speed sensors 54A, 54B outputs an electrical signal indicating the rotational speed of the wheel motor 6A, 6B.
  • Each of the speed sensors 54A and 54B is, for example, a Hall sensor attached to the inside of the wheel motor 6A or 6B, and converts the magnetic field into an electrical signal.
  • Each of motor drive control units 50A and 50B calculates the rotational speed of wheel motors 6A and 6B based on the output signals of speed sensors 54A and 54B. That is, each of motor drive control units 50A, 50B measures the rotational speed of the corresponding wheel motor 6A, 6B.
  • the measured values of the rotational speeds of the wheel motors 6A and 6B are notified to the main control units 46A and 46B, and the main control units 46A and 46B use the values of the rotational speeds of the wheel motors 6A and 6B.
  • a command for controlling the driving of the wheel motors 6A, 6B is given to the motor drive control units 50A, 50B.
  • each of the motor drive control units 50A, 50B can calculate the torque of the wheel motor 6A, 6B by a known calculation method based on the current value of the drive circuit 52A, 52B. That is, the drive circuits 52A and 52B can measure the torques of the wheel motors 6A and 6B. The measured torque values of the wheel motors 6A and 6B are notified to the main control units 46A and 46B, and the main control units 46A and 46B use the torque values of the wheel motors 6A and 6B to drive the motor. A command for controlling the drive of the wheel motor 6A, 6B can be given to the control units 50A, 50B.
  • Example of motor control operation An example of control operation in which the motor units 42A and 42B control the wheel motors 6A and 6B based on control commands from the external computer 40 will be described.
  • FIG. 3 is a diagram showing an operation procedure of the external computer 40 and the two motor units 42A and 42B.
  • the operation of the motor units 42A and 42B is shown divided into communication threads 61A and 61B and control threads 62A and 62B.
  • the external computer 40 calculates target speeds of the two wheel motors 6A and 6B of the transfer robot 1 so as to draw the planned trajectory on the transfer robot 1, and transfers control commands indicating the target speeds. It transmits to the robot 1 by wireless communication.
  • the first motor unit 42A normally receives a control command.
  • FIG. 4 is a view showing an example of the format of a control command.
  • an example of the format of the control command includes a field indicating a command type, a field indicating a target achievement time (Duration), and a first device ID (device ID of the first motor unit 42A).
  • a field indicating the target speed of the first wheel motor 6A, a field indicating the second device ID (the device ID of the second motor unit 42B), and a target speed of the second wheel motor 6B And a field indicating
  • the field indicating the command type includes a bit string indicating that the command to be transmitted is a control command for setting the target speed.
  • the field indicating the target achievement time includes a bit string indicating the time until the wheel motors 6A and 6B reach the target speed after receiving the control command.
  • the field indicating the device ID includes a bit string indicating the ID of the motor unit having the wheel motor to be controlled by the control command. That is, each of the two fields indicating the device ID includes a bit string indicating the device ID of the first motor unit 42A or a bit string indicating the device ID of the second motor unit 42B.
  • the field indicating the target velocity immediately after the field indicating the device ID of the first motor unit 42A includes a bit string indicating the target velocity of the first wheel motor 6A.
  • the field indicating the target velocity immediately after the field indicating the device ID of the second motor unit 42B includes a bit string indicating the target velocity of the second wheel motor 6B.
  • the target achievement time specifies 100 ms
  • the target speed of the first wheel motor 6A specifies 100 rpm
  • the target speed of the second wheel motor 6B specifies 200 rpm.
  • the first motor unit 42A controls the rotation speed of the wheel motor 6A to 100 rpm
  • the second motor unit 42B controls the rotation speed of the wheel motor 6B in 100 ms after receiving the control command.
  • the control command means that it should be controlled to 200 rpm.
  • the main control unit 46A compares the target speeds of the two wheel motors 6A and 6B, and the transfer robot 1 It is determined whether the operation of is a straight movement or a turning movement. That is, when the two target speeds are equal, it is determined that the linear motion is performed, and when the two target speeds are different, it is determined that the rotation speed is the turning operation.
  • a control command indicating the target speed of the second wheel motor 6B is transmitted from the first motor unit 42A to the second motor unit 42B by wire communication.
  • the format of this control command is a format obtained by deleting the device ID for the first motor unit 42A and the target speed from the format shown in FIG. ⁇ Acceleration control>
  • Each of the motor units 42A and 42B whose target speed has been instructed by the control command creates a control plan for reaching the target speed at the target achievement time. That is, the main control units 46A and 46B determine the instantaneous target speeds of the wheel motors 6A and 6B at each moment until the target achievement time. Each moment referred to here is each time point separated by a constant control cycle. Also, the determination of the instantaneous target speed is performed by interpolation based on, for example, the current rotational speed of each motor, the target speed of the motor specified in the control command, and the target achievement time specified in the control command. .
  • the first main control unit 46A For example, in order to increase the rotational speed of the first wheel motor 6A by 1 rpm every 1 ms, the instantaneous target speed at each instant of 1 ms is determined. In addition, the second main control unit 46B determines the instantaneous target speed at each instant of 1 ms so as to increase the rotational speed of the second wheel motor 6B every 2 ms, for example, every 1 ms.
  • the main control units 46A and 46B use, for example, linear interpolation to determine the instantaneous target velocity, but other interpolation algorithms may be used.
  • the main control units 46A and 46B that have determined the instantaneous target speeds of the wheel motors 6A and 6B store the instantaneous target speeds of the wheel motors 6A and 6B in the memories 48A and 48B.
  • the main control units 46A and 46B control the motor drive control units 50A and 50B according to the control plan to accelerate and control the rotational speeds of the wheel motors 6A and 6B. That is, the main control units 46A and 46B read the instantaneous target speeds of the wheel motors 6A and 6B from the memories 48A and 48B at each moment, so that the rotational speeds of the wheel motors 6A and 6B become the instantaneous target speeds. Control of the drive control units 50A and 50B is repeated at a constant control cycle. In the above example, the control cycle of each motor is 1 ms, but the control cycle is not limited to 1 ms, and may be 5 ms, for example. ⁇ Constant speed control>
  • the main control unit 46B executes constant speed control to keep the rotation speed of the wheel motor 6B of the second motor unit 42B at the target speed.
  • FIG. 5 is a view showing an example of the rotational speed of the wheel motor 6B in the second motor unit 42B.
  • the horizontal axis in FIG. 5 indicates the elapsed time, and the vertical axis indicates the rotational speed of the wheel motor 6B.
  • the second wheel motor 6B reaches the target speed during target achievement time (Duration) by acceleration control. Thereafter, constant speed control is performed, whereby the rotational speed of the second wheel motor 6B is maintained at the target speed.
  • the first motor unit 42A executes follow-up control as shown in FIG. 3 so that the transport robot 1 draws a planned trajectory.
  • the first main control unit 46A transmits a measurement command requesting motor information to the second main control unit 46B by wire communication.
  • FIG. 6 is a diagram showing an example of the format of the measurement command.
  • an example of the format of the measurement command is a field indicating the command type, a field indicating the state measurement start time, a field indicating the report duration, and a field indicating the report cycle (measurement cycle).
  • the field indicating the command type includes a bit string indicating that the command to be transmitted is a measurement command.
  • the main control unit 46B that has received the measurement command stores the measurement command in the memory 48B. Further, the main control unit 46B executes the state measurement at the time of the state measurement start designated by the measurement command. Specifically, the main control unit 46B causes the motor drive control unit 50B to measure the rotational speed and torque of the second wheel motor 6B, and receives the measured values of the rotational speed and torque from the motor drive control unit 50B. After the measurement is completed, the main control unit 46B transmits, as the motor information of the second motor unit 42B, a status report indicating the measurement result to the first motor unit 42A by wire communication.
  • FIG. 7 is a diagram showing an example of the format of the status report of the second motor unit 42B.
  • an example of the format of the status report has a field indicating a report type, a field indicating a speed, and a field indicating a torque.
  • the field of report type includes a bit string indicating that this report is a status report of the second motor unit 42B.
  • the field of velocity includes a bit string indicating the measurement of velocity.
  • the field of torque includes a bit string that indicates the measured value of torque.
  • the main control unit 46A of the first motor unit 42A determines the rotational state of the first wheel motor 6A by the second wheel motor indicated by the state report.
  • follow-up control which will be described in detail later, is performed to follow the rotation state of 6B.
  • FIG. 8 is a diagram illustrating the follow-up control performed by the first main control unit 46A.
  • the measured value of the speed is used to execute the follow-up control.
  • the follow-up control shown in FIG. 8 is executed when it is determined by the above-described speed determination that the operation is a straight-ahead operation.
  • the first main control unit 46A causes the measured speed of the first wheel motor 6A to the motor drive control unit 50B, a measured value theta 1 of the rotational speed obtained in the measurement, the second motor unit It divides from measurement value (theta) 2 of rotational speed of 2nd motor 6B for wheels obtained from 42B. Thus, the difference in rotational speed between the two wheel motors 6A and 6B is calculated.
  • the first main control unit 46A calculates a proportional operation 71 and an integration operation 72 in PI control based on the rotational speed difference.
  • This PI control is correction control that corrects the rotational speed of the first wheel motor 6A such that the rotational speed difference approaches zero.
  • the first main control unit 46A calculates the corrected target speed by adding the component of the correction control to the target speed given by the control command to the first wheel motor 6A. Then, the first main control unit 46A controls the motor drive control unit 50A such that the first wheel motor 6A has the corrected target speed.
  • FIG. 9 is a view showing an example of the rotational speed of the wheel motor 6A in the first motor unit 42A.
  • the horizontal axis in FIG. 9 indicates the elapsed time, and the vertical axis indicates the rotational speed of the wheel motor.
  • an example of the rotational speed of the first wheel motor 6A is indicated by a solid line, and an example of the rotational speed of the second wheel motor 6B similar to the example shown in FIG. There is.
  • the rotational speed of the first wheel motor 6A reaches the target speed during the target achievement time (Duration) by the same acceleration control as that of the second wheel motor 6B. Thereafter, the follow-up control shown in FIG. 8 is performed, whereby the rotational speed of the first wheel motor 6A follows the rotational speed of the second wheel motor 6B. That is, even when the rotational speed of the second wheel motor 6B is maintained at the target speed, and also when the disturbance as described above occurs, the rotational speed of the first wheel motor 6A is the second wheel The rotational speed is the same as the rotational speed of the motor 6B. As a result, the transport robot 1 maintains the straight movement even when a disturbance occurs. ⁇ Follow-up control in curve operation> Next, follow-up control in the curve operation will be described.
  • FIG. 10 is a diagram showing follow control in a curve operation.
  • the rotational speed of the first wheel motor 6A and the rotational speed of the second wheel motor 6B are maintained at a ratio according to the planned curve radius. That is, when it is determined that the curve operation is performed by the above-described speed determination, the target speed ratio ⁇ is determined, and in the following control, the rotational speed of the first wheel motor 6A is maintained so as to maintain this ratio ⁇ . Is controlled.
  • the first main control unit 46A causes the motor drive control unit 50B to measure the speed of the first wheel motor 6A.
  • the first main control section 46A integrates the ratio of target speed ⁇ relative measurements theta 2 of the rotational speed of the second wheel motor 6B which is obtained from the second motor unit 42B, the integration result And the measured value ⁇ 1 of the speed of the first wheel motor 6A.
  • the rotational speed of the first wheel motor 6A such that the ratio of the rotational speeds of the two wheel motors 6A and 6B is maintained at the target speed ratio ⁇ , and the measured first wheel motor 6A The difference with the rotational speed of is calculated.
  • the first main control unit 46A calculates a proportional operation 71 and an integration operation 72 in PI control based on the difference.
  • the PI control is correction control that corrects the rotational speed of the first wheel motor 6A such that the difference approaches zero and the ratio of the rotational speeds of the two wheel motors 6A and 6B approaches the ratio ⁇ .
  • the first main control unit 46A calculates the corrected target speed by adding the component of the correction control to the target speed given by the control command to the first wheel motor 6A. Then, the first main control unit 46A controls the motor drive control unit 50A such that the first wheel motor 6A has the corrected target speed.
  • FIG. 11 is a view showing a first another example of the follow-up control.
  • PID control is used in the follow-up control shown in FIG. That is, based on the rotational speed difference between the two wheel motors 6A, 6B calculated in the same manner as the follow-up control shown in FIG. And operation 73 is calculated. Like the PI control, this PID control also serves as correction control for correcting the rotational speed of the first wheel motor 6A so that the rotational speed difference approaches zero, but since the differential operation 73 is added, it is rapid Even in the event of a disturbance, quick correction is realized. Since both PI control and PID control are control that can obtain high accuracy by simple logic, high-speed and high-precision control is realized by using PI control and PID control.
  • the first main control unit 46A adds the component of this correction control to the target speed given by the control command to the first wheel motor 6A, and the target speed obtained by correcting the first wheel motor 6A.
  • the motor drive control unit 50A is controlled so that FIG. 12 is a view showing a second another example of the follow-up control.
  • the rotational speed of the second wheel motor 6B obtained from the second motor unit 42B is changed to the target speed given by the control command.
  • measurements theta 2 is used. That is, the first main control section 46A is a speed indicated by the measured value theta 2, by adding the component of the correction control by the PI control, it calculates a corrected target speed. Then, the first main control unit 46A controls the motor drive control unit 50A such that the first wheel motor 6A has the corrected target speed.
  • a transport system having one transport robot is illustrated, but the present invention may be applied to, for example, a transport system in which a plurality of transport robots transport one pallet and the like.
  • a wheel or a motor for moving a moving body is exemplified as a rotating body whose rotational speed is controlled by the rotation control device, but the rotation control device of the present invention is a robot joint, a factory, etc.
  • the rotational speed of a series of transport rolls for feeding a continuous sheet may be controlled.
  • SYMBOLS 1 conveyance robot (moving body), 2 ... vehicle body (base), 6A, 6B ... motor for wheels, 40 ... external computer (external control device), 42A ... 1st motor unit, 42B ... 2nd motor unit , 44A: wireless communication circuit, 46A, 46B: main control unit, 50A, 50B: motor drive control unit, 52A, 52B: drive circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

[Problem] To provide a rotation control device which can suppress distortion in orientation and movement even when disturbances occur in rotating body control, and to provide a mobile body and a conveyance robot. [Solution] This rotation control device is provided with a first controller for controlling the rotation speed of a first rotating body to a target first rotation speed, and a second controller for controlling the rotation speed of a second rotating body to a target second rotation speed. The first controller inputs, to the second controller, information relating to the aforementioned second rotation speed received from outside, determines the relative relation between the rotation state of the first rotating body and the rotation state of the second rotating body, acquires a first measurement value of the rotation state of the first rotating body and a second measurement value of the rotation state of the second rotating body, calculates correction control such that the relation between the first measured value and the second measured value approaches the aforementioned relative relation, and applies the aforementioned correction control to the first rotating body.

Description

回転制御装置、移動体、および搬送ロボットRotation control device, moving body, and transfer robot
 本発明は、回転体の回転状態を制御する回転制御装置、移動体、および搬送ロボットに関する。 The present invention relates to a rotation control device that controls the rotation state of a rotating body, a moving body, and a transfer robot.
 従来、例えば搬送ロボットなどといった移動体や多関節ロボットなどにおいて、車輪や関節などといった回転体が複数備えられ、各回転体が各モータで駆動されて各回転体における回転状態が個別に制御されることで移動体やロボットの姿勢や動きが制御される技術が知られている。 Conventionally, in a mobile object such as a transfer robot or an articulated robot, a plurality of rotating bodies such as wheels and joints are provided, and each rotating body is driven by each motor to individually control the rotational state of each rotating body. There is known a technique in which the attitude and the movement of a moving body or a robot are controlled.
 例えば特許文献1には、モータの回転基準を示した基準信号と、そのモータについて検出された回転角とを位相差同期(PLL)制御する技術が開示されている。 For example, Patent Document 1 discloses a technique for performing phase difference synchronization (PLL) control of a reference signal indicating a rotation reference of a motor and a rotation angle detected for the motor.
特開2002-78374号公報JP, 2002-78374, A
 しかしながら、複数の回転体それぞれについて回転状態が基準信号に同期される場合であっても、信号遅延やノイズなどが原因で回転体の制御に乱れが生じた場合は、回転体の相互間では同期が乱れてしまい、移動体の姿勢や動きがゆがんでしまう。 However, even if the rotation state is synchronized with the reference signal for each of the plurality of rotating bodies, synchronization between the rotating bodies may occur if the control of the rotating bodies is disturbed due to signal delay or noise. The movement of the moving object is distorted.
 そこで、本発明は、回転体の制御に乱れが生じた場合であっても、姿勢や動きのゆがみを抑制することが出来る回転制御装置、移動体、および搬送ロボットを提供することを目的とする。 Therefore, an object of the present invention is to provide a rotation control device, a moving body, and a transfer robot capable of suppressing distortion of posture and motion even when control of a rotating body is disturbed. .
 本発明の一態様に係る回転制御装置は、第1の回転体の回転速度を目標の第1回転速度に制御する第1の制御器と、第2の回転体の回転速度を目標の第2回転速度に制御する第2の制御器と、を備え、上記第1の制御器は、外部から受信した上記第2回転速度に関する情報を上記第2の制御器に入力し、上記第1の回転体における回転状態と上記第2の回転体における回転状態との相対関係を決定し、上記第1の回転体における回転状態の第1測定値と上記第2の回転体における回転状態の第2測定値とを取得し、上記第1測定値と上記第2測定値との関係を上記相対関係に近づける補正制御を計算し、上記補正制御を上記第1の回転体に加える。 A rotation control device according to one aspect of the present invention includes a first controller that controls the rotational speed of a first rotating body to a target first rotational speed, and a second control that controls the rotational speed of a second rotating body. And a second controller for controlling the rotational speed, wherein the first controller inputs information on the second rotational speed received from the outside to the second controller, and the first rotational The relative relationship between the rotational state of the body and the rotational state of the second rotary body is determined, and the first measurement of the rotational state of the first rotary body and the second measurement of the rotational state of the second rotary body A value is obtained, correction control is made to approximate the relationship between the first measured value and the second measured value to the relative relationship, and the correction control is added to the first rotating body.
 また、本発明の一態様に係る移動体は、ベースと、上記ベースを移動させる第1の車輪と、上記ベースを移動させる第2の車輪と、上記第1の車輪を回転駆動する第1の駆動器と、上記第2の車輪を回転駆動する第2の駆動器と、上記第1の車輪および上記第1の駆動器の一方である第1の回転体の回転速度を目標の第1回転速度に制御する第1の制御器と、上記第2の車輪および上記第2の駆動器の一方である第2の回転体の回転速度を目標の第2回転速度に制御する第2の制御器と、を備え、上記第1の制御器は、外部から受信した上記第2回転速度に関する情報を上記第2の制御器に入力し、上記第1の回転体における回転状態と上記第2の回転体における回転状態との相対関係を決定し、上記第1の回転体における回転状態の第1測定値と上記第2の回転体における回転状態の第2測定値とを取得し、上記第1測定値と上記第2測定値との関係を上記相対関係に近づける補正制御を計算し、上記補正制御を上記第1の回転体に加える。 A moving body according to one aspect of the present invention includes a base, a first wheel for moving the base, a second wheel for moving the base, and a first for rotationally driving the first wheel. Drive, a second drive for rotationally driving the second wheel, and a rotation speed of a first rotating body, which is one of the first wheel and the first drive, as a target first rotation A first controller for controlling the speed, and a second controller for controlling the rotational speed of the second rotating body, which is one of the second wheel and the second driver, to the target second rotational speed And the first controller inputs information on the second rotation speed received from the outside to the second controller, and the rotation state of the first rotor and the second rotation Determine the relative relationship between the rotational state of the body and the first rotational state of the first rotating body The fixed control value and the second measurement value of the rotational state of the second rotating body are acquired, and the correction control is calculated to bring the relationship between the first measurement value and the second measurement value closer to the relative relationship, and the correction control Is added to the first rotating body.
 また、本発明の一態様に係る搬送ロボットは、搬送物が載置される載置台を有したベースと、上記ベースを移動させる第1の車輪と、上記ベースを移動させる第2の車輪と、上記第1の車輪を回転駆動する第1の駆動器と、上記第2の車輪を回転駆動する第2の駆動器と、上記第1の車輪および上記第1の駆動器の一方である第1の回転体の回転速度を目標の第1回転速度に制御する第1の制御器と、上記第2の車輪および上記第2の駆動器の一方である第2の回転体の回転速度を目標の第2回転速度に制御する第2の制御器と、を備え、上記第1の制御器は、外部から受信した上記第2回転速度に関する情報を上記第2の制御器に入力し、上記第1の回転体における回転状態と上記第2の回転体における回転状態との相対関係を決定し、上記第1の回転体における回転状態の第1測定値と上記第2の回転体における回転状態の第2測定値とを取得し、上記第1測定値と上記第2測定値との関係を上記相対関係に近づける補正制御を計算し、上記補正制御を上記第1の回転体に加える。 A transfer robot according to one aspect of the present invention includes a base having a mounting table on which a load is placed, a first wheel for moving the base, and a second wheel for moving the base. A first driver that rotationally drives the first wheel, a second driver that rotationally drives the second wheel, and a first that is one of the first wheel and the first driver A first controller for controlling the rotational speed of the rotating body to the target first rotational speed, and the rotational speed of the second rotating body, which is one of the second wheel and the second driver, A second controller for controlling to a second rotational speed, wherein the first controller inputs information on the second rotational speed received from the outside to the second controller, and Determine the relative relationship between the rotation state of the second rotation body and the rotation state of the second rotation body, Note that the first measured value of the rotational state of the first rotating body and the second measured value of the rotational state of the second rotating body are acquired, and the relationship between the first measured value and the second measured value is A correction control that approximates the relative relationship is calculated, and the correction control is added to the first rotating body.
 本発明によれば、第2の回転体の制御に乱れが生じた場合であっても、第1の回転体が第2の回転体に追随して回転するので、第1の回転体および第2の回転体を搭載した移動体やロボットの姿勢や動きにおけるゆがみが抑制される。 According to the present invention, even when the control of the second rotating body is disturbed, the first rotating body rotates following the second rotating body. Distortion in the posture or movement of a moving body or robot equipped with the two rotating bodies is suppressed.
本発明の搬送ロボットの一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the carrier robot of this invention. 本発明の実施形態に係る搬送ロボットを含む制御システムのブロック図である。1 is a block diagram of a control system including a transfer robot according to an embodiment of the present invention. 外部コンピュータと2つのモータユニットの動作手順を示す図であるIt is a figure which shows the operation | movement procedure of an external computer and two motor units. 制御コマンドのフォーマット例を示す図である。It is a figure which shows the example of a format of a control command. 第2のモータユニットにおける車輪用モータの回転速度例を示す図である。It is a figure which shows the rotation speed example of the motor for wheels in a 2nd motor unit. 測定コマンドのフォーマット例を示す図である。It is a figure which shows the example of a format of measurement command. 第2のモータユニットの状態報告のフォーマット例を示す図である。It is a figure which shows the example of a format of the state report of a 2nd motor unit. 第1のメイン制御部によって実行される追従制御を示す図である。It is a figure which shows the follow-up control performed by a 1st main control part. 第1のモータユニットにおける車輪用モータの回転速度例を示す図である。It is a figure which shows the rotation speed example of the motor for wheels in a 1st motor unit. カーブ動作における追従制御を示す図である。It is a figure showing follow control in curve operation. 追従制御の第1の別例を示す図である。It is a figure which shows the 1st another example of follow-up control. 追従制御の第2の別例を示す図である。It is a figure which shows the 2nd another example of follow-up control.
 以下、添付の図面を参照しながら本発明に係る実施の形態を説明する。
<搬送ロボット>
 図1は、本発明の搬送ロボットの一実施形態を示す斜視図である。
 本実施形態の搬送ロボット1は、本発明の移動体の一実施形態にも相当する。この搬送ロボット1は、例えば工場内における資材の搬送などに用いられる。
Hereinafter, embodiments according to the present invention will be described with reference to the attached drawings.
<Transport robot>
FIG. 1 is a perspective view showing an embodiment of a transfer robot of the present invention.
The transfer robot 1 of the present embodiment also corresponds to an embodiment of the mobile unit of the present invention. The transfer robot 1 is used, for example, to transfer materials in a factory.
 搬送ロボット1は、車体(ベース)2と、車体2に支持されて回転する2つの車輪4A,4Bとを備える。車体2は、搬送ロボット1の下部に設けられたほぼ水平なフレームである。車輪4A,4Bは、同形同大であり、同心に配置されている。 The transfer robot 1 includes a vehicle body (base) 2 and two wheels 4A and 4B supported by the vehicle body 2 and rotating. The vehicle body 2 is a substantially horizontal frame provided below the transport robot 1. The wheels 4A and 4B are the same shape and size, and are arranged concentrically.
 車体2には、車輪4A,4Bをそれぞれ駆動する2つの車輪用モータ6A,6Bが搭載されている。また、車体2には、車輪用モータ6A,6Bを駆動するための電源であるバッテリが収容されたバッテリケース8が搭載されている。さらに、車体2には、車輪用モータ6A,6Bを駆動するためのプリント基板10A,10B,12A,12Bが実装されている。ここで、プリント基板10Aおよび10Bは、インバータやモータドライバを含む駆動回路を含み、プリント基板12Aおよび12Bは、マイコンボードを含むメイン制御回路を含む。
 なお、図1では、プリント基板10A,10B,12A,12Bが棚板上に実装されている場合について示しているが、プリント基板10A,10B,12A,12Bそのものが棚板になっていてもよい。
 さらに、車体2には、複数の支柱14が取り付けられており、支柱14は荷台16を支持している。
<制御システム>
On the vehicle body 2 are mounted two wheel motors 6A and 6B for driving the wheels 4A and 4B, respectively. Further, on the vehicle body 2 is mounted a battery case 8 in which a battery, which is a power source for driving the wheel motors 6A and 6B, is accommodated. Furthermore, printed boards 10A, 10B, 12A, 12B for driving the wheel motors 6A, 6B are mounted on the vehicle body 2. Here, printed circuit boards 10A and 10B include drive circuits including inverters and motor drivers, and printed circuit boards 12A and 12B include main control circuits including microcomputer boards.
Although FIG. 1 shows the case where the printed circuit boards 10A, 10B, 12A, 12B are mounted on the shelf board, the printed circuit boards 10A, 10B, 12A, 12B themselves may be shelf boards. .
Further, a plurality of support posts 14 are attached to the vehicle body 2, and the support posts 14 support a loading platform 16.
<Control system>
 図2は、本発明の実施形態に係る搬送ロボット1を含む制御システムのブロック図である。搬送ロボット1は、搬送ロボット1を遠隔操作する外部コンピュータ(外部の制御装置)40と無線通信で通信することができる。無線通信の手法としては、限定されないが、例えばWi-Fi(登録商標)であってよい。 FIG. 2 is a block diagram of a control system including the transfer robot 1 according to the embodiment of the present invention. The transfer robot 1 can communicate with an external computer (external control device) 40 that remotely operates the transfer robot 1 by wireless communication. The wireless communication method may be, for example but not limited to, Wi-Fi (registered trademark).
 搬送ロボット1は、2つのモータユニット、すなわち第1のモータユニット42Aと第2のモータユニット42Bを有する。これら2つのモータユニット42A,42Bは、図1に示す2つの車輪4A,4Bと1対1に対応しており、2つのモータユニット42A,42Bのそれぞれが、対応する車輪4A,4Bを駆動する車輪用モータ6A,6Bを含んでいる。以下の説明では、第1のモータユニット42Aと第2のモータユニット42Bそれぞれに対応した各要素を区別する場合には「第1の」、「第2の」という表記を用いて区別する場合がある。
 モータユニット42A,42Bは、電源43により給電される。電源43は、バッテリケース8(図1参照)に収容されたバッテリである。
The transfer robot 1 has two motor units, that is, a first motor unit 42A and a second motor unit 42B. These two motor units 42A and 42B are in one-to-one correspondence with the two wheels 4A and 4B shown in FIG. 1, and each of the two motor units 42A and 42B drives the corresponding wheels 4A and 4B. It includes wheel motors 6A and 6B. In the following description, when the elements corresponding to the first motor unit 42A and the second motor unit 42B are distinguished from one another, they may be distinguished by using the expressions “first” and “second”. is there.
The motor units 42A and 42B are supplied with power by a power supply 43. The power source 43 is a battery housed in a battery case 8 (see FIG. 1).
 本実施形態では、2つのモータユニット42A,42Bは、ハードウェアとして互いに同等の構造を有しており、それぞれ、車輪用モータ6A,6B、無線通信回路44A,44B、メイン制御部46A,46B、メモリ48A,48B、モータ駆動制御部50A,50B、駆動回路52A,52Bおよび速度センサ54A,54Bを有する。 In the present embodiment, the two motor units 42A and 42B have the same structure as hardware, and the wheel motors 6A and 6B, the wireless communication circuits 44A and 44B, and the main control units 46A and 46B, respectively. It has memories 48A, 48B, motor drive control units 50A, 50B, drive circuits 52A, 52B and speed sensors 54A, 54B.
 第1のモータユニット42Aの無線通信回路44A、メイン制御部46A、メモリ48A、モータ駆動制御部50Aおよび駆動回路52Aは、ハードウェアとしては2つのプリント基板に分けて実装されており、図1に示す4つのプリント基板10A,10B,12A,12Bのうち、第1の車輪4A側に位置する2つのプリント基板10A,12Aに実装される。具体的には、無線通信回路44A、メイン制御部46A、メモリ48Aおよびモータ駆動制御部50Aは、下段のプリント基板12Aに実装され、駆動回路52Aは、上段のプリント基板10Aに実装される。 The wireless communication circuit 44A, the main control unit 46A, the memory 48A, the motor drive control unit 50A, and the drive circuit 52A of the first motor unit 42A are separately mounted on two printed circuit boards as hardware, as shown in FIG. Among the four printed circuit boards 10A, 10B, 12A, and 12B shown, they are mounted on two printed circuit boards 10A and 12A located on the first wheel 4A side. Specifically, the wireless communication circuit 44A, the main control unit 46A, the memory 48A, and the motor drive control unit 50A are mounted on the lower printed circuit board 12A, and the drive circuit 52A is mounted on the upper printed circuit board 10A.
 第2のモータユニット42Bの無線通信回路44B、メイン制御部46B、メモリ48B、モータ駆動制御部50Bおよび駆動回路52Bも同様に、ハードウェアとしては2つのプリント基板に分けて実装されており、図1に示す4つのプリント基板10A,10B,12A,12Bのうち、第2の車輪4B側に位置する2つのプリント基板10B,12Bに実装される。具体的には、無線通信回路44B、メイン制御部46B、メモリ48Bおよびモータ駆動制御部50Bは、下段のプリント基板12Bに実装され、駆動回路52Bは、上段のプリント基板10Bに実装される。 Similarly, the wireless communication circuit 44B, the main control unit 46B, the memory 48B, the motor drive control unit 50B and the drive circuit 52B of the second motor unit 42B are separately mounted on two printed circuit boards as hardware, The four printed circuit boards 10A, 10B, 12A, 12B shown in FIG. 1 are mounted on two printed circuit boards 10B, 12B located on the second wheel 4B side. Specifically, the wireless communication circuit 44B, the main control unit 46B, the memory 48B and the motor drive control unit 50B are mounted on the lower printed circuit board 12B, and the drive circuit 52B is mounted on the upper printed circuit board 10B.
 2つの無線通信回路44A,44Bは、いずれも外部コンピュータ40と無線通信する機能を有する。本実施形態では、外部コンピュータ40との無線通信に第1の無線通信回路44Aが通常は使用され、第2の無線通信回路44Bは、例えば第1の無線通信回路44Aの故障などが原因で通信不良が生じた場合の予備として使用される。なお、第2の無線通信回路44Bは、第1の無線通信回路44Aの補助として使用されてもよい。例えば、第1の無線通信回路44Aが外部コンピュータ40からの受信に使用され、第2の無線通信回路44Bが外部コンピュータ40への送信に使用されてもよい。 Each of the two wireless communication circuits 44A and 44B has a function of wirelessly communicating with the external computer 40. In the present embodiment, the first wireless communication circuit 44A is normally used for wireless communication with the external computer 40, and the second wireless communication circuit 44B communicates, for example, due to a failure of the first wireless communication circuit 44A. It is used as a backup in case of failure. The second wireless communication circuit 44B may be used as an aid to the first wireless communication circuit 44A. For example, the first wireless communication circuit 44A may be used for reception from the external computer 40, and the second wireless communication circuit 44B may be used for transmission to the external computer 40.
 本実施形態では、メイン制御部46A,46Bの各々は例えばプロセッサであり、記録媒体(図示せず)に記憶されたプログラムを各々が読み出して実行することによって、2つのメイン制御部46A,46Bを併せたものが本発明の回転制御装置の一実施形態として動作する。したがって、記録媒体から読み出されたプログラム(プログラムコード)自体が本実施形態ではメイン制御部46A,46Bの機能を実現することになる。また、当該プログラムを記録した記録媒体は本発明の実施形態を構成することができる。 In the present embodiment, each of the main control units 46A and 46B is, for example, a processor, and the two main control units 46A and 46B are implemented by reading and executing programs stored in a recording medium (not shown). The combination operates as one embodiment of the rotation control device of the present invention. Therefore, the program (program code) itself read from the recording medium implements the function of the main control units 46A and 46B in the present embodiment. Moreover, the recording medium which recorded the said program can comprise embodiment of this invention.
 第1のメイン制御部46Aは、無線通信回路44Aを用いて、外部コンピュータ40と無線通信する。また、第1のメイン制御部46Aは、モータ駆動制御部50Aを制御することにより、車輪用モータ6Aの駆動を制御する。さらに、第1のメイン制御部46Aは、第2のメイン制御部46Bに通信可能に有線接続されている。 The first main control unit 46A wirelessly communicates with the external computer 40 using the wireless communication circuit 44A. The first main control unit 46A controls the drive of the wheel motor 6A by controlling the motor drive control unit 50A. Furthermore, the first main control unit 46A is communicably connected to the second main control unit 46B in a wired manner.
 第2のメイン制御部46Bも、モータ駆動制御部50Bを制御することにより、車輪用モータ6Bの駆動を制御する。また、第2のメイン制御部46Bは、第1のメイン制御部46Aで通信不良が生じた場合に無線通信回路44Bを用いて、第1のメイン制御部46Aに替わって外部コンピュータ40と無線通信する。 The second main control unit 46B also controls the drive of the wheel motor 6B by controlling the motor drive control unit 50B. Further, when communication failure occurs in the first main control unit 46A, the second main control unit 46B uses the wireless communication circuit 44B to replace the first main control unit 46A with wireless communication with the external computer 40. Do.
 メモリ48A,48Bの各々は、メイン制御部46A,46Bの各々が処理を行うために必要なデータを記憶する。メイン制御部46A,46Bの各々は、メモリ48A,48Bから必要なデータを読み出す。本実施形態のメモリ48A,48Bは、揮発性メモリ(例えば、SRAM)であるが、不揮発性メモリ(例えば、フラッシュメモリ)であってもよい。また、メモリ48A,48Bの各々が、揮発性メモリと不揮発性メモリの両方を備えていてもよい。 Each of the memories 48A and 48B stores data necessary for each of the main control units 46A and 46B to perform processing. Each of main control units 46A and 46B reads necessary data from memories 48A and 48B. The memories 48A and 48B in the present embodiment are volatile memories (for example, SRAMs), but may be nonvolatile memories (for example, flash memories). Also, each of the memories 48A and 48B may include both volatile memory and non-volatile memory.
 モータ駆動制御部50A,50Bは、メイン制御部46A,46Bからの指令に従って、車輪用モータ6A,6Bの駆動(例えば回転速度)を制御する。モータ駆動制御部50A,50Bの各々は、例えばPID(Proportional-Integral-Differential)制御やベクトル制御を行うことができ、例えば、マイクロプロセッサ、ASIC(Application Specific Integrated Circuit)、またはDSP(Digital Signal Processor)である。
 駆動回路52A,52Bの各々は、モータ駆動制御部50A,50Bの制御の下で、車輪用モータ6A,6Bを駆動する。
The motor drive control units 50A and 50B control the drive (for example, the rotational speed) of the wheel motors 6A and 6B in accordance with the commands from the main control units 46A and 46B. Each of the motor drive control units 50A and 50B can perform, for example, PID (Proportional-Integral-Differential) control or vector control, and for example, a microprocessor, an application specific integrated circuit (ASIC), or a DSP (Digital Signal Processor) It is.
Each of drive circuits 52A and 52B drives wheel motors 6A and 6B under the control of motor drive control units 50A and 50B.
 速度センサ54A,54Bの各々は、車輪用モータ6A,6Bの回転速度を示す電気信号を出力する。速度センサ54A,54Bの各々は、例えば、車輪用モータ6Aまたは6Bの内部に取り付けられたホールセンサーであって、磁界を電気信号に変換する。モータ駆動制御部50A,50Bの各々は、速度センサ54A,54Bの出力信号に基づいて車輪用モータ6A,6Bの回転速度を計算する。すなわち、モータ駆動制御部50A,50Bの各々は、対応する車輪用モータ6A,6Bの回転速度を測定する。測定された車輪用モータ6A,6Bの回転速度の値は、メイン制御部46A,46Bに通知され、メイン制御部46A,46Bは、車輪用モータ6A,6Bの回転速度の値を使用して、モータ駆動制御部50A,50Bに車輪用モータ6A,6Bの駆動の制御のための指令を与える。 Each of the speed sensors 54A, 54B outputs an electrical signal indicating the rotational speed of the wheel motor 6A, 6B. Each of the speed sensors 54A and 54B is, for example, a Hall sensor attached to the inside of the wheel motor 6A or 6B, and converts the magnetic field into an electrical signal. Each of motor drive control units 50A and 50B calculates the rotational speed of wheel motors 6A and 6B based on the output signals of speed sensors 54A and 54B. That is, each of motor drive control units 50A, 50B measures the rotational speed of the corresponding wheel motor 6A, 6B. The measured values of the rotational speeds of the wheel motors 6A and 6B are notified to the main control units 46A and 46B, and the main control units 46A and 46B use the values of the rotational speeds of the wheel motors 6A and 6B. A command for controlling the driving of the wheel motors 6A, 6B is given to the motor drive control units 50A, 50B.
 また、モータ駆動制御部50A,50Bの各々は、駆動回路52A,52Bの電流値に基づいて、公知の計算方式で、車輪用モータ6A,6Bのトルクを計算することができる。すなわち、駆動回路52A,52Bは車輪用モータ6A,6Bのトルクを測定することができる。測定された車輪用モータ6A,6Bのトルクの値は、メイン制御部46A,46Bに通知され、メイン制御部46A,46Bは、車輪用モータ6A,6Bのトルクの値を使用して、モータ駆動制御部50A,50Bに車輪用モータ6A,6Bの駆動の制御のための指令を与えることができる。
<モータの制御の動作例>
 外部コンピュータ40からの制御コマンドに基づいてモータユニット42A,42Bが車輪用モータ6A,6Bを制御する制御動作の例を説明する。
Further, each of the motor drive control units 50A, 50B can calculate the torque of the wheel motor 6A, 6B by a known calculation method based on the current value of the drive circuit 52A, 52B. That is, the drive circuits 52A and 52B can measure the torques of the wheel motors 6A and 6B. The measured torque values of the wheel motors 6A and 6B are notified to the main control units 46A and 46B, and the main control units 46A and 46B use the torque values of the wheel motors 6A and 6B to drive the motor. A command for controlling the drive of the wheel motor 6A, 6B can be given to the control units 50A, 50B.
<Example of motor control operation>
An example of control operation in which the motor units 42A and 42B control the wheel motors 6A and 6B based on control commands from the external computer 40 will be described.
 図3は、外部コンピュータ40と2つのモータユニット42A,42Bの動作手順を示す図である。なお、モータユニット42A,42Bの動作については、通信スレッド61A,61Bと制御スレッド62A,62Bとに分けて示されている。 FIG. 3 is a diagram showing an operation procedure of the external computer 40 and the two motor units 42A and 42B. The operation of the motor units 42A and 42B is shown divided into communication threads 61A and 61B and control threads 62A and 62B.
 外部コンピュータ40は、予定された軌跡を搬送ロボット1に描かせるために、搬送ロボット1が有する2つの車輪用モータ6A,6Bそれぞれの目標速度を算出し、その目標速度を指示した制御コマンドを搬送ロボット1に無線通信で送信する。搬送ロボット1では、通常は第1のモータユニット42Aが制御コマンドを受信する。
 図4は、制御コマンドのフォーマット例を示す図である。
The external computer 40 calculates target speeds of the two wheel motors 6A and 6B of the transfer robot 1 so as to draw the planned trajectory on the transfer robot 1, and transfers control commands indicating the target speeds. It transmits to the robot 1 by wireless communication. In the transport robot 1, the first motor unit 42A normally receives a control command.
FIG. 4 is a view showing an example of the format of a control command.
 図4に示すように、制御コマンドのフォーマットの例は、コマンドタイプを示すフィールドと、目標達成時間(Duration)を示すフィールドと、第1の装置ID(第1のモータユニット42Aの装置ID)を示すフィールドと、第1の車輪用モータ6Aの目標速度を示すフィールドと、第2の装置ID(第2のモータユニット42Bの装置ID)を示すフィールドと、第2の車輪用モータ6Bの目標速度を示すフィールドとを有する。 As shown in FIG. 4, an example of the format of the control command includes a field indicating a command type, a field indicating a target achievement time (Duration), and a first device ID (device ID of the first motor unit 42A). A field indicating the target speed of the first wheel motor 6A, a field indicating the second device ID (the device ID of the second motor unit 42B), and a target speed of the second wheel motor 6B And a field indicating
 コマンドタイプを示すフィールドは、送信されるコマンドが目標速度を設定する制御コマンドであることを示すビット列を含む。目標達成時間を示すフィールドは、当該制御コマンドの受信後に車輪用モータ6A,6Bが目標速度に到達するまでの時間を示すビット列を含む。装置IDを示すフィールドは、当該制御コマンドによって制御されるべき車輪用モータを有するモータユニットのIDを示すビット列を含む。すなわち、装置IDを示す2つのフィールドの各々は、第1のモータユニット42Aの装置IDを示すビット列、または第2のモータユニット42Bの装置IDを示すビット列を含む。第1のモータユニット42Aの装置IDを示すフィールドの直後の目標速度を示すフィールドは、第1の車輪用モータ6Aの目標速度を示すビット列を含む。第2のモータユニット42Bの装置IDを示すフィールドの直後の目標速度を示すフィールドは、第2の車輪用モータ6Bの目標速度を示すビット列を含む。 The field indicating the command type includes a bit string indicating that the command to be transmitted is a control command for setting the target speed. The field indicating the target achievement time includes a bit string indicating the time until the wheel motors 6A and 6B reach the target speed after receiving the control command. The field indicating the device ID includes a bit string indicating the ID of the motor unit having the wheel motor to be controlled by the control command. That is, each of the two fields indicating the device ID includes a bit string indicating the device ID of the first motor unit 42A or a bit string indicating the device ID of the second motor unit 42B. The field indicating the target velocity immediately after the field indicating the device ID of the first motor unit 42A includes a bit string indicating the target velocity of the first wheel motor 6A. The field indicating the target velocity immediately after the field indicating the device ID of the second motor unit 42B includes a bit string indicating the target velocity of the second wheel motor 6B.
 この制御コマンドにおいて、例えば、目標達成時間が100msを指定し、第1の車輪用モータ6Aの目標速度が100rpmを指定し、第2の車輪用モータ6Bの目標速度が200rpmを指定することを想定する。この場合には、制御コマンドの受信後100msの時間で、第1のモータユニット42Aは車輪用モータ6Aの回転速度を100rpmに制御し、第2のモータユニット42Bは車輪用モータ6Bの回転速度を200rpmに制御すべきであることを、制御コマンドは意味する。 In this control command, for example, it is assumed that the target achievement time specifies 100 ms, the target speed of the first wheel motor 6A specifies 100 rpm, and the target speed of the second wheel motor 6B specifies 200 rpm. Do. In this case, the first motor unit 42A controls the rotation speed of the wheel motor 6A to 100 rpm, and the second motor unit 42B controls the rotation speed of the wheel motor 6B in 100 ms after receiving the control command. The control command means that it should be controlled to 200 rpm.
 図3に戻り、第1のモータユニット42Aでは、無線通信回路44Aが制御コマンドを受信すると、メイン制御部46Aは、2つの車輪用モータ6A,6Bそれぞれの目標速度を比較して、搬送ロボット1の動作が直進動作であるか旋回動作であるかを判定する。即ち、2つの目標速度が等しい場合は直進動作であると判定され、2つの目標速度が異なる
場合は旋回動作であると判定される。
Returning to FIG. 3, in the first motor unit 42A, when the wireless communication circuit 44A receives a control command, the main control unit 46A compares the target speeds of the two wheel motors 6A and 6B, and the transfer robot 1 It is determined whether the operation of is a straight movement or a turning movement. That is, when the two target speeds are equal, it is determined that the linear motion is performed, and when the two target speeds are different, it is determined that the rotation speed is the turning operation.
 また、第1のモータユニット42Aから第2のモータユニット42Bへ第2の車輪用モータ6Bの目標速度を指示した制御コマンドが有線通信で送信される。この制御コマンドのフォーマットは、図4に示すフォーマットから第1のモータユニット42A用の装置IDと目標速度が削除されたフォーマットになっている。
<加速制御>
Further, a control command indicating the target speed of the second wheel motor 6B is transmitted from the first motor unit 42A to the second motor unit 42B by wire communication. The format of this control command is a format obtained by deleting the device ID for the first motor unit 42A and the target speed from the format shown in FIG.
<Acceleration control>
 制御コマンドによって目標速度が指示されたモータユニット42A,42Bは、それぞれ、目標達成時間で目標速度に達するための制御計画を作成する。即ち、メイン制御部46A,46Bが、目標達成時間までの各瞬間での車輪用モータ6A,6Bの瞬時目標速度を決定する。ここでいう各瞬間とは、一定の制御周期ずつ離れている各時点のことである。また、瞬時目標速度の決定は、例えば、各モータの現在の回転速度と、制御コマンドに指定されたそのモータの目標速度と、制御コマンドに指定された目標達成時間に基づいて、補間によって行われる。 Each of the motor units 42A and 42B whose target speed has been instructed by the control command creates a control plan for reaching the target speed at the target achievement time. That is, the main control units 46A and 46B determine the instantaneous target speeds of the wheel motors 6A and 6B at each moment until the target achievement time. Each moment referred to here is each time point separated by a constant control cycle. Also, the determination of the instantaneous target speed is performed by interpolation based on, for example, the current rotational speed of each motor, the target speed of the motor specified in the control command, and the target achievement time specified in the control command. .
 具体的には、上記の想定例の制御コマンドを受信した時点で2つの車輪用モータ6A,6Bがいずれも停止していた場合(回転速度が0rpmの場合)、第1のメイン制御部46Aは、例えば1msごとに1rpmずつ第1の車輪用モータ6Aの回転速度を上昇させるように、1msおきの各瞬間の瞬時目標速度を決定する。また、第2のメイン制御部46Bは、例えば1msごとに2rpmずつ第2の車輪用モータ6Bの回転速度を上昇させるように、1msおきの各瞬間の瞬時目標速度を決定する。これにより、100msの経過後に、第1の車輪用モータ6Aの回転速度は100rpmに到達し、第2の車輪用モータ6Bの回転速度は200rpmに到達する。この例では、メイン制御部46A,46Bは例えば直線補間を利用して瞬時目標速度を決定するが、他の補間アルゴリズムが利用されてもよい。 Specifically, when the two wheel motors 6A and 6B are both stopped at the time of receiving the control command of the above assumed example (when the rotational speed is 0 rpm), the first main control unit 46A For example, in order to increase the rotational speed of the first wheel motor 6A by 1 rpm every 1 ms, the instantaneous target speed at each instant of 1 ms is determined. In addition, the second main control unit 46B determines the instantaneous target speed at each instant of 1 ms so as to increase the rotational speed of the second wheel motor 6B every 2 ms, for example, every 1 ms. As a result, after the lapse of 100 ms, the rotational speed of the first wheel motor 6A reaches 100 rpm, and the rotational speed of the second wheel motor 6B reaches 200 rpm. In this example, the main control units 46A and 46B use, for example, linear interpolation to determine the instantaneous target velocity, but other interpolation algorithms may be used.
 上記のように、車輪用モータ6A,6Bの瞬時目標速度を決定したメイン制御部46A,46Bは、メモリ48A,48Bに車輪用モータ6A,6Bの瞬時目標速度を格納する。 As described above, the main control units 46A and 46B that have determined the instantaneous target speeds of the wheel motors 6A and 6B store the instantaneous target speeds of the wheel motors 6A and 6B in the memories 48A and 48B.
 この後、メイン制御部46A,46Bは、制御計画に従って、モータ駆動制御部50A,50Bを制御して車輪用モータ6A,6Bの回転速度を加速制御する。すなわち、メイン制御部46A,46Bは、各瞬間に車輪用モータ6A,6Bの瞬時目標速度をメモリ48A,48Bから読み出して、車輪用モータ6A,6Bの回転速度が瞬時目標速度になるようにモータ駆動制御部50A,50Bを制御することを、一定の制御周期で繰り返す。上記の例では、各モータの制御周期は1msであるが、制御周期は1msに限らず、例えば5msであってもよい。
<等速制御>
Thereafter, the main control units 46A and 46B control the motor drive control units 50A and 50B according to the control plan to accelerate and control the rotational speeds of the wheel motors 6A and 6B. That is, the main control units 46A and 46B read the instantaneous target speeds of the wheel motors 6A and 6B from the memories 48A and 48B at each moment, so that the rotational speeds of the wheel motors 6A and 6B become the instantaneous target speeds. Control of the drive control units 50A and 50B is repeated at a constant control cycle. In the above example, the control cycle of each motor is 1 ms, but the control cycle is not limited to 1 ms, and may be 5 ms, for example.
<Constant speed control>
 上述した加速制御によって車輪用モータ6A,6Bが目標速度に到達すると、メイン制御部46Bが、第2のモータユニット42Bの車輪用モータ6Bの回転速度を目標速度に保つ等速制御を実行する。 When the wheel motors 6A and 6B reach the target speed by the above-described acceleration control, the main control unit 46B executes constant speed control to keep the rotation speed of the wheel motor 6B of the second motor unit 42B at the target speed.
 図5は、第2のモータユニット42Bにおける車輪用モータ6Bの回転速度例を示す図である。図5の横軸は経過時間を示し、縦軸は車輪用モータ6Bの回転速度を示している。 FIG. 5 is a view showing an example of the rotational speed of the wheel motor 6B in the second motor unit 42B. The horizontal axis in FIG. 5 indicates the elapsed time, and the vertical axis indicates the rotational speed of the wheel motor 6B.
 第2の車輪用モータ6Bは、加速制御によって目標達成時間(Duration)の間に目標速度に到達する。その後、等速制御が行われることにより、第2の車輪用モータ6Bの回転速度は目標速度に保たれる。 The second wheel motor 6B reaches the target speed during target achievement time (Duration) by acceleration control. Thereafter, constant speed control is performed, whereby the rotational speed of the second wheel motor 6B is maintained at the target speed.
 しかし、例えばノイズなどといった外乱が生じた場合には、モータユニット42Bにおける制御が乱れ、車輪用モータ6Bの回転速度が目標速度から逸脱してしまう場合がある。また、本実施形態では、第2のモータユニット42Bが第1のモータユニット42Aから有線通信で制御コマンドを受信しているので、有線通信の堅牢性により、制御コマンドの通信遅延による制御の乱れが抑制されているが、第2のモータユニット42Bが第1のモータユニット42Aと並行して外部コンピュータ40から制御コマンドを無線通信によって受信する場合には、通信遅延なども上記外乱の原因となり得る。
<追従制御>
However, for example, when disturbance such as noise occurs, control in the motor unit 42B may be disturbed, and the rotational speed of the wheel motor 6B may deviate from the target speed. Further, in the present embodiment, since the second motor unit 42B receives the control command from the first motor unit 42A by wire communication, the robustness of the wire communication causes disturbance of control due to communication delay of the control command. Although suppressed, when the second motor unit 42B receives a control command from the external computer 40 in parallel with the first motor unit 42A by wireless communication, communication delay may also be the cause of the disturbance.
<Follow-up control>
 本実施形態では、このような外乱が生じた場合であっても、予定された軌跡を搬送ロボット1が描くように、第1のモータユニット42Aでは図3に示すように追従制御が実行される。
 この追従制御が開始されると第1のメイン制御部46Aは、第2のメイン制御部46Bに対し、モータ情報を要求する測定コマンドを有線通信で送信する。
 図6は、測定コマンドのフォーマット例を示す図である。
In the present embodiment, even if such a disturbance occurs, the first motor unit 42A executes follow-up control as shown in FIG. 3 so that the transport robot 1 draws a planned trajectory. .
When this follow-up control is started, the first main control unit 46A transmits a measurement command requesting motor information to the second main control unit 46B by wire communication.
FIG. 6 is a diagram showing an example of the format of the measurement command.
 図6に示すように、測定コマンドのフォーマットの例は、コマンドタイプを示すフィールドと、状態測定開始時期を示すフィールドと、報告継続期間を示すフィールドと、報告の周期(測定の周期)を示すフィールドとを有する。コマンドタイプを示すフィールドは、送信されるコマンドが測定コマンドであることを示すビット列を含む。 As shown in FIG. 6, an example of the format of the measurement command is a field indicating the command type, a field indicating the state measurement start time, a field indicating the report duration, and a field indicating the report cycle (measurement cycle). And. The field indicating the command type includes a bit string indicating that the command to be transmitted is a measurement command.
 第2のモータユニット42Bでは、測定コマンドを受信したメイン制御部46Bは、測定コマンドをメモリ48Bに格納する。また、メイン制御部46Bは、測定コマンドで指定された状態測定開始の時期に、状態測定を実行する。具体的には、メイン制御部46Bは、第2の車輪用モータ6Bの回転速度およびトルクをモータ駆動制御部50Bに測定させて、回転速度およびトルクの測定値をモータ駆動制御部50Bから受け取る。測定完了後、メイン制御部46Bは、第2のモータユニット42Bのモータ情報として、測定結果を示す状態報告を第1のモータユニット42Aに有線通信で送信する。
 図7は、第2のモータユニット42Bの状態報告のフォーマット例を示す図である。
In the second motor unit 42B, the main control unit 46B that has received the measurement command stores the measurement command in the memory 48B. Further, the main control unit 46B executes the state measurement at the time of the state measurement start designated by the measurement command. Specifically, the main control unit 46B causes the motor drive control unit 50B to measure the rotational speed and torque of the second wheel motor 6B, and receives the measured values of the rotational speed and torque from the motor drive control unit 50B. After the measurement is completed, the main control unit 46B transmits, as the motor information of the second motor unit 42B, a status report indicating the measurement result to the first motor unit 42A by wire communication.
FIG. 7 is a diagram showing an example of the format of the status report of the second motor unit 42B.
 図7に示すように、状態報告のフォーマットの例は、報告タイプを示すフィールドと、速度を示すフィールドと、トルクを示すフィールドとを有する。報告タイプのフィールドは、この報告が第2のモータユニット42Bの状態報告であることを示すビット列を含む。速度のフィールドは速度の測定値を示すビット列を含む。トルクのフィールドは、トルクの測定値を示すビット列を含む。 As shown in FIG. 7, an example of the format of the status report has a field indicating a report type, a field indicating a speed, and a field indicating a torque. The field of report type includes a bit string indicating that this report is a status report of the second motor unit 42B. The field of velocity includes a bit string indicating the measurement of velocity. The field of torque includes a bit string that indicates the measured value of torque.
 第2のモータユニット42Bの状態報告を受信すると、第1のモータユニット42Aのメイン制御部46Aは、第1の車輪用モータ6Aの回転状態を、状態報告で示された第2の車輪用モータ6Bの回転状態に追従させる、後で詳述する追従制御を実行する。 When the state report of the second motor unit 42B is received, the main control unit 46A of the first motor unit 42A determines the rotational state of the first wheel motor 6A by the second wheel motor indicated by the state report. Follow-up control, which will be described in detail later, is performed to follow the rotation state of 6B.
 以降、測定コマンドで指定された報告の周期(測定の周期)毎に、第2のモータユニット42Bのメイン制御部46Bは状態測定を実行して第1のモータユニット42Aへ第2のモータユニット42Bの状態報告を有線通信で送信する。このような測定と報告は、測定コマンドで指定された報告継続期間が経過するまで、繰り返される。報告継続期間が経過すると、第2のモータユニット42Bは状態測定および状態報告の送信を終了する。なお、報告継続期間としては無期限が指定される場合もあり、その場合には、測定停止コマンドが受信されるまで測定と報告が繰り返される。
 図8は、第1のメイン制御部46Aによって実行される追従制御を示す図である。
Thereafter, the main control unit 46B of the second motor unit 42B performs the state measurement every second cycle (period of measurement) of the report designated by the measurement command, and transmits the second motor unit 42B to the first motor unit 42A. Send a status report of in wired communication. Such measurements and reports are repeated until the reporting duration specified in the measurement command has elapsed. When the report duration period has elapsed, the second motor unit 42B ends the transmission of the state measurement and the state report. In addition, indefinite time may be designated as a report continuation period, In that case, measurement and a report are repeated until a measurement stop command is received.
FIG. 8 is a diagram illustrating the follow-up control performed by the first main control unit 46A.
 図8に示す例では、第2のモータユニット42Bから送信される状態報告に含まれている速度の測定値とトルクの測定値のうち、速度の測定値が用いられて追従制御が実行される。また、図8に示す追従制御は、上述した速度判定で直進動作であると判定された場合に実行される。 In the example shown in FIG. 8, of the measured values of the speed and the measured values of the torque included in the status report transmitted from the second motor unit 42B, the measured value of the speed is used to execute the follow-up control. . Further, the follow-up control shown in FIG. 8 is executed when it is determined by the above-described speed determination that the operation is a straight-ahead operation.
 追従制御では、第1のメイン制御部46Aはモータ駆動制御部50Bに第1の車輪用モータ6Aの速度を測定させ、測定で得られた回転速度の測定値θを、第2のモータユニット42Bから得られた第2の車輪用モータ6Bの回転速度の測定値θから除算する。これにより、2つの車輪用モータ6A,6Bにおける回転速度差が算出される。 The follow-up control, the first main control unit 46A causes the measured speed of the first wheel motor 6A to the motor drive control unit 50B, a measured value theta 1 of the rotational speed obtained in the measurement, the second motor unit It divides from measurement value (theta) 2 of rotational speed of 2nd motor 6B for wheels obtained from 42B. Thus, the difference in rotational speed between the two wheel motors 6A and 6B is calculated.
 第1のメイン制御部46Aは、この回転速度差に基づいて、PI制御における比例動作71と積分動作72を算出する。このPI制御は、回転速度差がゼロに近づくように第1の車輪用モータ6Aの回転速度を補正する補正制御となる。第1のメイン制御部46Aは、第1の車輪用モータ6Aに対して制御コマンドで与えられた目標速度にこの補正制御の成分を加算して、補正された目標速度を算出する。そして第1のメイン制御部46Aは、第1の車輪用モータ6Aがその補正された目標速度となるようにモータ駆動制御部50Aを制御する。 The first main control unit 46A calculates a proportional operation 71 and an integration operation 72 in PI control based on the rotational speed difference. This PI control is correction control that corrects the rotational speed of the first wheel motor 6A such that the rotational speed difference approaches zero. The first main control unit 46A calculates the corrected target speed by adding the component of the correction control to the target speed given by the control command to the first wheel motor 6A. Then, the first main control unit 46A controls the motor drive control unit 50A such that the first wheel motor 6A has the corrected target speed.
 図9は、第1のモータユニット42Aにおける車輪用モータ6Aの回転速度例を示す図である。図9の横軸は経過時間を示し、縦軸は車輪用モータの回転速度を示している。また、図9には、第1の車輪用モータ6Aの回転速度例が実線で示され、図5に示す例と同様の、第2の車輪用モータ6Bの回転速度例が破線で示されている。 FIG. 9 is a view showing an example of the rotational speed of the wheel motor 6A in the first motor unit 42A. The horizontal axis in FIG. 9 indicates the elapsed time, and the vertical axis indicates the rotational speed of the wheel motor. Further, in FIG. 9, an example of the rotational speed of the first wheel motor 6A is indicated by a solid line, and an example of the rotational speed of the second wheel motor 6B similar to the example shown in FIG. There is.
 第1の車輪用モータ6Aの回転速度は、第2の車輪用モータ6Bと同様の加速制御によって目標達成時間(Duration)の間に目標速度に到達する。その後、図8に示す追従制御が行われることにより、第1の車輪用モータ6Aの回転速度は、第2の車輪用モータ6Bの回転速度に追従する。即ち、第2の車輪用モータ6Bの回転速度が目標速度に保たれている場合も、上述したような外乱が生じた場合も、第1の車輪用モータ6Aの回転速度は、第2の車輪用モータ6Bの回転速度と同様の回転速度になる。この結果、搬送ロボット1は、外乱が生じた場合にも直進動作を保つことになる。
<カーブ動作における追従制御>
 次に、カーブ動作における追従制御について説明する。
 図10は、カーブ動作における追従制御を示す図である。
The rotational speed of the first wheel motor 6A reaches the target speed during the target achievement time (Duration) by the same acceleration control as that of the second wheel motor 6B. Thereafter, the follow-up control shown in FIG. 8 is performed, whereby the rotational speed of the first wheel motor 6A follows the rotational speed of the second wheel motor 6B. That is, even when the rotational speed of the second wheel motor 6B is maintained at the target speed, and also when the disturbance as described above occurs, the rotational speed of the first wheel motor 6A is the second wheel The rotational speed is the same as the rotational speed of the motor 6B. As a result, the transport robot 1 maintains the straight movement even when a disturbance occurs.
<Follow-up control in curve operation>
Next, follow-up control in the curve operation will be described.
FIG. 10 is a diagram showing follow control in a curve operation.
 カーブ動作の場合には、第1の車輪用モータ6Aの回転速度と第2の車輪用モータ6Bの回転速度は、予定されたカーブ半径に応じた比率に保たれる。即ち、上述した速度判定でカーブ動作であると判定された場合には、目標速度の比率γが求められ、追従制御ではこの比率γが保たれるように第1の車輪用モータ6Aの回転速度が制御される。 In the case of the curve operation, the rotational speed of the first wheel motor 6A and the rotational speed of the second wheel motor 6B are maintained at a ratio according to the planned curve radius. That is, when it is determined that the curve operation is performed by the above-described speed determination, the target speed ratio γ is determined, and in the following control, the rotational speed of the first wheel motor 6A is maintained so as to maintain this ratio γ. Is controlled.
 具体的には、第1のメイン制御部46Aは、モータ駆動制御部50Bに第1の車輪用モータ6Aの速度を測定させる。また、第1のメイン制御部46Aは、第2のモータユニット42Bから得られた第2の車輪用モータ6Bの回転速度の測定値θに対して目標速度の比率γを積算し、積算結果から第1の車輪用モータ6Aの速度の測定値θを除算する。 Specifically, the first main control unit 46A causes the motor drive control unit 50B to measure the speed of the first wheel motor 6A. The first main control section 46A integrates the ratio of target speed γ relative measurements theta 2 of the rotational speed of the second wheel motor 6B which is obtained from the second motor unit 42B, the integration result And the measured value θ 1 of the speed of the first wheel motor 6A.
 これにより、2つの車輪用モータ6A,6Bにおける回転速度の比率が目標速度の比率γに保たれるような第1の車輪用モータ6Aの回転速度と、測定された第1の車輪用モータ6Aの回転速度との差分が求められる。 As a result, the rotational speed of the first wheel motor 6A such that the ratio of the rotational speeds of the two wheel motors 6A and 6B is maintained at the target speed ratio γ, and the measured first wheel motor 6A The difference with the rotational speed of is calculated.
 第1のメイン制御部46Aは、この差分に基づいて、PI制御における比例動作71と積分動作72を算出する。このPI制御は、この差分がゼロに近づき2つの車輪用モータ6A,6Bにおける回転速度の比率が比率γに近づくように第1の車輪用モータ6Aの回転速度を補正する補正制御となる。第1のメイン制御部46Aは、第1の車輪用モータ6Aに対して制御コマンドで与えられた目標速度にこの補正制御の成分を加算して、補正された目標速度を算出する。そして第1のメイン制御部46Aは、第1の車輪用モータ6Aがその補正された目標速度となるようにモータ駆動制御部50Aを制御する。 The first main control unit 46A calculates a proportional operation 71 and an integration operation 72 in PI control based on the difference. The PI control is correction control that corrects the rotational speed of the first wheel motor 6A such that the difference approaches zero and the ratio of the rotational speeds of the two wheel motors 6A and 6B approaches the ratio γ. The first main control unit 46A calculates the corrected target speed by adding the component of the correction control to the target speed given by the control command to the first wheel motor 6A. Then, the first main control unit 46A controls the motor drive control unit 50A such that the first wheel motor 6A has the corrected target speed.
 このような追従制御の結果、2つの車輪用モータ6A,6Bにおける回転速度の比率は、目標速度の比率γに保たれることになり、搬送ロボット1は、外乱が生じた場合にも、予定された旋回動作を保つことになる。
<追従制御の別例>
As a result of such follow-up control, the ratio of the rotational speeds of the two wheel motors 6A and 6B is maintained at the ratio γ of the target speed, and the transport robot 1 is scheduled even when a disturbance occurs. Will keep the pivoting motion of the
<Another example of follow-up control>
 次に、上述した追従制御に替わって第1のメイン制御部46Aで実行され得る別の追従制御について説明する。但し、直進動作時における追従制御について説明し、カーブ動作時における追従制御については説明を省略する。
 図11は、追従制御の第1の別例を示す図である。
Next, another follow-up control that may be executed by the first main control unit 46A instead of the above-described follow-up control will be described. However, the follow-up control at the time of the straight movement operation will be described, and the description of the follow-up control at the time of the curve operation will be omitted.
FIG. 11 is a view showing a first another example of the follow-up control.
 図8に示す追従制御でPI制御が用いられているのに対し、図11に示す追従制御ではPID制御が用いられる。即ち、第1のメイン制御部46Aは、図8に示す追従制御と同様に算出した2つの車輪用モータ6A,6Bにおける回転速度差に基づいて、PID制御における比例動作71と積分動作72と微分動作73とを算出する。このPID制御も、PI制御と同様に、回転速度差がゼロに近づくように第1の車輪用モータ6Aの回転速度を補正する補正制御となるが、微分動作73が追加されているため、急激な外乱が生じた場合であっても速やかな補正が実現する。なお、PI制御もPID制御も簡素なロジックにより高い精度が得られる制御であるので、PI制御やPID制御が用いられることで高速かつ高精度な制御が実現される。 While PI control is used in the follow-up control shown in FIG. 8, PID control is used in the follow-up control shown in FIG. That is, based on the rotational speed difference between the two wheel motors 6A, 6B calculated in the same manner as the follow-up control shown in FIG. And operation 73 is calculated. Like the PI control, this PID control also serves as correction control for correcting the rotational speed of the first wheel motor 6A so that the rotational speed difference approaches zero, but since the differential operation 73 is added, it is rapid Even in the event of a disturbance, quick correction is realized. Since both PI control and PID control are control that can obtain high accuracy by simple logic, high-speed and high-precision control is realized by using PI control and PID control.
 第1のメイン制御部46Aは、第1の車輪用モータ6Aに対して制御コマンドで与えられた目標速度にこの補正制御の成分を加算し、第1の車輪用モータ6Aが補正された目標速度となるようにモータ駆動制御部50Aを制御する。
 図12は、追従制御の第2の別例を示す図である。
The first main control unit 46A adds the component of this correction control to the target speed given by the control command to the first wheel motor 6A, and the target speed obtained by correcting the first wheel motor 6A. The motor drive control unit 50A is controlled so that
FIG. 12 is a view showing a second another example of the follow-up control.
 図12に示すように、追従制御の第2の別例では、制御コマンドで与えられた目標速度に替えて、第2のモータユニット42Bから得られた第2の車輪用モータ6Bの回転速度の測定値θが用いられる。即ち、第1のメイン制御部46Aは、この測定値θが示す回転速度に、PI制御による補正制御の成分を加算して、補正された目標速度を算出する。そして第1のメイン制御部46Aは、第1の車輪用モータ6Aがその補正された目標速度となるようにモータ駆動制御部50Aを制御する。 As shown in FIG. 12, in the second example of the follow-up control, the rotational speed of the second wheel motor 6B obtained from the second motor unit 42B is changed to the target speed given by the control command. measurements theta 2 is used. That is, the first main control section 46A is a speed indicated by the measured value theta 2, by adding the component of the correction control by the PI control, it calculates a corrected target speed. Then, the first main control unit 46A controls the motor drive control unit 50A such that the first wheel motor 6A has the corrected target speed.
 このような追従制御によれば、例えば第1のモータユニット42Aと第2のモータユニット42Bとで継続的な制御ズレなどが生じた場合であっても、第1の車輪用モータ6Aの回転速度が第2の車輪用モータ6Bの回転速度に追従することになる。 According to such follow-up control, for example, even when continuous control deviation or the like occurs between the first motor unit 42A and the second motor unit 42B, the rotational speed of the first wheel motor 6A Follows the rotational speed of the second wheel motor 6B.
 なお、上記説明では、1台の搬送ロボットを有する搬送システムが例示されているが、本発明は、例えば複数台の搬送ロボットで1つのパレットなどを搬送する搬送システムに適用されてもよい。 In the above description, a transport system having one transport robot is illustrated, but the present invention may be applied to, for example, a transport system in which a plurality of transport robots transport one pallet and the like.
 また、上記説明では、回転制御装置によって回転速度が制御される回転体として、移動体を移動させる車輪やモータが例示されているが、本発明の回転制御装置は、ロボットの関節や、工場などで一繋がりのシートを送る一連の搬送ロールなどの回転速度を制御するものであってもよい。 Further, in the above description, a wheel or a motor for moving a moving body is exemplified as a rotating body whose rotational speed is controlled by the rotation control device, but the rotation control device of the present invention is a robot joint, a factory, etc. The rotational speed of a series of transport rolls for feeding a continuous sheet may be controlled.
 また、上記説明では、追従制御において回転速度の相対関係が維持される例が示されているが、本発明では、回転速度に替えてトルクの相対関係が維持されてもよいし、あるいは、回転角度の相対関係が維持されてもよい。 In the above description, an example is shown in which the relative relationship of the rotational speed is maintained in the follow-up control, but in the present invention, the relative relationship of the torque may be maintained instead of the rotational speed. The angular relationship may be maintained.
1…搬送ロボット(移動体)、2…車体(ベース)、6A,6B…車輪用モータ、40…外部コンピュータ(外部の制御装置)、42A…第1のモータユニット、42B…第2のモータユニット、44A…無線通信回路、46A,46B…メイン制御部、50A,50B…モータ駆動制御部、52A,52B…駆動回路 DESCRIPTION OF SYMBOLS 1 ... conveyance robot (moving body), 2 ... vehicle body (base), 6A, 6B ... motor for wheels, 40 ... external computer (external control device), 42A ... 1st motor unit, 42B ... 2nd motor unit , 44A: wireless communication circuit, 46A, 46B: main control unit, 50A, 50B: motor drive control unit, 52A, 52B: drive circuit

Claims (7)

  1.  第1の回転体の回転速度を目標の第1回転速度に制御する第1の制御器と、
     第2の回転体の回転速度を目標の第2回転速度に制御する第2の制御器と、を備え、
     前記第1の制御器は、
     外部から受信した前記第2回転速度に関する情報を前記第2の制御器に入力し、
     前記第1の回転体における回転状態と前記第2の回転体における回転状態との相対関係を決定し、
     前記第1の回転体における回転状態の第1測定値と前記第2の回転体における回転状態の第2測定値とを取得し、
     前記第1測定値と前記第2測定値との関係を前記相対関係に近づける補正制御を計算し、
     前記補正制御を前記第1の回転体に加える、回転制御装置。
    A first controller for controlling the rotational speed of the first rotating body to a target first rotational speed;
    And a second controller that controls the rotational speed of the second rotating body to a target second rotational speed.
    The first controller is
    Information on the second rotational speed received from the outside is input to the second controller;
    Determining the relative relationship between the rotational state of the first rotating body and the rotational state of the second rotating body;
    Acquiring a first measurement value of the rotation state of the first rotation body and a second measurement value of the rotation state of the second rotation body;
    Calculating correction control to bring the relationship between the first measurement value and the second measurement value closer to the relative relationship,
    A rotation control device which applies the correction control to the first rotating body.
  2.  前記第1の制御器が、前記外部から与えられた前記第1回転速度に第1の回転体の回転速度を制御し、
     該第1の回転体の目標回転速度として、該第1回転速度に替えて、前記第2の回転体における回転状態の前記第2測定値から得られる回転速度を用いる、請求項1に記載の回転制御装置。
    The first controller controls the rotational speed of a first rotating body to the externally applied first rotational speed,
    The rotational speed obtained from the second measurement value of the rotational state of the second rotary body is used as the target rotational speed of the first rotary body, instead of the first rotational speed. Rotation control device.
  3.  前記第1の制御器が、前記補正制御としてPI制御およびPID制御の少なくとも一方を用いる、請求項1または2に記載の回転制御装置。 The rotation control device according to claim 1, wherein the first controller uses at least one of PI control and PID control as the correction control.
  4.  前記第1の制御器が、前記外部と無線通信を行い前記第2の制御器と有線通信を行う、
    請求項1から3のいずれか1項に記載の回転制御装置。
    The first controller performs wireless communication with the outside and performs wired communication with the second controller.
    The rotation control device according to any one of claims 1 to 3.
  5.  前記第1の制御器および前記第2の制御器のいずれとしても動作可能な第1のハードウェアと、
     前記第1の制御器および前記第2の制御器のいずれとしても動作可能な第2のハードウェアと、を備え、
     前記第1のハードウェアが前記第1の制御器として動作すると共に前記第2のハードウェアが前記第2の制御器として動作する第1のモードと、前記第1のハードウェアが前記第2の制御器として動作すると共に前記第2のハードウェアが前記第1の制御器として動作する第2のモードとが選択的に実行される請求項1から4のいずれか1項に記載の回転制御装置。
    First hardware operable as any of the first controller and the second controller;
    A second hardware operable as any of the first controller and the second controller;
    A first mode in which the first hardware operates as the first controller and the second hardware operates as the second controller; and the first hardware operates as the second controller. The rotation control device according to any one of claims 1 to 4, wherein a second mode that operates as a controller and the second hardware operates as the first controller is selectively executed. .
  6.  ベースと、
     前記ベースを移動させる第1の車輪と、
     前記ベースを移動させる第2の車輪と、
     前記第1の車輪を回転駆動する第1の駆動器と、
     前記第2の車輪を回転駆動する第2の駆動器と、
     前記第1の車輪および前記第1の駆動器の一方である第1の回転体の回転速度を目標の第1回転速度に制御する第1の制御器と、
     前記第2の車輪および前記第2の駆動器の一方である第2の回転体の回転速度を目標の第2回転速度に制御する第2の制御器と、を備え、
     前記第1の制御器は、
     外部から受信した前記第2回転速度に関する情報を前記第2の制御器に入力し、
     前記第1の回転体における回転状態と前記第2の回転体における回転状態との相対関係を決定し、
     前記第1の回転体における回転状態の第1測定値と前記第2の回転体における回転状態の第2測定値とを取得し、
     前記第1測定値と前記第2測定値との関係を前記相対関係に近づける補正制御を計算し、
     前記補正制御を前記第1の回転体に加える、移動体。
    Base and
    A first wheel for moving the base;
    A second wheel for moving the base;
    A first driver that rotationally drives the first wheel;
    A second drive that rotationally drives the second wheel;
    A first controller controlling a rotational speed of a first rotating body, which is one of the first wheel and the first driver, to a target first rotational speed;
    And a second controller configured to control the rotational speed of a second rotating body, which is one of the second wheel and the second driver, to a target second rotational speed.
    The first controller is
    Information on the second rotational speed received from the outside is input to the second controller;
    Determining the relative relationship between the rotational state of the first rotating body and the rotational state of the second rotating body;
    Acquiring a first measurement value of the rotation state of the first rotation body and a second measurement value of the rotation state of the second rotation body;
    Calculating correction control to bring the relationship between the first measurement value and the second measurement value closer to the relative relationship,
    A moving body, which applies the correction control to the first rotating body.
  7.  搬送物が載置される載置台を有したベースと、
     前記ベースを移動させる第1の車輪と、
     前記ベースを移動させる第2の車輪と、
     前記第1の車輪を回転駆動する第1の駆動器と、
     前記第2の車輪を回転駆動する第2の駆動器と、
     前記第1の車輪および前記第1の駆動器の一方である第1の回転体の回転速度を目標の第1回転速度に制御する第1の制御器と、
     前記第2の車輪および前記第2の駆動器の一方である第2の回転体の回転速度を目標の第2回転速度に制御する第2の制御器と、を備え、
     前記第1の制御器は、
     外部から受信した前記第2回転速度に関する情報を前記第2の制御器に入力し、
     前記第1の回転体における回転状態と前記第2の回転体における回転状態との相対関係を決定し、
     前記第1の回転体における回転状態の第1測定値と前記第2の回転体における回転状態の第2測定値とを取得し、
     前記第1測定値と前記第2測定値との関係を前記相対関係に近づける補正制御を計算し、
     前記補正制御を前記第1の回転体に加える、搬送ロボット。
    A base having a mounting table on which the transported object is mounted;
    A first wheel for moving the base;
    A second wheel for moving the base;
    A first driver that rotationally drives the first wheel;
    A second drive that rotationally drives the second wheel;
    A first controller controlling a rotational speed of a first rotating body, which is one of the first wheel and the first driver, to a target first rotational speed;
    And a second controller configured to control the rotational speed of a second rotating body, which is one of the second wheel and the second driver, to a target second rotational speed.
    The first controller is
    Information on the second rotational speed received from the outside is input to the second controller;
    Determining the relative relationship between the rotational state of the first rotating body and the rotational state of the second rotating body;
    Acquiring a first measurement value of the rotation state of the first rotation body and a second measurement value of the rotation state of the second rotation body;
    Calculating correction control to bring the relationship between the first measurement value and the second measurement value closer to the relative relationship,
    A transfer robot which applies the correction control to the first rotating body.
PCT/JP2018/042446 2017-12-05 2018-11-16 Rotation control device, mobile body and conveyance robot WO2019111670A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880078356.3A CN111433704A (en) 2017-12-05 2018-11-16 Rotation control device, moving body, and transfer robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017233090 2017-12-05
JP2017-233090 2017-12-05

Publications (1)

Publication Number Publication Date
WO2019111670A1 true WO2019111670A1 (en) 2019-06-13

Family

ID=66750195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042446 WO2019111670A1 (en) 2017-12-05 2018-11-16 Rotation control device, mobile body and conveyance robot

Country Status (2)

Country Link
CN (1) CN111433704A (en)
WO (1) WO2019111670A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194701A (en) * 1984-03-12 1985-10-03 Nec Corp Travel controller of operatorless carriage vehicle
JP2000262091A (en) * 1999-03-08 2000-09-22 Yaskawa Electric Corp Method of draw control
JP2002078374A (en) * 2000-08-31 2002-03-15 Ntn Corp Motor rotation speed controller and static pressure gas bearing spindle
JP2008100773A (en) * 2006-10-17 2008-05-01 Murata Mach Ltd Traveling carrier
JP2012003675A (en) * 2010-06-21 2012-01-05 Murata Mach Ltd Conveyance vehicle and conveyance vehicle system
JP2012146171A (en) * 2011-01-13 2012-08-02 Panasonic Corp Motor driver

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5341534B2 (en) * 2009-01-23 2013-11-13 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー Motor speed control device
CN103370664B (en) * 2011-02-21 2016-08-10 三菱电机株式会社 Motor control system and communication means
CN103429476B (en) * 2012-03-27 2016-10-12 丰田自动车株式会社 Controller of vehicle
JP5881251B2 (en) * 2013-05-23 2016-03-09 本田技研工業株式会社 Vehicle control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194701A (en) * 1984-03-12 1985-10-03 Nec Corp Travel controller of operatorless carriage vehicle
JP2000262091A (en) * 1999-03-08 2000-09-22 Yaskawa Electric Corp Method of draw control
JP2002078374A (en) * 2000-08-31 2002-03-15 Ntn Corp Motor rotation speed controller and static pressure gas bearing spindle
JP2008100773A (en) * 2006-10-17 2008-05-01 Murata Mach Ltd Traveling carrier
JP2012003675A (en) * 2010-06-21 2012-01-05 Murata Mach Ltd Conveyance vehicle and conveyance vehicle system
JP2012146171A (en) * 2011-01-13 2012-08-02 Panasonic Corp Motor driver

Also Published As

Publication number Publication date
CN111433704A (en) 2020-07-17

Similar Documents

Publication Publication Date Title
CN107263486B (en) Robot anti-dumping method and device and anti-dumping robot
US8355817B2 (en) Robot system
US20060144182A1 (en) Rotary shaft control apparatus
GB2259792A (en) Direction control of a moving vehicle
JP2010058256A (en) Arm position regulating method and apparatus and robot system
WO2019111670A1 (en) Rotation control device, mobile body and conveyance robot
JP7136122B2 (en) Mobile objects and transport robots
WO2019111671A1 (en) Rotation control device, mobile body and conveyance robot
JP7078058B2 (en) Mobile robot control device and mobile robot system
JP2015033277A (en) Servo device, and control method of servo device
TWI440997B (en) Driving controller of remote control equipment
JP2001075648A (en) Method and device for adjusting driving wheel diameter parameter of unmanned vehicle
WO2019111561A1 (en) Automatic device and communications system
JP5381039B2 (en) Articulated manipulator tip position control method and articulated manipulator
WO2017186293A1 (en) Control of a robot joint using two drives
WO2019111581A1 (en) Mobile body and mobile device
JP2003291082A (en) Multi-joint leg control device
CN115348933B (en) Detection device, detection method, and program for end position of steering device
JP7078057B2 (en) Mobile robot control device and mobile robot system
WO2019111562A1 (en) Automatic device and communications system
JPS636604A (en) Numerical control system
JP2014159080A (en) Robot
JP2017211443A (en) Space stabilizer
KR20080092670A (en) Actuator module and modeling method thereof
KR20190125947A (en) Calitration control apparatus of bogie system and method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP