JP4538786B2 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
JP4538786B2
JP4538786B2 JP2004115173A JP2004115173A JP4538786B2 JP 4538786 B2 JP4538786 B2 JP 4538786B2 JP 2004115173 A JP2004115173 A JP 2004115173A JP 2004115173 A JP2004115173 A JP 2004115173A JP 4538786 B2 JP4538786 B2 JP 4538786B2
Authority
JP
Japan
Prior art keywords
speed
compensation
movement
gain
integral gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004115173A
Other languages
Japanese (ja)
Other versions
JP2005304155A (en
JP2005304155A5 (en
Inventor
康行 竹井
頌 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2004115173A priority Critical patent/JP4538786B2/en
Publication of JP2005304155A publication Critical patent/JP2005304155A/en
Publication of JP2005304155A5 publication Critical patent/JP2005304155A5/ja
Application granted granted Critical
Publication of JP4538786B2 publication Critical patent/JP4538786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)

Description

本発明は,機械を駆動するモータ制御装置であり、特に移動方向反転時の象限突起を補償するモータ制御装置に関する。   The present invention relates to a motor control device that drives a machine, and more particularly to a motor control device that compensates for quadrant protrusions when the moving direction is reversed.

従来の象限突起を補償する制御装置として,移動方向の反転を検出し,速度制御ループの積分制御ゲインを所定量増加する手法がある。(例えば,特許文献1参照)。
図4は,従来の技術におけるサーボ制御装置の制御ブロック図である。図4において,11は位置制御器で、上位コントローラ等から指令された位置指令と、モータに取り付けられた位置検出器の位置フィードバック信号とを制御処理をして速度指令を生成する。12は速度制御器で速度指令と速度フィードバック信号を入力して制御処理をしトルク指令を生成する。21は速度変換器で位置フィードバック信号をサンプリング時間ごとに差分処理をして速度フィードバック信号を生成する。13は速度制御積分器で速度指令と速度フィードバックの偏差を積分する。41は第1速度制御積分ゲイン、42は第2速度制御積分ゲインである。15は速度制御比例ゲインである。16は電流制御部でトルク指令からモータの駆動電流を制御する電流制御部,17はモータ,18は位置検出器,19は補償切替器で移動方向反転時の速度制御積分ゲインを切替える。
次に補償切替器の内部ブロックを図5を用いて説明する。図5において,22は位置制御推定器で位置制御遅れを推定する遅れ推定器23で構成される。25は移動方向反転判別器で,位置制御推定器22の出力から移動方向が反転したかどうかを判別する。51は終了トルク比較器で,トルク指令を監視して,トルク指令が予め設定した補償を終了するトルクに達したか否かを判別する。27は補償判別器で、移動方向切替判別器25の判別結果と終了トルク比較器51の判定結果を基に,補償のオン・オフを制御する。
遅れ推定器23は,位置指令に対し,位置制御の遅れを推定する。前記位置制御の遅れとは,主に位置ループゲインKpの逆数として与えられる遅れである。
次に,移動方向反転判別器25は,位置制御推定器22の出力が正またはゼロから負,あるいは負またはゼロから正に切替ったことを判別し,判別結果を補償判別器27に通知する。補償判別器27は,移動方向切替判別結果と終了トルク比較51の比較結果に従って,補償のオン・オフを判定し,補償をオンすると判定された区間,速度制御積分ゲインを第2速度制御積分ゲイン42に切替える。
第1速度制御積分ゲイン<第2速度制御積分ゲインに設定することによって,補償オンの区間の速度ループゲインを増加させ,速やかに移動方向の反転を行い,位置誤差を低減する。
また,特許文献2では,加工条件(例えば形状誤差補償等の機能の有無や加工速度)毎に象限突起補償量を記憶し,加工条件によって,象限突起補償量を切替える。
特開平07−005926号公報(第1図) 特開平08−99253号公報(P2-3)
As a conventional control device for compensating for quadrant protrusions, there is a method of detecting a reversal of the moving direction and increasing the integral control gain of the speed control loop by a predetermined amount. (For example, refer to Patent Document 1).
FIG. 4 is a control block diagram of a conventional servo control device. In FIG. 4, reference numeral 11 denotes a position controller, which generates a speed command by performing a control process on a position command commanded by a host controller or the like and a position feedback signal of a position detector attached to the motor. A speed controller 12 receives a speed command and a speed feedback signal, performs control processing, and generates a torque command. A speed converter 21 performs a difference process on the position feedback signal at each sampling time to generate a speed feedback signal. A speed control integrator 13 integrates the deviation between the speed command and the speed feedback. 41 is a first speed control integral gain, and 42 is a second speed control integral gain. Reference numeral 15 denotes a speed control proportional gain. Reference numeral 16 denotes a current controller which controls the motor drive current from a torque command. Reference numeral 17 denotes a motor. Reference numeral 18 denotes a position detector. Reference numeral 19 denotes a compensation switch which switches the speed control integral gain when the moving direction is reversed.
Next, the internal block of the compensation switch will be described with reference to FIG. In FIG. 5, reference numeral 22 denotes a delay estimator 23 that estimates a position control delay by a position control estimator. A moving direction reversal discriminator 25 determines whether the moving direction is reversed from the output of the position control estimator 22. An end torque comparator 51 monitors the torque command and determines whether or not the torque command has reached a torque for ending the preset compensation. A compensation discriminator 27 controls on / off of compensation based on the discrimination result of the moving direction switching discriminator 25 and the judgment result of the end torque comparator 51.
The delay estimator 23 estimates a position control delay with respect to the position command. The position control delay is a delay mainly given as an inverse of the position loop gain Kp.
Next, the moving direction reversal discriminator 25 discriminates that the output of the position control estimator 22 has been switched from positive or zero to negative, or from negative or zero to positive, and notifies the compensation discriminator 27 of the discrimination result. . The compensation discriminator 27 determines whether the compensation is on or off according to the moving direction switching discriminating result and the comparison result of the end torque comparison 51, and sets the speed control integral gain, the second speed control integral gain, which is determined to be compensated. Switch to 42.
By setting first speed control integral gain <second speed control integral gain, the speed loop gain in the compensation-on section is increased, the moving direction is quickly reversed, and the position error is reduced.
Further, in Patent Document 2, a quadrant protrusion compensation amount is stored for each processing condition (for example, presence / absence of a function such as shape error compensation and a processing speed), and the quadrant protrusion compensation amount is switched depending on the processing condition.
Japanese Patent Laid-Open No. 07-005926 (FIG. 1) JP 08-99253 A (P2-3)

しかしながら,特許文献1のサーボ制御方式では,速度ループ積分ゲインを一定量だけ増加するのみのため,移動速度に応じた象限突起補償ができなかった。すなわち,例えば,円弧軌跡の象限突起量は,円弧軌跡の接線方向速度によって異なるが粘性摩擦等の速度に影響される摩擦力等を十分に補償できず,前記接線方向速度が高い条件で,積分ゲインの増加量の調整を行うと,前記接線方向速度が低い条件下では,補償が効かず,象限突起量が低減できない。また,前記移動方向切替前後の移動速度が低い条件で積分ゲインの増加量の調整を行うと,前記移動方向切替前後の移動速度が高い条件下で過補償となってしまうという問題があった。
また,特許文献2のサーボ制御方式においては,加工条件毎に象限突起補償量を記憶し,加工条件によって象限突起補償量を切替えるが,工作機械の場合,前記接線方向速度は,任意の速度が設定可能であり,加工条件(接線方向速度)毎の象限突起補償量を記憶するのは記憶媒体の容量が大きくなるほか,突起量調整も各加工条件で行なう必要があり,多くの時間と労力を費やす。
さらに,特許文献1のサーボ制御方式では,補償の終了判別をトルク指令で行っていたため,温度や,経年変化等で摩擦力が変化し,出力トルクが変化した場合に,補償終了のタイミングが異なってしまい,補償の効果に影響していた。また,位置制御推定器が,位置ループゲインの遅れのみで構成されていたため,速度フィードフォワードを使用したシステムに対しては,実際の位置フィードバックと位置制御推定器の出力に誤差を生じていた。そのため,象限突起補償開始のタイミングが遅くなり,補償の効果に影響していた。
本発明はこのような問題点に鑑みてなされたものであり,送り速度や温度や経年変化に影響されない象限突起補償終了判別を行なうことができ,フィードフォワードを使用したシステムに対して補償開始のタイミングの精度を改善したモータ制御装置を提供する。
However, in the servo control system of Patent Document 1, quadrant protrusion compensation according to the moving speed cannot be performed because the speed loop integral gain is only increased by a certain amount. That is, for example, the amount of quadrant projections on the arc locus varies depending on the tangential speed of the arc locus, but cannot sufficiently compensate for frictional forces and the like that are affected by the speed of viscous friction and the like. When the gain increase amount is adjusted, compensation is not effective under the condition where the tangential speed is low, and the quadrant protrusion amount cannot be reduced. In addition, if the increase amount of the integral gain is adjusted under a condition that the moving speed before and after the moving direction is switched is low, there is a problem that overcompensation occurs when the moving speed before and after the moving direction is switched is high.
In the servo control system of Patent Document 2, the quadrant protrusion compensation amount is stored for each processing condition, and the quadrant protrusion compensation amount is switched according to the processing condition. In the case of a machine tool, the tangential speed is an arbitrary speed. The amount of compensation for quadrant protrusions for each machining condition (tangential speed) can be set, and the capacity of the storage medium increases. In addition, the amount of protrusion must be adjusted for each machining condition, which requires a lot of time and effort. Spend.
Furthermore, in the servo control method of Patent Document 1, since the end of compensation is determined by a torque command, when the frictional force changes due to temperature, aging, etc., and the output torque changes, the compensation end timing differs. It had an effect on the compensation effect. In addition, since the position control estimator was composed only of the delay of the position loop gain, there was an error in the actual position feedback and the output of the position control estimator for the system using velocity feedforward. As a result, the timing of quadrant protrusion compensation start was delayed, affecting the compensation effect.
The present invention has been made in view of such problems, and can determine whether or not quadrant protrusion compensation has been completed without being affected by the feed rate, temperature, or secular change. A motor control device with improved timing accuracy is provided.

請求項1記載の本発明は、位置制御器と、積分制御手段を有した速度制御器と、位置指令の移動方向の反転を検出する移動方向反転検出手段と、前記移動方向反転検出手段にて移動方向反転を検出してからの移動量を計測する移動方向反転後移動量測定手段を備えたモータ制御装置において、前記移動方向反転検出手段にて移動方向反転を検出した後、前記移動方向反転後移動量測定手段にて計測された移動量が所定値に達するまで前記速度制御器の速度ループ積分ゲイン時間の関数で増加させ、移動速度が高速のときは、移動速度が低速のときに比べ速度ループ積分ゲインを小さくし、移動速度が低速のときは移動速度が高速のときに比べ速度積分ループゲインを大きくし、速度に応じた象限突起補償を行うことを特徴とするものである。 According to the first aspect of the present invention, there is provided a position controller, a speed controller having an integral control means, a movement direction reversal detection means for detecting reversal of the movement direction of the position command, and the movement direction reversal detection means. In the motor control device having the movement direction reversal movement amount measuring means for measuring the movement amount after detecting the movement direction reversal, after the movement direction reversal detection means detects the movement direction reversal, the movement direction reversal is detected. The speed loop integral gain of the speed controller is increased as a function of time until the movement amount measured by the rear movement amount measuring means reaches a predetermined value. When the movement speed is high, the movement speed is low. to reduce the speed loop integral gain compared, when the moving speed is low and is characterized in that the moving speed is increased the speed integral loop gain than when the high-speed, performs the quadrant projections compensation according to the speed

本発明によれば、送り速度や温度や経年変化に影響されない象限突起補償終了判別を行なうことができ,フィードフォワードを使用したシステムに対して補償開始のタイミングの精度を改善したモータ制御装置を提供する。   ADVANTAGE OF THE INVENTION According to this invention, the motor control apparatus which can perform quadrant protrusion compensation completion | finish discrimination | determination which is not influenced by feed rate, temperature, and secular change, and has improved the precision of the timing of a compensation start with respect to the system using feedforward is provided. To do.

以下、本発明の方法の具体的実施例について、図に基づいて説明する。   Hereinafter, specific examples of the method of the present invention will be described with reference to the drawings.

図1は,本発明の実施例のブロック図である。図において,11は上位コントローラ等から指令された位置指令とモータに取り付けられた検出器からの位置フィードバック信号を用いて速度指令を作成する位置制御器,12は速度指令に対し速度フィードバック信号を用いてトルク指令を作成する速度制御器,13は速度指令と速度フィードバックの偏差を積分する積分器,14は積分器13の出力に乗算する速度ループ積分ゲイン,15は積分器13に速度ループ積分ゲイン14を乗算した結果と速度フィードバックの偏差に対し乗算する速度ループ比例ゲイン,16はトルク指令に対し実際にモータを駆動する電流を制御する電流制御部,17はモータ制御装置によって制御されるモータ,18はモータ17や機械に取り付けられた位置検出器,19は移動方向切替時の象限突起補償のために速度ループ積分ゲイン14の変更を制御する補償切替器,21は位置フィードバック信号から速度フィードバック信号に変換する速度変換器である。
また,図2および図9は,補償切替器19の内部ブロック図である。図2と図9において補償切替器19は同一のため,以下では図2について説明する。図2において,22は位置制御の遅れを推定する遅れ推定器23とフィードフォワードゲイン24からなる位置制御推定器,25は位置制御推定器22の出力から移動方向が反転したか否かを判別する移動方向反転判別器,26は移動方向反転判別器25で移動方向の反転を検出した後の移動距離測定を行う移動量カウンタ,27は移動方向反転判別器25の判別結果と移動量カウンタ26の値を基に補償のオン・オフを制御する補償判別器である。
位置制御推定器22において,遅れ推定器23は位置指令に対し位置制御の遅れを推定する。位置制御の遅れは,主に位置ループゲインKpの逆数として与えられる遅れである。さらに,位置制御器11内の速度フィードフォワードゲインと同じゲインを有するフィードフォワードゲイン24からなり位置指令に対する位置フィードバックを推定する。
次に,移動方向反転判別器25は位置制御推定器22の出力が正またはゼロから負,あるいは負またはゼロから正に反転したことを判別し,判別結果を補償判別器27に通知する。補償判別器27は,移動方向反転判別結果で移動方向が反転した場合に象限突起補償を開始し,移動量カウンタ26が所定値以上になった場合に象限突起補償を終了する。
象限突起補償オンと判定された区間は,速度ループ積分ゲイン14を時間関数で増加させる。
FIG. 1 is a block diagram of an embodiment of the present invention. In the figure, 11 is a position controller that creates a speed command using a position command commanded from a host controller and the like and a position feedback signal from a detector attached to the motor, and 12 is a speed feedback signal for the speed command. speed controller to create a torque command Te, 13 an integrator for integrating the deviation between the speed command and the speed feedback, 14 speed loop integral gain to be multiplied by the output of the integrator 13, 15 is the speed loop integral gain in the integrator 13 14 is a speed loop proportional gain that multiplies the result obtained by multiplying 14 by the deviation of the speed feedback, 16 is a current control unit that controls the current that actually drives the motor in response to the torque command, 17 is a motor that is controlled by the motor control device, 18 is a position detector attached to the motor 17 or the machine, and 19 is quadrant projection compensation when the moving direction is switched. Compensation switch which controls the change of the speed loop integral gain 14 to 21 is a speed converter for converting the speed feedback signal from a position feedback signal.
FIGS. 2 and 9 are internal block diagrams of the compensation switch 19. 2 and 9, since the compensation switch 19 is the same, FIG. 2 will be described below. In FIG. 2, 22 is a position control estimator comprising a delay estimator 23 and a feedforward gain 24 for estimating a delay in position control, and 25 is used to determine whether or not the moving direction is reversed from the output of the position control estimator 22. movement direction reversal discriminator, 26 move amount counter which performs the moving distance measurement after the detection of the moving direction of the inversion in the direction of movement inversion discriminator 25, 27 of the determination result and the moving amount counter 26 in the movement direction reversal discriminator 25 It is a compensation classifier that controls on / off of compensation based on the value.
In the position control estimator 22 , a delay estimator 23 estimates a position control delay with respect to the position command. The position control delay is a delay mainly given as the reciprocal of the position loop gain Kp. Further, a position feedback for a position command is estimated, which is composed of a feed forward gain 24 having the same gain as the speed feed forward gain in the position controller 11.
Then, the movement direction reversal discriminator 25 discriminates that the output of the position control estimator 22 is positively inverted from negative positive or zero, or a negative or zero, and notifies the determination result to the compensation discriminator 27. The compensation discriminator 27 starts quadrant projection compensation when the moving direction is reversed as a result of the moving direction reversal discrimination, and ends quadrant projection compensation when the moving amount counter 26 exceeds a predetermined value.
In a section where quadrant protrusion compensation is determined to be on, the speed loop integral gain 14 is increased by a time function.

速度ループ積分ゲイン14の増加方法について図3を用いて説明する。
図3において,補償終了移動量を一定とした場合,移動速度が高速の場合は移動方向切替からの移動距離の増加が速いため,A点にて補償終了移動量の直線と交差し,補償が終了する。このときの補償時間はaとなる。
一方,移動速度が低速の場合,移動方向切替からの移動距離の増加が遅いため,B点まで補償終了移動量の直線と交差しない。補償時間はbとなり,速度が低速になるほど補償時間が長くなる。
そこで速度ループ積分ゲインを補償時間の関数で増加させることによって,高速では速度ループ積分ゲインが比較的小さく,低速では速度ループ積分ゲインを大きくすることができる。そのため,速度に応じた象限突起補償が可能となる。速度ループ積分ゲインの増加例を図6に示す。図6において,速度ループ積分ゲインは数式(1)に従って変化する。数式(1)は時間についての2次関数である。
A method of increasing the speed loop integral gain 14 will be described with reference to FIG.
In FIG. 3, when the movement amount of compensation end is fixed, if the movement speed is high, the movement distance from the switching of the movement direction increases rapidly. finish. The compensation time at this time is a.
On the other hand, when the moving speed is low, the increase of the moving distance from the moving direction switching is slow, so that the compensation end moving amount line does not intersect with point B. The compensation time is b, and the compensation time increases as the speed decreases.
Therefore, by increasing the speed loop integral gain as a function of the compensation time, the speed loop integral gain can be relatively small at high speeds and can be increased at low speeds. Therefore, quadrant projection compensation according to speed becomes possible. An example of increasing the speed loop integral gain is shown in FIG. In FIG. 6, the speed loop integral gain varies according to equation (1). Equation (1) is a quadratic function with respect to time.

Ki(t)=(Kis−2・K1・Kie)・t+2・(K1・Kis)・t+Kis
・・・(1)
Ki(t):象限突起補償時速度制御積分ゲイン
Kis :象限突起補償開始時速度制御積分ゲイン
Kie:象限突起補償終了時速度制御積分ゲイン
t:正規化時間(0〜象限突起補償終了時間→0〜1に正規化)
図6において,補償開始時点で速度ループ積分時定数を象限突起補償開始時積分ゲイン(Kis)に切替える。補償開始時に速度ループ積分ゲインにオフセットを与えることによって,接線方向速度が高い領域において,補償効果が高くなる。
また,突起補償調整ゲインK1は,補償区間途中の速度ループ積分ゲインを調整する効果がある。これは,接線方向速度が中速度から低速度領域において,補償効果を調整する。なお,前記突起補償調整ゲインK1を大きくあるいは小さくすることによって,補償区間の途中で象限突起補償終了時積分ゲインあるいは前記象限突起補償開始時積分ゲインを超えてしまう場合は,前記象限突起補償終了時積分ゲインあるいは前記象限突起補償開始時積分ゲインにてクランプする。
Ki (t) = (Kis-2 · K1 · Kie) · t 2 + 2 · (K1 · Kis) · t + Kis
... (1)
Ki (t): Speed control integral gain at quadrant protrusion compensation time Kis: Speed control integral gain at the start of quadrant protrusion compensation Kie: Speed control integral gain at the end of quadrant protrusion compensation t: Normalization time (0 to quadrant protrusion compensation end time → 0 Normalized to ~ 1)
In FIG. 6, the speed loop integration time constant is switched to the quadrant protrusion compensation start integration gain (Kis) at the start of compensation. By providing an offset to the velocity loop integral gain at the start of compensation, the compensation effect is enhanced in a region where the tangential velocity is high.
Further, the protrusion compensation adjustment gain K1 has an effect of adjusting the speed loop integral gain during the compensation interval. This adjusts the compensation effect in the tangential speed range from medium to low speed. If the projection compensation adjustment gain K1 is increased or decreased to exceed the integral gain at the end of quadrant projection compensation or the integral gain at the start of quadrant projection compensation in the middle of the compensation interval, Clamp with integral gain or integral gain at the start of quadrant projection compensation.

次に図7を用いて,本発明の実施例2について説明する。
図7は,図1に外乱補償器20を付加している。補償切替器19によって象限突起補償開始と判別された場合,外乱補償器20の出力に係数を乗じた補償トルクを速度制御器12にて作成されたトルク指令から減算する。
図8を用いてトルク指令,推定外乱トルクおよび補償トルクについて説明する。
図8(b)は,移動方向反転前後において象限突起補償を行なわない場合の駆動トルクを示す。移動方向反転後,摩擦トルクなどの影響を受け,トルクの方向が切替るまでに理想の駆動トルク図8(a)に比べて時間がかかる。また,このときの推定外乱トルクを図8(c)に示す。外乱トルクは主に摩擦によるトルクである。
ここで,図8(b)と図8(c)の差は,摩擦などが無い場合にモータを駆動するために必要なトルクである。
そして移動方向反転時を基準として象限突起補償区間の推定外乱トルクを補償トルクとしてトルク指令を補償することで,図8(a)に近づけることができる。
図9は実施例2のモータ制御装置に補償切替器を適用した例である。
Next, Embodiment 2 of the present invention will be described with reference to FIG.
In FIG. 7, a disturbance compensator 20 is added to FIG. When it is determined by the compensation switch 19 that quadrant protrusion compensation has started, a compensation torque obtained by multiplying the output of the disturbance compensator 20 by a coefficient is subtracted from the torque command created by the speed controller 12.
The torque command, estimated disturbance torque, and compensation torque will be described with reference to FIG.
FIG. 8B shows the driving torque when the quadrant protrusion compensation is not performed before and after the moving direction is reversed . After reversing the moving direction, it takes time compared to the ideal driving torque shown in FIG. Moreover, the estimated disturbance torque at this time is shown in FIG.8 (c). Disturbance torque is mainly torque due to friction.
Here, the difference between FIG. 8B and FIG. 8C is the torque necessary to drive the motor when there is no friction or the like.
Then, by compensating the torque command using the estimated disturbance torque in the quadrant projection compensation section as the compensation torque with the moving direction reversal as a reference, it is possible to approximate to FIG.
FIG. 9 is an example in which a compensation switching device is applied to the motor control device of the second embodiment.

本発明は、送り速度や温度や経年変化に影響されない象限突起補償終了判別を行ない,フィードフォワードを使用したシステムに対して補償開始のタイミングの精度を改善したので、ロボットや一般産業機械などの軌跡制御にも利用可能である。   In the present invention, the end of quadrant projection compensation is determined without being affected by the feed rate, temperature, or secular change, and the accuracy of the compensation start timing is improved for a system using feedforward. It can also be used for control.

本発明のモータ制御装置の構成を示すブロック図The block diagram which shows the structure of the motor control apparatus of this invention 本発明の実施例1のモータ制御装置に対して補償切替器を適用する構成を示すブロック図The block diagram which shows the structure which applies a compensation switching device with respect to the motor control apparatus of Example 1 of this invention. 本発明の速度ループ積分ゲインの変化を示す概念図The conceptual diagram which shows the change of the speed loop integral gain of this invention 従来の方法を適用したサーボ制御装置の構成を示すブロック図Block diagram showing the configuration of a servo control device applying a conventional method 従来の方法の補償切替器の構成を示すブロック図The block diagram which shows the structure of the compensation switching device of the conventional method 本発明の速度制御器の速度ループ積分ゲインの変化の実施例Example of change of speed loop integral gain of speed controller of the present invention 本発明の実施例2のモータ制御装置の構成を示すブロック図The block diagram which shows the structure of the motor control apparatus of Example 2 of this invention. 本発明の実施例2の補償トルクを説明するための概念図Conceptual diagram for explaining the compensation torque according to the second embodiment of the present invention. 本発明の実施例2のモータ制御装置に対して補償切替器を適用する構成を示すブロック図The block diagram which shows the structure which applies a compensation switch to the motor control apparatus of Example 2 of this invention.

符号の説明Explanation of symbols

11 位置制御器
12 速度制御器
13 積分器
14 速度ループ積分ゲイン
15 速度ループ比例ゲイン
16 電流制御部
17 モータ
18 位置検出器
19 補償切替器
20 外乱推定器
21 速度変換器
22 位置制御推定器
23 遅れ推定器
24 フィードフォワードゲイン
25 移動方向反転判別器
26 移動量カウンタ
27 補償判別器
41 第1の速度ループ積分ゲイン
42 第2の速度ループ積分ゲイン
51 終了トルク比較器
DESCRIPTION OF SYMBOLS 11 Position controller 12 Speed controller 13 Integrator 14 Speed loop integral gain 15 Speed loop proportional gain 16 Current control part 17 Motor 18 Position detector 19 Compensation switching device 20 Disturbance estimator 21 Speed converter 22 Position control estimator 23 Delay Estimator 24 Feed forward gain 25 Movement direction inversion discriminator 26 Movement amount counter 27 Compensation discriminator 41 First speed loop integral gain 42 Second speed loop integral gain 51 End torque comparator

Claims (1)

位置制御器と、積分制御手段を有した速度制御器と、位置指令の移動方向の反転を検出する移動方向反転検出手段と、前記移動方向反転検出手段にて移動方向反転を検出してからの移動量を計測する移動方向反転後移動量測定手段を備えたモータ制御装置において、
前記移動方向反転検出手段にて移動方向反転を検出した後、前記移動方向反転後移動量測定手段にて計測された移動量が所定値に達するまで前記速度制御器の速度ループ積分ゲイン時間の関数で増加させ、移動速度が高速のときは、移動速度が低速のときに比べ速度ループ積分ゲインを小さくし、移動速度が低速のときは移動速度が高速のときに比べ速度積分ループゲインを大きくし、速度に応じた象限突起補償を行うことを特徴とするモータ制御装置。
A position controller, a speed controller having an integral control means, a movement direction reversal detection means for detecting reversal of the movement direction of the position command, and the movement direction reversal detection means after detecting the movement direction reversal. In the motor control device provided with the movement amount measuring means after reversing the movement direction for measuring the movement amount,
After detecting the moving direction reversal by the moving direction reversal detecting means, the speed loop integral gain of the speed controller is set to the time until the moving amount measured by the moving amount measuring means after the moving direction reversal reaches a predetermined value. When the movement speed is high, the speed loop integral gain is reduced compared to when the movement speed is low, and when the movement speed is low, the speed integration loop gain is increased compared to when the movement speed is high. And a quadrant projection compensation according to the speed .
JP2004115173A 2004-04-09 2004-04-09 Motor control device Expired - Fee Related JP4538786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004115173A JP4538786B2 (en) 2004-04-09 2004-04-09 Motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004115173A JP4538786B2 (en) 2004-04-09 2004-04-09 Motor control device

Publications (3)

Publication Number Publication Date
JP2005304155A JP2005304155A (en) 2005-10-27
JP2005304155A5 JP2005304155A5 (en) 2007-04-12
JP4538786B2 true JP4538786B2 (en) 2010-09-08

Family

ID=35335041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004115173A Expired - Fee Related JP4538786B2 (en) 2004-04-09 2004-04-09 Motor control device

Country Status (1)

Country Link
JP (1) JP4538786B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105045203A (en) * 2014-04-24 2015-11-11 发那科株式会社 Motor controller for performing correction when direction of rotation is reversed

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4636271B2 (en) * 2006-04-28 2011-02-23 株式会社安川電機 Servo control device and adjustment method thereof
JP5018410B2 (en) * 2007-11-08 2012-09-05 株式会社安川電機 Electric motor control device
JP6209176B2 (en) 2014-04-14 2017-10-04 オークマ株式会社 Position control device
CN106537760B (en) 2015-01-28 2020-03-31 松下知识产权经营株式会社 Motor control device and method for correcting torque constant in the same
JP7050624B2 (en) 2018-08-24 2022-04-08 日立Astemo株式会社 Motor control device and electric brake device equipped with it

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651840A (en) * 1992-08-03 1994-02-25 Hitachi Constr Mach Co Ltd Driving control method for positioning table
JP2001222303A (en) * 1999-11-29 2001-08-17 Yaskawa Electric Corp Device and method for controlling servo
WO2002039574A1 (en) * 2000-11-01 2002-05-16 Mitsubishi Denki Kabushiki Kaisha Servo controller and method
JP2004082243A (en) * 2002-08-26 2004-03-18 Sony Corp Actuator control device and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651840A (en) * 1992-08-03 1994-02-25 Hitachi Constr Mach Co Ltd Driving control method for positioning table
JP2001222303A (en) * 1999-11-29 2001-08-17 Yaskawa Electric Corp Device and method for controlling servo
WO2002039574A1 (en) * 2000-11-01 2002-05-16 Mitsubishi Denki Kabushiki Kaisha Servo controller and method
JP2004082243A (en) * 2002-08-26 2004-03-18 Sony Corp Actuator control device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105045203A (en) * 2014-04-24 2015-11-11 发那科株式会社 Motor controller for performing correction when direction of rotation is reversed
CN105045203B (en) * 2014-04-24 2016-06-29 发那科株式会社 The control device of electric motor processed it is modified when direction of rotation is reversed

Also Published As

Publication number Publication date
JP2005304155A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
US10008963B2 (en) Position control device
US5159254A (en) Numerical control unit for estimating movement parameters using a model
JP5751433B2 (en) Motor control device and motor control method
US7638965B2 (en) Motor control apparatus
JP5183399B2 (en) Numerical controller
JP4879091B2 (en) Method for controlling numerically controlled machine tool and numerically controlled machine tool
EP2362287B1 (en) Motor Control Method and Motor Control System
JP5648863B2 (en) Motor control device
JP4538786B2 (en) Motor control device
JP4424350B2 (en) POSITION CONTROL DEVICE AND ITS CONTROL METHOD
JP2011176907A5 (en)
JP3552988B2 (en) Servo control method
EP1868289A1 (en) Motor control device
JP2005304155A5 (en)
US8866432B2 (en) Motor control device and image forming apparatus
CN107894749B (en) Servo motor control device, servo motor control method, and computer-readable recording medium
JP2014153842A (en) Position control device
JP4038805B2 (en) Motor friction compensation method
JP5660482B2 (en) Control method and control device for feed drive system of machine tool
JP4636271B2 (en) Servo control device and adjustment method thereof
JP2009044832A (en) Method and device for controlling servo
JP2019025600A (en) Tightening device and tightening method
JPH06165550A (en) Method and system for controlling motor
JP4952902B2 (en) Electric motor control device
JP2003131704A (en) Motor control unit equipped with overshoot control function

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140702

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees