TWI400594B - Photovoltaic device - Google Patents
Photovoltaic device Download PDFInfo
- Publication number
- TWI400594B TWI400594B TW095108349A TW95108349A TWI400594B TW I400594 B TWI400594 B TW I400594B TW 095108349 A TW095108349 A TW 095108349A TW 95108349 A TW95108349 A TW 95108349A TW I400594 B TWI400594 B TW I400594B
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- power
- solar cell
- solar
- timer
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61J—CONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
- A61J1/00—Containers specially adapted for medical or pharmaceutical purposes
- A61J1/14—Details; Accessories therefor
- A61J1/1412—Containers with closing means, e.g. caps
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/66—Regulating electric power
- G05F1/67—Regulating electric power to the maximum power available from a generator, e.g. from solar cell
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Pharmacology & Pharmacy (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Electrical Variables (AREA)
- Inverter Devices (AREA)
- Photovoltaic Devices (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
Description
本發明係關於可由太陽能電池發電來提供輸出的一種太陽能發電裝置。詳述之、即將太陽能電池所發電之直流電力予以升壓,並轉換為交流電力來供給之太陽能發電裝置。The present invention relates to a solar power generating apparatus that can generate electricity by generating electricity from a solar cell. Specifically, a solar power generation device that boosts DC power generated by a solar cell and converts it into AC power for supply.
習知過去此種太陽能發電裝置,係為將太陽能電池所發電之直流電力在升壓電路予以升壓,經升壓之直流電力再利用換流器電路轉換為交流電力,轉換後之交流電力再以控制裝置予以控制,然後回饋給商用電源系統之太陽能發電裝置(例如、參考專利文獻1)。In the past, such a solar power generation device is configured to boost the DC power generated by the solar cell in the booster circuit, and the boosted DC power is converted into AC power by the inverter circuit, and the converted AC power is re The solar power generation device is controlled by the control device and then fed back to the commercial power supply system (for example, refer to Patent Document 1).
然而上述太陽能發電裝置之太陽能電池的特點為,太陽能電池之輸出電壓從Vmax(開路電壓)變化至最大功率點Pm時,其輸出功率逐漸的增加,當越過最大功率點Pm而電壓逐漸下降時,其輸出電壓亦從最大功率點Pm逐漸的減少。因此,此種從太陽能電池取出最大功率之控制方法,即為使換流器電路的太陽能電池之工作點,能經常追蹤最大功率點Pm而隨之變化的最大功率追蹤控制(Maximum Power Point Tracking(以下稱為〔MPPT〕)(例如、參考專利文獻2)。However, the solar cell of the above solar power generation device is characterized in that when the output voltage of the solar cell changes from Vmax (open circuit voltage) to the maximum power point Pm, the output power thereof gradually increases, and when the voltage exceeds the maximum power point Pm and the voltage gradually decreases, Its output voltage is also gradually reduced from the maximum power point Pm. Therefore, the control method for taking out the maximum power from the solar cell is the maximum power tracking control (Maximum Power Point Tracking) that can continuously track the maximum power point Pm for the operating point of the solar cell of the inverter circuit. Hereinafter, it is called [MPPT]) (for example, refer to Patent Document 2).
專利文獻1:日本專利特開2003-9398號公報Patent Document 1: Japanese Patent Laid-Open Publication No. 2003-9398
專利文獻2:日本專利特開平11-282553號公報Patent Document 2: Japanese Patent Laid-Open No. Hei 11-282553
但根據前述專利文獻2所揭示之技術,將太陽能電池模 板依既定片數串聯連接,使其可發出額定(即標準)直流電力之標準太陽能電池與換流器電路連接之同時,對於比前述規定片數少之數片太陽能電池模板串聯連接,而發電之電力比該標準直流電力少,而此直流電力電壓比該標準直流電力之電壓小的尾數太陽能電池,透過升壓電路與換流器電路連接之太陽能發電裝置,若在早晚或天氣不好日照較少時,由於太陽能電池發電量不足會致使換流器電路成為間歇運轉狀態,此時若在換流器進入連續運轉狀態之前使升壓電路開始運轉,則將對於換流器電路之MPPT控制會有不良影響之虞。However, according to the technique disclosed in the aforementioned Patent Document 2, the solar cell module is The boards are connected in series according to the predetermined number of sheets, so that the standard solar cells capable of emitting rated (ie, standard) DC power are connected to the inverter circuit, and the plurality of solar battery modules having a smaller number of sheets are connected in series to generate electricity. The power is less than the standard DC power, and the DC power voltage is smaller than the voltage of the standard DC power, and the solar power device connected to the inverter circuit through the booster circuit is in the morning or evening or the weather is not good. When there is less, the inverter battery circuit will be in an intermittent operation state due to insufficient power generation of the solar cell. At this time, if the booster circuit starts to operate before the inverter enters the continuous operation state, the MPPT control for the inverter circuit will be performed. There will be adverse effects.
據此,必需在確認換流器電路處於連續運轉狀態時,方能開始升壓電路之運轉。此時、可藉由與換流器電路控制用微電腦之間的通信來確認其是在連續運轉狀態與否。或可於上述標準太陽能電池電路輸入部設置電壓、電流感測器,由功率量測來確認換流器電路的連續運轉狀態。Accordingly, it is necessary to start the operation of the booster circuit when it is confirmed that the inverter circuit is in the continuous operation state. At this time, it is possible to confirm whether it is in a continuous operation state or not by communication with the inverter circuit control microcomputer. Alternatively, a voltage and current sensor may be disposed at the input portion of the standard solar cell circuit, and the continuous operation state of the inverter circuit may be confirmed by power measurement.
然而、上述前者僅適用於具通信功能之換流器電路可以連接,而有不具通信功能之換流器電路無法連接的問題。後者則有零件件數增加,成本上升之問題。However, the former is only applicable to a converter circuit having a communication function that can be connected, and a converter circuit having no communication function cannot be connected. The latter has the problem of an increase in the number of parts and an increase in cost.
因此本發明之目的,在於可維持通用性,且避免成本的上升,並在升壓電路開始運轉時,能防止對換流器電路的MPPT控制造成不良影響的問題。Therefore, an object of the present invention is to maintain versatility and avoid an increase in cost, and to prevent a problem that the MPPT control of the inverter circuit is adversely affected when the booster circuit starts operating.
本專利之第1發明係具備有:第1太陽能電池,其乃產生既定電壓之直流電壓電力;第2太陽能電池,其乃產生較第1太陽能電池低之直流電壓電力;升壓電路,其乃將該第2太陽能電池所產生之電力電壓予以升壓;以及換流 器電路,其乃將經該升壓電路升壓過的電力、及經第1太陽能電池產生的直流電電力,轉換為交流電力,同時執行最大電力追蹤控制;其特徵在於具備有:電壓感測器,其乃檢測出由該第1太陽能電池所產生之直流電電力的電壓;計時器,其乃對從該第1太陽能電池與第2太陽能電池開始發電起,在該電壓感測器的檢測電壓係既定電壓以下之狀態下的連續時間進行計時;以及控制裝置,其乃控制當該計時器計時達既定時間時,便開始該升壓電路的運轉。The first invention of the present invention includes: a first solar cell that generates DC voltage power of a predetermined voltage; and a second solar cell that generates DC voltage power lower than that of the first solar cell; and a booster circuit; Boosting the power voltage generated by the second solar cell; and commutating And a power circuit that converts the power boosted by the booster circuit and the DC power generated by the first solar cell into AC power, and performs maximum power tracking control; and is characterized in that: a voltage sensor is provided And detecting a voltage of the direct current power generated by the first solar battery; and a timer for detecting the voltage of the voltage sensor from the first solar battery and the second solar battery The continuous time is counted in a state below the predetermined voltage; and the control device controls the operation of the booster circuit when the timer is timed for a predetermined time.
此外,第2發明係具備有:第1太陽能電池,其乃產生既定電壓之直流電壓電力;第2太陽能電池,其乃產生較第1太陽能電池低之直流電壓電力;升壓電路,其乃將該第2太陽能電池所產生之電力電壓予以升壓;以及換流器電路,其乃將經該升壓電路升壓過的電力、及經第1太陽能電池產生的直流電電力,轉換為交流電力,同時執行最大電力追蹤控制;其特徵在於具備有:電壓感測器,其乃檢測出由該第1太陽能電池所產生之直流電電力的電壓;計時器,其乃對從該第1太陽能電池與第2太陽能電池開始發電起,在該電壓感測器的檢測電壓係從該第1太陽能電池最大輸出電壓,減掉預設電壓之電壓以下的狀態下之連續時間進行計時;以及控制裝置,其乃控制當該計時器計時達既定時間時,便開始該升壓電路的運轉。Further, the second aspect of the invention includes: a first solar cell that generates DC voltage power of a predetermined voltage; a second solar cell that generates DC voltage power lower than that of the first solar cell; and a booster circuit that The power voltage generated by the second solar cell is boosted, and the inverter circuit converts the power boosted by the booster circuit and the DC power generated by the first solar cell into AC power. Simultaneously performing maximum power tracking control; characterized by: a voltage sensor for detecting a voltage of DC power generated by the first solar cell; and a timer for the first solar cell and the first 2 when the solar cell starts generating electricity, the detection voltage of the voltage sensor is counted from a continuous time in which the maximum output voltage of the first solar cell is less than the voltage of the preset voltage; and the control device is Controls the operation of the booster circuit when the timer is timed for a predetermined period of time.
因此本發明,不須要求換流器電路具有通信功能,即可維持通用性,且避免成本的上升,並在升壓電路開始運轉 時能防止對換流器電路的MPPT控制造成不良影響。Therefore, the present invention can maintain the versatility without requiring the inverter circuit to have a communication function, and avoids an increase in cost, and starts the operation of the booster circuit. It can prevent adverse effects on the MPPT control of the inverter circuit.
以下,根據圖式詳細說明本發明之實施形態。第1圖係太陽能發電裝置整體的系統圖。在第1圖中,1至3係既定的片數,例如將5片的太陽能電池模板串聯連接,將可發出額定(即標準)直流電力之標準太陽能電池(第1太陽能電池),4及5係比既定的片數少之片數,例如將3片的太陽能電池模板串聯連接,而發電之電力比前述標準直流電力少,此直流電力電壓比前述標準直流電力之電壓小的尾數太陽能電池(第2太陽能電池)。Hereinafter, embodiments of the present invention will be described in detail based on the drawings. Fig. 1 is a system diagram of the entire solar power generation device. In Fig. 1, 1 to 3 are a predetermined number of sheets, for example, a series of five solar cell modules are connected in series, and a standard solar cell (first solar cell) capable of emitting rated (i.e., standard) DC power, 4 and 5 The number of sheets is smaller than a predetermined number of sheets, for example, three solar cell modules are connected in series, and the power generated by the power is less than the standard DC power, and the DC power voltage is smaller than the voltage of the standard DC power. Second solar cell).
此外,6係後述升壓電路(DC/DC轉換器)裝在箱體6A內的連接裝置,7係連接在此連接裝置6並具有換流器電路8之電力調節器,此電力調節器再與商用電力系統連接。而電力調節器7係能從太陽能電池取出最大功率,執行讓太陽能電池工作點能經常追蹤最大功率點而隨之變化之最大功率追蹤裝置的MPPT控制。Further, a 6-series booster circuit (DC/DC converter) is connected to the connection device in the casing 6A, and 7 is connected to the connection device 6 and has a power conditioner of the inverter circuit 8, and the power conditioner is further Connected to commercial power systems. The power conditioner 7 is capable of taking out the maximum power from the solar cell, and performs MPPT control of the maximum power tracking device that allows the solar cell operating point to constantly track the maximum power point and change accordingly.
以下,根據第2圖詳細說明前述連接裝置6。10A、10B、10C係透過各接頭11A、11B、11C與標準太陽能電池1、2、3連接之標準輸入電路,其配置之數目與被連接之太陽能電池相同。此外,12A、12B、12C係防止回流用二極體,與標準輸入電路10A、10B、10C之輸出側相連接。Hereinafter, the above-described connecting device 6 will be described in detail with reference to Fig. 2. 10A, 10B, and 10C are standard input circuits connected to standard solar cells 1, 2, and 3 through respective terminals 11A, 11B, and 11C, and the number of configurations thereof is connected. The solar cells are the same. Further, 12A, 12B, and 12C are diodes for preventing backflow, and are connected to the output sides of the standard input circuits 10A, 10B, and 10C.
16A、16B係升壓電路(DC/DC轉換器),升壓電路16A、16B係透過接頭17A、17B及第1、第2電壓感測器18A、18B與尾數太陽能電池4、5相連接。22係檢測出升壓電路16A、16B輸出電壓之第3電壓感測器,23係檢測出標準輸入電路10A、10B、10C之輸出電壓(以下稱為「標準輸入電 壓」)的第4電壓感測器。在此、升壓電路16A、16B之控制用電源因為可從尾數太陽能電池4、5取得,故並不成為太陽能電池1、2、3的負載。The 16A and 16B are booster circuits (DC/DC converters), and the booster circuits 16A and 16B are connected to the fractional solar cells 4 and 5 via the connectors 17A and 17B and the first and second voltage sensors 18A and 18B. 22 detects the third voltage sensor of the output voltage of the booster circuits 16A and 16B, and 23 detects the output voltage of the standard input circuits 10A, 10B, and 10C (hereinafter referred to as "standard input power" The fourth voltage sensor of the pressure"). Here, since the control power sources of the booster circuits 16A and 16B are available from the mantissa solar cells 4 and 5, they do not become the loads of the solar cells 1, 2, and 3.
24係微電腦之控制裝置,此控制裝置24具備有未圖示之CPU(中央處理器)、RAM(隨機取樣記憶體)、ROM(唯讀記憶體)及計時器25,此外,更擁有輸入電壓偵測器26及輸出電壓偵測器27。另外,控制裝置24係透過PWM(脈衝寬調變控制電路)輸出控制信號給升壓電路16A、16B。而前述連接裝置6則透過輸出側接頭30與電力調節器連接。A control device for a 24 series microcomputer, which includes a CPU (central processing unit), a RAM (random sampling memory), a ROM (read only memory), and a timer 25 (not shown), and further has an input voltage. The detector 26 and the output voltage detector 27. Further, the control device 24 outputs a control signal to the boosting circuits 16A and 16B via a PWM (Pulse Width Modulation Control Circuit). The connecting device 6 is connected to the power conditioner via the output side connector 30.
以下,根據第3圖所顯示之流程圖,說明太陽能發電裝置之動作,特別是關於起動時的動作。首先,控制裝置24設定標準輸入電壓之最大值Vmax為0(重新設定為0),讀取第4電壓感測器所檢測出現在的標準輸入電壓Vs。其次,控制裝置24判斷升壓電路16A、16B是否停止,若停止時,則讀取事先設定並儲存於上述RAM內之標準輸入電壓最大值Vmax,而與前述現在的標準輸入電壓Vs做比較。Hereinafter, the operation of the solar power generating apparatus will be described based on the flowchart shown in Fig. 3, particularly regarding the operation at the time of starting. First, the control device 24 sets the maximum value Vmax of the standard input voltage to 0 (reset to 0), and reads the standard input voltage Vs detected by the fourth voltage sensor. Next, the control device 24 determines whether or not the boosting circuits 16A and 16B are stopped. When the control device 24 stops, it reads the standard input voltage maximum value Vmax set in advance and stored in the RAM, and compares it with the current standard input voltage Vs.
若,此現在的標準輸入電壓Vs在標準輸入電壓最大值Vmax以下時,則判斷該現在的標準輸入電壓Vs是否比從標準輸入電壓最大值Vmax減掉事先設定並儲存於上述RAM內之升壓電路起動判斷電壓Vn之值低。若低時,計時器25開始計時,當此低狀態比事先記憶在RAM內之換流器電路8的起動判斷時間(判斷換流器電路8可連續運轉之時間)Tn持久連續,而計時器25計算起動判斷時間且逾時的時候,控制裝置24判斷電力調節器7之換流器電路8已起動,而對升壓電路16A、16B輸出起動信號,升壓電路 16A、16B開始運轉。If the current standard input voltage Vs is below the standard input voltage maximum value Vmax, it is determined whether the current standard input voltage Vs is less than the standard input voltage maximum value Vmax minus the boost previously set and stored in the RAM. The circuit start determines that the value of the voltage Vn is low. If it is low, the timer 25 starts counting, and when the low state is longer than the start determination time of the inverter circuit 8 previously stored in the RAM (the time when the inverter circuit 8 can be continuously operated) Tn, the timer is continuously continuous. When the start determination time is calculated and the timeout is exceeded, the control device 24 determines that the inverter circuit 8 of the power conditioner 7 has been started, and outputs a start signal to the booster circuits 16A, 16B, and the boosting circuit 16A, 16B started to run.
如此,因為根據標準輸入電壓Vs,標準輸入電壓最大值Vmax及標準升壓電路起動判斷電壓Vn,並由計時器25之計時,而判斷換流器電路8在連續運轉之後,方使升壓電路16A、16B開始運轉,因此,裝設在電力調節器7之換流器電路8不需要具備通信功能,而可維持通用性。又因不需在標準輸入電路10A、10B、10C側裝設電流感測器等,可避免成本的上升,並在升壓電路16A、16B開始運轉時,能防止對換流器電路8的MPPT控制造成不良影響。Thus, since the standard input voltage Vs, the standard input voltage maximum value Vmax, and the standard boost circuit start determination voltage Vn, and are counted by the timer 25, it is judged that the inverter circuit 8 is continuously operated after the boost circuit is operated. Since the 16A and 16B start to operate, the inverter circuit 8 provided in the power conditioner 7 does not need to have a communication function, and the versatility can be maintained. Further, since it is not necessary to install a current sensor or the like on the side of the standard input circuits 10A, 10B, and 10C, cost rise can be avoided, and MPPT to the inverter circuit 8 can be prevented when the booster circuits 16A and 16B start operating. Control has an adverse effect.
此外,讀取標準輸入電壓最大值Vmax,與現在的標準輸入電壓Vs比較,若控制裝置24判斷現在的標準輸入電壓Vs大於標準輸入電壓最大值Vmax時,則讓現在的標準輸入電壓Vs維持在標準輸入電壓最大值Vmax。此時,將判定前述標準輸入電壓Vs是否為標準輸入電壓最大值Vmax以下,且現在的標準輸入電壓Vs是否低於從標準輸入電壓最大值Vmax減掉事先設定並儲存於該RAM內之升壓電路起動判斷電壓Vn之值。與判斷為高於時一樣,將設定該計時器25計時時間為0(重新設定為0),並停止升壓電路16A、16B之運轉。Further, the standard input voltage maximum value Vmax is read, compared with the current standard input voltage Vs, and if the control device 24 determines that the current standard input voltage Vs is greater than the standard input voltage maximum value Vmax, the current standard input voltage Vs is maintained at Standard input voltage maximum Vmax. At this time, it is determined whether the standard input voltage Vs is equal to or lower than the standard input voltage maximum value Vmax, and whether the current standard input voltage Vs is lower than the standard input voltage maximum value Vmax minus the boost previously set and stored in the RAM. The circuit starts to determine the value of the voltage Vn. As is judged to be higher than this, the timer 25 is set to have a count time of 0 (reset to 0), and the operation of the booster circuits 16A, 16B is stopped.
又,當前述標準輸入電壓Vs為標準輸入電壓最大值Vmax以下,且進行判定現在的標準輸入電壓Vs是否低於從標準輸入電壓最大值Vmax減掉事先設定並儲存於該RAM內之升壓電路起動判斷電壓Vn的值,然後開始該計時器25之計時直至逾時之間,也將維持升壓電路16A、16B在停止狀態。Further, when the standard input voltage Vs is equal to or less than the standard input voltage maximum value Vmax, and whether the current standard input voltage Vs is lower than the standard input voltage maximum value Vmax, the boost circuit previously set and stored in the RAM is determined. The value of the determination voltage Vn is started, and then the timer 25 is started until the timeout, and the boost circuits 16A, 16B are also maintained in the stopped state.
此外,在各升壓電路16A、16B起動後,將根據由第1、第2電壓感測器18A、18B檢測出之尾數太陽能電池4、5的輸出電壓,及由第3電壓感測器22檢測之升壓電路16A、16B的輸出電壓,來作動控制裝置24之輸入電壓偵測器26及輸出電壓偵測器27,控制裝置24並透過PWM控制電路28控制升壓電路16A、16B,以保持各升壓電路16A、16B之輸出電壓與標準輸入電路10A、10B、10C之輸出電壓相等,使太陽能發電裝置能提供既定電壓之電力。Further, after the booster circuits 16A and 16B are activated, the output voltages of the solar cells 4 and 5 detected by the first and second voltage sensors 18A and 18B and the third voltage sensor 22 are used. The output voltages of the boost circuits 16A, 16B are detected to actuate the input voltage detector 26 and the output voltage detector 27 of the control device 24, and the control device 24 controls the boost circuits 16A, 16B through the PWM control circuit 28 to The output voltages of the booster circuits 16A and 16B are kept equal to the output voltages of the standard input circuits 10A, 10B, and 10C, so that the solar power generating device can supply power of a predetermined voltage.
以上所述僅為本發明較佳實施例而己,並非用以限定本發明申請專利範圍以及特定使用方式,舉凡在未脫離本發明精神及所揭示申請專利範圍內完成的等效改變或修飾均應涵蓋在本發明內。The above are only the preferred embodiments of the present invention, and are not intended to limit the scope of the present invention and the specific use thereof, and equivalent changes or modifications may be made without departing from the spirit of the invention and the scope of the disclosed application. It should be covered within the invention.
1,2,3‧‧‧太陽能電池(第1太陽能電池)1,2,3‧‧‧ solar cells (first solar cell)
4,5‧‧‧尾數太陽能電池(第2太陽能電池)4,5‧‧‧Mant solar cells (2nd solar cell)
6‧‧‧連接裝置6‧‧‧Connecting device
6A‧‧‧箱體6A‧‧‧ cabinet
7‧‧‧電力調節器7‧‧‧Power conditioner
8‧‧‧換流器電路8‧‧‧Inverter circuit
16A,16B‧‧‧升壓電路16A, 16B‧‧‧ booster circuit
23‧‧‧第4電壓感測器23‧‧‧4th voltage sensor
24‧‧‧控制裝置24‧‧‧Control device
25‧‧‧計時器25‧‧‧Timer
第1圖係太陽能發電裝置的整體系統圖。Fig. 1 is an overall system diagram of a solar power generation device.
第2圖係收藏在升壓電路內連接裝置的電路圖。Fig. 2 is a circuit diagram of a connection device housed in a booster circuit.
第3圖係說明控制升壓電路起動時的流程圖。Fig. 3 is a flow chart showing the control of the start of the booster circuit.
1,2,3‧‧‧太陽能電池(第1太陽能電池)1,2,3‧‧‧ solar cells (first solar cell)
4,5‧‧‧尾數太陽能電池(第2太陽能電池)4,5‧‧‧Mant solar cells (2nd solar cell)
6‧‧‧連接裝置6‧‧‧Connecting device
6A‧‧‧箱體6A‧‧‧ cabinet
7‧‧‧電力調節器7‧‧‧Power conditioner
8‧‧‧換流器電路8‧‧‧Inverter circuit
24‧‧‧控制裝置24‧‧‧Control device
25‧‧‧計時器25‧‧‧Timer
Claims (2)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005097643A JP4794189B2 (en) | 2005-03-30 | 2005-03-30 | Solar power plant |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200643678A TW200643678A (en) | 2006-12-16 |
TWI400594B true TWI400594B (en) | 2013-07-01 |
Family
ID=36128606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW095108349A TWI400594B (en) | 2005-03-30 | 2006-03-13 | Photovoltaic device |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP1708070B1 (en) |
JP (1) | JP4794189B2 (en) |
KR (1) | KR100993652B1 (en) |
CN (1) | CN100517159C (en) |
AT (1) | ATE394727T1 (en) |
DE (1) | DE602006001067D1 (en) |
ES (1) | ES2306310T3 (en) |
TW (1) | TWI400594B (en) |
Families Citing this family (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US10693415B2 (en) | 2007-12-05 | 2020-06-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8319471B2 (en) | 2006-12-06 | 2012-11-27 | Solaredge, Ltd. | Battery power delivery module |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8816535B2 (en) | 2007-10-10 | 2014-08-26 | Solaredge Technologies, Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US8618692B2 (en) | 2007-12-04 | 2013-12-31 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US8963369B2 (en) | 2007-12-04 | 2015-02-24 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US9088178B2 (en) | 2006-12-06 | 2015-07-21 | Solaredge Technologies Ltd | Distributed power harvesting systems using DC power sources |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US8384243B2 (en) | 2007-12-04 | 2013-02-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US8473250B2 (en) | 2006-12-06 | 2013-06-25 | Solaredge, Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US8319483B2 (en) | 2007-08-06 | 2012-11-27 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8947194B2 (en) | 2009-05-26 | 2015-02-03 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8013472B2 (en) | 2006-12-06 | 2011-09-06 | Solaredge, Ltd. | Method for distributed power harvesting using DC power sources |
JP5354892B2 (en) * | 2007-11-26 | 2013-11-27 | ニッコー株式会社 | Wind power generator |
WO2009073867A1 (en) | 2007-12-05 | 2009-06-11 | Solaredge, Ltd. | Parallel connected inverters |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
EP2232663B2 (en) | 2007-12-05 | 2021-05-26 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
WO2009072075A2 (en) | 2007-12-05 | 2009-06-11 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
US8049523B2 (en) | 2007-12-05 | 2011-11-01 | Solaredge Technologies Ltd. | Current sensing on a MOSFET |
EP2269290B1 (en) | 2008-03-24 | 2018-12-19 | Solaredge Technologies Ltd. | Switch mode converter including active clamp for achieving zero voltage switching |
EP2294669B8 (en) | 2008-05-05 | 2016-12-07 | Solaredge Technologies Ltd. | Direct current power combiner |
CN102822762B (en) * | 2010-05-12 | 2015-11-25 | 欧姆龙株式会社 | Electric pressure converter, voltage conversion method, power regulator, electric power method of adjustment, solar power system and management devices |
JP5540893B2 (en) * | 2010-05-31 | 2014-07-02 | 三洋電機株式会社 | Photovoltaic power generation device and connection device |
JP5659240B2 (en) * | 2010-11-08 | 2015-01-28 | 株式会社日立製作所 | Solar power system |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
GB2485527B (en) | 2010-11-09 | 2012-12-19 | Solaredge Technologies Ltd | Arc detection and prevention in a power generation system |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
GB2486408A (en) | 2010-12-09 | 2012-06-20 | Solaredge Technologies Ltd | Disconnection of a string carrying direct current |
GB2483317B (en) | 2011-01-12 | 2012-08-22 | Solaredge Technologies Ltd | Serially connected inverters |
CN102200793A (en) * | 2011-05-23 | 2011-09-28 | 昆明理工大学 | Maximum power point detection tracking method and circuit of power generating device |
US8570005B2 (en) | 2011-09-12 | 2013-10-29 | Solaredge Technologies Ltd. | Direct current link circuit |
GB2498365A (en) | 2012-01-11 | 2013-07-17 | Solaredge Technologies Ltd | Photovoltaic module |
GB2498790A (en) | 2012-01-30 | 2013-07-31 | Solaredge Technologies Ltd | Maximising power in a photovoltaic distributed power system |
GB2498791A (en) | 2012-01-30 | 2013-07-31 | Solaredge Technologies Ltd | Photovoltaic panel circuitry |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
JP5891251B2 (en) * | 2012-02-15 | 2016-03-22 | 東芝三菱電機産業システム株式会社 | Power supply device for power converter |
GB2499991A (en) | 2012-03-05 | 2013-09-11 | Solaredge Technologies Ltd | DC link circuit for photovoltaic array |
EP3168971B2 (en) | 2012-05-25 | 2022-11-23 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
CN102749931A (en) * | 2012-06-21 | 2012-10-24 | 上海市电力公司 | Photovoltaic energy storage control system |
US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
EP3506370B1 (en) | 2013-03-15 | 2023-12-20 | Solaredge Technologies Ltd. | Bypass mechanism |
US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
CN105186563B (en) * | 2015-09-16 | 2018-08-14 | 上海载物能源科技有限公司 | A kind of high-effect solar energy power generating control system and method based on synchronous boost |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
GB2551753A (en) | 2016-06-29 | 2018-01-03 | Liu Xiongwei | Apparatus for use in a solar photovoltaic power system and methods of operating the same |
JP7073647B2 (en) * | 2017-08-07 | 2022-05-24 | オムロン株式会社 | Power generation system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5327071A (en) * | 1991-11-05 | 1994-07-05 | The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration | Microprocessor control of multiple peak power tracking DC/DC converters for use with solar cell arrays |
US5869956A (en) * | 1996-09-06 | 1999-02-09 | Canon Kabushiki Kaisha | Solar power generation apparatus and power control device therefor |
JPH11282553A (en) * | 1998-03-30 | 1999-10-15 | Sanyo Electric Co Ltd | Solar power generator |
JP2003009398A (en) * | 2001-06-19 | 2003-01-10 | Sanyo Electric Co Ltd | Control method of system interconnection power generation system and the system interconnection power generation system |
TWM258488U (en) * | 2004-02-23 | 2005-03-01 | Hu-Tai Fan | Solar power control apparatus for handheld devices |
TW200517803A (en) * | 2003-11-25 | 2005-06-01 | Delta Electronics Inc | Maximum-power tracking method and device of solar power generation system |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10341541A (en) | 1997-06-05 | 1998-12-22 | Toshiba Corp | Storage battery discharging termination controller |
CN1161678C (en) | 1998-03-30 | 2004-08-11 | 三洋电机株式会社 | Solar generating device |
JP2001128365A (en) * | 1999-10-25 | 2001-05-11 | Hitachi Ltd | Operating method for photovoltaic power generation system |
JP3747313B2 (en) * | 2000-04-27 | 2006-02-22 | シャープ株式会社 | Grid-connected inverter device |
JP2002271991A (en) * | 2001-03-14 | 2002-09-20 | Kyocera Corp | Photovoltaic power generating system, starting method therefor, and computer-readable storage medium |
JP3772096B2 (en) * | 2001-04-13 | 2006-05-10 | シャープ株式会社 | Power conditioner for photovoltaic system |
CN1337775A (en) * | 2001-06-29 | 2002-02-27 | 黎进华 | Solar power generator and its inversion step-up circuit |
KR100452967B1 (en) | 2002-04-24 | 2004-10-14 | 헥스파워시스템(주) | Apparatus and method for controlling power controller for solar power generation |
JP2004146791A (en) * | 2002-07-31 | 2004-05-20 | Kyocera Corp | Solar power generation device |
-
2005
- 2005-03-30 JP JP2005097643A patent/JP4794189B2/en active Active
-
2006
- 2006-02-16 KR KR1020060014875A patent/KR100993652B1/en not_active IP Right Cessation
- 2006-03-07 CN CNB2006100568392A patent/CN100517159C/en not_active Expired - Fee Related
- 2006-03-13 TW TW095108349A patent/TWI400594B/en not_active IP Right Cessation
- 2006-03-14 ES ES06005204T patent/ES2306310T3/en active Active
- 2006-03-14 EP EP06005204A patent/EP1708070B1/en not_active Not-in-force
- 2006-03-14 DE DE602006001067T patent/DE602006001067D1/en active Active
- 2006-03-14 AT AT06005204T patent/ATE394727T1/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5327071A (en) * | 1991-11-05 | 1994-07-05 | The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration | Microprocessor control of multiple peak power tracking DC/DC converters for use with solar cell arrays |
US5869956A (en) * | 1996-09-06 | 1999-02-09 | Canon Kabushiki Kaisha | Solar power generation apparatus and power control device therefor |
JPH11282553A (en) * | 1998-03-30 | 1999-10-15 | Sanyo Electric Co Ltd | Solar power generator |
JP2003009398A (en) * | 2001-06-19 | 2003-01-10 | Sanyo Electric Co Ltd | Control method of system interconnection power generation system and the system interconnection power generation system |
TW200517803A (en) * | 2003-11-25 | 2005-06-01 | Delta Electronics Inc | Maximum-power tracking method and device of solar power generation system |
TWM258488U (en) * | 2004-02-23 | 2005-03-01 | Hu-Tai Fan | Solar power control apparatus for handheld devices |
Also Published As
Publication number | Publication date |
---|---|
ATE394727T1 (en) | 2008-05-15 |
KR100993652B1 (en) | 2010-11-10 |
JP4794189B2 (en) | 2011-10-19 |
DE602006001067D1 (en) | 2008-06-19 |
CN100517159C (en) | 2009-07-22 |
KR20060106646A (en) | 2006-10-12 |
ES2306310T3 (en) | 2008-11-01 |
EP1708070B1 (en) | 2008-05-07 |
JP2006278858A (en) | 2006-10-12 |
TW200643678A (en) | 2006-12-16 |
EP1708070A1 (en) | 2006-10-04 |
CN1841254A (en) | 2006-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI400594B (en) | Photovoltaic device | |
US6493246B2 (en) | Power conversion with stop conversion during low integrated power conditions | |
EP2224571B1 (en) | Power supply system | |
JP4225923B2 (en) | Inverter for grid connection | |
US20020038667A1 (en) | Solar battery module and power generation apparatus | |
JP2005192314A (en) | Power converter | |
JP4719434B2 (en) | Solar cell power generator | |
JP2002369406A (en) | System-interconnected power system | |
WO2011039599A1 (en) | Power distribution system | |
JP2014075855A (en) | Power control system and photovoltaic power generation system | |
JP6566355B2 (en) | Power converter | |
CN105431992A (en) | Control device for solar power generation inverter | |
CN103392291A (en) | Power conversion device | |
JP4039097B2 (en) | Solar power system | |
JP5540893B2 (en) | Photovoltaic power generation device and connection device | |
JP3570283B2 (en) | Battery charging / discharging device | |
US10523014B2 (en) | Control of a multiple input solar power inverter | |
JP2013050850A (en) | Photovoltaic power generation system and control method therefor, and boost unit | |
JPH09135575A (en) | Starting method of power converter for photovoltaic power generation | |
JP5622923B2 (en) | Grid connection power conditioner | |
JPH07302130A (en) | Power controller | |
JP2015042100A (en) | Power conditioner | |
JP3451945B2 (en) | Solar power inverter | |
JP2010238010A (en) | Converter control device, and system interconnection inverter system using the same | |
KR101237571B1 (en) | Solar Inverter System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |