JP2005192314A - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP2005192314A
JP2005192314A JP2003429384A JP2003429384A JP2005192314A JP 2005192314 A JP2005192314 A JP 2005192314A JP 2003429384 A JP2003429384 A JP 2003429384A JP 2003429384 A JP2003429384 A JP 2003429384A JP 2005192314 A JP2005192314 A JP 2005192314A
Authority
JP
Japan
Prior art keywords
voltage
power
system
data
power converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003429384A
Other languages
Japanese (ja)
Inventor
Kazuaki Azuma
和明 東
Original Assignee
Kyocera Corp
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, 京セラ株式会社 filed Critical Kyocera Corp
Priority to JP2003429384A priority Critical patent/JP2005192314A/en
Publication of JP2005192314A publication Critical patent/JP2005192314A/en
Application status is Pending legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power converter that can facilitate factor identification at the stoppage of an apparatus, and efficiently and effectively utilize power generated by a solar battery. <P>SOLUTION: The power converter boosts a voltage of DC power generated by a solar battery panel, converts the boosted DC voltage into AC voltage, connects the solar battery panel to a load system and a commercial power system, and performs linkage operation. The power converter comprises a voltage detecting part that detects the voltage of the commercial power system and a memory that stores the data of the detected voltage, and makes the memory store the data of the voltage immediately prior to the stoppage of the linkage operation, when abnormality is detected, and the data of the voltage after the lapse of a prescribed time. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、太陽電池パネル等の直流電源から得られる直流電力を交流電力に変換する電力変換装置に関するものである。 The present invention relates to a power converter for converting DC power obtained from the DC power supply such as a solar cell panel to an AC power.

近年、太陽エネルギーを電気エネルギーへ光電変換できる太陽電池パネルが発電し、出力する直流電力をインバータにて交流電力に変換し、太陽電池パネルを商用電力系統と連系する系統連系システムが実用化されている。 In recent years, solar panel power generation capable of photoelectrically converting the solar energy into electrical energy, converts the output to DC power to AC power by an inverter, the solar panel system interconnection system for a commercial power system and the communication system commercialized It is.

図4は従来技術における系統連系システムの形態を示す概略構成図、図5は従来技術における電力変換装置の形態を示す一例の概略構成図である。 Figure 4 is a schematic diagram showing the form of a system interconnection system in the prior art, FIG. 5 is an example schematic diagram of illustrating a configuration of a power conversion apparatus in the prior art.

図4に示すように、従来技術における系統連系システムにおいては、太陽電池パネルにより構成された直流電源2で太陽エネルギーを電気エネルギーに光電変換し、ここで発生し、出力した直流電力は、電力変換装置21にて例えば交流電圧が200Vの交流電力に変換される。 As shown in FIG. 4, in the system interconnection system in the prior art, and photoelectrically converted into electrical energy solar energy in the DC power source 2 which is constituted by a solar cell panel, the DC power generated and output here, the power for example the alternating voltage at converter 21 is converted into AC power of 200V. また、太陽電池パネルにより構成された直流電源2は電力変換装置21を通して、商用電力系統12とは連系接続されている。 Further, the DC power source 2 which is constituted by solar panels through the power converter 21 is connected interconnection to the commercial power system 12.

従来の電力変換装置21は、図5に示すように、太陽電池パネルにより構成された直流電源2で発電された直流電力の直流電圧をより高い直流電圧に昇圧変換する昇圧回路23と、この昇圧回路23によって昇圧された直流電力を交流電力に変換するインバータ回路24と、昇圧回路23やインバータ回路24をコントロールする制御回路25と、商用電力系統12の電圧を検出する電圧検出部26と、商用電力系統へ出力される電流を検出する電流検出部27と、制御に必要な設定値や異常状態等を記録しておくメモリ部28等から構成されており、負荷13と商用電力系統12に電気的に接続して連系運転を行っている。 Conventional power converter 21, as shown in FIG. 5, a booster circuit 23 for boosting converts the DC voltage of the DC power generated by the DC power source 2 which is constituted by the solar cell panel to a higher DC voltage, the boosted an inverter circuit 24 which converts the DC power boosted by the circuit 23 into AC power, a control circuit 25 which controls the booster circuit 23 and inverter circuit 24, a voltage detecting unit 26 that detects the voltage of the commercial power system 12, a commercial a current detecting section 27 for detecting the current output to the power system, is composed of a memory unit 28 or the like to record the set values ​​and the abnormal state or the like necessary for control, the electric load 13 and the power network 12 doing interconnected operation and connected.

ここで、制御回路25は電圧検出部26から得られる商用電力系統12の電圧値及び電圧位相信号、また電流検出部27から得られる出力電流値を基に昇圧回路23やインバータ回路24への動作指令値を制御することにより、電力変換回路21は商用電力系統12と同期がとれた連系出力を行うことが可能となる。 Here, the control circuit 25 operates to voltage value and voltage phase signal and the current detection unit 27 boosting on the basis of the output current value obtained from the circuit 23 and the inverter circuit 24, the commercial power system 12 obtained from the voltage detector 26 by controlling the command value, the power conversion circuit 21 is able to perform the interconnection output is in sync with the commercial power system 12.

また、制御回路25において、一方では、電圧検出部26や電流検出部27にて検出された値が所定の規定値の範囲になく、商用電力系統12若しくは電力変換装置21が異常状態であると判断した場合においては、昇圧回路23及びインバータ回路24を停止させ機器を保護するように制御を行っている。 In the control circuit 25, on the one hand, the detected value by the voltage detecting unit 26 and the current detector 27 without the range of predetermined specified value, the commercial electric power system 12 or the power converter 21 is in an abnormal state in case it is determined performs control so as to protect the equipment stops the booster circuit 23 and the inverter circuit 24. なお、その際においては異常状態のモード判定を行い、エラーコード等の情報をメモリ部28に記憶しておく方式が一般的に行われている。 Note that in this case performs mode determination of the abnormal state, a method of storing information such as an error code in the memory unit 28 are generally performed. (例えば、特許文献1を参照) (E.g., see Patent Document 1)
特開2003−18750号公報 JP 2003-18750 JP

しかしながら、このような従来の方式では、前述の通り商用電力系統の電圧等を検出し、何らかの異常が発生した場合にはエラー情報をメモリに記憶するが、このエラー情報は例えば異常発生時のエラーコードや異常発生時間等が挙げられる。 However, in such a conventional method, as described above commercial power to detect the voltage or the like of the system, but stores the error information in the memory when an error occurs, the error at the time of the error information, for example abnormality such code or abnormal time and the like.

また、これらの情報のみでは異常が発生した事実のみの把握はできても異常に至った原因を把握するまでには至らないものである。 In addition, only these pieces of information are those that do not reach the point to understand the causes that led to be able to understand the only fact that the abnormality has occurred abnormal. すなわち従来の方式においては、何らかの異常が発生した場合は、速やかに機器を停止させることに主眼がおかれ、エラー情報については上述の内容の記録にとどめられていた。 That is, in the conventional method, when an error occurs, promptly placed that focus on stopping the equipment, the error information has been kept to a recording content of the above.

また、系統連系運転時の異常発生においては、機器自身に起因する異常及び商用電力系統に起因する異常があげられるが、商用電力系統に起因する異常の場合は、配電系統のインピーダンスや周囲の設備稼働状況等によりランダムに発生する場合が多いため、特に原因を特定することが困難である。 In the abnormality occurs during the system-interconnected run, abnormal and the like caused by abnormal and commercial power system due to device itself, if the abnormality resulting from the commercial power system, the power distribution system impedance and the surrounding because often generated randomly by facility operation status, etc., it is difficult especially to determine the cause. そのため、あるエラーコードにおける機器の停止が発生しても、異常の原因が商用電力系統側にあるのか、または機器側にあるのかが判断できないという問題がある。 Therefore, even in the event that stopped the equipment at a certain error code, or the cause of the abnormality that is in the commercial power system side, or located in the device side it is impossible to determine.

さらに、上記の理由より異常の原因を特定することが困難であり、機器の停止のみが繰り返され、その間の発電エネルギーが有効に利用できないといった問題があった。 Furthermore, it is difficult to identify the cause of the abnormality from the above reason, only stop the equipment is repeated, there is a problem can not be effectively utilized during the power generation energy.

したがって、本発明の目的は、上述した従来の問題点に鑑みてなされたものであり、異常の要因把握を容易にするとともに、太陽電池パネル等からなる直流電源の発電電力を有効に利用できる電力変換装置を提供することにある。 Accordingly, an object of the present invention has been made in view of the aforementioned problems, as well as facilitating factors grasp abnormality, power can be effectively utilized generated power of the DC power source consisting of a solar panel, etc. and to provide a conversion device.

本発明の電力変換装置は、太陽電池パネルの発電した直流電力の電圧を昇圧し、さらにこの昇圧された直流電圧を交流電圧に変換し、太陽電池パネルを負荷系統及び商用電力系統に電気的に接続して連系運転を行う電力変換装置であって、この電力変換装置に前記商用電力系統の電圧を検出する電圧検出部と検出された前記電圧のデータを記憶するためのメモリ部を設けるとともに、このメモリ部に異常を検知して連系運転を停止した際の停止する直前の前記電圧のデータ及び連系運転を停止した後の所定時間後の前記電圧のデータを記憶させることを特徴とする。 Power converter of the present invention, boosts the power to DC power voltage of the solar cell panel, further converts the boosted DC voltage into an AC voltage, electrical solar panels on the load system and the commercial power system a power conversion device for performing interconnected operation connected, provided with a memory unit for storing the data of the voltage detection unit and said detected voltage to detect the voltage of the commercial power system to the power converter and characterized by storing data of the voltage after a predetermined time after stopping the data and interconnected operation of the voltage immediately before the stop when stopping the interconnected operation to detect an abnormality in the memory unit to.

本発明の電力変換装置によれば、太陽電池パネルの発電した直流電力の電圧を昇圧し、さらにこの昇圧された直流電圧を交流電圧に変換し、太陽電池パネルを負荷系統及び商用電力系統に電気的に接続して連系運転を行う電力変換装置であって、この電力変換装置に前記商用電力系統の電圧を検出する電圧検出部と検出された前記電圧のデータを記憶するためのメモリ部を設けるとともに、このメモリ部に異常を検知して連系運転を停止した際の停止する直前の前記電圧のデータ及び連系運転を停止した後の所定時間後の前記電圧のデータを記憶させるようにしたことで、異常状態発生時点における商用電力系統の状態が把握でき、機器の停止に至った要因を確認することが可能となるとともに、機器の停止が外来の影響によるものかの判断 According to the power conversion device of the present invention, it boosts the power to DC power voltage of the solar panel, and further converts the boosted DC voltage into an AC voltage, an electric solar panels on the load system and the commercial power system a power conversion device that performs to interconnected operation by connecting the memory portion for storing data of the voltage detection unit and said detected voltage to detect the voltage of the commercial power system to the power converter provided with, so as to store data of the voltage after a predetermined time after stopping the data and interconnected operation of the voltage immediately before the stop when stopping the interconnected operation to detect an abnormality in the memory unit by the MS can determine the state of the commercial power system in an abnormal state occurrence time, it becomes possible to confirm the cause that led to the stoppage of the equipment, determines stopping device if the impact of a foreign 容易に行うことが可能となる電力変換装置を提供することができる。 It is possible to provide a power conversion apparatus becomes possible to easily perform.

また、そのために、機器の復旧が容易となり、太陽電池パネルで発電した電力を効率よく有効に利用できる電力変換装置を提供することができる。 In order that can be restored in the device is facilitated and provides a power conversion device can be efficiently effective use of power generated by the solar cell panel.

以下、太陽電池パネルを直流電源とする太陽光発電装置の場合を例にとり、本発明に係る実施形態を模式的に図示した図面に基づいて詳細に説明する。 Hereinafter, taking the case of the photovoltaic device for a solar cell panel and a DC power supply as an example, an embodiment of the present invention will be described in detail with reference to the accompanying drawings illustrating schematically.

図1は本発明に係る電力変換装置の実施の形態を示す一例の概略構成図である。 Figure 1 is a schematic diagram of an example illustrating an embodiment of a power conversion apparatus according to the present invention.

図1に示すように、電力変換装置1は、太陽電池パネルからなる直流電源2の電圧を昇圧する昇圧回路3と、この昇圧回路3にて電圧変換された直流電力を交流電力に変換するインバータ回路4と、昇圧回路3及びインバータ回路4を制御する制御回路15と、商用電力系統12の電圧を検出する電圧検出部16と、制御に必要な設定値や異常状態等を記録しておくためのメモリ部18等から構成される。 As shown in FIG. 1, the power converter 1 converts a booster circuit 3 that boosts the voltage of the DC power source 2 consisting of solar panels, the DC power voltage converted by the booster circuit 3 into AC power inverter a circuit 4, a control circuit 15 for controlling the booster circuit 3 and the inverter circuit 4, a voltage detector 16 for detecting the voltage of the commercial power system 12, for recording the set values ​​and abnormal conditions necessary for control It consists of the memory unit 18, and the like.

昇圧回路3はリアクトル5、半導体スイッチ素子6、ダイオード7、平滑コンデンサ8にてチョッパ回路を構成しており、これにより、太陽電池パネルからなる直流電源2より出力された直流電圧の電圧変換が行われる。 Boosting circuit 3 reactor 5, the semiconductor switching element 6, a diode 7, constitute a chopper circuit in the smoothing capacitor 8, thereby, the voltage conversion line of a DC voltage outputted from the DC power supply 2 consisting of solar panel divide.

インバータ回路4は、複数の半導体スイッチ素子から成るブリッジ回路10と、リアクトルとコンデンサから成るフィルタ回路11とから成り、昇圧回路3より出力される直流電力を正弦波の商用交流波形に変換する。 The inverter circuit 4 includes a bridge circuit 10 comprising a plurality of semiconductor switching elements, made from the filter circuit 11 for a reactor and a capacitor, for converting DC power outputted from the booster circuit 3 to a commercial AC waveform of a sine wave. このインバータ回路4から出力された交流電力は商用電力系統12及び負荷13に接続されており、負荷13への電力供給及び/または商用電力系統12への売電が行われる。 The AC power output from the inverter circuit 4 is connected to the power network 12 and the load 13, the power sale to the power supply and / or power network 12 to the load 13 is performed.

次に、本発明の電力変換装置の動作について説明する。 Next, the operation of the power conversion apparatus of the present invention. 太陽電池パネルからなる直流電源2より得られた直流電力は電力変換装置1に入力される。 DC power obtained from the DC power supply 2 comprising a solar panel is inputted to the power conversion apparatus 1. 昇圧回路3においては、出力制御手段9により、半導体スイッチ素子6が高速にオン・オフ制御され、半導体スイッチ6のオン時に、リアクトル5にエネルギーが蓄積され、半導体スイッチ6のオフ時には、上記エネルギーがダイオード7を通り、平滑コンデンサ8部に出力されることにより、太陽電池パネルからなる直流電源2より入力された直流電圧とは異なる直流電圧に昇圧することが可能となる。 In the step-up circuit 3, the output control unit 9, the semiconductor switching element 6 is on-off controlled at high speed, during on of the semiconductor switches 6 are accumulated energy in the reactor 5, at the time of off of the semiconductor switch 6, the energy through the diode 7, by being output to 8 parts smoothing capacitor, it is possible to boost the DC voltage different from the DC voltage input from the DC power supply 2 consisting of solar panels.

なお、昇圧回路6の入力電圧の変化に対応して出力電圧を調節できるようにするため、半導体スイッチ素子6は変換電圧に応じてパルスのデューティーをコントロールするPWM方式(pulse width modulation)により制御するのが望ましい。 In order to be able to adjust the output voltage in response to changes in the input voltage of the booster circuit 6, the semiconductor switching element 6 is controlled by PWM scheme to control the duty of the pulse in accordance with the converted voltage (pulse width modulation) It is desirable. また、変換出力された直流電圧はインバータ回路4が効率よく作動する電圧値であることが望ましい。 The conversion output DC voltage is preferably a voltage value inverter circuit 4 operates efficiently.

インバータ回路4に入力された直流電力は、ブリッジ回路10の高速スイッチング動作によるPWM(パルス幅変調)制御が行われ、LPF(ローパスフィルタ)であるフィルタ回路11を通すことにより、正弦波の交流出力が得られる。 DC power input to the inverter circuit 4, PWM by high-speed switching operation of the bridge circuit 10 (pulse width modulation) control is performed by passing the filter circuit 11 is a LPF (low pass filter), a sine wave AC output It is obtained. 出力された交流電力はモーターや照明などの交流機器である負荷13に供給されるが、太陽電池パネルからなる直流電源2の発電電力量が負荷電力量を上回る場合は、余った電力を商用電力系統12に逆潮流させて売電を行う。 The output ac power is supplied to the load 13 is an AC device, such as motors and lighting, when the amount of power generation of the DC power source 2 consisting of solar panel is greater than the load power amount, commercial surplus power power performing sell electricity by reverse power flow to the system 12.

また、制御回路15は、電圧検出部16から得られる商用電力系統12の電圧データに出力電流を同期させるように、上述のように、昇圧回路3やインバータ回路4を制御し、系統連系運転を行うとともに、機器本体や商用電力系統12に異常が発生した場合においては、機器を停止させる働きをする。 Further, the control circuit 15, as to synchronize the output current to the voltage data of the power network 12 obtained from the voltage detector 16, as described above, controls the booster circuit 3 and the inverter circuit 4, the system-interconnected run It performs, when an abnormality occurs in the apparatus main body and the power network 12 serves to stop the equipment.

ここで、制御回路15においては、系統連系運転時に取得する電圧検出部16の電圧データを一次保存しておくとともに、異常を検出し、機器を停止させた場合においては、機器が停止する直前の電圧データをメモリ部18に記憶させるように動作するものである。 Last Minute Here, the control circuit 15, the voltage data of the voltage detection unit 16 for acquiring at the system-interconnected run together keep primary, detects an anomaly, in the case of stopping the equipment, the equipment is stopped it is to operate the voltage data to be stored in the memory unit 18. さらには機器が停止した後における所定時間分の電圧データを同メモリ部18に記憶させるように動作する。 Furthermore it operates to store the voltage data of the predetermined time after providing apparatus is stopped in the memory unit 18.

具体的動作の一例としては、電圧検出部にて抵抗やトランス等から検出された電圧瞬時値をサンプリング及び平均化処理を行い、その瞬時値若しくは平均値を制御部のCPU等に一時的に保存し、その値が所定の規定範囲内にないと判断した場合においては、機器を停止させるとともに、直前に保存しておいた電圧の瞬時値及び平均値をメモリ部に記憶させる。 An example of a specific operation, stores a voltage instantaneous value detected from the resistance or transformer or the like by the voltage detecting unit performs a sampling and averaging processing, CPU or the like to temporarily its instantaneous value or an average value control unit and, in the case where the value is determined not within the predetermined specified range, it stops the apparatus, and stores the instantaneous value and the average value of the voltage which has been stored immediately before the memory unit. また、機器の停止後の所定時間(数ms〜数十s程度)においても、同様に、電圧の瞬時値及び平均値を取得し、メモリに保存するものである。 Also in a predetermined time after stopping device (several ms~ several tens s), similarly, in which to get the instantaneous value and the average value of the voltage, it is stored in memory.

図2は本発明に係る電力変換装置の実施の形態の一例を示す電圧波形図、図3は本発明に係る電力変換装置の実施の形態の一例を示す電圧波形図である。 Figure 2 is a voltage waveform diagram showing an example of an embodiment of a power conversion device according to the present invention, FIG 3 is a voltage waveform diagram showing an example of an embodiment of a power conversion apparatus according to the present invention.

メモリ部18には機器が停止した場合における、機器の停止の要因となった時点(直前)の商用電力系統の電圧データ及び機器が停止した後の商用電力系統の電圧データの両データが波形的に記憶されることとなり、機器が停止した後の商用電力系統の電圧データが図2に示すようなきれいな正弦波であるならば、外乱の影響によるエラー発生の可能性は低い、または瞬間的なものであると推測でき、また、図3に示すような歪んだ波形であれば、電力変換装置には起因しない周囲環境や配電系統に起因するエラーの発生である可能性が高いと推測することができる。 When the memory unit 18 stops the apparatus, both data waveforms manner of the voltage data of the commercial electric power system after the voltage data and the equipment of the commercial power supply has stopped at the time that caused the stop of the equipment (immediately before) will be stored in, if the voltage data of the commercial electric power system after the device is stopped is a clean sine wave as shown in FIG. 2, low probability of error occurrence due to the influence of the disturbance, or instantaneous can assume those, also, if the distorted waveform as shown in FIG. 3, be inferred that there is a high possibility that the occurrence of errors due to the surrounding environment and the distribution system not due to the power converter can.

すなわち、機器が停止した直前の電圧データを記憶することにより、異常状態発生時点における商用電力系統の電圧値及び電圧の波形状態が把握でき、その内容から機器の停止に至った要因を確認することが可能となるとともに、機器の停止後の電圧データを記憶することにより、機器の動作に依存しない状態(電力変換装置の影響を受けない商用電力系統自体の状態)における商用電力系統の状態を把握することができ、この2つの電圧波形の比較及び各々の電圧波形の正弦波に対する比較を行うことで、機器の停止が外乱の影響によるものかの判断を容易に行うことが可能となるものである。 That is, by storing the voltage data immediately before the equipment is stopped, can grasp the waveform state of the voltage value and the voltage of the commercial power system in an abnormal state occurrence time, to confirm the cause that led to the stop of the apparatus from the contents grasping with becomes possible, by storing the voltage data after the stop device, the state of the commercial power system in a state which does not depend on the operation of the equipment (state of the commercial power system itself is not affected by the power converter) it is possible to, by performing a comparison for sine wave comparison and each of the voltage waveforms of the two voltage waveforms, in which stopping of the equipment can easily perform the determination of whether the impact of a disturbance is there.

本発明に係る電力変換装置の実施の形態を示す一例の概略構成図である。 It is an example schematic diagram of illustrating an embodiment of a power conversion device according to the present invention. 本発明に係る電力変換装置の実施の形態の一例を示す電圧波形図である。 Is a voltage waveform diagram showing an example of an embodiment of a power conversion apparatus according to the present invention. 本発明に係る電力変換装置の実施の形態の一例を示す電圧波形図である。 Is a voltage waveform diagram showing an example of an embodiment of a power conversion apparatus according to the present invention. 従来技術における系統連系システムの形態を示す概略構成図である。 It is a schematic diagram showing a configuration of a system interconnection system in the prior art. 従来技術における電力変換装置の形態を示す一例の概略構成図である。 It is an example schematic diagram of illustrating a configuration of a power conversion apparatus in the prior art.

符号の説明 DESCRIPTION OF SYMBOLS

1:電力変換装置2:太陽電池パネルからなる直流電源3:昇圧回路4:インバータ回路5:リアクトル6:半導体スイッチ素子7:ダイオード8:平滑コンデンサ9:出力制御手段10:ブリッジ回路11:フィルタ回路12:商用電力系統13:負荷15:制御回路 1: power converter 2: DC power source 3 consists of solar panel: boosting circuit 4: inverter circuit 5: Reactor 6: semiconductor switching device 7: diode 8: smoothing capacitor 9: output control means 10: Bridge circuit 11: filter circuit 12: commercial power system 13: load 15: the control circuit
16:電圧検出部18:メモリ部21:電力変換装置23:昇圧回路24:インバータ回路25:制御回路26:電圧検出部27:電流検出部28:メモリ部 16: voltage detection unit 18: Memory unit 21: power converter 23: booster circuit 24: inverter circuit 25: control circuit 26: voltage detector 27: current detecting unit 28: memory unit

Claims (1)

  1. 太陽電池パネルの発電した直流電力の電圧を昇圧し、さらにこの昇圧された直流電圧を交流電圧に変換し、太陽電池パネルを負荷系統及び商用電力系統に電気的に接続して連系運転を行う電力変換装置であって、この電力変換装置に前記商用電力系統の電圧を検出する電圧検出部と検出された前記電圧のデータを記憶するためのメモリ部を設けるとともに、このメモリ部に異常を検知して連系運転を停止した際の停止する直前の前記電圧のデータ及び連系運転を停止した後の所定時間後の前記電圧のデータを記憶させることを特徴とする電力変換装置。 Boosting the generated electric DC power voltage of the solar cell panel, further converts the boosted DC voltage into an AC voltage, performs interconnected operation to electrically connect the solar panel on the load system and the commercial power system a power conversion device, wherein with the commercial power system voltage memory unit for storing data of the voltage detected with the voltage detection unit that detects provided for in the power converter, detects an abnormality in the memory unit power conversion apparatus characterized by storing data of the voltage after a predetermined time after stopping the data and interconnected operation of the voltage immediately before the stop when stopping the interconnected operation with.
JP2003429384A 2003-12-25 2003-12-25 Power converter Pending JP2005192314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003429384A JP2005192314A (en) 2003-12-25 2003-12-25 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003429384A JP2005192314A (en) 2003-12-25 2003-12-25 Power converter

Publications (1)

Publication Number Publication Date
JP2005192314A true JP2005192314A (en) 2005-07-14

Family

ID=34788071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003429384A Pending JP2005192314A (en) 2003-12-25 2003-12-25 Power converter

Country Status (1)

Country Link
JP (1) JP2005192314A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009290918A (en) * 2008-05-27 2009-12-10 Panasonic Corp Distributed power system
CN102201780A (en) * 2010-03-24 2011-09-28 发那科株式会社 Motor driving apparatus easily analyzable for cause of fault
JP2012511299A (en) * 2008-12-04 2012-05-17 ソラレッジ テクノロジーズ リミテッド System and method for protection in a power plant
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
US8587151B2 (en) 2006-12-06 2013-11-19 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US8599588B2 (en) 2007-12-05 2013-12-03 Solaredge Ltd. Parallel connected inverters
JP2014023346A (en) * 2012-07-20 2014-02-03 Mitsubishi Electric Corp Power conversion device
US8659188B2 (en) 2006-12-06 2014-02-25 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8766696B2 (en) 2010-01-27 2014-07-01 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8957645B2 (en) 2008-03-24 2015-02-17 Solaredge Technologies Ltd. Zero voltage switching
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8988838B2 (en) 2012-01-30 2015-03-24 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9000617B2 (en) 2008-05-05 2015-04-07 Solaredge Technologies, Ltd. Direct current power combiner
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9276410B2 (en) 2009-12-01 2016-03-01 Solaredge Technologies Ltd. Dual use photovoltaic system
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9870016B2 (en) 2012-05-25 2018-01-16 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8587151B2 (en) 2006-12-06 2013-11-19 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US8659188B2 (en) 2006-12-06 2014-02-25 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US8599588B2 (en) 2007-12-05 2013-12-03 Solaredge Ltd. Parallel connected inverters
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US8957645B2 (en) 2008-03-24 2015-02-17 Solaredge Technologies Ltd. Zero voltage switching
US9000617B2 (en) 2008-05-05 2015-04-07 Solaredge Technologies, Ltd. Direct current power combiner
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
JP2009290918A (en) * 2008-05-27 2009-12-10 Panasonic Corp Distributed power system
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
JP2012511299A (en) * 2008-12-04 2012-05-17 ソラレッジ テクノロジーズ リミテッド System and method for protection in a power plant
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10270255B2 (en) 2009-12-01 2019-04-23 Solaredge Technologies Ltd Dual use photovoltaic system
US9276410B2 (en) 2009-12-01 2016-03-01 Solaredge Technologies Ltd. Dual use photovoltaic system
US8766696B2 (en) 2010-01-27 2014-07-01 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9917587B2 (en) 2010-01-27 2018-03-13 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9231570B2 (en) 2010-01-27 2016-01-05 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9564882B2 (en) 2010-01-27 2017-02-07 Solaredge Technologies Ltd. Fast voltage level shifter circuit
CN102201780A (en) * 2010-03-24 2011-09-28 发那科株式会社 Motor driving apparatus easily analyzable for cause of fault
JP2011205740A (en) * 2010-03-24 2011-10-13 Fanuc Ltd Motor driving apparatus
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US8988838B2 (en) 2012-01-30 2015-03-24 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9870016B2 (en) 2012-05-25 2018-01-16 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
JP2014023346A (en) * 2012-07-20 2014-02-03 Mitsubishi Electric Corp Power conversion device
JP2016027785A (en) * 2012-07-20 2016-02-18 三菱電機株式会社 Power converter
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems

Similar Documents

Publication Publication Date Title
US6930868B2 (en) Apparatus and method of detecting ground fault of solar power generation system
EP1191661B1 (en) Uninterruptible power system
ES2374270T3 (en) Control of the output power factor of a modulated pulse width inverter.
DE60036150T2 (en) Method for operating a power supply system with parallel-connected inverters and current transformer system
US20120087158A1 (en) Method and Apparatus for Controlling an Inverter Using Pulse Mode Control
JP2011092004A (en) Method for protecting pwm rectifier circuit and apparatus therefor
DE60207489T2 (en) System interconnection for an electric power generator and control method therefor
US8053930B2 (en) Solar power plant
JP5605548B2 (en) Grid interconnection device
JP3606780B2 (en) Uninterruptible power system
US6838611B2 (en) Solar battery module and power generation apparatus
US4672520A (en) Current-source power converting apparatus with self-extinction devices
JP2000284838A (en) Photovoltaic power generator and it control method
JP2002369406A (en) System-interconnected power system
JP2003134661A (en) Load interruption detecting device and photovoltaic power generator
KR100763135B1 (en) Photovoltaic power generation system and control method thereof
JPH09266695A (en) Frequency converter
JP3796460B2 (en) Power conditioner for photovoltaic system
TWI399007B (en) Power supply unit provided with ac/dc input voltage detection and power supply system incorporating same
JP2005204485A (en) Inverter device for system interconnection
JP2005168156A (en) Ground fault countermeasure device and power generating system
JP2004187362A (en) Grid-connected inverter arrangement
CN1906835B (en) Power factor improving circuit and switching power supply
JP2013085325A (en) Three-level power conversion circuit system
WO2011065278A1 (en) Grid connection apparatus